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Figure 1: ALToLLM realizes adaptive-length mask token generation according to object complexity.
Abstract

While humans effortlessly draw visual objects and shapes by adaptively allocating
attention based on their complexity, existing multimodal large language models
(MLLMs) remain constrained by rigid token representations. Bridging this gap, we
propose ALTo, an adaptive-length tokenizer for autoregressive mask generation.
To achieve this, a novel token length predictor is designed, along with a length
regularization term and a differentiable token chunking strategy. We further build
ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-
offs between mask quality and efficiency is implemented by group relative policy
optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-
the-art performance with adaptive token cost on popular segmentation benchmarks.
Code and models are released at https://github.com/yayafengzi/ALToLLM.

1 Introduction

Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in image
and text understanding tasks. However, their generative abilities remain largely limited to text
[1, 2, 3, 4, 5, 6]. Given the inherent differences between text and image modalities, introducing
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a lightweight image decoder into multimodal understanding models to enable image generation
remains a significant challenge. To align with the next-token prediction paradigm of text generation,
discretizing images using image tokenizers (e.g., VQGAN [7]) has become a natural and effective
approach. Within this framework, various visual modalities—including RGB images, segmentation
masks, and depth maps—can be uniformly represented as “images”, enabling unified modeling for
both multimodal understanding and generation [8, 9].

Early image tokenizers typically represent images using fixed-length token sequences without con-
sidering the inherent complexity of the images [7, 10, 11, 12]. This fixed-length design may lead
to insufficient representation for complex images while generating redundant tokens for simpler
ones, resulting in resource wastage and reduced efficiency. In contrast, humans can flexibly allocate
attention based on the complexity of the task [13]. For example, segmenting complex shapes requires
more attention and effort compared to simpler shapes.

Recent arts are dedicated to learning hierarchical and flexible tokens [14, 15, 16]. The representations
become increasingly fine-grained as the number of tokens increases. Based on our observations, the
number of tokens required to represent fine-grained edge shapes can vary drastically depending on
their complexity.

Table 1: The flexibility and autonomous
adaptivity of different token representa-
tion methods. Flexibility refers to hi-
erarchical coarse-to-fine token represen-
tation, while autonomous adaptivity de-
notes spontaneous allocation of token
numbers based on object complexity.

Token Representation Flexibility Autonomous
Adaptivity

VAE [17] × ×
VQVAE [10] × ×
VQGAN [7] × ×
TiTok [11] × ×
FlexTok [14] ✓ ×
Emu3 [15] ✓ ×
Chameleon [18] × ×
HiMTok [16] ✓ ×
ALIT [19] × ×
ElasticTok [20] ✓ ×
ALToLLM (ours) ✓ ✓

In recent years, several studies [19, 20] have explored
adaptive-length tokenization for image representations.
The problem, however, is that they all determine adaptive
lengths by relying on heuristic rules conditioned on the
input image, rather than allowing the model to decide on
its own. Although this is feasible in image tokenization,
it becomes impractical for image generation since the re-
construction loss is unavailable. As a result, it becomes
imperative to enable the model to autonomously determine
the adaptive token length, specifically for MLLM scenar-
ios that are expensive in computation, like MLLM-based
object segmentation.

To enable adaptive-length modeling for the specific task
of mask image generation, we propose ALTo, an Adaptive-
Length Tokenizer designed for autoregressive mask gen-
eration. We further develop ALToLLM. As shown in
Fig. 1, ALToLLM is a multimodal large language model
(MLLM) that realizes instruction-based mask generation
using adaptive-length mask tokens according to object complexity. At the core of ALTo is a novel
token length predictor (TLP) embedded within an encoder–VQ–decoder architecture. Given an input
mask image, the ALTo encoder is responsible not only for generating discrete tokens but also for
predicting the appropriate token sequence length via TLP. To support adaptive-length learning, we
introduce a length regularization term and a differentiable token chunking strategy. Together, these
enable ALTo to effectively encode masks into variable-length token sequences. To evaluate the effec-
tiveness of ALTo, we construct ALToLLM without any bells and whistles, making no modifications
to the underlying LLM architecture or training paradigm. The model is trained using supervised
fine-tuning and group relative policy optimization (GRPO) on referring image segmentation tasks.
ALToLLM learns to adaptively insert an end-of-mask token (<ALTo_End>) once sufficient mask
tokens have been generated. Moreover, GRPO allows dynamic control over token length to balance
mask quality and computational efficiency.

In summary, the contributions are as follows:

• We propose ALTo, an adaptive-length mask tokenizer that, for the first time, enables the model to
autonomously determine the number of mask tokens based on the complexity of the input mask.

• We develop ALToLLM, which integrates ALTo into a multimodal large language model (MLLM),
enabling adaptive mask token generation for object segmentation tasks. The number of generated
tokens can vary from as few as 2 to as many as 32, with most cases around 17, allowing ALToLLM
to balance quality and efficiency under different scenarios via GRPO.

• Extensive experiments demonstrate that ALTo enables effective and efficient mask image re-
construction, while ALToLLM achieves state-of-the-art performance with adaptive token usage
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across various object segmentation benchmarks, including referring expression segmentation and
open-vocabulary segmentation.

2 Related work

Visual tokenizers play important roles in various visual tasks, such as image reconstruction [10, 7],
visual compression [20], and visual generation [21, 22, 8, 16]. VQVAE [10, 23] and VQGAN[7] are
popular frameworks that encode images into discrete 2D tokens by vector quantization. BEiT [24]
exploits visual tokens in masked image modeling. To reduce the redundancy in 2D space, TiTok [11]
and SEED [12] produce 1D sequence for image tokenization. Methods above typically use a rigid
number of tokens to represent images, regardless of the complexity of the visual content. To
have flexible tokenization, FlexTok [14] projects images into 1D variable-length token sequences.
ElasticTok [20] proposed an adaptive tokenizer for images and videos by dropping a random number
of the latter tokens during training. ALIT [19] discretizes the images into flexible-length tokens
by recurrent distillation until the reconstruction quality is good or the maximum iterations are met.
HiMTok [16] learns 1D hierarchical mask tokens to represent coarse to fine segmentation masks.
However, these methods cannot decide an adaptive number of tokens autonomously. Trials have been
made by heuristic rules about image reconstruction quality [19, 20], which increases computational
overhead and becomes impossible for image generation tasks. Our proposed ALTo is both flexible
and adaptive, as illustrated in Table 1.

MLLM-based image segmentation methods primarily follow three paradigms [25, 16, 26]. MLLM-
segmentation joint models such as LISA [27], GSVA [28], GLaMM [29], PixelLM [30], and PSALM
[31], create semantic-to-pixel connections through LLM hidden states and rely on additional seg-
mentation modules. Text-based methods, including Text4Seg [25], LLaFS [32] and VistaLLM [33],
represent masks as text sequences (pixel classes or polygon vertices), suffering from heuristic and
inaccurate mask representation. Interestingly, segmentation masks could also be viewed as images so
that we can rethink image segmentation as a mask generation task [8, 9, 34]. HiMTok [16] applies the
idea by utilizing a hierarchical mask tokenizer into LLMs. Going a step further, ALToLLM generates
adaptive-length token sequences, which is efficient and effective.

Reinforcement learning (RL) has become increasingly important for enhancing vision-language
models [35, 36, 37, 38, 39]. Approaches like direct preference optimization [40] and proximal policy
optimization [41] face challenges with data efficiency and reward stability. Group relative policy
optimization (GRPO) [42] has emerged as a promising alternative through its groupwise reward
mechanism. Recent applications demonstrate GRPO’s effectiveness across various vision-language
tasks. Visual-RFT [43] combines GRPO with verifiable rewards for efficient model adaptation.
Vision-R1 [44] employs GRPO with progressive thinking suppression for complex reasoning. Seg-
Zero [45] achieves zero-shot segmentation through pure RL. These works apply RL to text output,
while we make it for preference optimization on mask token output.

3 Methods

3.1 Overview

The proposed adaptive-length tokenizer (ALTo) represents object masks as token sequences whose
lengths adapt to the complexity of objects autonomously. Simple objects (e.g., a sphere) may require
few tokens, while intricate structures (e.g., complicated shapes and multiple objects) may use up
to 32 tokens. Built on this, ALToLLM is introduced to perform instruction mask generation for
referring image segmentation, as shown in Fig. 2. We design a multi-stage training recipe for ALTo
and ALToLLM to learn flexible, adaptive, and effective mask representations and achieve strong
segmentation performance, as shown in Fig. 3.

Inference. As illustrated in Fig. 2, ALToLLM takes as input the image and text by the popular
ViT-projector-LLM architecture [1, 46], then autoregressively generates both text tokens and compact
mask tokens of adaptive length. The mask tokens along with the pixel-encoded features are fed into
the mask de-tokenizer to generate the final mask.

Training. As shown in Fig. 3, the training recipe consists of three progressive stages. Stage 1:
We pretrain the mask tokenizer (MT) and mask de-tokenizer (MD) to reconstruct complex masks
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Figure 2: Architecture of the proposed ALToLLM.

using variable-length tokens. Stage 1.5: We fine-tune the token length predictor (TLP) to enable
adaptive tokenization. Stage 2: We leverage ALTo to generate both fixed-length and adaptive-length
token labels, which are used to supervise ALToLLM. This equips the model with the basic ability
to understand and generate both text and mask tokens. Stage 3: We employ GRPO [42] to further
adjust specific preferences on trade-off between mask quality and token efficiency. We will introduce
the details in the following subsections.

3.2 ALTo

The adaptive-length tokenizer (ALTo) comprises three components: a mask tokenizer (MT), a mask
de-tokenizer (MD) with a pixel encoder, and a token length predictor (TLP), as shown in Fig. 3 (a).
Following HiMTok [16], MT utilizes a transformer encoder with 32 learnable latent tokens to extract
information from the input mask and then discretized into 32 mask tokens via vector quantizer (VQ).
To support variable-length tokenization, a random number of tail tokens are dropped during training,
retaining only the leading tokens. MD is a bidirectional transformer. Differently from HiMTok, MD
takes as input the mask tokens and 256 pixel-encoded image features rather than learnable latent
tokens. This provides fine-grained guidance for mask generation, inspired by UViM [47]. In training
stage 1, the reconstruction is supervised by a mean squared error (MSE) loss LMask to pretrain MT
and MD.

The novel TLP determines the optimal number of tokens for each mask. TLP leverages the CLS
token feature Tcls, which encodes global image features, together with the 32 mask token features
T ∈ R32×d, to predict a proper token length. Tcls is used as a query in an attention mechanism
to evaluate the importance of each mask token. For each mask token Ti, a gated key is generated
by SwiGLU as ki = (WvTi) ⊙ σ(WgTi). The probability for each token to be the stopping point
is computed via scaled dot-product attention: p = softmax(qclsk

T /
√
d). The predicted length is

computed as the mathematical expectation L̂ =
∑32

i=1 i · pi.

Accordingly, the first L̂ tokens are selected and sent to the MD, while the remaining tokens are zero-
padded, represented as H

⊙
T , where H is a binary mask defined as H = I[i ≤ L̂]. However, such

token chunking strategy is not differentiable, which prevents gradients from the mask de-tokenizer
from flowing back to the TLP. To address this, we introduce a differentiable token chunking strategy
by considering the stopping probability distribution p. The probability that the i-th token is used
is given by the cumulative probability Pi = 1 −

∑
j<i pj , which indicates that the stop position

is later than this token and provides a soft version of token chunking. This inspires us to apply a
straight-through estimator as T̂ = (P − P.detach() +H)

⊙
T . In this formulation, the predicted

mask is then given by Mpred = MD(T̂ ,Ximg).

In stage 1.5, we use a reconstruction loss LMask = MSE(Mpred,Mgt) to optimize mask reconstruction,
and a length regularization term LLength = λL̂ to encourage shorter token sequences, balancing
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Figure 3: Training recipes for ALTo and ALToLLM. (a) ALTo Pretraining: Joint training of mask
tokenizer (MT) and de-tokenizer (MD); (b) Adaptive-length Prediction: Training only the token
length predictor (TLP); (c) Multimodal Integration: Exclusive training of MLLM with frozen ALTo
for language-aware adaptation; (d) Group Relative Policy Optimization: Reinforcement learning
for MLLM optimization. Input image in (b), (c) and (d) is processed identically to (a), omitted for
visual clarity.

accuracy and efficiency while MT and MD are frozen. The final combined loss is LALA = LMask +
LLength. Further details about the length supervision design are provided in the Appendix. A.

3.3 ALToLLM

ALToLLM is built naturally on MLLM architecture, and learned by supervised fine-tuning (SFT) and
group relative policy optimization (GRPO).

During SFT (stage 2), ALToLLM receives adaptive-length mask tokens provided by the frozen ALTo
module, along with text and image tokens. ALToLLM is supervised using two objectives: a cross-
entropy loss Lce for next-token prediction across the multimodal sequence, and a mask prediction
accuracy loss Lmask, which combines binary cross-entropy loss and dice loss to ensure precise mask
reconstruction. This dual-objective training enables ALToLLM to effectively align textual and visual
information, and to autoregressively generate both language and adaptive-length mask tokens, which
shows the effectiveness of ALTo.

We employ GRPO in stage 3 to adjust trade-off preferences flexibly based on the model after stage 2.

1) Group sampling: For each input consisting of an image and text, we sample g multimodal responses
from ALToLLM. A valid i-th sample must contain the following token sequence, where Li denotes
the adaptive length:

<ALTo_Start> <TOK1> · · · <TOKLi>︸ ︷︷ ︸
Li tokens

<ALTo_End>, Li ∈ {1, . . . , 32} (1)

2) Reward computation: The composite reward Ri for the i-th sample consists of three components:

Ri = Iformat︸ ︷︷ ︸
Rvalid

+ IoU︸︷︷︸
Raccuracy

− αLi︸︷︷︸
Refficiency

, (2)

where Rvalid is 1 if the sample strictly follows the format in Eq. 1, and 0 otherwise. Raccuracy is the
intersection-over-union (IoU) score between the predicted and ground truth masks, with the predicted
mask reconstructed by the MD using the adaptive mask tokens; it vanishes to 0 if any responses do
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Figure 4: Examples from the Multi-Target-SA1B dataset.
Table 2: Performance comparison on gRefCOCO. We report cIoU, gIoU and average token length.
FT indicates fine-tuning on referring expression data.

Method val testA testB
cIoU gIoU Length cIoU gIoU Length cIoU gIoU Length

LISA-7B [27] 38.7 32.2 - 52.6 48.5 - 44.8 39.7 -
LISA-7B (FT) [27] 61.8 61.6 - 68.5 66.3 - 60.6 58.8 -
GSVA-7B [28] 61.7 63.3 - 69.2 70.1 - 60.3 61.3 -
GSVA-7B (FT) [28] 63.3 66.5 - 69.9 71.1 - 60.5 62.2 -
GroundHog-7B [51] - 66.7 - - - - - - -
SAM4MLLM-8B [52] 67.8 71.9 - 72.2 74.2 - 63.4 65.3 -
UniRES++ [53] 69.9 74.4 - 74.5 76.0 - 66.6 69.8 -
LMMHiMTok-8B [16] 66.8 68.7 32 68.6 67.6 32 65.8 64.1 32
LMMHiMTok-8B (FT) [16] 70.4 72.1 32 74.9 73.5 32 72.0 71.7 32
ALToLLM-8B (FL) 74.8 77.6 32 78.5 78.7 32 76.4 76.7 32
ALToLLM-8B (AL) 75.4 78.0 17.5 78.8 78.9 19.4 76.6 76.9 17.3

not conform to the correct format. Refficiency is a linear penalty −αLi proportional to the token length
Li ∈ {1, . . . , 32}, scaled by the trade-off parameter α ≥ 0.

3) Relative policy optimization: We optimize the policy using the clipped objective JGRPO(θ):

E

[
1

g

g∑
i=1

min

(
πθ

πold
Ai, clip

(
πθ

πold
, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL(πθ ∥ πref)

]
, (3)

where πθ is the current policy being optimized (parameterized by θ), πold is the policy before the
update (used for importance sampling), πref is the reference policy (typically the initial supervised
policy), Ai = (Ri −Rmean)/Rstd is the normalized advantage computed within each group, DKL is
the Kullback-Leibler (KL) divergence enforcing policy stability, ϵ is the clip range (usually 0.1-0.3)
controlling update aggressiveness, and β is the KL penalty coefficient balancing exploration and
constraint.

4 Experiments

4.1 Experimental settings

Datasets. For stages 1 and 1.5, we construct the training and validation sets of Multi-Target-SA1B
from the SA1B dataset by randomly selecting multiple masks from all annotations for each image.
Examples from Multi-Target-SA1B are shown in Fig. 4. This approach yields complex multi-target
masks, facilitating the learning of expressive mask representations by ALTo. For stage 2, we used all
HiMTok and Multi-Target-SA1B datasets for SFT. For Multi-Target-SA1B, we input the bounding
boxes of all targets as “<box>[[],[],...]</box>”. To ensure that the model supports both fixed-
length and adaptive-length prompts, we randomly assign half of the data to each prompt type, as
detailed in the Appendix. B. For stage 3, we use Multi-Target-SA1B, the RefCOCO series [48, 49],
and gRefCOCO [50] to maintain complex mask representation and language understanding during
RL.

Implementation details. ALTo processes input and reconstructs masks at 256 × 256 resolution.
During training and inference, the MLLM processes images at 448× 448, while the pixel encoder
encodes image at 1024× 1024. In stage 1, MT and MD are initialized from TiTok-L-32 [11] with
codebook size of 1024, and the pixel encoder is initialized from SAM-ViT-L [54]. In stage 1.5, the
feature dimension of TLP is set to 1024, consistent with MT. The length penalty coefficient is set
to 0.0001, 0.001, 0.01, or 0.1, among which 0.01 is found to be optimal in subsequent experiments
and is chosen for later stages. In stage 2, ALToLLM-8B is initialized from InternVL-2.5-8B [46].
Stage 3 trains the RL model based on the stage 2 checkpoint, with the length penalty set to 1e-2, 5e-3,
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Figure 5: Examples from the constructed multi-class version of open-vocabulary segmentation
datasets. (a) ADE20K (A-150); (b) PASCAL Context59 (PC-59); (c) PASCAL VOC 20 (PAS-20).

3e-3, 2e-3, 1e-3, or 1e-4, which are compared in later experiments. The KL penalty is set to 1e-3. We
sample 12 group responses with a temperature of 1 and top-k of 10. Stages 1, 1.5, and 3 are trained
on 8×A100 GPUs (80GB each), and stage 2 on 16×A100 GPUs. Training durations are: stage 1 for
2 days, stage 1.5 for 3 hours, stage 2 for 5 days, and stage 3 for 5 hours.

4.2 Comparative results

We evaluate ALToLLM-8B on the following tasks, considering two variants in SFT: (1) a fixed-
length version (ALToLLM-8B (FL)) using 32 mask tokens, and (2) an adaptive-length version
(ALToLLM-8B (AL)) that dynamically generates 1–32 mask tokens.

Generalized referring expression segmentation with multiple targets. We evaluate ALToLLM-8B
on the generalized referring expression segmentation task (gRefCOCO [50]) and achieve state-
of-the-art performance, as shown in Table 2. This task requires language-guided segmentation
with multi-target referring expressions, demonstrating our model’s ability to learn complex mask
representations. Compared to the fixed-length variant (ALToLLM-8B (FL)), the adaptive-length
variant (ALToLLM-8B (AL)) achieves higher performance and significantly reduces average token
length, indicating improved segmentation accuracy and token efficiency. The superior performance
of the adaptive-length approach may be attributed to its ability to use only the necessary tokens for
simple masks, avoiding the noise introduced by redundant tokens. We also compare the average
generation time per sample of the two variants. As shown in Table 3, the adaptive length variant
achieves a consistently shorter generation time in all splits.

Table 3: Comparison of average gener-
ation time per sample (in seconds) be-
tween fixed-length and adaptive-length
variants on gRefCOCO. Generation time
is measured on a single A100 GPU with
batch size 1.

Method val testA testB

ALToLLM-8B (FL) 1.079 1.079 1.076
ALToLLM-8B (AL) 0.710 0.753 0.669

Referring expression segmentation. We further evalu-
ate ALToLLM-8B on referring expression segmentation,
a single-target version of the generalized task. Experi-
ments are conducted on three standard benchmarks: Re-
fCOCO [48], RefCOCO+ [48], and RefCOCOg [49]. As
shown in Table 4, ALToLLM-8B achieves state-of-the-art
results across all datasets.

Multi-granularity segmentation. We evaluate
ALToLLM-8B on RefCOCOm [53], a multi-granularity
referring segmentation dataset containing both part-level and object-level referring expressions. As
shown in Table 5, ALToLLM-8B (AL) achieves the best performance.

Multi-class open-vocabulary segmentation. To demonstrate our model’s ability to segment multiple
and complex targets in open-vocabulary scenarios, we construct a multi-class version of open-
vocabulary segmentation datasets by randomly merging annotations from several classes, including
ADE20K (A-150) [62], PASCAL Context59 (PC-59) [63], and PASCAL VOC 20 (PAS-20) [64], as
shown in Fig. 5. We reproduce the inference pipelines for LISA [27] and M²SA [56] for comparison.
As shown in Table 6, ALToLLM-8B achieves state-of-the-art results.

4.3 Adaptive-length preference adjustment via reinforcement learning

By tuning the length penalty in the reward function, we can flexibly control the model’s preference
for adaptive token lengths while maintaining high IoU within a few hundred training steps by GRPO.
As the average adaptive length decreases, the generation entropy also decreases, indicating that later
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Table 4: Performance comparison on RefCOCO, RefCOCO+, and RefCOCOg. We report cIoU. FT
indicates fine-tuning on referring expression data.

Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val (U) test (U)

Text4Seg-InternVL2-8B [25] 79.2 81.7 75.6 72.8 77.9 66.5 74.0 75.3
PolyFormer - B [55] 74.8 76.6 71.1 67.6 72.9 59.3 67.8 69.1
VistaLLM - 7B [33] 74.5 76.0 72.7 69.1 73.7 64.0 69.0 70.9
LISA - 7B [27] 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.4
LISA - 7B (FT) [27] 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
PixelLM - 7B [30] 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5
GSVA - 7B [28] 76.4 77.4 72.8 64.5 67.7 58.6 71.1 72.0
GSVA - 7B (FT) [28] 77.2 78.9 73.5 65.9 69.6 59.8 72.7 73.3
PSALM [31] 83.6 84.7 81.6 72.9 75.5 70.1 73.8 74.4
GLaMM [29] 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9
GroundHog - 7B [51] 78.5 79.9 75.7 70.5 75.0 64.9 74.1 74.6
SAM4MLLM - 8B [52] 79.8 82.7 74.7 74.6 80.0 67.2 75.5 76.4
M²SA - 7B [56] 74.0 76.8 69.7 63.1 67.2 56.1 67.0 68.3
AnyRef [57] 74.1 75.5 70.8 64.1 68.7 57.5 68.1 69.9
AnyRef (FT) [57] 76.9 79.9 74.2 70.3 73.5 61.8 70.0 70.7
SegAgent - LLaVA+SAM [58] 79.2 81.4 75.7 71.5 76.7 65.4 74.8 74.9
SegAgent - Qwen+SAM [58] 78.0 80.3 75.0 70.9 75.5 65.8 74.5 74.6
SegAgent - LLaVA+SClick [58] 77.8 80.0 74.1 66.7 71.2 59.9 70.5 71.3
SegAgent - Qwen+SClick [58] 79.7 81.4 76.6 72.5 75.8 66.9 75.1 75.2
Seg-Zero-7B [45] - 80.3 - - 76.2 - - 73.6
LMMHiMTok-8B [16] 81.1 81.2 79.2 77.1 78.8 71.5 75.8 76.7
LMMHiMTok-8B (FT) [16] 85.0 85.2 83.5 79.7 82.7 76.0 80.0 80.6
ALToLLM-8B (FL) 84.9 85.4 83.9 81.4 83.8 77.9 80.4 80.7
ALToLLM-8B (AL) 85.8 86.6 84.7 81.3 83.8 77.0 80.6 81.4

Table 5: Performance comparison on RefCOCOm. We report mIoU for part-level and object &
part-level expressions. † indicates results reproduced by us using the official code and settings.

Methods val testA testB
Part Obj & Part Part Obj & Part Part Obj & Part

X-Decoder [59] 16.2 29.5 13.6 23.6 20.3 33.8
SEEM [60] 16.1 29.4 13.6 23.4 20.4 33.9
UniRES [61] 19.6 34.3 16.4 27.8 25.2 41.7
LISA-7B [27] 21.3 34.3 18.5 28.6 25.7 40.1
GSVA-7B [28] 11.4 23.1 9.2 19.2 16.8 28.2
GLaMM [29] 21.4 35.3 18.6 29.5 26.9 41.1
M²SA-7B [56] 22.4 35.5 19.9 30.1 27.1 41.4
LMMHiMTok-8B† [16] 23.4 37.3 20.7 31.5 28.3 45.0
ALToLLM-8B (FL) 25.5 39.2 22.6 33.3 30.3 46.7
ALToLLM-8B (AL) 25.5 39.1 22.6 33.2 30.2 46.5

tokens are associated with higher uncertainty. This trend is visualized in Fig. 6. To quantify the token
savings achieved by adaptive-length tokens at various IoU levels, we compare six models trained
with different length penalties in stage 3, alongside a fixed-length baseline from stage 2. Validation is
conducted on Multi-Target-SA1B for complex mask representation and gRefCOCO [50] for language
understanding. For zero-shot evaluation, we use the multi-class A-150 dataset, which is not seen
during stage 3 training. As shown in Fig. 7, adaptive-length models consistently save more than 10
tokens at the same IoU level, and this advantage persists even in zero-shot scenarios.

4.4 Ablation Studies

Ablation on ALTo. We first verify the necessity of the pixel encoder for reconstructing complex
masks. As shown in Table 7, removing the pixel encoder leads to a substantial drop in reconstruction
gIoU on the Multi-Target-SA1B validation set, confirming that pixel-level visual features are essential
for capturing fine-grained mask details. We also study the effect of different penalty coefficients
during Stage 1.5 training on adaptive-length mask prediction, as illustrated in Fig. 8. The results
show that a coefficient of 0.01 strikes an optimal balance: it maintains high mask quality (in terms
of IoU) while enabling a diverse range of predicted token lengths, as evidenced by high standard
deviation and entropy in output lengths. We therefore adopt this value for Stage 2 training.

Ablation on ALToLLM. To better understand the key components driving ALToLLM’s perfor-
mance gains, we conduct comprehensive ablation studies on gRefCOCO [50], with results summa-
rized in Table 8. Our analysis reveals that ALToLLM’s improvements in mask quality primarily stem
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Table 6: Performance comparison on multi-class
open-vocabulary segmentation. We report gIoU.

Method A-150 PC-59 PAS-20

LISA-7B [27] 39.1 53.3 67.8
M²SA-7B [56] 63.9 74.1 79.5
ALToLLM-8B (FL) 65.6 75.2 81.2
ALToLLM-8B (AL) 65.8 75.4 81.1

Table 7: Ablation study of the pixel encoder on
the Multi-Target-SA1B validation dataset. We
report gIoU.

Method Pixel Encoder gIoU

ALTo (Ours) ✓ 94.4
ALTo (Ours) × 91.9

Figure 6: Metrics of sampled responses during GRPO training. (a) Average token length, (b) Average
IoU, (c) Generation entropy.

from two factors: (1) pretraining on Multi-Target-SA1B, a dataset containing scenes with multiple
and structurally complex objects, and (2) the pixel encoder, which provides high-resolution visual
cues that refine mask boundary reconstruction. Moreover, the adaptive-length setting in SFT not only
improves token efficiency—reducing the average output length by approximately 50%—but also
slightly enhances mask quality. This demonstrates that adaptive token generation effectively elimi-
nates redundancy while preserving, and even improving, mask quality. Finally, GRPO contributes
marginally to absolute performance metrics but helps the model learn an effective trade-off between
mask quality and token efficiency.

5 Conclusions

We present ALToLLM, an innovative framework that dynamically adapts the number of mask tokens
according to object complexity. ALToLLM approaches mask tokens as a visual language system,
where our ALTo intelligently determines the optimal token count for each object. Furthermore, by
integrating ALTo with MLLMs, the system can interpret linguistic descriptions and correspond-
ingly adjust token allocation. Extensive experiments demonstrate state-of-the-art performance on
RefCOCO [48], RefCOCO+ [48], RefCOCOg [49], RefCOCOm [53], and gRefCOCO [50] bench-
marks, validating our approach’s effectiveness in aligning linguistic expressions with adaptive mask
tokenization.

While ALTo effectively handles most segmentation tasks with adaptive token lengths (1-32 tokens),
two key directions merit further exploration. First, our approach requires multiple training stages,
which increases the engineering complexity. A simpler training pipeline is desirable for future appli-

Figure 7: Comparison of token cost between fixed-length and adaptive-length models with different
length preferences. FL denotes the fixed-length model from stage 2. AL denotes stage 3 models
trained with different length penalties (from left to right: 1e-2, 5e-3, 3e-3, 2e-3, 1e-3, 1e-4). (a)
Multi-Target-SA1B val, (b) gRefCOCO val, (c) Multi-Class A-150 (zero-shot).
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Figure 8: Analysis of the penalty coefficient in stage 1.5. (a) Length metrics for different penalty
coefficients. (b) Distribution of length metrics for penalty coefficients 0.0001, 0.001, 0.01, and 0.1.

Table 8: Ablation study for ALToLLM on gRefCOCO validation dataset.

Components Metrics
Multi-Target-SA1B Pixel Encoder AL(SFT) GRPO cIoU gIoU Avg. Length

70.4 72.1 32.0
✓ 72.8 75.6 32.0
✓ ✓ 74.8 77.6 32.0
✓ ✓ ✓ 75.4 78.0 17.5
✓ ✓ ✓ ✓ 75.5 78.1 15.7

cations. Second, though our pipeline is designed to be modality-agnostic (treating mask tokenization
as a special case of image tokenization), our experiments currently focus on mask validation. Future
work will extend ALTo to RGB image tokenization and validate its effectiveness across more general
vision tasks.
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A Details of TLP

The Adaptive-Length Tokenizer (ALTo) utilizes a token length predictor (TLP) to dynamically deter-
mine the number of tokens required for each mask. In this section, we provide further mathematical
details and training insights to clarify the differentiable token chunking strategy.

The overall loss function consists of a reconstruction loss and a length regularization term:

LALA = LMask + LLength,

where LLength = λL̂ penalizes longer token sequences. The gradient of the loss is given by

∇LALA =∇Lmask +∇Llength

=
∑
i

∂Lmask

∂T̂i

∇T̂i + λ
∑
i

i∇pi

If we directly chunk the token sequence, such as T̂ = H
⊙

T , we obtain ∇T̂ = 0 because H is
non-differentiable and T is generated by a frozen mask tokenizer. As a result, the gradient of Lmask
cannot be backpropagated to the TLP, and only the token length is optimized to be minimal.

To address this limitation, we introduce a differentiable token chunking strategy. Specifically, we
use the cumulative probability Pi = 1 −

∑
j<i pj to represent the probability that the i-th token

is used, and P̂ denotes the detached version of P . We then construct a soft token chunking as
T̂ = (P − P̂ +H)

⊙
T . In this way, we have ∇T̂ = ∇P

⊙
T . The overall gradient is given by

∇LALA =∇Lmask +∇Llength

=
∑
i

∂Lmask

∂T̂i

PiTi + λ
∑
i

i∇pi

=
∑
i

∂Lmask

∂T̂i

Ti

∑
j≥i

∇pj + λ
∑
i

i∇pi

=
∑
i

∇pi
∑
j≤i

∂Lmask

∂T̂j

Tj + λ
∑
i

i∇pi

=
∑
i

∇pi(
∑
j≤i

∂Lmask

∂T̂j

Tj + λi)

for the best predict length L̂ = k, there is (
∑

j≤k
∂Lmask

∂T̂j
Tj + λk) < (

∑
j≤k−1

∂Lmask

∂T̂j
Tj + λ(k − 1))

and (
∑

j≤k
∂Lmask

∂T̂j
Tj + λk) < (

∑
j≤k+1

∂Lmask

∂T̂j
Tj + λ(k + 1)) , which means

−∂Lmask

∂T̂k+1

Tk+1 < λ < −∂Lmask

∂T̂k

Tk

This form shows that the model is encouraged to select the minimal number of tokens that still achieve
high reconstruction quality, as the regularization term λ acts as a threshold for including additional
tokens.

Intuitively, the model will only increase the predicted token length if the marginal gain in reconstruc-
tion quality outweighs the regularization penalty. This mechanism is analogous to a reward-cost
trade-off in reinforcement learning, where the "reward" for including an additional token must exceed
the cost λ.

B Prompt design

We prepared different prompt templates for instruction tuning on adaptive-length and fixed-length
segmentation. Tabs 9 and 10 are the templates for adaptive-length ALToLLM tuning, and Tabs 11
and 12 are the templates for fixed-length version.
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Table 9: Templates of instruction for adaptive-
length segmentation.

• “Segment <ref>{}</ref> by adaptive length."

• “Create a mask for <ref>{}</ref> by adaptive length."

• “Generate a mask for <ref>{}</ref> by adaptive length."

• “Do segmentation for <ref>{}</ref> by adaptive length."

• “Please give the mask for <ref>{}</ref> by adaptive
length."

• “What is the mask for <ref>{}</ref> by adaptive length?"

• “Can you segment <ref>{}</ref> by adaptive length?"

Table 10: Templates of response for adaptive-
length segmentation.

• “The adaptive mask appears at {}."

• “The adaptive mask is created as {}."

• “I can generate the adaptive mask at {}."

• “The adaptive mask is {}."

• “I can give the adaptive mask at {}."

• “Its adaptive mask located at {}."

• “Sure, the adaptive mask is {}."

Table 11: Templates of instruction for fixed-
length segmentation.

• “Segment <ref>{}</ref>"̇

• “Create a mask for <ref>{}</ref>"̇

• “Generate a mask for <ref>{}</ref>"̇

• “Do segmentation for <ref>{}</ref>"̇

• “Please give the mask for <ref>{}</ref>"̇

• “What is the mask for <ref>{}</ref>?"

• “Can you segment <ref>{}</ref>?"

Table 12: Templates of response for fixed-length
segmentation.

• “The mask appears at {}."

• “The mask is created as {}."

• “I can generate the mask at {}."

• “The mask is {}."

• “I can give the mask at {}."

• “Its mask located at {}."

• “Sure, the mask is {}."

C Results on reasoning segmentation

We evaluate ALToLLM-8B on the ReasonSeg benchmark [27], which demands complex visual
reasoning for accurate segmentation. As shown in Table 13, our method achieves consistently
superior performance in both cIoU and gIoU, demonstrating enhanced reasoning capabilities over the
baseline.

Table 13: Reasoning segmentation results on ReasonSeg validation dataset.

Methods cIoU gIoU
LISA-7B [27] 46.0 44.4
LISA-7B (ft) [27] 54.0 52.9
SAM4MLLM-8B [52] 60.4 58.4
HiMTok [16] 67.0 60.7
ALToLLM-8B 67.3 62.8

D Results on region understanding

Following the setup of GLaMM [29], we assess Region-Level Captioning on the RefCOCOg
dataset [49]. Our method outperforms GLaMM in both METEOR and CIDEr metrics, demon-
strating enhanced ability to generate semantically accurate and descriptive captions for localized
image regions.
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Table 14: Region-level captioning results on RefCOCOg.

Methods METEOR CIDEr
GLaMM 16.2 106.0
ALToLLM-8B 16.5 110.1

E Application examples

Fig. 9 and Fig. 10 illustrates examples of ALToLLM in practical applications. As demonstrated,
ALToLLM effectively segments the target object referred to by the user by leveraging adaptive-length
mask tokens.

Figure 9: An example of complex scenarios
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Figure 10: Examples of ALToLLM with adaptive-length segmentation.

18



NeurIPS Paper Checklist

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction are consistent with the
contributions and scope described in the main body of the paper, including the introduction
of ALTo and ALToLLM, their adaptive-length capabilities, and the experimental results. See
Abstract and Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in the Supplementary Material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not contain theoretical results or formal proofs; it is focused
on empirical methods and experiments.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of datasets, model architectures, training
procedures, and hyperparameters in Section 4 (Experiments), enabling reproduction of the
main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code and data are not released at submission time but will be made
available in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All relevant training and testing details, including data splits, hyperparameters,
and optimizer settings, are provided in Section 4 (Experiments) and the Supplementary
Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]
Justification: We do not report error bars or statistical significance because we set the
temperature to 0 during inference, resulting in deterministic outputs without randomness.
This approach is consistent with standard practice in related work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the compute resources used (8×A100 GPUs for stages 1, 1.5, and
3; 16×A100 GPUs for stage 2 and each GPU with 80 GB memory) and training time for
each stage in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics. We use only publicly
available datasets and do not involve sensitive or private data.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not discuss potential societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not pose high risks for misuse; therefore, no special safeguards
are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: All third-party datasets and models used in this work are properly cited in the
main text and references. We only use publicly available assets with open-source licenses,
and we respect the license terms for each asset as described in the corresponding references
and documentation.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: New assets will be released soon.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects and does not require IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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