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Abstract

Federated learning (FL) is now recognized as a key framework for communication-
efficient collaborative learning. Most theoretical and empirical studies, however,
rely on the assumption that clients have access to pre-collected data sets, with
limited investigation into scenarios where clients continuously collect data. In
many real-world applications, particularly when data is generated by physical or bi-
ological processes, client data streams are often modeled by non-stationary Markov
processes. Unlike standard i.i.d. sampling, the performance of FL with Markovian
data streams remains poorly understood due to the statistical dependencies between
client samples over time. In this paper, we investigate whether FL can still support
collaborative learning with Markovian data streams. Specifically, we analyze the
performance of Minibatch SGD, Local SGD, and a variant of Local SGD with
momentum. We answer affirmatively under standard assumptions and smooth
non-convex client objectives: the sample complexity is proportional to the inverse
of the number of clients, with a communication complexity comparable to the i.i.d.
scenario. However, the sample complexity for Markovian data streams remains
higher than for i.i.d. sampling. Our analysis is validated via experiments with real
pollution monitoring time series data.

1 Introduction

As edge networks grow in scale, clients are increasingly diverse [34]. Many of these clients are
capable of continuously collecting and learning from data, instead of simply storing large quantities
of historical data [28]. This streaming data arises in applications ranging from health [21, 22] and
environmental monitoring [24], to control of robots [29].

Each data stream provides detailed information about individual clients. However, applications such
as environmental resource management [54] or public health monitoring [6] often aim to derive
population-level insights, leveraging data streams from multiple individuals to learn a global model.
As this data may be sensitive or costly to communicate, centralized training solutions are undesirable.
Federated Learning (FL) has emerged as a key strategy for communication-efficient collaborative
learning [26]. In conventional FL scenarios, clients have access to local datasets used to train
models locally. These models are then transmitted to a central server, where aggregation facilitates
collaborative learning. FL minimizes communication overhead while learning models with high
accuracy and ensuring client data are not shared.

Clients with streaming data must also cope with memory constraints [38, 35]. This means that clients
have limited control over data sampling: local updates can only be computed using the current data
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samples stored in memory. Moreover, data in health and environmental monitoring applications is
often generated by non-linear physical and biological systems. The data generated by these systems
is frequently modeled as non-stationary Markovian data streams [1, 58]. When client memory caches
are continually refreshed by Markovian streaming data, the samples available to compute updates are
statistically dependent and non-stationary in time.

In this paper, we address the following question: Can FL with Markovian data streams support
collaborative learning? While Markovian sampling has been explored in the centralized setting [17],
existing work in the federated setting has focused on Federated Reinforcement Learning [45, 28, 37]
with convex objectives. However, classification and regression tasks in systems with non-linear
dynamics often rely on deep neural networks or non-convex regularization [63, 36], resulting in
non-convex minimization problems during training. We therefore consider a family of training
tasks beyond the work in [45, 28, 37] characterized by smooth non-convex loss functions. Our main
contributions can be summarized as follows:

(i) Impact of Markovian sampling: We rigorously characterize the impact of Markovian sam-
pling on the convergence rate of Minibatch and Local Stochastic Gradient Descent (SGD),
the two most common baselines in FL. A key conclusion is that linear speed-up is achieved
under standard assumptions on the objectives and heterogeneity: the sample complexity is
proportional to the inverse of the number of clients.

(ii) Mitigating client heterogeneity: We show that a momentum-based variant of Local SGD
introduced in the i.i.d. setting [9, 61] can effectively mitigate the client drift with Markovian
data streams. In particular, unlike Local SGD, Local SGD with Momentum matches the
performance of Minibatch SGD up to a constant without requiring any bound on client data
heterogeneity.

(iii) Validation on Environmental Monitoring Data: The key difference between i.i.d. and
Markovian sampling is statistical dependence between consecutive samples. We validate
our analysis using multi-site pollution time series data [7], which shows the benefit of
collaboration on real data with dependent samples.

2 Related Works

Edge devices often encounter the challenge of processing continuous data streams while operating
under memory constraints [38, 35]. Learning from streaming data presents numerous challenges,
with solutions dependent on the data-generating process. One line of research addresses scenarios
where the data distribution evolves over time, with continual learning methods designed to adapt the
model to the changing data distribution [51]. Another line focuses on adversarial settings, where the
data stream is generated by an adversary [53], often addressed using online learning algorithms with
regret guarantees.

In this paper, we focus on learning from data generated by Markovian processes. Markovian
processes have been successfully applied to model various physical and biological systems [1, 58],
and encompass the special case where data samples are drawn i.i.d. from an unknown distribution.

In the centralized setting, this learning problem can be framed as a stochastic approximation problem,
typically addressed by variants of stochastic gradient descent (SGD). While SGD with i.i.d. data is
well-understood [47, 31], the Markovian nature of the data stream introduces challenges due to the
temporal correlation between samples.

For uniformly ergodic Markov chains, [16] first demonstrated that mirror descent achieves optimal
convergence rates for Lipschitz, general convex, and non-convex problems. Recently, [15] proposed
a random batch size algorithm that adapts to the mixing time of the Markov chain, while [3] adopted
the same technique to develop accelerated methods and established lower bounds for strongly convex
objectives.

For general Markov chains, existing analysis of SGD-type algorithms [55, 14, 13] have shown sub-
optimal dependence on the mixing time and on the variance of stochastic gradient estimates relative
to the lower bounds in [3, 16]. We refer to [3, Table 1] for an exhaustive review of the literature on
SGD with Markovian noise.
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In the case of SGD with Markovian noise on a finite state space—a common scenario in distributed
optimization [4]—[17, 23] developed convergence theories and variance reduction techniques for
first-order methods, demonstrating improvements over the gossip algorithm [5].

In the context of FL, a few papers have considered learning from data streams. [41] and [62] framed
the problem in an adversarial and in a continual learning setting, respectively. [8] imposed strong
homogeneity assumptions, such as requiring all clients to share a common optimal model. [38]
assumed that each client’s data stream consists of i.i.d. samples, while allowing for heterogeneous
data distributions across clients. The study focused on temporal dependencies arising from the use
of local memory and analyzed the impact of heterogeneous memory constraints. [35] studied how
to jointly tune batch sizes and number of local updates, but did not have convergence results in the
streaming setting.

In the case of Markovian data streams, recent work has primarily focused on Federated Reinforcement
Learning (FRL) with linear function approximation. A key challenge is demonstrating that collabora-
tion is beneficial in this setting; namely, that the per-client sample complexity of FRL algorithms
decreases inversely with the number of clients. While this linear speed-up is well-understood for
i.i.d. data, the impact of collaboration remains an open question in the presence of statistical depen-
dence, as is the case with Markovian data streams. [28, 18] demonstrated the benefits of cooperation
under a strong homogeneity assumption on the client environment. Heterogeneous settings have been
considered in [12, 25] with a linear speed-up established in [59] subject to heterogeneity assumptions,
which were then relaxed in [37] by incorporating control variates [27]. Unfortunately, these results
do not readily extend beyond the FRL setting.

Beyond Markovian data streams, temporal correlations can arise from other factors in the FL setting.
For instance, memory update strategies, as explored in [38], can introduce dependencies between
subsequent updates. Similarly, the availability of clients can exhibit Markovian behavior, as discussed
in [46, 49, 56]. While these sources of correlation are distinct from the Markovian data stream
focus of this paper, they highlight the broader significance of understanding and mitigating temporal
dependencies in the FL context.

3 Problem Setup

In this section, we introduce our problem setting. We denote by [M ] := [1,M ] the set of positive
integers up to M , and by [K]0 := [0,K − 1] the set of non-negative integers less than K.

3.1 Streaming Federated Learning

Consider M clients, each with an objective given by

Fm(w) = Ex∼πm
[fm(w;x)],

where fm : Rd × Ωm → R and πm is the target data distribution. for client m. In the context
of supervised learning, the objective Fm corresponds to the true risk of the loss function fm,
parameterized by the parameter w, on a data sample x drawn from πm.

In FL, the M clients collaborate to solve

min
w∈Rd

1

M

M∑
m=1

Fm(w), (1)

by iterating a two-phase procedure over multiple communication rounds. Two popular examples
of this procedure are Minibatch SGD (Algorithm 2 in Appendix A) and Local SGD or FedAvg
(Algorithm 3 in Appendix A) [26]. In the first phase of the t-th communication round, client m
has access to K data samples. These samples are used to compute a local update: either a gradient
estimate g

(m)
t in the case of Minibatch SGD, or a model iterate w

(m,K)
t obtained after performing K

local gradient steps in the case of Local SGD. In the second phase, the server aggregates the local
updates from all clients—typically via averaging—to update the global model. In the second phase,
the updates are aggregated via averaging.

In the standard FL scenario, the samples available at client m in any communication round t are fixed,
corresponding to pre-collected data [26]. In contrast, in streaming FL, the data available to client
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m can change in every communication round. Streaming FL models scenarios where clients have a
limited memory cache of K samples and new data is collected over time [38, 35].

Streaming FL raises a key challenge: the data sampling process is not completely controlled by the
clients. As a consequence, i.i.d. data samples from the target distribution πm may not be available.
For example, patient data in health monitoring is continuously collected from wearable devices.
Statistical dependence between data collected over time naturally arises due to latent factors such as
daily routines, sleep patterns, and weather conditions [32]. Moreover, the initial data collection or
warm-up period [2] might capture atypical behavior, such as adjustments to new wearable devices.
As a consequence, the data stream of a patient m will, in general, be non-stationary and not reflect
the long-term target distribution πm.

3.2 Markovian Data Streams

Data streams arising in health and environmental monitoring often exhibit specific statistical structures.
Indeed, many biological, chemical, and physical systems are governed by non-stationary Markov
processes [1, 58]. Data streams arising in federated reinforcement learning also form Markov
processes [28, 44]; however, the use of stationary exploration policies leads to stationary data streams.

We model the data stream Xm = (xm
t )t∈N of client m by a time-homogeneous Markov chain

evolving on the state space Ωm ⊆ Rd with the corresponding Borel σ-field Bm [48, 39]. As an abuse
of notation, for all t ∈ N, and for all k ∈ [K]0, we denote by x

(m,k)
t := xm

Kt+k the k-th sample

available to client m at the t-th communication round. We may also use xm
t :=

(
x
(m,k)
t

)
k∈[K]0

to

denote all K data samples available to client m in communication round t. The evolution of the
time-homogeneous Markov chain for client m is characterized by the initial distribution x

(m,0)
0 ∼ µm

and by the transition kernel Pm.

We focus on the case of independent clients, where Xm is independent of Xm′ for m ̸= m′. This
scenario occurs when client data streams are generated by non-interacting processes. Key examples
include patient health monitoring and environmental monitoring across spatially separated regions,
where observations from different clients are often assumed to be independent [50].2

The Markov chain Xm admits a stationary distribution πm on Ωm if∫
x∈Ωm

dπm(x)Pm(x, dx
(m,k)
t ) = dπm(x

(m,k)
t ).

We say that Xm is stationary if x(m,0)
0 ∼ πm; otherwise, Xm is non-stationary.

The stationary distributions πm, m ∈ [M ] correspond to the target distributions in (1), which capture
the long-term statistics of the data samples. Since long-term statistics, rather than transient behavior
of the samples, are of interest for learning in health and environmental monitoring scenarios, the
stationary distribution is a natural choice for the target distribution. Hence, we make the following
assumption, which guarantees that the Markov process associated with each client admits a unique
stationary distribution.
Assumption 3.1. The data samples of client m ∈ [M ] are drawn from an independent time-
homogeneous Markov chain Xm defined on (Ωm,Bm) with transition kernel Pm and initial distribu-
tion µm, converging to the unique stationary distribution πm.

Assumption 3.1 ensures that samples xm
t from the data stream of client m will be approximately

drawn from πm as t diverges.

We also define by X = (Xm)m∈[M ] the system-level Markov process defined on (Ω,B), where

Ω :=×M

m=1
Ωm and B :=

⊗M
m=1 Bm. This Markov chain, at each time step, evolves independently

on each of M coordinates according to the corresponding transition kernel Pm. We denote by
P its transition matrix. Similarly, for the ease of notation, we write xk

t :=
(
x
(m,k)
t

)
m∈[M ]

and

xt :=
(
xk
t

)
k∈[K]0

.

2In the case of nearby or overlapping regions, statistical dependence between the data samples may arise
[40].
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In Proposition B.6, we provide a formal characterization of P and we also prove that X is indeed a
well-defined Markov chain. Furthermore, under Assumption 3.1, X admits a stationary distribution
π =

⊗M
m=1 πm. We denote by νps the pseudo spectral gap of P [43, Section 3.1].

We also make the following assumption on the absolute continuity of the transition kernel P with
respect to the stationary distribution π.
Assumption 3.2. For every x ∈ Ω, the probability measure P (x, .) is absolutely continuous with
respect to the stationary measure π, and its Radon-Nikodym derivative dP (x,.)

dπ is uniformly bounded
on sets with non-zero measure with respect to π. In particular,

C∞ = sup
x∈Ω

ess sup

∣∣∣∣dP (x, .)

dπ

∣∣∣∣ < ∞

We note that Assumption 3.2 is generally mild, in the sense that it only requires, for every x ∈ Ω,
P (x, .) is absolutely continuous with respect to π, and every π-integrable function is also P (x, .)-
integrable. This assumption is commonly used in the analysis of other stochastic approximation
algorithms with Markovian noise, for example, Markov chain Monte Carlo [19, Theorem 12]. In the
case where Ω is finite, C∞ = maxx,y∈Ω

P (x,y)
π(y) . We provide further discussion of the dependence of

C∞ on the transition kernel in Appendix D.5.

In contrast to most existing studies on stochastic optimization (approximation) with Markovian data,
we do not impose any assumption on the speed of convergence to the stationary measure of the
underlying Markov processes, such as the commonly used uniform geometric ergodicity assumption
(see, e.g., [3, Assumption A3; 37, Assumption A3; 59, Assumption 3; 65, Assumption 3]), which
requires exponentially fast convergence to the stationary measure. Prior works rely on this fast mixing
property to handle the non-stationarity of Markovian data when taking conditional expectations,
which is ubiquitous in the analysis of SGD-type algorithms. However, our analysis shows that, under
the mild Assumption 3.2, a simple change of measures suffices. As uniform geometric ergodicity is
typically difficult to verify in real-world scenarios, our results are therefore more broadly applicable.
For completeness, in Appendix D.4, we provide an extension of our analysis under the stronger
uniform geometric ergodicity assumption.

4 Convergence Analysis

4.1 Assumptions

To conduct the convergence analysis, we first impose the following assumptions on the objective
functions and the stochastic gradients.
Assumption 4.1. The global objective function F is L-smooth; that is, for all w1, w2 ∈ Rd:

F (w2) ≤ F (w1) + ⟨∇F (w1), w2 − w1⟩+
L

2
∥w1 − w2∥2 .

In some cases, we will need the following assumption that requires the sample-wise local objective
functions to be L-smooth:
Assumption 4.2. For every m ∈ [M ], the sample-wise objective functions fm(w;x) are L-smooth;
that is, for all w1, w2 ∈ Rd, x ∈ Ωm,

fm(w2;x) ≤ fm(w1;x) + ⟨∇fm(w1;x), w2 − w1⟩+
L

2
∥w1 − w2∥2 .

We note that Assumption 4.2 implies Assumption 4.1.

Next, we state an assumption on the noise of the stochastic gradients.
Assumption 4.3. For all clients m ∈ [M ], for all x ∈ Ωm, and w ∈ Rd, there exists σ > 0 such that

∥∇fm(w;x)−∇Fm(w)∥2 ≤ σ2.

Assumption 4.3 uniformly bounds the gradient estimation error for each client. While stronger
than the bounded variance assumption, this assumption is standard for stochastic optimization with
Markovian noise in both the centralized [3] and federated [37] settings.
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Heterogeneity in client objective functions and data distributions is a well-known challenge for FL
algorithms based on Local SGD, as it leads to client drift [27]. In order to provide convergence
guarantees in the i.i.d. setting, it is necessary to impose constraints on the local gradient norms
[60, 64]. Client heterogeneity poses the same difficulty in the Markovian setting. As such, we impose
the following bounded gradient dissimilarity (BGD) assumption.

Assumption 4.4. There exist θ ≥ 0 and δ ≥ 1 such that, for all w ∈ Rd,

1

M

M∑
m=1

∥∇Fm(w)∥2 ≤ θ2 + δ2 ∥∇F (w)∥2 .

This assumption was first introduced in [27] and has since become ubiquitous in the analysis of Local
SGD [64]. We highlight that the BGD assumption includes the assumptions in [60, 33]. While weaker
heterogeneity assumptions exist in the literature, these are not straightforward to apply for non-convex
objectives where the BGD assumption is standard [30]. In Section 4, we establish iteration and
communication complexity bounds of Local SGD under these assumptions.

Finally, we define the following three classes of problems for the analysis of Minibatch SGD, Local
SGD, and Local SGD with Momentum (SGD-M). Recall from Section 3.2 that the system-level
Markov chain is denoted by X . We assume throughout that all objective functions are in general
non-convex and F is bounded from below by F ∗ > −∞.

F1(L, σ, νps, C∞) :={(F,X) : Assumptions 3.1, 3.2, 4.1,and 4.3 hold}.
F2(L, σ, νps, C∞) := {(F,X) : Assumptions 3.1, 3.2, 4.2 and 4.3 hold}.

F3(L, σ, θ, δ, νps, C∞) := {(F,X) : Assumptions 3.1, 3.2,and 4.2 to 4.4 hold}.

We note that

F3(L, σ, θ, δ, νps, C∞) ⊂ F2(L, σ, νps, C∞) ⊂ F1(L, σ, νps, C∞).

In the following sections, we analyze the convergence of Minibatch SGD, Local SGD, and Local
SGD-M for the problem classes F1,F3, and F2, respectively. For any ϵ > 0, we derive conditions on
the step sizes, the number of local steps K, and the number of communication rounds T that ensure
convergence to an ϵ-accurate solution, i.e.,

E[∥∇F (ŵT )∥2] ≤ ϵ2,

where ŵT is the output of each algorithm, drawn uniformly at random from the iterates w0, . . . , wT−1.

We use the Landau big-O notation O(·), a∨b for max {a, b}, a∧b for min {a, b}, ∆0 for F (w0)−F ∗

and G0 for 1
M

∑M
m=1 E

[
∥∇Fm(w0)∥2

]
.

4.2 Minibatch SGD

We first establish the following upper bound for Minibatch SGD.

Theorem 4.5. For the problem class F1(L, σ, νps, C∞), with global step size γ ≤ 1/L, the iterates
of Minibatch SGD satisfy:

E
[
∥∇F (ŵT )∥2

]
≤ O

(
∆0

γT
+

C∞σ2

νpsMK

)
.

The proof of Theorem 4.5 is given in Appendix D.1. The first deterministic term depends on the
initial iterate and decays with the same rate as in the i.i.d. setting. The last term arises from the
dependence structure and non-stationarity of the Markov data process. In contrast to i.i.d. sampling
[60], these terms cannot be controlled by the step size. In particular, Theorem 4.5 reveals that the
stochastic gradient noise is amplified by a factor inversely proportional to the spectral gap of the
system-level Markov chain.

The following corollary characterizes the communication and sample complexity of Minibatch SGD.
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Corollary 4.6. Under the conditions of Theorem 4.5, the required number of local steps and
communication rounds for Minibatch SGD to achieve E[∥∇F (ŵT )∥2] ≤ ϵ2 are:

K = O
(

C∞σ2

νpsMϵ2

)
, T = O

(
L∆0

ϵ2

)
.

The proof of Corollary 4.6 is deferred to Appendix D.1.

4.3 Local SGD

In the analysis of Local SGD, bounded heterogeneity assumptions are required, even in the i.i.d.
setting [27]. We consider the problem class F3(L, σ, θ, δ, νps, C∞), which requires sample-wise
smoothness (Assumption 4.2) and bounded heterogeneity (Assumption 4.4).
Theorem 4.7. For any F ∈ F3(L, σ, θ, δ, νps, C∞), with local step size η ≤ O

(
1

LKδ2

)
, the iterates

of Local SGD satisfy:

E
[
∥∇F (ŵT )∥2

]
≤ O

(
∆0

ηKT
+

C∞σ2

νpsMK
+
LKη

(
θ2 + σ2

)
δ2

)
.

The proof of Theorem 4.7 is given in Appendix D.2. The convergence behavior of Local SGD
closely resembles that of Minibatch SGD, except for the additional third term introduced by the client
drift. We note that this term can be controlled by having a sufficiently small step size. Similar to
Corollary 4.6, the following corollary specifies the communication and sample complexity of Local
SGD for both stationary and non-stationary Markov chains.
Corollary 4.8. Under the conditions of Theorem 4.7 and

η ≤ O
(

δ2ϵ2

KL(θ2 + σ2)
∧ 1

KLδ2

)
,

the required number of local steps and communication rounds for Local SGD to achieve
E[∥∇F (ŵT )∥2] ≤ ϵ2, are:

K = O
(

C∞σ2

νpsMϵ2

)
, T = O

(
L∆0

ϵ2

(
δ2 ∨ θ2 + σ2

δ2ϵ2

))
.

The proof of Corollary 4.8 is also given in Appendix D.2.

4.4 Local SGD with Momentum

In the case of i.i.d. sampling, several algorithms have been proposed to mitigate the client drift effect
without the need of Assumption 4.4. One line of work focuses on the control variate technique, first
introduced by [27]. Recently, [9, 61] have demonstrated that momentum can also be used to mitigate
client drift in the i.i.d. setting.

In this section, we study the convergence of a momentum-based variant of Local SGD, named Local
SGD-M, detailed in Algorithm 1. The key difference from Local SGD is that the local updates
are computed via the convex combination of the gradient estimate for the local objective and the
aggregated updates from the previous communication round. This allows us to build a recursive
bound for the gradient estimate error, without relying on any heterogeneity assumption to bound the
drift caused by local updates as in the case of Local SGD.

We show that, with Markovian data, this technique also mitigates the impact of client drift. In
particular, the lower bound on communication complexity in the i.i.d. setting [42] is achieved up
to a constant without any heterogeneity assumptions. The convergence result for Local SGD with
momentum holds for the broader function class F2(L, σ, νps, C∞), which retains the sample-wise
smoothness condition but relaxes the requirement for bounded heterogeneity.
Theorem 4.9. For the problem class F2(L, σ, νps, C∞), with the following conditions on the step
sizes:

ηKL ≤ O

(
1

β
∧

√
C∞

νpsMKβ2
∧

√
L∆0

β3TG0
∧ 1

(1− β)
∧ 1

βγLT

)
, γ ≤ O

(
β

L

)
,
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Algorithm 1 Local SGD-M

Input: initial model w0 and gradient estimate v0, local learning rate η, global learning rate γ and
momentum β
for t = 0 to T − 1 do

for every client m ∈ [M ] in parallel do
Initialize local model w(m,0)

t = wt

for k = 0 to K − 1 do
v
(m,k)
t = β∇fm

(
w

(m,k)
t ;x

(m,k)
t

)
+ (1− β) vt

w
(m,k+1)
t = w

(m,k)
t − ηv

(m,k)
t

end for
Communicate wm,K

t
end for
Aggregate: vt+1 = 1

ηMK

∑M
m=1

(
wt − w

(m,K)
t

)
Server update: wt+1 = wt − γvt+1

end for
Output: ŵT sampled uniformly from w0, . . . , wT−1.

the iterates of Local SGD-M satisfy:

E
[
∥∇F (ŵT )∥2

]
≤ O

(
L∆0

βT
+

C∞σ2

νpsMK

)
.

The proof of Theorem 4.9 is given in Appendix D.3. The communication and sample complexities of
Local SGD-M are characterized in the following corollary.
Corollary 4.10. Under the conditions of Theorem 4.9, the required number of local steps and
communication rounds for Local SGD-M to achieve E[∥∇F (ŵT )∥2] ≤ ϵ2 are:

K = O
(

C∞σ2

νpsMϵ2

)
, T = O

(
L∆0

βϵ2

)
.

The proof of Corollary 4.10 is delegated to Appendix D.3.

4.5 Discussion

Impact of Markovian Data: Our convergence analysis in Corollaries 4.6, 4.8, and 4.10 reveals
the impact of Markovian sampling for smooth non-convex objectives. Due to temporal dependence
between samples, the gradient noise is scaled by C∞/νps, which depends on the spectral properties of
the Markov kernel. Moreover, the stochastic gradient estimates computed by the clients are inherently
biased. This bias arises from the Markovian structure of the data and, unlike the i.i.d. case, cannot be
controlled by having a small or decaying step size. This is due to the fact that the bias contributes
to the terms involving the gradient noise σ2 in our bounds. Consequently, in order to control these
terms and guarantee convergence, the number of local steps K must be sufficiently large.

However, we emphasize that our results remain consistent with the core principles of FL: leveraging
more local computation to reduce communication costs. Indeed, a comparison with [42, Table 2]
shows that the lower bound established in the i.i.d. setting for communication complexity can be
achieved by Minibatch SGD and Local SGD-M. Similar results for the special case of Federated
Stochastic Approximation (FSA) can be observed in [37, Corollary 4.5], where additional local
computation is required to reduce the third term in [37, Theorem 4.1].

Some prior works in the centralized [3, 15, 14] or the token-passing [17] setting introduce auxiliary
hyper-parameters that can be tuned to make the bias vanish, instead of tuning directly the step size.
This is achieved:

• in [17, 14] by decomposing the bias into other terms involving delayed gradients, and
scaling such delays as 1/

√
T . However, this technique requires a constraint on the minimum

number of iterations T (analogous to the number of communication rounds in our analysis),
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at the order of the mixing time of the Markov chain. Such a constraint is undesirable in the
FL setting, where the main goal is to minimize communication. A recent paper on FSA [65]
follows the same strategy and indeed needs to impose a lower bound on T proportional to
the maximum mixing time across all clients.

• in [3, 15] by using minibatch gradient estimates (instead of using just one sample). More
precisely, at each iteration, a random batch size is drawn from a truncated geometric
distribution with maximum value m, requiring a new hyper-parameter. [3, 15] show that the
bias scales inversely with m, which is then chosen to be scaled with

√
T .

We highlight that the sample complexities obtained in our paper are of the order of 1/(Mϵ4), matching
those achieved in [3, 15, 14, 17], scaled inversely with the number of clients M . However, as already
mentioned in Section 3.2, our assumptions on the underlying Markov processes are more general.
Furthermore, as the terms involving σ2 scale with 1/K, following the approach in [3, 15] and letting
K scale with T would indeed drive these terms to zero as T → ∞. Nevertheless, doing so would
not lead to any improvement in the overall sample complexity. Further details on this, as well as
a more exhaustive discussion on the differences of our work with existing works, are provided in
Appendix C.

Impact of Heterogeneity: Convergence analysis of Local SGD requires the BGD heterogeneity
assumption. The lower bound for communication complexity in the i.i.d. setting can only be achieved
within the low-heterogeneity, low-noise regime; i.e., when θ2+σ2

ϵ2 ≤ δ4. In contrast, Local SGD-M
successfully mitigates the client drift caused by heterogeneity. In particular, the lower bound on
the communication complexity in [42] is achieved without any heterogeneity assumptions, up to a
constant of 1/β, while maintaining the same number of samples per communication round K. This
contrasts with SCAFFLSA [37], which utilizes control variates to mitigate heterogeneity, resulting
in lower communication complexity. However, SCAFFLSA needs a higher number of samples per
communication round than its vanilla version, FedLSA, and still relies on a heterogeneity assumption
around the optimum. Another work on FSA shows the presence of a persistent bias term [59, Theorem
2], which cannot be controlled with increased local computation or even more communication rounds.

Impact of Number of Clients M : The sample complexity of all three algorithms scales with 1/M ,
demonstrating the benefits of collaboration in FL with heterogeneous Markovian data streams and
smooth non-convex objective functions.

5 Numerical Results

In this section, we evaluate the performance of Local SGD, Minibatch SGD, and Local SGD with
Momentum on the Beijing Multi-Site Air-Quality dataset [7], which contains hourly measurements
from 12 weather stations across China, collected between March 2013 and February 2017. The
prediction target is seasonality-adjusted PM2.5 concentration, using other air quality and meteoro-
logical indicators as features. In Appendix E, we provide further details for the time series data
preprocessing, non-convex objective, and additional experiments to investigate the impact of the
Markov chain’s spectral gap with synthetic data.

We partition the data temporally, reserving the last 12 months for testing and using the preceding 36
months for training. To simulate a federated setting with a larger number of clients, we create virtual
clients by randomly sampling contiguous windows of n ∈ {6, 12} months from the training period.
We use a linear regression model with a non-convex regularizer to encourage sparsity, based on
preliminary correlation analysis indicating that some features are not informative. The regularization
suppresses less relevant features while preserving smoothness for optimization, and is widely used in
robust non-convex optimization [57, 20].

Impact of heterogeneity: In Figure 1, we plot the trajectories of the gradient norm over the
communication rounds for Minibatch SGD, Local SGD, Local SGD-M, and SCAFFOLD [27], which
is the first algorithm proposed in the i.i.d. setting to mitigate heterogeneity in FL. We compare these
methods under varying numbers of samples, K, per communication round. We observe that the
performance of Minibatch SGD and Local SGD-M consistently improves as K increases, whereas
Local SGD and SCAFFOLD exhibit little to no improvement. This is consistent with our theoretical
findings, which identify heterogeneity as a limiting factor as K increases for Local SGD, but not
for Minibatch SGD or Local SGD-M. For SCAFFOLD, we argue that its advantage is clearer in the
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Figure 1: Gradient norm as a function of the number of communication rounds for Local SGD,
Minibatch SGD, Local SGD-M, and SCAFFOLD, with γ = 0.1, η = 0.01, β = 0.5, λ = 0.01 for
120 clients (each client has access to 12 consecutive months of training data) and different numbers
of local steps.
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Figure 2: Gradient norm as a function of the number of communication rounds for Local SGD,
Minibatch SGD & Local SGD-M, with γ = 0.1, η = 0.001, β = 0.5, λ = 0.01 and K = 100 for
different numbers of clients. Each client has access to a window of 6 consecutive months of training
data.

partial participation setting. [9] also shows that incorporating momentum into SCAFFOLD under the
partial client participation setting further improves the convergence. Extending our current analysis
to evaluate the combined effect of momentum and control variates in the partial participation setting
with Markovian data is a promising direction for future research.

Impact of Number of Clients M : In Figure 2, we plot the trajectories of the gradient norm for each
of the three algorithms with different numbers of clients. For all three methods, the gradient norm
decreases as the number of clients increases, indicating that collaboration is beneficial even in the
presence of heterogeneous Markovian data—a trend consistent with our theoretical analysis.

6 Conclusion

Statistical dependence is a reality in data streams arising from physical and biological systems. A
key question is whether collaboration remains beneficial for FL with Markovian data streams. To
address this question, we showed via analysis and experiments with pollution data that there is a
speed-up in FL with smooth non-convex objectives for Minibatch SGD, Local SGD, and Local SGD
with Momentum. However, there is a cost associated with Markovian data streams, quantified by an
increase in the sample complexity compared with i.i.d. sampling.
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A Preliminaries

A.1 Pseudo-code for Minibatch SGD and Local SGD

Algorithm 2 Minibatch SGD

Input: initial model w0, global learning rate
γ.
for t = 0 to T − 1 do

for every client m ∈ [M ] in parallel do
Receive the global model wt

for k = 0 to K − 1 do
Compute:
g
(m,k)
t = ∇fm

(
wt;x

(m,k)
t

)
end for
Communicate:
gmt = 1

K

∑K−1
k=0 gm,k

t
end for
Aggregate: gt = 1

M

∑M
m=1 g

m
t

Server update: wt+1 = wt − γgt
end for
Output: ŵT sampled uniformly from
w0, . . . , wT−1.

Algorithm 3 Local SGD

Input: initial model w0, local learning rate
η.
for t = 0 to T − 1 do

for every client m ∈ [M ] in parallel do
Initialize the local model:
w

(m,0)
t = wt

for k = 0 to K − 1 do
w

(m,k+1)
t = w

(m,k)
t

−η∇fm

(
w

(m,k)
t ;x

(m,k)
t

)
end for
Communicate w

(m,K)
t

end for
Server update:
wt+1 = 1

M

∑M
m=1 w

(m,K)
t

end for
Output: ŵT sampled uniformly from
w0, . . . , wT−1.

A.2 Notation

For clarity, we first recall some notations introduced in Section 3.

We use [M ] = {1, . . . ,M} to denote the set of positive integers up to M , and [K]0 = [0,K − 1] to
denote the set of non-negative integers less than K. For any vector x ∈ Rd, we write (x)i for the i-th
coordinate of x.

For every client m ∈ [M ], the data stream Xm = (xm
t )t∈N is a time-homogeneous Markov process

defined on state space Ωm endowed with the corresponding Borel σ-field Bm and transition kernel.
As an abuse of notation, for all t ∈ N, and for all k ∈ [K]0 we denote by x

(m,k)
t := xm

Kt+k and by

xm
t :=

(
x
(m,k)
t

)
k∈[K]0

, the k-th sample and the set of all K samples used by client m during round

t, respectively.

The system-level Markov chain X = (Xm)m∈[M ] is a product Markov chain defined on(
Ω :=×m∈[M ]

Ωm,B :=
⊗

Bm

)
, which, at each time step, moves independently on each of M

coordinates according to the corresponding transition kernel. Its transition matrix is defined at
the Kronecker tensor product P =

⊗
m∈[M ] Pm. Similarly, to simplify the notation, we write

xk
t :=

(
x
(m,k)
t

)
m∈[M ]

and xt :=
(
xk
t

)
k∈[K]0

.

For a Markov chain, we denote by Pq and Eq the corresponding probability distribution and expec-
tation with initial distribution q. When q = δ(x), we simply write Px and Ex. We also denote by
Ft := σ

(
x
(m,k)
i ,m ∈ [M ], k ∈ [K]0, i ∈ [t]0

)
the σ-algebra generated by all data points received

up to round t, and write Et[.] as an alias for the conditional expectation E[.|Ft].

The following notation will be used throughout the Appendix:

ḡt =
1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
,

gt =
1

MK

∑
m,k

∇fm

(
w

(m,k)
t ;x

(m,k)
t

)
,
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∆t = E [F (wt)]− F ∗,

st = E
[
∥wt+1 − wt∥2

]
,

where we use
∑

m,k for
∑

m∈[M ]

∑
k∈[K]0

unless explicitly stated differently.

With this notation, the global update rule of Minibatch SGD is

wt+1 = wt − γḡt,

the global update rule of Local SGD is

wt+1 = wt − η̃tgt,

where η̃t = Kηt, and the global update rule of Local SGD-M is

wt+1 = wt − γvt+1.
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B Markov Chain Preliminaries

In this section, we introduce some basic properties of Markov chains on general state spaces. In the
following, we let Ω be a Polish space, and B denote the associated Borel σ-field.

We begin with the following formal definition of transition kernels.
Definition B.1. If P = {P (x,A), x ∈ Ω, A ∈ B} such that:

(i) for each A ∈ B, P (., A) is a non-negative measurable function on Ω,

(ii) for each x ∈ Ω, P (x, .) is a probability measure on B,

then P is called a transition kernel.

If Ω is countable, then P (x, y) corresponds to the transition probability of moving from state x to
state y in a single step. However, in the case of continuous state spaces, we may have P (x, y) = 0
for all y ∈ Ω, hence the need of defining P (x,A) as the probability of jumping from the current
state x into a subset A ⊆ Ω.

Now we are ready to define a Markov chain.
Definition B.2. A time-homogeneous Markov chain defined on (Ω,B) with transition kernel P is a
sequence of random variables (Xi)i∈N taking values in Ω such that for all i ∈ N:

P (Xi ∈ A | Xi−1 = xi−1;Xi−2 = xi−2; . . . ;X1 = x1) = P (Xi ∈ A | Xi−1 = xi−1) (2)
= P (xi−1, A).

The Markov property (2) can be expressed in the following equivalent form:
Proposition B.3 (39, Proposition 3.4.3). Given a time-homogeneous Markov chain (Xi)i∈N on
(Ω,B), and f : Ω 7→ R a bounded and measurable function, then:

E[f (Xn+1, Xn+2, . . . ) | Xn = xn;Xn−1 = xn−1; . . . ;X1 = x1] (3)
= Exn

[f (X1, X2, . . . )]

We recall the definition of a stationary measure as follows:
Definition B.4. The stationary measure of a time-homogeneous Markov chain defined on (Ω,B)
with transition kernel P is a probability measure π such that, for all A ∈ B:

π(A) =

∫
Ω

dπ(x)P (x,A),

or, equivalently:

dπ(y) =

∫
Ω

dπ(x)P (x,dy).

Before formally defining the system-level Markov chain introduced in Section 3.2, we need the
following result on the measurability of the product of measurable functions.
Lemma B.5. Let (Ω1,B1) and (Ω2,B2) be two measurable spaces. Let f and g be two real-valued
measurable functions on Ω1 and Ω2, respectively. Let h be a real-valued function defined as:

h : Ω1 × Ω2 → R
(x1, x2) 7→ h(x1, x2) = f(x1)g(x2).

Then h is B1 ⊗ B2-measurable.

Proof. Consider f̃ and g̃ defined as:

f̃ : Ω1 × Ω2 → R
(x1, x2) 7→ f̃(x1, x2) = f(x1)
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and

g̃ : Ω1 × Ω2 → R
(x1, x2) 7→ g̃(x1, x2) = g(x2).

As f and g are B1-measurable and B2-measurable, f̃ and g̃ are B1 ⊗ B2-measurable. Indeed,

f̃−1 ([a,+∞)) = f−1 ([a,+∞))× Ω2 ∈ B1 ⊗ B2, and

g̃−1 ([a,+∞)) = Ω1 × g−1 ([a,+∞)) ∈ B1 ⊗ B2.

As h = f̃ g̃, and the product of two measurable functions on the same measurable space is measur-
able [10, Proposition 2.1.7], we proved that h is B1 ⊗ B2-measurable.

The above result can be generalized to the product of more than two functions in a trivial way. We
omit the proof for readability.

Now, we provide a formal definition of the system-level Markov chain introduced in Section 3.2. We
show that it is indeed a well-defined Markov chain and characterize its transition kernel and stationary
distribution.

Proposition B.6. Consider M time-homogeneous Markov chains Xm,m ∈ [M ], each defined
on (Ωm,Bm) with transition kernel Pm and stationary distribution πm, respectively. The product

Markov chain X , evolving on
(
Ω =×m∈[M ]

Ωm,B =
⊗

m∈[M ] Bm

)
, with transition kernel P

defined as:

P (x,A) =
∏

m∈[M ]

Pm(xm, Am),

for all x = (xm)m∈[M ] ∈ Ω and A =

(
×

m∈[M ]

Am

)
∈ B,

is a well-defined Markov chain with stationary distribution π =
⊗

m∈[M ] πm.

Proof. By construction, it is easy to see that for each x ∈ Ω, P (x, .) is a product measure on B,
hence the second condition in Definition B.4 is satisfied. Also by construction, for every A ∈ B,
P (., A) is non-negative, and Lemma B.5 shows that P (., A) is B-measurable. Thus, P also satisfies
the first condition and is therefore a well-defined transition kernel.

We still need to show that the Markov property (2) is achieved. For simplicity, we will do so for the
case M = 2, but extension to any M < ∞ is straightforward.

Denote by X1 =
(
X1

i

)
i∈N and X2 =

(
X2

i

)
i∈N the two chains. Indeed, as the chains are independent,

we have that:

P
[(
X1

i , X
2
i

)
∈ A1 ×A2

∣∣ (X1
i−1, X

2
i−1

)
= (x1

i−1, x
2
i−1), . . . ,

(
X1

1 , X
2
1

)
=
(
x1
1, x

2
1

)]
= P

(
X1

i ∈ A1

∣∣ X1
i−1 = x1

i−1, . . . , X
1
1 = x1

1

)
P
(
X2

i ∈ A2

∣∣ X2
i−1 = x2

i−1, . . . , X
2
1 = x2

1

)
= P1

(
x1
i−1, A1

)
P2

(
x2
i−1, A2

)
= P

(
(x1

i−1, x
2
i−1), (A1 ×A2)

)
.
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Since for every A ∈ B, P (., A) is non-negative and B-measurable, a direct application of Tonelli’s
Theorem gives us the statement on the stationary measure of the product chain:

π(A) =

 ⊗
m∈[M ]

πm

 (A) =
∏

m∈[M ]

πm (Am)

=

∫
Ω1

dπ1(x1)P1(x1, A1)· · ·
∫
ΩM

dπM (xM )PM (xM , AM )

=

∫
Ω1

· · ·
∫
Ωm

P1 (x1, A1) . . . PM (xM , AM ) dπ1(x1) . . . dπM (xM )

=

∫
Ω

dπ (x)P (x,A) .

We recall the definition of total variation distance:
Definition B.7. For two probabilities µ, ν defined on (Ω,B), the total variation distance between µ
and ν is defined as:

∥µ− ν∥TV = sup
A∈B

|µ(A)− ν(A)| = 1

2

∫
Ω

|dµ− dν| .

Below, we give an equivalent definition of the total variation distance:
Proposition B.8. Let (Y, Z) be a coupling of µ and ν, i.e. the marginal distribution of Y is µ and
the marginal distribution of Z is ν. Then:

∥µ− ν∥TV = inf {P (Y ̸= Z) , (Y,Z) is a coupling of µ, ν} . (4)

The coupling (Y,Z) that satisfies ∥µ− ν∥TV = P (Y ̸= Z) is then called the maximal coupling of µ
and ν.

The proof can be found in [48, Proposition 3].

Now we present some nice properties on the total variation distance with respect to the stationary
measure of Markov chains:
Proposition B.9. Let X1, X2, . . . be a Markov chain on (Ω,B) with transition kernel P and station-
ary distribution π, then:

(i) For all probability distributions µ, ν defined over (Ω,B):
∥µP − νP∥TV ≤ ∥µ− ν∥TV .

(ii) More specifically, advancing the chain will not increase the total variation distance to the
stationary distribution, i.e.:

∥Pn (x, .)− π(.)∥TV ≤
∥∥Pn−1 (x, .)− π(.)

∥∥
TV

. (5)

(iii) Let d(n) = 2 supx∈Ω ∥Pn (x, .)− π(.)∥TV . Then for µ varying over probability distribu-
tion defined over (Ω,B):

d(n) = 2 sup
µ

∥µPn − π∥TV . (6)

and d(.) is sub-multiplicative, i.e.:

d(m+ n) ≤ d(m)d(n) for m,n ∈ N. (7)

(iv) For i ∈ [n], let µi and νi be probability distributions on (Ωi,Bi). Define µ :=
⊗n

i=1 µi and
ν :=

⊗n
i=1 νi as two probability distributions on (Ω :=×n

i=1
Ωi,B :=

⊗n
i=1 Bn). Then

we have:

∥µ− ν∥TV ≤
n∑

i=1

∥µi − νi∥TV .
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Proof. The proof of (i), (ii) and (iii) can also be found in [48, Proposition 3]. Here we present the
proof for the last statements.

By using (4), it follows that

∥µm − νm∥TV = Pm {Xm ̸= Ym} ,

where, for all m ∈ [M ], (Xm, Ym) is the maximal coupling of µm, νm. Define X = {Xm}m∈[M ]

and Y = {Ym}m∈[M ]. Then again by (4) we have

∥µ− ν∥TV ≤ P {X ̸= Y }

= P

{
M⋃

m=1

Xm ̸= Ym

}

≤
M∑

m=1

Pm {Xm ̸= Ym} =

M∑
m=1

∥µm − νm∥TV ,

which follows from the union bound.

We now give the definition of uniform geometric ergodicity, which is commonly used in the literature
of stochastic optimization with Markovian data [3, 37].

Definition B.10. A Markov chain defined on (Ω,B) with transition kernel P is uniformly geometri-
cally ergodic if:

sup
x∈Ω

∥Pn (x, .)− π∥TV ≤ cρn,

for some c ≤ ∞ and ρ < 1.

Uniform geometric ergodicity implies that, regardless of the starting distribution, the chain converges
exponentially fast to its stationary measure in terms of total variation norm.

To end this section, we have the following results on the mixing time of Markov chains.

Proposition B.11. Given a Markov chain defined on (Ω,B), let d(t) the total variation distance
defined in (6), the mixing time τ (ϵ) and τ are defined as:

τ(ϵ) = min{t : d(t) ≤ ϵ}, (8)
τ = τ(1/4),

For any positive integer n, we have
d(nτ (ϵ)) ≤ ϵn.

More specifically,
d (nτ) ≤ 4−n,

and
τ (ϵ) ≤ ⌈log4

(
ϵ−1
)
⌉τ.

Proof. The first statement is a direct application of (7). Simply by taking ϵ = 1/4, we obtain the
second statement. Then with n ≥ ⌈log4

(
ϵ−1
)
⌉, d (nτ) ≤ ϵ, which implies that nτ ≥ τ (ϵ), hence

the last statement.

Proposition B.12. Consider the product Markov chain in Proposition B.6. The mixing time of this
product Markov chain τ (see definitions in Proposition B.11) satisfies

τ ≤ (⌈log4 M⌉+ 1) max
m∈[M ]

τm.
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Proof. Let

d(t) = 2sup
x∈Ω

∥∥P t (x, .)− π
∥∥ ,

dm(t) = 2 sup
x∈Ωm

∥∥P t
m (x, .)− πm

∥∥ .
By Proposition B.9, we have

d(t) ≤
M∑

m=1

dm(t). (9)

As in (5), advancing the Markov chain in time can only move it closer to the stationary distribution.
Thus, for all m ∈ [M ],

dm

(
max
m∈[M ]

τm

( ϵ

M

))
≤ ϵ

M
,

where τ (ϵ) := min {t : d(t) ≤ ϵ} and τm (ϵ) = min {t : dm(t) ≤ ϵ}. Hence, from (9),

τ (ϵ) ≤ max
m∈[M ]

τm

( ϵ

M

)
.

Then from Proposition B.11, we have that, for all m ∈ [M ],

τm (ϵ/M) ≤ ⌈log4 (M/ϵ)⌉τm.

The lemma follows by taking ϵ = 1/4 as in the definition of mixing time (8).
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C Comparison with Existing Work

In Table 1, we compare our results with existing ones in stochastic non-convex optimization with
Markovian data in the centralized (or token-passing) setting [3, 15, 14, 17] setting. In the FL setting
with i.i.d. data, we include the lower bounds in [42], along with some results in [9]. For completeness,
we also report results in the literature of Federated Stochastic Approximation (FSA), which is
analogous to stochastic optimization with strongly convex [65] or linear least-square [37] objectives.

Table 1: Comparison of algorithms in terms of communication and sample complexity to reach an
ϵ-stationary point for smooth, non-convex objectives.
Additional Constraints: GE: uniform geometric ergodicity (Definition B.10), ST: stationary Markov
processes, BG: bounded gradient, BD: bounded domain, FS: finite state space, LT: lower bound
on T , SS: sample-wise smoothness (Assumption 4.2), BR: bounded Radon–Nikodym derivative
(Assumption 3.2), BH: bounded heterogeneity (Assumption 4.4), BHO: bounded heterogeneity
around optimum (i.e., the average distance between the optimum of the local objectives and the global
objective is bounded, see 37, Page 4), LS: linear least-square objectives, SC: strongly convex global
objective..

Algorithm Communication T Sample complexity KT
Additional
Constraints

C
en

tr
al

iz
ed

(1
) [3, Thm. 3] Õ

(
τ
[
L∆0

ϵ2 + L∆0σ
2

ϵ4

])
GE

MAG [15, Thm. 4.3] Õ
(
τ (M+L+G)2G2

ϵ4

)
(2) BG, BD

MC-SGD [17, Thm. 5.3] Õ
(
τ
[
L∆0+σ2

ϵ2 + (L∆0+σ2)σ2

ϵ4

])
FS, GE, LT

[14, Thm. 3] Õ
(
τ L2(1+∥w∗∥2+∥w0−w∗∥2)

ϵ4

)
(3) FS, GE, LT

FL
i.i

.d
. Lower bound [42] Ω

(
L∆0

ϵ2

)
Ω
(
L∆0σ
Mϵ3

)
(4)

FedAvg-M [9, Thm. 1] O
(
L∆0

ϵ2

)
O
(

L∆0σ
2

Mϵ4

)
FedAvg-M-VR [9, Thm. 2] O

(
L∆0

ϵ2

)
O
(
L∆0σ
Mϵ3

)
(5) SS

FS
A

(6
) FedLSA [37, Cor. 4.5] O

(
1
ϵ log

1
ϵ

)
Õ
(
τmax

Mϵ2 log 1
ϵ

)
GE, ST, BHO, LS

SCAFFLSA [37, Cor. 5.2] O
(
log 1

ϵ

)
O
(

1
Mϵ2 log

1
ϵ

)
(7) BHO, LS

FedHSA [65, Cor. 1] Õ
(
1
ϵ

)
Õ
(
τmax

Mϵ2

)
FS, GE, SC, LT

O
ur

s

Minibatch SGD O
(
L∆0

ϵ2

)
O
(

L∆0C∞σ2

νpsMϵ4

)
BR

Local SGD O
(

L∆0

ϵ2

(
δ2 ∨ θ2+σ2

δ2ϵ2

))
O
(

L∆0C∞σ2

νpsMϵ4

(
δ2 ∨ θ2+σ2

δ2ϵ2

))
BR, BH, SS

Local SGD-M O
(

L∆0

βϵ2

)
O
(

L∆0C∞σ2

βνpsMϵ4

)
BR, SS

Õ ignores logarithmic constants.
(1) In the centralized (or token-passing) setting, τ is the mixing time of the underlying Markov process.
(2) M and G are upper bounds on the domain diameter and on the gradient norm, respectively.
(3) w∗ is a global optimum of the objective. Their proof also requires a projection onto the unknown set that contains all

the optima, and hides exponential factors in τ .
(4) The setting for the lower bound requires other assumptions. We refer to the original paper [42] for a complete list.
(5) The variance-reduction technique is akin to the STORM algorithm [11], which relies on the sample-wise smoothness

assumption (Assumption 4.2) and achieves the sample complexity lower bound in [42]. Extending Local SGD-M with
variance reduction to attain this bound is a promising direction.

(6) This setting focuses on stochastic approximation problems, with strongly monotone or linear operators. The rates
presented here denote the complexity to reach an ϵ-optimal solution. We omit problem-specific constants, except τmax

(the maximum mixing time across all clients) and M .
(7) The authors present only the rate for the i.i.d. case.

We first give a theoretical justification that clarifies why adjusting the step size alone offers limited
leverage for controlling the gradient noise term. By a standard decomposition from the L-smoothness
condition:
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Et[F (wt+1)] ≤ F (wt)− γ/2(1− 2γL)||∇F (wt)||2 + γ/2||Et[gt]−∇F (wt)||2

+ γ2LEt[||gt −∇F (wt)||2]

Let bt = ∥Et[gt]−∇F (wt)∥2 and vt = Et

[
∥gt −∇F (wt)∥2

]
be the bias and the variance of

the gradient estimate. This bias arises from the Markovian structure of the data, since in the i.i.d.
setting, Et[gt] = ∇F (wt) for all t. Observe that the bias is scaled by the step size γ. Since the term
∥∇F (wt)∥2 is also scaled by γ, the bias cannot be directly controlled by the choice of step size
without sacrificing the reduction of the objective. Note that by Jensen’s inequality, bt ≤ vt, hence the
bias also contributes to the "variance" term arising in our main results. This leads to a non-vanishing
term involving the gradient noise σ2 in our results as the step size decreases.

We now give additional details of the techniques used in prior works to control this bias, and obtain a
vanishing "variance" term. In short, they introduce other hyper-parameters that can be tuned to make
the bias vanish, instead of tuning directly the step size directly.

First, [17, 14, 65] decompose the bias term into other terms containing delayed gradient. In detail,
in order to bound the bias, instead of taking the conditional expectation up to the current iteration t,
they condition on a distant past iteration, which is t minus some delay. This delay is later chosen
to be scaled with 1/

√
T [17], or with the mixing time τ(ϵ) (see Proposition B.11), where ϵ is then

chosen to be scale with the step size [14, 65] (the step size itself is tuned to be at the order of 1/T ).
This technique requires a constraint on the minimum number of iterations (or communication rounds)
T at the order of Õ(τmix) (this constraint is referred to as LT in Table 1). As revealed in Table 1, [14]
also contains hidden factors that can be exponential in τmix. The bound for non-convex functions in
[14] (Theorem 3 in the arxiv version) also requires a projection onto the unknown set that contains all
the optima.

Next, [3, 15] use minibatch gradient estimates. Precisely, at each iteration, a random batch size is
drawn from a truncated geometric distribution. Hence, a new hyper-parameter is introduced, which is
the truncation threshold m. The authors of [3, 15] show that bt scales inversely with m, which is then
chosen to be scaled with

√
T .

In the FSA setting, the analysis in [37] employs a blocking technique that sub-samples data sequences
to mitigate temporal correlations, using a sub-sampling gap at the order of the maximum mixing time
τmax. Beyond assuming uniform geometric ergodicity, this approach also requires the underlying
Markov processes to be stationary. Moreover, their analysis is restricted to linear least-squares
problems.

We emphasize that the gradient noise term in our results can be easily made to vanish as T diverges.
Consider Minibatch SGD, under the setting of Theorem 4.5, By choosing K = O

(
C∞T
νpsM

)
, then we

have:

E
[
∥∇F (ŵT )∥2

]
≤ O

(
L∆0

T
+

σ2

T

)
,

which leads to the sample complexity:

KT = O
(
C∞(L∆0 ∨ σ2)2

νpsMϵ4

)
.

However, the above result shows no improvement in sample complexity compared to those reported
in the main paper. We highlight that our complexity results match the best-known rates achieved
in the centralized setting [3, 15, 17, 14], scaled by the number of clients M (see Table 1), while
avoiding the commonly imposed uniform geometric ergodicity assumption. Instead, we rely on a
general mild assumption about the boundedness of the Radon-Nikodym derivative (Assumption 3.2),
which allows for a simple change of measures to handle the non-stationarity of Markovian samples
when taking conditional expectation. Prior works rely heavily on the exponential mixing property to
deal with non-stationarity. The analysis in [3] even yields a dependence on the square of the mixing
time [3, Section B.1]. The proof in [15] does not require uniform geometric mixing, but in the other
hand relies strongly on the boundedness of the domain. We decide to choose K as independent of
both the step size and the number of rounds T , because in real-world scenarios, the value of K can
be dictated by other factors such as the data-arrival rate and the client’s buffer capacity.
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D Convergence Analysis

We begin this section with the following lemma that bounds the square error of the stochastic gradient
estimate computed by M clients, each using K Markovian samples.
Lemma D.1. Let q be the initial measure of the system-level Markov chain defined in Section 3.2. If
Assumptions 3.1, 3.2 and 4.3 hold, then we have:

Et


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2
 ≤ 4C∞σ2

νpsMK
.

Proof. By Markov’s property (3):

Et


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2


= ExK−1
t−1

[∥∥∥∥ 1

MK
∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥2
]
.

Hence, by change of measures:

Et


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2


= Eπ

dP (xK−1
t−1 , .

)
dπ

∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2


≤

∥∥∥∥∥dP (xK−1
t−1 , .)

dπ

∥∥∥∥∥
π,∞

Eπ


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2
 (Holder’s inequality)

≤ C∞Eπ


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2
 (Assumption 3.2). (10)

We now utilize [43, Theorem 3.7], applied on the stationary system-level Markov process:

Eπ


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2


=

d∑
j=1

Eπ


 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

2

j


(i)

≤ 4

Kνps

d∑
j=1

Eπ

( 1

M

∑
m

∇fm (wt;x)−∇F (wt)

)2

j


≤ 4

Kνps
Eπ

∥∥∥∥∥ 1

M

∑
m

∇fm(wt;x)−∇F (wt)

∥∥∥∥∥
2


(ii)

≤ 4σ2

MKνps
.

(11)
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In (i), we apply [43, Theorem 3.7] to each of d functions:

hi : Ω → R,

hi(x
k
t ) =

(
1

M

∑
m

∇fm(wt;x
(m,k)
t

)
i

.

In (ii), we use the fact that Eπm
[∇fm(w;x)] = ∇Fm(w) together with the independence between

clients’ Markov processes. As such, the term Eπ

[
∥1/M

∑
m ∇fm(w;x)−∇F (w)∥2

]
can be seen

as the variance of the sum of M independent random variables. Using Assumption 4.3, it follows
that:

Eπ

∥∥∥∥∥ 1

M

∑
m

∇fm(w;x)−∇F (w)

∥∥∥∥∥
2
 =

1

M2

∑
m

Eπm

[
∥∇fm(w;x)−∇Fm(w)∥2

]
≤ Mσ2

Hence, by plugging (11) back into (10), we prove the lemma.

D.1 Minibatch SGD

In this section, we consider the problem class F1 (L, σ, τ). We begin with the following descent
lemma.

Lemma D.2. For the problem class F1(L, σ, τ), with constant global step size γ ≤ 1
L , the iterates of

Minibatch SGD satisfy:

∆t+1 ≤ ∆t −
γ

2
E
[
∥∇F (wt)∥2

]
+

2γC∞σ2

νpsMK

Proof. Since F is L-smooth,

F (wt+1) ≤ F (wt) + ⟨∇F (wt) , wt+1 − wt⟩+
L

2
∥wt+1 − wt∥2

= F (wt)− γ⟨∇F (wt) , ḡt⟩+
L

2
∥wt+1 − wt∥2 .

(12)

Note that the term −γ⟨∇F (wt) , ḡt⟩ can be expanded as

−γ⟨∇F (wt) , ḡt⟩ = −γ

2
∥∇F (wt)∥2 +

γ

2
∥ḡt −∇F (wt)∥2 −

γ

2
∥ḡt∥2 (13)

= −γ

2
∥∇F (wt)∥2 +

γ

2
∥ḡt −∇F (wt)∥2 −

1

2γ
∥wt+1 − wt∥2 .

Plugging (13) back into (12), subtracting F ∗ from both sides, and taking the conditional expectation,
we then have

Et[F (wt+1 − F ∗] ≤ Et[F (wt)− F ∗]− γ

2
Et

[
∥∇F (wt)∥2

]
+

γ

2
Et

[
∥ḡt −∇F (wt)∥2

]
(14)

−
(

1

2γ
− L

2

)
Et

[
∥wt+1 − wt∥2

]
.

Then, with the condition γ ≤ 1
L , the last term in (14) can be ignored. The lemma follows by replacing

the second term in (14) using Lemma D.1, then taking the full expectation.

Now we proceed to the proof of Theorem 4.5.
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Theorem D.3 (Theorem 4.5 in the main paper). For the problem class F1(L, σ, τ), with global step
size γ ≤ 1/L, the iterates of Minibatch SGD satisfy:

E
[
∥∇F (ŵt)∥2

]
≤ O

(
∆0

γT
+

C∞σ2

MK

)

Proof. The proof of Theorem D.3 follows directly from Lemma D.2 by rearranging the terms, then
taking the average from t = 0 to T − 1

1

T

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
≤ 2∆0

γT
+

4C∞σ2

νpsMK
(15)

Noticing that with ŵT sampled uniformly from w0, . . . wT−1,

1

T

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
= E

[
∥∇F (ŵT )∥2

]
,

which concludes the proof.

Now we are ready to prove Corollary 4.6.

Corollary D.4 (Corollary 4.6 in the main paper). Under the conditions of Theorem D.3, to achieve
E[∥∇F (ŵT )∥2] ≤ ϵ2, the required number of local steps and communication rounds of Minibatch
SGD are:

K = O
(

C∞σ2

νpsMϵ2

)
, T = O

(
L∆0

ϵ2

)

Proof. By choosing

K ≥ 8C∞σ2

νpsMϵ2
,

T ≥ 4∆0

γϵ2
≥ 4L∆0

ϵ2
,

(15) guarantees that E
[
∥∇F (ŵT )∥2

]
≤ ϵ2.

D.2 Local SGD

For the analysis of Local SGD, we define

ξt =
1

MK

∑
m,k

Et

[∥∥∥w(m,k)
t − wt

∥∥∥2] ,
where ξt is the client drift observed in the local computation phase of the t-th communication round.

We recall that the analysis of Local SGD is for the problem class F3 (L, σ, θ, δ, τ). We begin with
the following descent lemma.

Lemma D.5. If the local step size satisfies

η̃ ≤ 1

10Lδ2
<

1

L
,

then the iterates of Local SGD satisfy

∆t+1 ≤ ∆t −
45η̃

98
E
[
∥∇F (wt)∥2

]
+

4η̃C∞σ2

νpsMK
+

40

98

Lη̃2
(
θ2 + σ2

)
δ2

.
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Proof. We can adapt the proof of Lemma D.2 to Local SGD but with the update rule wt+1 = wt−η̃gt:

Et[F (wt+1)− F ∗] ≤ Et[F (wt)− F ∗]− η̃

2
Et

[
∥∇F (wt)∥2

]
+

η̃

2
Et

[
∥gt −∇F (wt)∥2

]
−
(

1

2η̃
− L

2

)
Et

[
∥wt+1 − wt∥2

]
≤ Et[F (wt)− F ∗]− η̃

2
Et

[
∥∇F (wt)∥2

]
+ η̃Et

[
∥ḡt −∇F (wt)∥2

]
+ η̃Et

[
∥gt − ḡt∥2

]
.

(16)

Here in the last step, we use the triangle inequality, and the condition on the step size η̃ ≤ 1
10Lδ2 < 1

L .

Using the sample-wise smoothness (Assumption 4.2) yields:

Et

[
∥gt − ḡt∥2

]
= Et


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
w

(m,k)
t ;x

(m,k)
t

)
−∇fm

(
wt;x

(m,k)
t

)∥∥∥∥∥∥
2


≤ L2

MK

∑
m,k

Et

[∥∥∥w(m,k)
t − wt

∥∥∥2]
= L2ξt.

(17)

where Jensen’s inequality is used in the last step.

The local drift ξt can then be bounded as follows:

ξt =
1

MK

∑
m,k

Et

[∥∥∥w(m,k)
t − wt

∥∥∥2]

=
1

MK

∑
m,k

Et


∥∥∥∥∥∥
k−1∑
j=0

η∇fm

(
w

(m,j)
t ;x

(m,j)
t

)∥∥∥∥∥∥
2


≤ 1

MK

∑
m,k

η2k

k−1∑
j=0

Et

[∥∥∥∇fm

(
w

(m,j)
t ;x

(m,j)
t

)∥∥∥2]

≤ η̃2

MK2

∑
m,k

k−1∑
j=0

Et

[∥∥∥∇fm

(
w

(m,j)
t ;x

(m,j)
t

)∥∥∥2]

≤ η̃2

MK2

∑
m,k

K−1∑
j=0

Et

[∥∥∥∇fm

(
w

(m,j)
t ;x

(m,j)
t

)∥∥∥2]

≤ η̃2

MK

∑
m,j

Et

[∥∥∥∇fm

(
w

(m,j)
t ;x

(m,j)
t

)∥∥∥2]

≤ 2η̃2

MK

∑
m,j

Et

[∥∥∥∇fm

(
w

(m,j)
t ;x

(m,j)
t

)
−∇fm

(
wt;x

(m,j)
t

)∥∥∥2]

+
2η̃2

MK

∑
m,j

Et

[∥∥∥∇fm

(
wt;x

(m,j)
t

)∥∥∥2]
(i)

≤ 2L2η2ξt +
4η̃2

MK

∑
m,j

Et

[∥∥∥∇fm

(
wt;x

(m,j)
t

)
−∇Fm(wt)

∥∥∥2]

+
4η̃2

M

∑
m

Et

[
∥∇Fm (wt)∥2

]
(ii)

≤ 2L2η̃2ξt + 4η̃2σ2 +
4η̃2

M

∑
m

Et

[
∥∇Fm(wt)∥2

]
.
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In (i) we use the sample-wise smoothness (Assumption 4.2) and the triangle inequality, and in (ii)
we use the uniform bound on the noise of the gradient estimator (Assumption 4.3).

Therefore, we have:

ξt ≤
4η̃2

1− 2L2η̃2

(
σ2 +

1

M

∑
m

Et

[
∥∇Fm(wt)∥2

])
. (18)

Plugging (17) and (18) back into (16), together with Lemma D.1 and the condition on the step size
then yields

Et[F (wt+1)− F ∗] ≤ Et[F (wt)− F ∗]− η̃

2
Et

[
∥∇F (wt)∥2

]
+

4η̃C∞σ2

νpsMK

+
40η̃2L

98δ2

(
σ2 +

1

M

∑
m

Et

[
∥∇Fm(wt)∥2

])
.

By taking the full expectation and using the heterogeneity assumption 4.4, we have that:

∆t+1 ≤ ∆t −
η̃

2

(
1− 80

98
η̃Lδ2

)
E
[
∥∇F (wt)∥2

]
+

4η̃C∞σ2

νpsMK
(19)

+
40η̃2L

98

(
θ2 + σ2

δ2

)
Using the condition on the local step size on the second term in the RHS of (19) proves the lemma.

We now prove Theorem 4.7.
Theorem D.6 (Theorem 4.7 in the main paper). For the problem class F3(L, σ, θ, δ, τ), if the constant
step size satisfies

η ≤ O
(

1

LKδ2

)
<

1

L
,

then the iterates of Local SGD satisfy

E
[
∥∇F (ŵT )∥2

]
≤ O

(
∆0

ηKT
+

C∞σ2

νpsMK
+

LηK
(
θ2 + σ2

)
δ2

)
.

Proof. By rearranging the terms in Lemma D.5 and taking the average from t = 0 to T − 1:

1

T

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
≤ 98

45

∆0

η̃T
+

392

45

C∞σ2

νpsMK
+

40

45

Lη̃
(
θ2 + σ2

)
δ2

. (20)

We conclude the proof by replacing η̃ = ηK, and noticing that with ŵT sampled uniformly from
w0, . . . wT−1, we have

1

T

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
= E

[
∥∇F (ŵT )∥2

]
.

We now establish Corollary 4.8, which characterizes the communication and sample complexities of
Local SGD.
Corollary D.7 (Corollary 4.8 in the main paper). For the problem class F3(L, σ, θ, δ, τ), with step
size

η ≤ O
(

δ2ϵ2

KL(θ2 + σ2)
∧ 1

KLδ2

)
,

the required number of local steps and communication rounds for Local SGD to achieve
E[∥∇F (ŵT )∥2] ≤ ϵ2 are given by:

K = O
(

τσ2

Mϵ2

)
, T = O

(
L∆0

ϵ2

(
δ2 ∨ θ2 + σ2

δ2ϵ2

))
.
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Proof. By choosing

K ≥ 392

15

C∞σ2

νpsMϵ2
,

η ≤
(
3

8

δ2ϵ2

KL (θ2 + σ2)
∧ 1

10KLδ2

)
,

T ≥ 98

15

∆0

ηKϵ2
≥ 98

15

L∆0

ϵ2

(
10δ2 ∨ 8

3

θ2 + σ2

δ2ϵ2

)
,

(20) guarantees that E
[
∥∇F (ŵT )∥2

]
≤ ϵ2.

D.3 Local SGD with Momentum

All the proofs in this section are for the problem class F2 (L, σ, τ). Recall that the update rule of
Local SGD-M can be written as: wt+1 = wt − γvt+1. For the theoretical analysis of Local SGD
with momentum, we introduce the following notation:

Ξt = E
[
∥∇F (wt)− vt+1∥2

]
,

G0 =
1

M

∑
m

∥∇F (w0)∥2 .

We begin with the following descent lemma.
Lemma D.8. With global step size

γ ≤ 1

L
,

we have
∆t+1 ≤ ∆t −

γ

2
E
[
∥∇F (wt)∥2

]
+

γ

2
Ξt.

Proof. Similarly as the proof of Lemma D.2, with the update rule of Local SGD-M: wt+1 =
wt − γvt+1, we have:

∆t+1 ≤ ∆t −
γ

2
E
[
∥∇F (wt)∥2

]
+

γ

2
Ξt +

(
L

2
− γ

2

)
st.

Applying the condition on γ proves the lemma.

We have the following recursive bound on Ξt:
Lemma D.9. With condition:

γ ≤ 1√
60

β

L
.

We have:

Ξt ≤
(
1− 14

15
β

)
Ξt−1 +

β

15
E
[
∥∇F (wt−1)∥2

]
+ 6βE

[
∥ḡt −∇F (wt)∥2

]
+ 6βL2ξt.

Proof. We have the following decomposition:

∇F (wt)− vt+1 = (1− β) (∇F (wt)− vt)− β

 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)


− β

MK

∑
m,k

(
∇fm

(
w

(m,k)
t ;x

(m,k)
t

)
−∇fm

(
wt;x

(m,k)
t

))
= (1− β) (∇F (wt)− vt)− β (ḡt −∇F (wt))− β (gt − ḡt) .
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Hence, by using Young’s inequality:

(a+ b)
2 ≤

(
1 +

β

2

)
a2 +

(
1 +

2

β

)
b2.

We have:

Ξt ≤
(
1 +

β

2

)
(1− β)

2 E
[
∥∇F (wt)− vt∥2

]
+

(
1 +

2

β

)
β2E

[
∥(gt − ḡt)− (ḡt −∇F (wt))∥2

]
≤
(
1 +

β

2

)
(1− β)

2 E
[
∥∇F (wt)− vt∥2

]
+ 2

(
1 +

2

β

)
β2E

[
∥ḡt −∇F (wt)∥2

]
+ 2

(
1 +

2

β

)
β2L2ξt.

Here, in the last step, we use the triangle inequality and the sample-wise smoothness (Assumption 4.2).

Now, since we have:

∇F (wt)− vt = ∇F (wt−1)− vt + (∇F (wt)−∇F (wt−1))

= Ξt−1 + (∇F (wt)−∇F (wt−1)) .

Using again Young’s inequality, we have:

Ξt ≤(1 +
β

2
) (1− β)

2

[(
1 +

β

2

)
Ξt−1 +

(
1 +

2

β

)
E
[
∥∇F (wt)−∇F (wt−1)∥2

]]
+ 6βE

[
∥ḡt −∇F (wt)∥2

]
+ 6βL2ξt

≤ (1− β) Ξt−1 +
2L2

β
E
[
∥wt − wt−1∥2

]
+ 6βE

[
∥ḡt −∇F (wt)∥2

]
+ 6βL2ξt.

(21)

Here since β ≤ 1, in the first inequality we use 1 + 2
β ≤ 3

β ; in the second inequality we use(
1 + β

2

)2
(1− β)

2 ≤ (1− β) and
(
1 + β

2

)(
1 + 2

β

)
(1− β) ≤ 2

β together with the smoothness of
F .

Furthermore, by the update rule, we have:

E
[
∥wt − wt−1∥2

]
= γ2E

[
∥vt−1∥2

]
≤ 2γ2Ξt−1 + 2γ2E

[
∥∇F (wt−1)∥2

]
.

(22)

Plugging (22) back into (21) we have:

Ξt ≤
(
1− β +

4γ2L2

β

)
Ξt−1 +

4γ2L2

β
E
[
∥∇F (wt−1)∥2

]
+ 6βE

[
∥ḡt −∇F (wt)∥2

]
+ 6βL2ξt.

We conclude the proof by using the condition on the global step size γ.

Next, we continue to bound the drift ξt.

Lemma D.10. With the following conditions:

ηKL ≤ 1

2β
.
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We have:

ξt ≤ 16 (ηβK)
2
σ2 + 32 [η (1− β)K]

2
Ξt−1 + 32 [η (1− β)K]

2 E
[
∥∇F (wt−1)∥2

]
+ 16 (ηβK)

2 1

M

∑
m

E
[
∥∇Fm (wt)∥2

]
.

Proof. We start by using Young inequality (a+ b)
2 ≤

(
1 + 1

K−1

)
a2 + Kb2. Then, for any

0 ≤ k ≤ K − 1 we have:

E
[∥∥∥w(m,k)

t − wt

∥∥∥2] ≤ (
1 +

1

K − 1

)
E
[∥∥∥w(m,k−1)

t − wt

∥∥∥2]+KE
[∥∥∥w(m,k−1)

t − w
(m,k)
t

∥∥∥2]
=

(
1 +

1

K − 1

)
E
[∥∥∥w(m,k−1)

t − wt

∥∥∥2]
+Kη2E

[∥∥∥β∇fm

(
w

(m,k−1)
t ;x

(m,k−1)
t

)
+ (1− β) vt

∥∥∥2] .
Now we have the following decomposition:

β∇fm

(
w

(m,k−1)
t ;x

(m,k−1)
t

)
+ (1− β) vt =(1− β) vt + β∇Fm (wt)

+ β
[
∇fm

(
w

(m,k−1)
t ;x

(m,k−1)
t

)
−∇fm

(
wt;x

(m,k−1)
t

)]
+ β

[
∇fm

(
wt;x

(m,k−1)
t

)
−∇Fm (wt)

]
.

Hence, by using the triangle inequality, we have:

E
[∥∥∥w(m,k)

t − wt

∥∥∥2] ≤(1 + 1

K − 1

)
E
[∥∥∥w(m,k−1)

t − wt

∥∥∥2]
+ 4η2β2KE

[∥∥∥∇fm

(
w

(m,k−1)
t ;x

(m,k−1)
t

)
−∇fm

(
wt;x

(m,k−1)
t

)∥∥∥2]
+ 4η2β2KE

[∥∥∥∇fm

(
wt;x

(m,k−1)
t

)
−∇Fm (wt)

∥∥∥2]
+ 4η2β2E

[
∥∇F (wt)∥2

]
+ 8η2 (1− β)

2
K
(
Ξt−1 + E

[
∥∇F (wt−1)∥2

])
≤
(
1 +

1

K − 1
+ 4η2β2L2K

)
E
[∥∥∥w(m,k−1)

t − wt

∥∥∥2]+ 4KA,

with

A = η2β2
(
σ2 + E

[
∥∇Fm (wt)∥2

])
+ 2η2 (1− β)

2
(
Ξt−1 + E

[
∥∇F (wt−1)∥2

])
.

Here, we use the sample-wise smoothness and the uniform bound on the gradient noise in the last
step (Assumptions 4.2, 4.3).

Unrolling the above recursion, with w
(m,0)
t = wt, we have:

E
[∥∥∥w(m,k)

t − wt

∥∥∥2] ≤ 4KA
k−1∑
j=0

(
1 +

1

K − 1
+ 4η2β2L2K

)j

.
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With the condition on η, we have that 4η2β2L2K ≤ 1
K < 1

K−1 . Hence, by using the geometric sum
formula, we have:

k−1∑
j=0

(
1 +

1

K − 1
+ 4η2β2L2K

)j

≤
1−

(
1 + 2

K−1

)k
− 2

K−1

=
K − 1

2

[(
1 +

2

K − 1

)k

− 1

]

≤K − 1

2

(
1 +

2

K − 1

)K−1

≤e2

2
(K − 1) ≤ 4K.

We conclude the lemma by taking the average over K and M .

In the proof of Local SGD, we have to use the heterogeneity assumption to bound the term
1
M

∑
m E

[
∥∇Fm (wt)∥2

]
. The use of momentum allows us to build a recursive bound for this

term by the following lemma.

Lemma D.11. We have that:

1

M

∑
m

E
[
∥∇Fm (wt)∥2

]
≤ 3G0 + 6 (1 + t) γ2L2

t−1∑
j=0

(
Ξj + E

[
∥∇F (wj)∥2

])
.

Proof. By using Young’s inequality and the smoothness of Fm, we have that:

E
[
∥∇Fm (wt)∥2

]
≤ (1 + a)E

[
∥∇Fm (wt−1)∥2

]
+
(
1 + a−1

)
L2E

[
∥wt − wt−1∥2

]
≤ (1 + a)E

[
∥∇Fm (wt−1)∥2

]
+ 2

(
1 + a−1

)
γ2L2

(
Ξt−1 + E

[
∥∇F (wt−1)∥2

])
.

By unrolling, we have:

E
[
∥∇Fm (wt)∥2

]
≤ (1 + a)

t E
[
∥∇Fm (w0)∥2

]
+ 2

(
1 + a−1

)
γ2L2

t−1∑
j=0

(
Ξj + E

[
∥∇F (wj)∥2

])
(1 + a)

t−1−j

≤eatE
[
∥∇Fm (w0)∥2

]
+ 2eat

(
1 + a−1

)
γ2L2

t−1∑
j=0

(
Ξj + E

[
∥∇F (wj)∥2

])
.

By taking a = t−1 and taking the average over m ∈ [M ], we conclude the lemma.

Lemma D.12. With the following conditions:

ηKL ≤

(
1

2β
∧

√
C∞

120νpsMKβ2
∧

√
L∆0

360β3TG0
∧ 1

225

1

(1− β)
∧ 1

525

1

βγLT

)
,

γ ≤ 1√
60

β

L
.

We have that:

1

T

T−1∑
t=0

Ξt ≤
7

2

L∆0

βT
+ 31

C∞σ2

νpsMK
+

1

4

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
.
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Proof. By Lemma D.11, we have that:

1

M

T−1∑
t=0

∑
m

E
[
∥∇Fm (wt)∥2

]
≤3TG0 + 6γ2L2

T−1∑
t=0

(1 + t)

t−1∑
j=0

(
Ξj + E

[
∥∇F (wj)∥2

])

≤3TG0 + 12 (γLT )
2
T−2∑
t=0

(
Ξt + E

[
∥∇F (wt)∥2

])
.

(23)

Plugging (23) back into Lemma D.10 we have:

6βL2
T−1∑
t=0

ξt ≤96βT (ηKLβ)
2 (

σ2 + 3G0

)
+ β

[
192 (ηKL (1− β))

2
+ 1152 (ηKLβ)

2
(γLT )

2
]

︸ ︷︷ ︸
B

T−2∑
t=0

(
Ξt + E

[
∥∇F (wt)∥2

])
.(24)

By condition on the step size, we have that B ≤ 2
15 . Therefore, plugging (24) back into Lemma D.9,

by noticing that E
[
∥∇F (w−1)∥2

]
= 0, gives:

T−1∑
t=0

Ξt ≤
(
1− 14

15
β

) T−2∑
t=−1

Ξt +
β

15

T−2∑
t=0

E
[
∥∇F (wt)∥2

]

+ 6β

T−1∑
t=0

E [∥ḡt −∇F (wt)∥] + 96βT (ηKLβ)
2 (

σ2 + 3G0

)
+

2β

15

(
T−2∑
t−1

Ξt +

T−2∑
t=0

E
[
∥∇F (wt)∥2

])

≤
(
1− 4

5
β

) T−2∑
t=−1

Ξt +
β

5

T−2∑
t=0

E
[
∥∇F (wt)∥2

]

+ 6β

T−1∑
t=0

E
[
∥ḡt −∇F (wt)∥2

]
+ 96βT (ηKLβ)

2 (
σ2 + 3G0

)
.

By rearranging the terms, we have:

T−1∑
t=0

Ξt ≤
5

4β
Ξ−1 +

1

4

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
+

15

2

T−1∑
t=0

E
[
∥ḡt −∇F (wt)∥2

]
+ 120T (ηKLβ)

2 (
σ2 + 3G0

)
.

(25)

With the condition on the step size, we have:

120(ηKLβ)2σ2 ≤ C∞σ2

νpsMK
,

360 (ηKLβ)
2
G0 ≤L∆0

βT
.

(26)

And by the law of total expectation, we have:

E
[
∥ḡt −∇F (wt)∥2

]
= E

[
Et

[
∥ḡt −∇F (wt)∥2

]]
≤ 4C∞σ2

νpsMK
. (Lemma D.1) (27)
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Hence, by plugging (26)) and (27) back into (25) we have:

1

T

T−1∑
t=0

Ξt ≤
5

4

Ξ−1

βT
+

L∆0

βT
+

31C∞σ2

νpsMK
+

1

4

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
.

Finally noticing that if we initialize v0 = 0, Ξ−1 = E
[
∥∇F (w0)∥2

]
≤ 2L∆0 by the smoothness of

F . Hence, we prove the lemma.

Now we are ready to prove Theorem 4.9.
Theorem D.13 (Theorem 4.9 in the main paper). For the problem class F2(L, σ, τ), with the
following conditions on the step sizes:

ηKL ≤ O

(
1

β
∧

√
C∞

νpsMKβ2
∧

√
L∆0

β3TG0
∧ 1

(1− β)
∧ 1

βγLT

)
,

γ ≤ O
(
β

L

)
,

the iterates of Local SGD-M satisfy:

E
[
∥∇F (ŵT )∥2

]
≤ O

(
L∆0

βT
+

C∞σ2

νpsMK

)
.

Proof. By rearranging the terms in Lemma D.8:

1

T

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
≤ 2∆0

γT
+

1

T

T−1∑
t=0

Ξt.

Using the condition on γ and replacing 1
T

∑T−1
t=0 Ξt by Lemma D.12 proves the theorem.

From Theorem D.13, we can derive directly the communication and sample complexity of Local
SGD-M.
Corollary D.14 (Corollary 4.10 in the main paper). Under the conditions of Theorem D.13,
the required number of local steps and communication rounds for Local SGD-M to achieve
E[∥∇F (ŵT )∥2] ≤ ϵ2 are:

K = O
(

C∞σ2

νpsMϵ2

)
, T = O

(
L∆0

βϵ2

)
Proof. The proof is a direct consequence of Theorem D.13 and follows the same steps in the proof of
Corollary D.4.

D.4 Uniformly Ergodic Markov Processes

A common assumption in the literature on Markov SGD is uniform geometric ergodicity (see
Definition B.10).
Assumption D.15. The system-level Markov chain is uniformly ergodic. In particular, for any n ∈ N,
we have:

sup
x∈Ω

∥Pn (x, .)− π∥TV ≤ cρn,

for some c ≤ ∞ and ρ < 1.

This assumption, which characterizes exponentially fast convergence to a unique stationary measure
of Markov processes, is widely used in the literature of Stochastic Approximation with Markovian
noise [3, 37, 15]. We highlight that in the main paper, we only assume that the clients’ Markov
chains converge to a unique stationary measure, without any further assumption on convergence
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speed. In this section, we show that our analysis can be easily extended with this additional stronger
assumption.

In particular, from [43, Proposition 3.4], we have that:
1

νps
≤ 2τ,

where τ is the mixing time of the system-level Markov chain (see Proposition B.11 for definition).
According to Proposition B.12, we also have that:

τ ≤ ⌈logM + 1⌉τmax,

where τmax = max
m∈[M ]

τm the maximum mixing time of clients’ Markov processes.

Hence, a key implication of the uniform ergodicity assumption is a characterization of the pseudo-
spectral gap in terms of the mixing time. That is, 1/νps is replaced by τ in the proof of Lemma D.1.
As a consequence, for Minibatch SGD, Local SGD, and Local SGD-M, the new required number of
local steps is:

K = Õ
(
C∞τmaxσ

2

Mϵ2

)
.

The communication complexity remains unchanged under the additional assumption of uniform
ergodicity.

We note that uniform ergodicity can also be used to characterize C∞, as is discussed further in
Section D.5.

D.5 Characterization of C∞

A key quantity in our analysis is C∞, which impacts the required number of local steps. In particular,
recall

C∞ = sup
x∈Ω

ess sup

∣∣∣∣dP (x, ·)
dπ

∣∣∣∣ .
When |Ω| < ∞, C∞ is given by

C∞ = max
x,y∈Ω

P (x, y)

π(y)
,

which can be explicitly computed for the case of two-state reversible Markov chains with Ω = {0, 1}
satisfying

P (x, y) =

{
p, x ̸= y

1− p, x = y.

In this case, π(x) = 1
2 , x ∈ {0, 1}. It then follows that

C∞ = 2max{1− p, p},

which is minimized for p = 1
2 , corresponding to independence between consecutive samples from

the Markov chain.

For Markov chains with finite state space, where |Ω| < ∞, C∞ can be bounded using the uniform
ergodicity assumption in Assumption D.15. For an arbitrary x ∈ Ω, under the assumption P (x, ·) ≪
π, observe that

1

2

∑
y∈Ω

|P (x, y)− π(y)| = 1

2

∑
x∈Ω

π(y)

∣∣∣∣P (x, y)

π(y)
− 1

∣∣∣∣
≥ 1

2
πmin

∣∣∣∣max
y∈Ω

P (x, y)

π(y)
− 1

∣∣∣∣
≥ 1

2
πmin

(
max
y∈Ω

P (x, y)

π(y)
− 1

)
,
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where πmin = miny∈Ω π(y). It then follows that for arbitrary x ∈ Ω,

max
y∈Ω

P (x, y)

π(y)
≤ 2∥P (x, ·)− π∥TV

πmin
+ 1.

Choosing x = argmaxu∈Ω maxy∈Ω
P (u,y)
π(y) , and applying the uniform ergodicity assumption in

Assumption D.15, we then have

C∞ ≤ 2cρ

πmin
+ 1.

For finite Markov chains under the uniform ergodicity assumption, [43, Proposition 3.4] provides
a relationship between the total variation distance and the pseudo spectral gap. Applying [43,
Proposition 3.4] then yields

C∞ ≤
(1− γps)

(1−1/γps)/2
√

1
πmin

− 1

πmin
+ 1

≤
e
√
1/πmin − 1

πmin
+ 1

D.6 Alternative Bounds for Stochastic Gradient Errors in the Non-Stationary Case

In Lemma D.1, we obtained a bound on the stochastic gradient error in terms of C∞ by choosing the
stationary distribution as a reference. In the following lemma, we obtain an alternative bound on the
stochastic gradient error by choosing a different reference distribution. This bound can distinguish
between stationary and non-stationary Markovian data processes.

Lemma D.16. Let µ be the initial distribution of the system-level Markov chain defined in Section 3.2.
We assume that for every t ∈ N, and for every x ∈ Ω, P (x, .) is absolutely continuous with respect to
µPKt, and we define:

Cq,t = sup
x∈Ω

ess sup

∣∣∣∣dP (x, .)

d(qP kt)

∣∣∣∣ < ∞ (28)

If Assumptions 3.1 and 4.3 hold, then we have:

Et


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2
 ≤ 4Cq,tσ

2

νpsMK
+ 2Cq,tσ

2
∥∥qPKt − π

∥∥
TV

.
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Proof. Let ρ be a distribution such that µPKt ≪ ρ and π ≪ ρ. We then have:

Et


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2


= EqPkt

dP (xK−1
t−1 , .

)
d(qP kt)

∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2


≤

∥∥∥∥∥dP (xK−1
t−1 , .)

d (qPKt)

∥∥∥∥∥
π,∞

EqPKt


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2
 (Holder’s inequality)

≤ Cq,tEqPKt


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2
 (By using (28))

≤ Cq,tEπ


∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2


+ Cq,t

∫
Ω

∥∥∥∥∥∥ 1

MK

∑
m,k

∇fm

(
wt;x

(m,k)
t

)
−∇F (wt)

∥∥∥∥∥∥
2 ∣∣∣∣∣d

(
qPKt

)
dρ

− dπ

dρ

∣∣∣∣∣ dρ
≤ 4Cq,tσ

2

νpsMK
+ 2Cq,tσ

2
∥∥qPKt − π

∥∥
TV

In the last step, we follow (11) to bound the squared error of the gradient estimator at the sta-
tionary measure and Assumption 4.3 together with the definition of the total variation norm (Ap-
pendix B,Definition B.7).

Observe that in the stationary case, for every t ∈ N the additional term ∥qPKt − π∥TV is zero, and
Cq,t = C∞, and we recover the bound in Lemma D.1. On the other hand, in the non-stationary case,
while the total variation norm can be bound using [43, Proposition 3.4], obtaining a tighter bound
than the one in Lemma D.1 is challenging due to the term Cq,t.
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E Additional Experiments

E.1 Experimental Setting

Computing environment: All the experiments performed in this paper are run entirely on many
different CPU clusters provided by the Grid’5000 testbed, with different types of CPU (e.g., Intel
Xeon E5-2698, Intel Xeon E5-2620, Intel Xeon E5-2630). All the software packages and datasets
used for experiments in this paper are open-sourced, with the exact version provided. For the
main experiments, we use 10 different random seeds, and report the average together with the
95% confidence interval. Further detailed instructions to run the experiments are provided in the
supplementary material.

In Section 5, we evaluated the performance of Local SGD, Minibatch SGD, and Local SGD with
Momentum on the Beijing Multi-Site Air-Quality dataset. In this section, we provide details on the
data preprocessing and the learning problem.

The Beijing Multi-Site Air-Quality dataset consists of hourly measurements from 12 weather stations
across China, collected between March 2013 and February 2017. In particular, the dataset consists
of measurements of 6 pollutants (PM2.5, PM10, S02, CO2, CO, and O3) and 6 meteorological
indicators (temperature, pressure, dew point, rainfall, wind speed, and wind direction). In total, there
are more than 400,000 measurements of each variable.
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Figure 3: Original time series for PM2.5 pollution, temperature, and SO2 pollution. Observe the
periodicity in the data indicating seasonality.
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Figure 4: Time series of PM2.5, temperature, and SO2 with seasonality removed, which is utilized
(along with the other pollution and meteorological variables) for the experiments.

As illustrated in Figure 3, the dataset has a strong seasonality effect. As we seek to experimentally
validate our theoretical analysis, which requires convergence to a stationary distribution. As such,
we estimate and remove the seasonality via the STATSMODEL python package [52]. We then drop
the PM10 and WD (wind direction) features, fill in the missing values with their average values
during the last month, and normalize the data. In Figure 4, we plot some measures after these steps of
preprocessing.

The focus of our theoretical analysis is on Markovian data. Pollution and meteorological data are
commonly modelled via Markov chains. To verify that a Markovian model is relevant to the dataset,
it is necessary to verify that there is dependence between samples. To this end, in Fig. 5 we plot
the autocorrelation of the PM2.5 concentration time series. Observe that while the autocorrelation
decreases as the lag increases, which indicates mixing. On the other hand, the autocorrelation with a
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Figure 5: Auto-correlation of PM2.5, SO2, and temperature time series with seasonality removed.
Observe that, particularly for the temperature, there are high levels of correlation at small lags,
indicating dependence between adjacent samples.
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Figure 6: Correlation matrix of the data at three stations.

small lag remains high, indicating the presence of dependence and the need for non-independent and,
in particular, Markovian models for the evolution of the PM2.5 concentration.

The learning problem we consider is linear regression with the PM2.5 measurements as the response,
and the meteorological variables and the other pollution variables utilized as covariates. From the
correlation matrices in Figure 6, we can see that there is a strong correlation between PM2.5 and
CO, DEWP (dew point), and NO2, while other features are less relevant. Hence, we consider the
following loss function:

f (w; (x, y)) =
(
wTx− y

)2
+ λr(w),

r(w) =
1

2

d=9∑
i=1

w2
i

1 + w2
i

.

where y ∈ R is the PM2.5 measure, x ∈ R9 is the vector of other variables measured at the same
hour, and w ∈ Rd is the model parameter. The non-convex regularizer encourages small weights for
irrelevant features.

To allocate the data over different clients, for each client we randomly sample n ∈ {6, 12} consecutive
months from the first 36 months from all the sites with seasonality removal. The remaining 12 months
are reserved for testing.

E.2 Step Size Scaling with the Number of Local Steps

We remind here the upper bounds for Local SGD in Theorem 4.7:

E
[
∥∇F (ŵT )∥2

]
≤ O

(
∆0

ηKT
+

C∞σ2

νpsMK
+
LKη

(
θ2 + σ2

)
δ2

)
.

In Section 5, we perform experiments with a fixed local step size η to better illustrate the heterogeneity
effect on Local SGD when K increases. In this section, we perform the same experiments as in
Figure 7, but with the local step size η scaled as b/K, where b ∈ {0.1, 0.01}. This replaces the fixed
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Table 2: Mean gradient norm of Local SGD

η K = 10 K = 50 K = 100

0.1/K 0.00506± 0.00076 0.00307± 0.00041 0.00233± 0.00030

0.01/K 0.01248± 0.00279 0.00921± 0.00210 0.01190± 0.00245
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(a) K = 10
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(b) K = 100
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Figure 7: Gradient norm as a function of the number of communication rounds for Local SGD,
Minibatch SGD, and Local SGD-M, with 10 clients, γ = 0.01, η = 0.001, β = 0.1, and the mixing
time for every client τm = 100.

local step size η = 0.01 in the original experiments. We report the results after 10 different seeds
together with the 95% confidence interval in Table 2.

From the above upper bound, we note that, for moderate values of the initial suboptimality gap and
heterogeneity:

• If K is large, then the bound is dominated by the heterogeneity term.
• If K is small, then the bound is dominated by the variance term.

Choosing the step size as η ∝ 1/K leaves the first and third error terms unchanged with K, while
the second term decays with increasing K. Hence, when this second term dominates for small K, the
gradient norm ||∇F (w)||2 should decrease before flattening out at a positive plateau. The patterns
shown in each row align with this qualitative prediction.

The comparison of the two rows also supports the fact that the "variance" term cannot be controlled
by the step size, which was discussed in Appendix C. Indeed, for a fixed K, reducing the step size
by a factor of 10 does not improve the performance. On the contrary, the gradient norm appears
to increase for smaller η. This can be explained by the first term in the bound, associated with the
suboptimality gap, which scales inversely with the step size.

E.3 Additional Experiments on Synthetic Data

In this section, we experimentally evaluate the performance of Minibatch SGD, local SGD, and local
SGD-M on the linear regression problem with non-convex regularization with synthetic Markovian
data. In the following experiments, we study the average performance over 10 random seeds in a
setting similar to [15].

Let U (a, b) denote the uniform probability distribution over [a, b]. The data stream for each client m
is generated by a two-state Markov chain (i

(m,k)
t , k ∈ [K], t ∈ N), where the probability of jumping

from one state to another is p ∈ (0, 1), with mixing time Θ(1/p). We note that for reversible Markov
chains, as considered in these experiments, the mixing time is related to the spectral gap via

1

νps
≤ 2τmix

Associated with each state i ∈ {0, 1} are the vectors Vm,i ∈ R10 which are drawn randomly for each
seed according to U (0, 1). For each seed and i ∈ {0, 1}, half of the optimal parameters wm,i ∈ R10

take the value w1
i ∼ U(0, 1), while the other half take the value w2

i ∼ U(1, 2).
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Figure 8: Gradient norm as a function of the number of communication rounds for Local SGD,
Minibatch SGD & Local SGD-M, with γ = 0.01, η = 0.001, β = 0.1, λ = 0.01, τm = 100 for all
m and K = 100.
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Figure 9: The gradient norm of the last iterate of 3 algorithms as a function of the mixing time with
γ = 0.01, η = 0.001, β = 0.1, λ = 0.01, 100 clients and different numbers of local steps.

The samples associated with client m correspond to the observations

x
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+ ϵ
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where ϵ
(m,k)
t ∼ U(0, 0.01), t ∈ N,m ∈ [M ], k ∈ [K].

Since the Markov chain (i
(m,k)
t , k ∈ [K], t ∈ N) is symmetric, the stationary distribution for every

client m is uniform; i.e., πm(0) = πm(1) = 1/2. The local objective function for each client m is
then given by
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where r(w) = 1
2

∑10
d=1

w2
[d]

1+w2
[d]

is a non-convex regularizer often used in robust non-convex and

smooth stochastic optimization [57, 20].

Impact of Heterogeneity and Number of Clients: Figure 7 and 8 confirm that synthetic data
experiments replicate the trends observed on real-world data: Local SGD’s performance degrades
under heterogeneity, while all three algorithms improve with more clients—consistently supporting
our theoretical analysis.

Effect of mixing time: In Figure 9, we plot the gradient norm of the last iterate of Minibatch SGD,
Local SGD, and Local SGD-M as a function of the mixing time. As predicted by our analysis, the
performance of Minibatch SGD, Local SGD, and Local SGD-M degrades when the mixing time
increases.
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F Limitations

Heterogeneity and Smoothness Assumptions: In our work, we have imposed the bounded gradient
dissimilarity (BGD) assumption. As noted in Section 4.1, this assumption was first introduced in
[27] and has since become ubiquitous in the analysis of local SGD [64]. We highlight that the BGD
assumption includes the assumptions in [60, 33]. While weaker heterogeneity assumptions exist
in the literature, these are not straightforward to apply for non-convex objectives where the BGD
assumption is standard [30].

Statistical Assumptions: The focus of this work is on time series data with temporal dependence
modeled via Markov chains. These models are widely used in many areas of statistical modeling,
ranging from physical and biological systems to queuing systems. On the other hand, Markovian mod-
els are not the only common time series models, and, for example, do not include all autoregressive
models.

We also assumed that the stochastic gradient estimates have bounded errors. Nevertheless, this is a
common assumption in stochastic optimization with bounded noise.

Optimality: At present, tight lower bounds for Markovian data are not known. As such, we were not
able to establish the optimality of our algorithm. Instead, we have compared with the lower bound in
the i.i.d. setting. We are only able to assert that in this setting, Minibatch SGD and Local SGD with
momentum can at least match the lower bound on the communication complexity, but at the cost of
performing more local computation (larger K). Nevertheless, we note that the 1/ϵ3 lower bound in
the i.i.d. setting is achieved by more complex algorithms than those considered in this paper. For
example, Algorithm 2 in [9] utilizes updates in round t that require evaluation of the gradient at the
global model in round t− 1.

Experimental Validation: A challenge in numerically understanding the performance of FL al-
gorithms with Markovian sampling is the strong impact of the mixing time of the data-generating
process. In real data sets, such as the pollution data in Section 5, the mixing time cannot be easily
controlled, which means that a comparison of the algorithms in different regimes is more challenging.
To study the impact of the pseudo spectral gap or the mixing time, we instead relied on synthetic
experiments in Section E.3.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide theoretical proofs for the claims made in the abstract in Section 4.
In Section 5, we experimentally validate our analysis on real-world time-series data.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 3 and Section 4.1, we provide discussions about our assumptions,
with regard to other assumptions that have been used in the literature. In Section 4.5, from
our theoretical analysis, we point out some limitations of FL algorithms when applied to
Markovian data. A separate section about limitations of our work is given in Appendix F.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We clearly state our set of assumptions in Section 3.2 and Section 4.1. Our
main theoretical results are presented in Section 4, with explicit references to the relevant
assumptions and detailed proofs in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details about computing environment and experimental settings are given in
Appendix E.1. Code is provided in the supplemental material with detailed instructions.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplemental material together with sufficient
instructions to reproduce the main results of the paper. The computing environment is
described in Appendix E.1. We use an open-source dataset distributed under the CC BY 4.0
license, cited in line 302.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the experimental settings in Appendix E.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each experiment with 10 different random seeds and report the average
values together with the confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computing environment and all the details about the experi-
mental setup in Appendix E.1.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper is theoretical and analyzes convergence properties of Federated
Learning algorithms. It does not involve human subjects, personal data, or application
domains with known ethical concerns. Therefore, the work complies with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper focuses on the convergence analysis of Federated Learning algo-
rithms. It does not propose or implement any specific application, dataset, or deployment
scenario. As such, the work does not have direct societal implications or foreseeable negative
societal impacts at this stage. Any potential societal effects would depend on downstream
applications, which are outside the scope of this study.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper provides a theoretical analysis of convergence in Federated Learning
algorithms and does not introduce new models, datasets, or implementation methods that
could be directly applied in practice. The results are abstract and foundational, with no
foreseeable misuse potential. Therefore, no specific safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The experiments are carried out using open-source dataset distributed under
the CC BY 4.0 license. We cite the original paper that produced the dataset in line 302.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper is theoretical and does not release any new assets. The code is
provided in the supplemental material under the MIT license with fully detailed instruction.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper is theoretical, hence it does not involve any crowdsourcing nor
research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper is theoretical, hence it does not involve any crowdsourcing nor
research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification:

Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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