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ABSTRACT

We present a novel simulation-free framework for training continuous-time diffu-
sion processes over very general objective functions. Existing methods typically
involve either prescribing the optimal diffusion process—which only works for
heavily restricted problem formulations—or require expensive simulation to numer-
ically obtain the time-dependent densities and sample from the diffusion process.
In contrast, we propose a coupled parameterization which jointly models a time-
dependent density function, or probability path, and the dynamics of a diffusion
process that generates this probability path. To accomplish this, our approach
directly bakes in the Fokker-Planck equation and density function requirements as
hard constraints, by extending and greatly simplifying the construction of Neural
Conservation Laws. This enables simulation-free training for a large variety of
problem formulations, from data-driven objectives as in generative modeling and
dynamical optimal transport, to optimality-based objectives as in stochastic optimal
control, with straightforward extensions to mean-field objectives due to the ease
of accessing exact density functions. We validate our method in a diverse range
of application domains from modeling spatio-temporal events to learning optimal
dynamics from population data.

1 INTRODUCTION

Diffusion models have been widely adopted due to their ease of use and competitive performance
in generative modeling Ho et al. (2020); Ma et al. (2024); Chen & Lipman (2024), by learning a
diffusion process that interpolates between a data distribution and a Gaussian noise distribution Song
et al. (2021); Albergo et al. (2023); Lipman et al. (2023). However, their construction is heavily
restrictive and only results in a simulation-free training algorithm for this simplest case. Recent
works have adapted these ideas to train diffusion processes over more general objective functions,
such as solving optimal transport or generalized Schrödinger bridge problems, but these methods
all require simulating from the learned diffusion process to some varying degrees, and are generally
more restrictive than simulation-based training approaches Liu et al. (2024).

We consider training diffusion processes over general objective functions1

min
ρ,u

∫ 1

0

L(ρt, ut)dt+ F (ρ0, ρ1) (1)

s.t. ∂tρt = −∇ · (utρt) +
1
2g

2
t∆ρt (2)

ρt ≥ 0,

∫
RD

ρt(x)dx = 1 ∀t ∈ [0, 1] (3)

where ut(x) : R1+D → RD and ρt(x) : R1+D → R+ are the time-dependent velocity field and
probability density function to be learned, and gt is a state-independent diffusion coefficient that
is given as part of the problem. The functionals L and F can be quite general, including cases
such as generative modeling from data observations, Schrödinger bridge problems, and mean-field
control—we provide concrete examples in Section 4. The constraints in eq. (3) ensure the density

1We denote ∂tρt =
∂ρt
∂t

, ∇ · (utρt) =
∑D

d=1
∂(utρt)

∂xd
, and ∆ρt =

∑D
d=1

∂2ρt
∂x2

d
.
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function is properly normalized, while the constraint in eq. (2)—the Fokker-Planck equation—implies
that the diffusion process modeled by the stochastic differential equation (SDE)

dXt = ut(Xt)dt+ gtdWt (4)

transports particles in accordance with the marginal densities, i.e. Xt ∼ ρt.

Typical approaches will only directly parameterize ut, the time-evolution of the particles, whereas ρt,
the time-evolution of probability density function, is either unobtainable or only estimated through
expensive numerical procedures (Chen et al., 2019b; Kobyzev et al., 2021). As such, in order to
sample from ρt, typically one transports particles starting from the initial time to time t, simulating
the diffusion process in eq. (4).

In this work, we propose a novel parameterization of diffusion processes where we parameterize
not only the dynamics ut but also the density ρt in an explicit form, then we direct impose the
Fokker-Planck equation (2) as a hard constraint on the model in order to couple these two quantities.
To do so, we build upon ideas from Neural Conservation Laws (NCL; Richter-Powell et al. (2022))
for imposing the continuity equation. We propose a reformulation of the NCL framework and
significantly improve upon its prior construction; unlike prior work, we additionally include the
density constraints (3) into the model, enabling maximum likelihood training. We also find that the
naïve construction introduces what we call a spurious flux phenomenon which renders the velocity
field unusable. We propose removing this phenomenon through the introduction of a carefully
designed divergence-free component into the dynamics model that leaves the density invariant. In
summary, our work introduces the following contributions:

• Improved analysis of the Neural Conservation Laws construction, generalizing to diffusion
processes and additionally imposing the density constraints (3). Compared to the original
formulation, we can now train with the maximum likelihood objective.

• We discuss how the naïve construction leads to a spurious flux phenomenon, where the flux
and velocity field do not vanish even as x diverges. We mitigate this by introducing carefully
chosen divergence-free components to the flux that leaves the density invariant.

• We show that our method achieves state-of-the-art on a variety of spatio-temporal generative
modeling data sets and on learning transport maps in cellular dynamics.

• To the best of our knowledge, we are the first method to be able to train a diffusion process
with general objective functions—such as regularizing towards optimal transport, or with
additional state costs, including mean-field cost functions—completely simulation-free,
whereas existing methods require varying degrees of simulation.

2 RELATED WORK

Markov processes described by ordinary and stochastic differential equations have been used across
many application domains (Rubanova et al., 2019; Karniadakis et al., 2021; Cuomo et al., 2022;
Wang et al., 2023), with the most general problem settings involving simulation-based methods. This
refers to training neural differential equations of various kinds by simulating their trajectories and
differentiating through the objective function. While some works have solved the memory issue with
dfferentating through simulations (Chen et al., 2020; Li et al., 2020; Chen et al., 2021), it remains
problematic to apply these at scale due to the computational cost of simulation. Furthermore, many
probabilistic modeling applications (Grathwohl et al., 2018; Chen et al., 2019a; Koshizuka & Sato,
2023) require the computation of the likelihood for maximum likelihood training, which can be more
expensive than simulating trajectories.

This is where Neural Conservation Laws (NCL; Richter-Powell et al. (2022)) come in, which is
a modeling paradigm where the law of conservation such as eq. (2) is directly enforced as a hard
constraint. This allows optimization of the kind in eq. (1) to be mapped an unconstrained problem
in the parameter space of an NCL model. However, while the original NCL model (Richter-Powell
et al., 2022) was able to bake in the constraint in eq. (2), they did not provide a scalable way to bake
in the density constraints in eq. (3) which is key for enabling maximum likelihood training.

A highly-scalable approach is the framework of diffusion models (Ho et al., 2020; Song et al., 2021),
Flow Matching (Lipman et al., 2023), and stochastic interpolants (Albergo et al., 2023). However,
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these methods can only solve a restricted set of problems, ones where samples from the optimal ρ0
and ρ1 are provided for training. They cannot handle the general problem setup of eq. (1) but instead
directly prescribe the optimal solution which is then learned by a regression problem.

3 METHOD

We describe a novel framework which directly parameterizes both a velocity field ut and a density ρt
that always satisfies the Fokker-Planck constraint in eq. (2) and density constraints in eq. (3). Our
method is built on top of ideas introduced in Neural Conservation Laws (NCL; Richter-Powell et al.
(2022)) through the use of differential forms, but we take an alternative construction while providing
step-by-step derivations. We then discuss how likelihood-based generative models can fit within our
framework. The naïve construction, however, leads to a problem we call the spurious flux phenomenon
(Section 3.4) which we resolve by introducing a divergence-free component (Section 3.5).

3.1 NEURAL CONSERVATION LAWS

In order to satisfy the Fokker-Planck constraint in eq. (2), we make use of a coupled parameterization
of both a probability path ρt, i.e. a time-dependent density function, and a flux jt(x) : RD+1 → RD

that is designed, by construction, to always satisfy the continuity equation,

∂tρt +∇ · jt = 0. (5)

This equation imposes the condition that the total probability in a system must be conserved, and that
instantaneous changes in the probability can only be attributed to the local movement of particles
following a continuous flow characterized together by jt and ρt.

We directly impose the continuity equation into the model as a hard constraint. This idea was
previously explored in Neural Conservation Laws (NCL; Richter-Powell et al. (2022)); however, its
reliance on differential forms makes it difficult to extend, and they were not able to satisfy the density
constraints in eq. (3). Instead, we propose a simplified alternative construction and will derive the
core building blocks of NCL that are necessary for our approach following only basic principles.

To model eq. (5), we introduce two vector fields aθt (x) : R1+D → RD and bθt (x) : R1+D → RD

with parameters θ, and set
ρt = ∇ · aθt , (6)

jt = −∂ta
θ
t + bθt . (7)

With this choice we have:
Lemma 1. Let ρt and jt be given by eq. (6) and eq. (7), respectively. Then the continuity eq. (5)
holds iff bt is divergence-free, i.e. ∇ · bθt = 0.

Proof. Plugging eq. (6) and eq. (7) into the left hand side of eq. (5),

∂tρt +∇ · jt = ∂t∇ · aθt −∇ · (∂taθt + bθt ) = −∇ · bθt . (8)

Therefore eq. (5) holds iff ∇ · bθt = 0, which verifies the claim.

Notice that ρt depends only on aθt , while jt is affected by both aθt and bθt . The extra degrees of freedom
coming from bθt will be important in order to resolve what we call the spurious flux phenomenon in
Section 3.4, and furthermore, it provides the needed flexibility in order to learn optimal solutions
of ut while leaving ρt invariant.

3.2 CONVERSION TO DIFFERENTIAL DYNAMICS

In order to obtain the dynamics directly, we need to convert the continuity equation into the Fokker-
Planck equation. Fortunately, the density and flux provide sufficient information in order to perform
this conversion. Any flux jt that satisfies the continuity equation in eq. (5) can be converted to a ut

that satisfies eq. (2) using the following identity:

ut =
jt
ρt

+ 1
2g

2
t∇ log ρt. (9)

3
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This can be verified by plugging eq. (9) into eq. (2).

∂tρt = −∇ ·
(
ρt

(
jt
ρt

+ 1
2g

2
t∇ log ρt

))
+ 1

2g
2
t∆ρt(x)

= −∇ ·
(
jt +

1
2g

2
t∇ρt

)
+ 1

2g
2
t∆ρt(x) = −∇ · jt

(10)

Thus, by parameterizing a single vector field aθt , we can model both a density ρt and a velocity field
ut that satisfies the constraint in eq. (2). This allows us to turn the constrained optimization problem
in eq. (1) into an unconstrained optimization in the parameters θ. Furthermore, as we are given direct
access to ρt, we do not need to solve the Fokker-Planck equation (eq. (2)) from ut, typically requiring
an extremely expensive procedure. This enables a new paradigm of simulation-free methods for
training diffusion models over general objective functions.

3.3 DESIGNING aθt THROUGH LIKELIHOOD-BASED MODELS

In order to model valid probability density functions, we must also satisfy the density constraints in
eq. (3). In addition, we wish to design our choice of aθt such that (i) ρt can be exactly sampled from
at any time value t, (ii) computation of ρt incurs minimal computational cost, and (iii) the model is
flexible enough for practical applications. We will show that autoregressive likelihood-based models
can nicely fit within our framework and satisfies all of the above desirables.

Consider a time-dependent autoregressive probabilistic model which decomposes the joint distribution
over all D variables given the natrual ordering,

ρt(x) =
∏D

i=1 f
θ
t (xi|x1:i−1), (11)

and denote by F θ
t (xi|x1:i−1) =

∫ xi

−∞ fθ
t (y|x1:i−1)dy the associated cumulative probability distribu-

tions (CDF).

Letting [aθt ]i denote the i-th coordinate of aθt , define

[aθt ]i(x) =

{
F θ
t (xi|x1:i−1)

∏D
j=1,j ̸=i f

θ
t (xj |x1:j−1), i = D

0, otherwise
(12)

This allows us to model the density as ρt(x) = ∇ · aθt (x) =
∏D

i=1 f
θ
t (xi|xi−1), which we will refer

to as the autoregressive model.

Alternatively, we can consider a factorized model, where xi do not depend on other variables:

fθ
t (xi|x1:i−1) = fθ

t (xi), F θ
t (xi|x1:i−1) = F θ

t (xi), (13)

which we will refer to as the factorized model.

Choice of F θ
t as mixture of logistics. While one may directly parameterize the functions F θ

t using
monotonic neural networks (Sill, 1997; Daniels & Velikova, 2010), resulting in a universal density
approximator, we decide to use a simpler construction using mixture of logistic distributions. Mixture
of logistics has been a common choice among likelihood-based generative modeling frameworks,
from normalizing flows (Kingma et al., 2016; Ho et al., 2019) to autoregressive models (Salimans
et al., 2017). Similarly, mixture of logistics is sufficient flexible for our use cases, as we only need to
model per-coordinate conditional distributions. For our autoregressive model, we use a mixture of
logistics to describes the CDF as

F θ
t (xi|x1:i−1) =

∑L
l=1 α

θ
l (x1:i−1, t)

[
σ
(
sθl (x1:i−1, t)

(
xi − µθ

l (x1:i−1, t)
))]

, (14)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. Here, µθ
l (x1:i−1, t) and sθl (x1:i−1, t)

correspond to the mean and inverse scale of a logistic distribution, respectively, while αθ
l (x1:i−1, t)

are mixture weights. All functions are parameterized using autoregressive neural networks. These
correspond to probability density functions

fθ
t (xi|x1:i−1) =

∑L
l=1 α

θ
l (x1:i−1, t)

[
sθl (x1:i−1, t)σ

(
zθl (xi, x1:i−1, t)

)
σ (−zl(xi, x1:i−1, t))

]
,

(15)
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 ρt(x) = ∇ ⋅ aθ
t (x)

 jt(x) = − ∂taθ
t (x)

jt(x) = − ∂taθ
t (x) + bθ

t (x)

 t = 0  t = 0.25  t = 0.5  t = 0.75  t = 1

Figure 1: Illustration of the spurious flux phenomenon and its removal with a divergence-free vector
field bθt . (top) The trained marginal distributions in 2D. (middle) The flux field jt = −∂ta

θ
t without

any flux cancellations, where we see there are spurious fluxes. (bottom) The flux field jt = −∂ta
θ
t+bθt

with bθt defined in Section 3.5, and we now see that the flux field vanishes properly.

where
zθl (xi, x1:i−1, t) = sθl (x1:i−1, t)

(
xi − µθ

l (x1:i−1, t)
)
. (16)

As for the factorized model, since we remove all the dependecies of the CDF on the prior coordiates,
we therefore can describe F θ

t (xi) as

F θ
t (xi) =

∑L
l=1 α

θ
l (t)

[
σ
(
sθl (t)

(
xi − µθ

l (t)
))]

, (17)

where the mean, inverse scale, and the mixture weights are functions depend on t only.

While these constructions for the factorized model and the autoregressive lead to a proper density,
the keen reader may notice that the flux constructed from eq. (7) using this aθt is problematic as the
flux will be exactly zero in all but one coordinate. This is not the core of the problem but rather a
manifestation of the spurious flux phenonmenon, which we will describe in Section 3.4. We will later
go in depth on how to construct a proper flux by making use of the extra degree of freedom we have
in designing bθt later in Section 3.5.

3.4 THE SPURIOUS FLUX PHENOMENON

The choice of aθt above guarantees that ρt is positive and normalizes to exactly one. However, using
only this aθt and setting bθt = 0 in eq. (7) turns out to be problematic for the flux jt. Indeed, given any
box-shaped region X = [−L,L]D with boundary denoted ∂X and normal vector n̂(x), we can use
the divergence theorem to obtain∫

X
ρt(x)dx =

∫
X
∇ · aθt (x)dx =

∫
∂X

n̂(x) · aθt (x)dS(x) > 0. (18)

where dS(x) is the surface measure on ∂X . This quantity is nonzero no matter how large L is, and
approaches one as L → ∞ since

∫
RD ρt(x)dx = 1.

This implies that aθt is necessarily nonzero somewhere even outside of the support of ρt. Therefore,
if we set bθt = 0 so that jt = −∂ta

θ
t by eq. (7), since aθt is not constant in t in general, the flux does

not decay to zero even outside the support of ρt, even though ρt goes to zero. This is problematic
for two reasons: (i) we take jt/ρt in order to construct ut, which will diverge, and (ii) because the
divergence theorem holds for any region, this introduces problematic behavior even at finite x, as can
be seen in Figure 1.

5
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We define this behavior where the flux is nonzero even as x diverges as the spurious flux phenomenon.
While this phenomenon exists generally for any construction that does not enforce limx→∞ ∂ta

θ
t = 0,

we can gain a more concrete understanding of the spurious flux by considering the autoregressive
construction of aθt as in eq. (12), which we formalize in the following result:

Lemma 2. Let ρt(x) = ∇ · aθt (x) =
∏D

i=1 f
θ
t (xi) and jt(x) = −∂ta

θ
t (x) with aθt (x) given by

eq. (12). Then limxi→+∞ |jt(x)|2 ̸= 0.

Proof. If jt(x) = −∂ta
θ
t (x) with aθt (x) given by eq. (12), the i-th coordinate of the flux is

[jt]i(x) = −∂tF
θ
t (xi|x1:i−1)

∏D−1
i=1 fθ

t (xi|x1:i−1)− F θ
t (xi|x1:i−1)∂t

(∏D−1
i=1 fθ

t (xi|x1:i−1)
)
.

(19)
Since limxi→∞ Ft(i) = 1 and therefore limxi→∞ ∂tFt(i) = 0, we deduce

limxi→∞[jt]i(x) = −∂t

(∏D−1
i=1 fθ

t (xi|x1:i−1)
)
̸= 0 (20)

and the claim of the lemma follows.

This understanding of the spurious flux allow us to combat this phenomenon by cancelling out the
problematic flux terms using the extra degree of freedom offered by the divergence-free field bθt in
the construction of eq. (7), as discussed next.

3.5 DESIGNING bθt TO COMBAT THE SPURIOUS FLUX PHENOMENON

In order to remove the spurious flux in eq. (20), we must cancel it out with a term that has the same
limiting behavior. To this end, we propose adding the quantity σ(xD)∂t

(∏D−1
i=1 fθ

t (xi|x1:i−1)
)

to
the i-th coordinate of the flux, where σ is the sigmoid function, or more generally, a function/neural
network approaches 1 as its input goes to infinity. By adding this cancellation term to the spurious
flux from eq. (20), we exactly remove the limiting behavior:

lim
xi→∞

−∂t

(
F θ
t (xi|x1:i−1)

∏D−1
i=1 fθ

t (xi|x1:i−1)
)
+ σ(xi|x1:i−1)∂t

(∏D−1
i=1 fθ

t (xi|x1:i−1)
)
= 0.

(21)
However, we must construct bθt to be divergence-free in order to leave ρt invariant. Notice that this
cancellation term has the form

[bθt ]D(x) = σ(xi)∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)

=
∂

∂D−1

[
σ(xi)∂t

(
F θ
t (xD−1|x1:D−2)

D−2∏
i=1

fθ
t (xi|x1:i−1)

)]
.

(22)

To ensure bθt is divergence-free, we add a compensating term to the D − 1-th coordinate,

[bθt ]D−1(x) = − ∂
∂xD

[
σ(xi)∂t

(
F θ
t (xD−1|x1:D−2)

∏D−2
i=1 fθ

t (xi|x1:i−1)
)]

. (23)

This results in a bθt that is divergence-free since

∇ · bθt = ∂
∂xD

[bθt ]D + ∂
∂xD−1

[bθt ]D−1 = 0. (24)

However, the bθt in eq. (23) introduces a new spurious flux in the D − 1 coordinate since [bθt ]D−1 ̸= 0
as xD−1 → ∞. To completely remove spurious flux while keeping bθt divergence-free, we must
recursively add cancellation and compensating terms to each coordinate, until every coordinate has
their spurious flux removed. This results in the following vector field for the general case:

[bθt ]i(x) =



σ(xi)∂t

(∏D−1
j=1 fθ

t (xj)
)
, if i = D

−
(∏D

j=2 σ
′(xj)

)
∂tF

θ
t (x1), if i = 1(∏D

j=i+1 σ
′(xj)

) (
σ(xi)− fθ

t (xi|x1:i−1)
)
∂t

(∏i−1
j=1 f

θ
t (xj |x1:j−1)

)
−
(∏D

j=i+1 σ
′(xj)

)
∂tf

θ
t (xi|x1:i−1)

(∏i−1
j=1 f

θ
t (xj |x1:j−1)

)
, otherwise

(25)
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The following results show that the bθt in eq. (25) is divergence-free and that it completely removes
the spurious flux problem.
Lemma 3. The vector field bθt in eq. (25) is divergence-free, i.e. ∇ · bθt = 0.
Theorem 1. Let ρt and jt be given by eq. (6) and eq. (7), respectively, with atθ given by eq. (12) and
bθt by eq. (25). Then the continuity eq. (5) holds, the density satisfies ρt > 0 and

∫
RD ρt(x)dx = 1,

and in addition there are no spurious flux, i.e. jt → 0 as x → ∞.

Note that in our implementation, we compute all quantities in eq. (25) in parallel across all coordinates
using autoregressive architectures, and in logarithm space for numerical stability. The derivatives ∂t
are computed using memory-efficient forward-mode automatic differentiation, so the total cost of
computing eq. (25) is on par with a single forward evaluation of the autoregressive model.

3.6 THE FACTORIZED CASE: SIMPLIFICATIONS AND GENERALIZATIONS

The vector field in eq. (25) can be drastically simplified for the factorized case by setting σ(xi) =
F θ
t (xi), which gives

[bθt ]i(x) =


F θ
t (xD)∂t

(∏D−1
j=1 fθ

t (xj)
)
, if i = D

−
(∏D

j=2 f
θ
t (xj)

)
∂tF

θ
t (x1), if i = 1

−
(∏D

j=i+1 f
θ
t (xj)

)
∂tF

θ
t (xi)

(∏i−1
j=1 f

θ
t (xj)

)
, otherwise.

(26)

Substituting this back into eq. (9) results in the simplified velocity field (for gt = 0):

[uθ
t ]i(x) = jθt (x)/ρ

θ
t (x) = (−∂ta

θ
t (x) + bθt (x))/ρ

θ
t (x) = −∂tF

θ
t (xi)

fθ
t (xi)

(27)

for all i ∈ {1, . . . , D}, which is easy to implement and compute in practice. Furthermore, we note
that for the factorized model, the velocity is always kinetic optimal as ut(x) in eq. (27) is a gradient
field. In particular, it means that it is the velocity that results in the shortest paths out of all velocities
that generate this ρt.

To increase the flexibility of the factorized model, note that we can combine multiple pairs of (ρkt , u
k
t )

into a mixture model with coefficients γk:

ρt(x) =

K∑
k=1

γkρkt (x), ut(x) =

K∑
k=1

γkρkt (x)

ρt(x)
uk
t (x). (28)

Proposition 1. If each pair of ρkt and uk
t satisfy the Fokker-Planck equation as in eq. (2), then the ρt

and ut as defined in eq. (28) also satisfy the Fokker-Planck equation. Proof is provided in Appendix B.

3.7 LEARNING AN INDEPENDENT DIVERGENCE-FREE COMPONENT

While the choice of bθt in eq. (25) removes the spurious nonzero flux values at infinity, this parameter-
ization lacks the flexibility in optimizing jt, e.g. it does not necessarily correspond to kinetic optimal
velocity fields ut, unless using the factorized model discussed in Section 3.6. In order to handle
a wider range of applications where we do optimize over ut, we can include a flexible learnable
component into jt that leaves the continuity equation invariant.

Let the new flux field be parameterized as

jt = −∂ta
θ
t + bθt + vθt , where ∇ · vθt = 0, (29)

so fθ
t : RD+1 → RD is a divergence-free vector field. This construction still satisfies eq. (5) because

∂tρt +∇ · jt = ∂t(∇ · aθt )−∇ · (∂taθt + bθt + vθt ) = 0 (30)

To satisfy the divergence-free constraint, we adopt the construction in Richter-Powell et al. (2022)
and parameterize an matrix-valued function Aθ

t : RD+1 → RD×D with neural networks and we let

vθt = ∇ ·
(
Aθ

t − (Aθ
t )

T
)

(31)
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Model Pinwheel Earthquakes JP COVID-19 NJ CitiBike

Conditional KDE (Chen et al. (2020)) 2.958 ±0.000 2.259 ±0.001 2.583 ±0.000 2.856 ±0.000

Neural Flow (Biloš et al. (2021)) N/A 1.633 1.916 2.280
CNF (Chen et al. (2020)) 2.185 ±0.003 1.459 ±0.016 2.002 ±0.002 2.132 ±0.012

NCL++ (Factorized) 2.028 ±0.062 1.217 ±0.024 1.846 ±0.012 1.462 ±0.033

NCL++ (Autoregressive) 1.936 ±0.083 1.184 ±0.031 1.732 ±0.009 1.239 ±0.024

Table 1: Negative log-likelihood per event on held-out test data (lower is better).

where the divergence is taken over the rows of the anti-symmetric matrix Aθ
t − (Aθ

t )
T . Let Aθ

t;i,j

denote the (i, j) entry of Aθ
t . We can easily verify that vθt is divergence-free with the following:

∇ · vθt =

D∑
i=1

D∑
j=1

∂xi∂xj

(
Aθ

t;i,j − (Aθ
t;i,j)

T
)
− ∂xj∂xi

(
Aθ

t;i,j − (Aθ
t;i,j)

T
)
= 0 (32)

4 EXPERIMENTS

In each of the following sections, we consider broader and broader problem statements, where each
successive problem setting roughly builds on top of the previous ones. Throughout, we parameterize
the density ρt and a flux jt following Section 3.1 in order to satisfy the continuity equation, and
compute the velocity field ut using eq. (9). All models are trained without simulating the differential
equation in eq. (4). While there exist simulation-free baselines for the first few settings (Sections
4.1 & 4.2), to the best of our knowledge, we are the first truly simulation-free approach for the more
complex problem setting involving mean-field optimal control (Section 4.3). Experimental details are
provided in Appendix C.

4.1 SPATIO-TEMPORAL GENERATIVE MODELING

Our goal is to fit the model to data observations from an unknown data distribution q(t, x). We
consider the unconditional case of generative modeling where samples are obtained from marginal
distributions across time, while the individual trajectories are unavailable. As a canonical choice, we
use the cross entropy as the loss function for learning ρt.

LGM = Et,x∼q(t,x) [− log ρt(x)] (33)

We consider datasets of spatial-temporal events preprocessed by Chen et al. (2020) and these datasets
are sampled randomly in continuous time. We take only the spatial component of these datasets, as
this is our core contribution. To evaluate the capability of our method on modeling spatial-temporal
processes, we test our proposed method on these datasets and compare against state-of-the-art models
on these datasets by Chen et al. (2020) and Biloš et al. (2021).

We report the log-likelihoods per event on held-out test data of our method and baseline methods
in Table 1, highlighting that our method outperforms the baselines with substantially better spatial
log-likelihoods across all datasets considered here.

4.2 LEARNING TO TRANSPORT WITH OPTIMALITY CONDITIONS

We next consider settings where the data are only sparse observed at select time values, and the goal
is to learn a transport between each consecutive observed time values, subject to some optimality
conditions. The simplest case is dynamic optimal transport Villani (2021), where we introduce a
kinetic energy to the loss function in order to recover short trajectories between consecutive time
values.

LOT =
∑

t∈{ti}n
i=1

Ex∼qti (x)
[− log ρt(x)] +

∫ tn

t0

Ex∼ρt(x)

[
∥ut(x)∥2

]
dt (34)

As our benchmark problem, we investigate the dynamics of cells based on limited observations,
focusing on the single-cell RNA sequencing data of embryoid bodies as analyzed by Neklyudov et al.
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Model W2(qt1 , q̂t1) W2(qt2 , q̂t2) W2(qt3 , q̂t3) W2(qt4 , q̂t4)

OT-flow 0.75 0.93 0.93 0.88
Entropic Action Matching 0.58 ±0.015 0.77 ±0.016 0.72 ±0.007 0.74±0.017

Neural SDE 0.62 ±0.016 0.78 ±0.021 0.77 ±0.017 0.75 ±0.017

NCL++ (Factorized, Directly Sampled) 0.56 ±0.009 0.79 ±0.012 0.74 ±0.010 0.72 ±0.006

NCL++ (Autoregressive, Directly Sampled) 0.52 ±0.004 0.74 ±0.005 0.72 ±0.003 0.69 ±0.004

NCL++ (Factorized, Transported) 0.58 ±0.015 0.80 ±0.007 0.76 ±0.009 0.75 ±0.009

NCL++ (Autoregressive, Transported) 0.53 ±0.013 0.76 ±0.008 0.73 ±0.005 0.71 ±0.008

Table 2: The Wasserstein-2 distance between the test marginals and marginal distributions from the
model calculated by the test samples and the samples obtained from directly sampling from the model.
For our own methods, we report standard deviation estimated across 20 runs.

Model W2(qt1 , q̂t2) W2(qt2 , q̂t3) W2(qt3 , q̂t4)

NCL++ (Factorized) 3.45 ±0.125 3.67 ±0.103 4.09 ±0.147

NCL++ (Autoregressive) 2.85 ±0.075 3.14 ±0.082 3.62 ±0.097

Table 3: The Wasserstein-2 distance between the distributions transported from the test marginals
at ti and the test marginals at ti+1. We use this Wasserstein-2 distance to measure how kinetically
optimal our trained maps are. We report the mean and standard deviation estimated across 20 runs.

(2023). This dataset offers sparse observations in a 5-dimensional PCA decomposition of the original
cell data introduced by Moon et al. (2019) at discrete time points t0 = 0, t1 = 1, t2 = 2, t3 = 3, t4 =
4. Our objective is twofold: first, to fit the time-continuous distribution of the dataset with given
sparse observations, and second, to obtain optimal transport (OT) paths between these marginal
distributions.

To evaluate the performance of our model on this problem setup, we compute the Wasserstein-2
distance between our fitted model ρt and the data distribution qt at t = 0, 1, 2, 3, 4. The Wasserstein-2
distance is computed with the samples we directly sample from the model marginal distribution ρt
and the held-out test data from the dataset. Additionally, we compute the Wasserstein-2 distance
between test marginals and model marginals by transporting samples from the data marginal qti to
our estimated marginals at the next time value q̂ti+1

using the trained velocity field.

Compared to prior works, we not only learn the transport map and the marginal densities of the
dataset, but also optimize the model for the kinetically optimal transport map. Our model has the
flexibility in terms of training for the kinetic optimal transport map because of the additional learnable
component vθt that can be incorporated into the flux term (Section 3.7), all the while capable to be
learned without sequential simulation of the underlying dynamical system. Results of optimizing
for kinetically optimal transport map are reported in Table 3. As compared to the factorized model,
which is simpler and easier to train, the autoregressive model achieves better performance in both
density fitting and optimizing for the optimal transport.

4.3 MEAN-FIELD STOCHASTIC OPTIMAL CONTROL

Stochastic optimal control (SOC; Mortensen 1989; Fleming & Rishel 2012; Kappen 2005) aims at
finding the optimal dynamics model given an objective function, instead of data observations. SOC
problems arise in wide variety of applications in sciences and engineering (Pham, 2009; Fleming
& Stein, 2004; Zhang & Chen, 2022; Holdijk et al., 2023; Hartmann et al., 2013; 2017) and we
provide numerical evidence to illustrate that our framework can be extended to solving SOC problems,
including mean-field type of SOC problems (Bensoussan et al., 2013), which have wide applications
in finance (Fleming & Stein, 2004; Pham, 2009; Aghion, 1990) and robotics (Theodorou et al., 2011;
Pavlov et al., 2018). Reducing the SOC problem into our setting in eq. (1), we have the following
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Figure 2: Transport paths of a trained factorized model on the motion planning task of different
environments with randomly initialized circular obstacles. We train the model with a diffusion
coefficient gt = 0.0 and we sample the model via solving eq. (4) with gt = 0.0 (first row) and
gt = 0.5 (second row). Note that in the case of gt = 0.0, eq. (4) reduces to a deterministic ODE.

objective function:

LSOC =

∫ 1

0

ϕt(ρt)dt+ Ex∼ρt

[
1

2σ2
t

∥ut(x)− vt(x)∥2
]
dt+Φ(ρ1) + Ex0∼q0 [− log ρ0(x0)]

(35)

where q0 is a given initial distribution, vt is a given base drift function, and we use Φ(ρ1) =
Ex1∼q1 [− log ρ1(x1)] as the terminal cost so that the model can also be fitted to a given terminal
distribution q1. For our task, we formulate problems with circular obstacles that the model must
navigate around. In particular, for circular obstacles with radius R and center coordinate c, the
running cost is defined as:∫ 1

0

ϕt(ρt)dt = EXt∼ρt
[softplus

(
R2 − (Xt − c)2

)
] + ηEXt∼ρt

[log ρt(Xt)] (36)

where EXt∼ρt
[log ρt(Xt)] is the entropy of the model—i.e., a mean-field cost—used to encourage

the model to find all the possible paths and η is a weighting.

We test our method on the motion planning tasks introduced by Le et al. (2023). The task is to navigate
from the source to the target distribution while avoiding randomly initialized circular obstacles, where
we use the entropy regularization to encourage finding multiple paths and to ensure we find robust
solutions. We visualize the trained model in Figure 2, where our framework trained with diffusion
coefficient gt = 0 can handle different environments and can also be used to produce reasonable
samples when additional noise is present, i.e., gt > 0.

5 CONCLUSION

We propose a simulation-free framework for training continuous-time stochastic processes over a
large range of objectives, by combining Neural Conservation Laws with likelihood-based models.
We demonstrated the flexibility and capacities of our method on various applications, including
spatio-temporal generative modeling, learning optimal transport between arbritrary densities, and
mean-field stochastic optimal control. Especially at low dimensional settings, our method easily
outperforms existing methods. However, the reliance on likelihood-based models make it difficult to
be scaled up to high dimensions. We acknowledge these limitations and leave them for future works.
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A JACOBIAN SYMMETRIZATION LOSS

With the flexible learnable component fθ
t , we can learn the Hodge decomposition of the velocity

field to remove the extra divergence-free (i.e., rotational) components of the model. As a direct
consequence of the the Benamou-Brenier formula Villani (2021); Albergo & Vanden-Eijnden (2022),
the velocity field that achieves the optimal transport has no divergence-free component.

A necessary and sufficient condition for a velocity field of being a gradient field is having symmetric
Jacobian matrix with respect to all spatial dimensions. By the Hodge decomposition, any time-
dependent velocity field vt : RD+1 → R can be expressed as a sum of a divergence-free field and a
gradient field:

vt = ∇ϕt + ηt (37)
where ηt is divergence-free. Let J t : RD+1 → RD×D be the Jacobian matrix of vt with respect to
its spatial dimensions and we denote its (i, j) entry by J t

i,j = ∂xj
vti . Then, the Jacobian matrix is

symmetric if and only if ∂xjv
t
i = ∂xiv

t
j for any i, j. It follows that ∂xjv

t
i = ∂xiv

t
j . Consequently,∫

−∞ vtidxi =
∫
−∞ vtjdxj for any i, j. Then let ϕt =

∫
−∞ vt1dx1 and we obtain vt = ∇ϕt is a

gradient field. Conversely, if vt = ∇ϕt is a gradient field, then ∂xj
vti = ∂i∂jϕ

t = ∂xi
vtj and J t

i,j is
symmetric.

Motivated by this observation of the equivalence between the symmetry of the Jacobian and the OT
plan, we train fθ

t with the loss

LOT = Et,x∼ρt(x)||J
θ
t (x)− (Jθ

t )
T (x)||F (38)

where || · ||F denotes the Frobenius norm. We can compute this loss by using the Hutchinson trace
estimator Hutchinson (1989). Let v ∼ N (0, I) be a random Gaussian vector and ut(x) = vTJθ

t (x)
and wt(x) = Jθ

t (x)v. Computing u and w requires one vector-Jacobian product (VJP) and one
Jacobian-vector product (JVP), respectively. Therefore,

LOT = Et,x∼ρt(x)||J
θ
t (x)− (Jθ

t )
T (x)||F

= Ev∼N (0,I);t,x∼ρt(x)[v
T
(
Jθ
t (x)− (Jθ

t )
T (x)

) (
Jθ
t (x)− (Jθ

t )
T (x)

)
v]

= Ev∼N (0,I);t,x∼ρt(x)[u
T
t (x)wt(x)− 2wT

t (x)wt(x) + wT
t (x)ut(x)]

(39)

So, the stochastic estimation of the loss takes only one VJP and one JVP at each sample, which is
computationally feasible even in high dimensions.

While this could arguably be better than regularizing kinetic energy for finding kinetic optimal
solutions, as it no longer requires an explicit tradeoff between kinetic energy and the other cost
functions, we did not observe a meaningful improvement over simply regularizing kinetic energy.

B PROOF OF PROPOSITION 1

Proof. We check that ρt and ut satisfy eq. (2):

∂tρt =

K∑
k=1

γk
(
∂tρ

k
t

)
=

K∑
k=1

γk
(
−∇ · (uk

t ρ
k
t ) +

1
2g

2
t∆ρkt

)
= −∇ ·

(
K∑

k=1

γkρkt
ρt

uk
t

)
ρt +

1
2g

2
t∆

K∑
k=1

γkρkt = −∇ · utρt +
1
2g

2
t∆ρt

(40)

C EXPERIMENTAL SETUP

Neural Network Architecture For training the autoregressive model, we use the MADE architec-
ture (Germain et al., 2015) with sinusoidal time embeddings of width 128 (Tancik et al., 2020). For
the neural networks we use to parameterize the mean and the scale of both the autoregressive model
and the factorized model, we pass the input first into the sinusoidal time embeddings before feeding
into a four-layer MLP of hidden dimension 256 on each layer.
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Training Details For all the numerical experiments we present, we use a learning rate of 3e− 4
with the Adam optimizer (Kingma, 2014) and a cosine annealing learning rate scheduler.

Spatio-temporal Generative Modeling The total number of iterations we run for the experiments
are generally 103 epochs with a batch size of 256. We found that the training is stable with a simple
four-layer MLP parametrization for the mean and the scale of the mixtures of factorized logistics.
Also, the MLP parameterization along with the mixture combinations in the factorzied model turned
out to be expressive enough for the experiments we have explored.

Learning To Transport With Optimality Conditions For the single-cell RNA sequence dataset
used in (Moon et al., 2019), we find that both the factorized model and the autoregressive model will
easily get overfitted if we use more than 64 modes in the mixture. For the numerical results we are
reporting, we use mixtures of size L = 16 for each of the coordinates in the autoregressive model
(14), and we use a mixture of size K = 32 for the factorized model (28). Also, we find that having
the term

∫ tn
t0

Ex∼ρt(x)

[
∥ut(x)∥2

]
dt in the loss objective is extremely helpful for both finding the

kinetic optimal paths and preventing overfitting.

Mean-field Stochastic Optimal Control To achieve consistent results for this experiment, we
train the objective function LSOC by gradually introducing different terms in it. We first train the
log-likelihood term Ex0∼q0 [− log ρ0(x0)] + Ex1∼q1 [− log ρ1(x1)] for 103 iterations with a batch

size of 512. Then, we introduce the term Ex∼ρt

[
1

2σ2
t
∥ut(x)− vt(x)∥2

]
dt for another 103 iterations.

Finally, we introduce the running cost
∫ 1

0
ϕt(ρt)dt and train for 2 × 104 iterations. This training

technique helps stablizes the training.

D COMPARISON TO SIMULATION-BASED METHODS

We conduct the experiments outlined in Section 4.1 using the autoregressive model from our method
and time-varying continuous normalizing flows (CNFs) Chen et al. (2019b), with the implementation
from Chen et al. (2020). The wall-clock training time is 18 minutes for our method, compared to
133 minutes for the time-varying CNFs. Notably, our approach outperforms the time-varying CNFs
despite having a simpler architecture and fewer parameters in the neural network. Additionally, our
method is simulation-free, avoiding the need to solve an ODE or adjoint equations during training,
which can be costly both in terms of simulation time and backpropagation through the simulation
trajectories.

Furthermore, we observe that our method requires significantly less memory than the time-varying
CNFs, as it does not need to store simulation trajectories or maintain computation graphs along these
trajectories. This memory efficiency enables us to use much larger batch sizes during training.
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