Under review as a conference paper at ICLR 2026

LEARNING KOOPMAN REPRESENTATIONS WITH CON-
TROLLABILITY GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning nonlinear dynamical models from data is central to control. Two funda-
mental challenges exist: (1) how to learn accurate models from limited data, and
(2) how to ensure the learned models are suitable for control design of the nominal
system. We address both by enforcing a critical a priori property of the nominal
system during learning: controllability. Controllability guarantees the existence
of control policies that can drive the learned model from any initial state to any de-
sired state. From a modeling perspective, it captures key structural features of the
nominal system, thereby improving data efficiency. For downstream control, it en-
ables the use of modern techniques such as model predictive control (MPC). Our
approach is based on controllability-preserving Koopman representation learning.
Rather than learning dynamics directly in the nominal state space, we learn in a
latent space where the system admits a linear representation. We prove that con-
trollability of the learned latent model implies controllability in the nominal state
space. To enforce this property, we introduce a novel canonical parameterization
of the latent dynamics matrices. We further incorporate Gramian-based regular-
ization to shape the degree of controllability, yielding well-conditioned models
for control. Implemented as an end-to-end Neural ODE framework, our method
learns models that are both predictive and controllable from limited data. Exper-
iments on nonlinear benchmarks demonstrate accurate long-horizon prediction,
reliable MPC performance, and substantially improved data efficiency.

1 INTRODUCTION

Learning dynamical models from data is crucial for control design, analysis, and verification.
For linear systems, methods such as ARX/ARMAX and subspace identification are well es-
tablished, with strong theory and efficient algorithms (Ljung, [{1998). Nonlinear extensions
such as NARX (Billings, 2013), Volterra models, Hammerstein—Wiener structures (Billings}
1980), Gaussian processes (Kocijan, [2016)), and grey-box approaches remain more challeng-
ing, as they often impose restrictive assumptions or scale poorly with system dimension.
Deep learning—based methods, including neural
state-space models (Rangapuram et al.,2018)), recur-
rent architectures (Hochreiter & Schmidhuber,|1997; Search Space (All Parameterization)

Chung et al., 2014)), and Neural ODEs (Chen et al., Admissible Models
2018} |[Rahman et al., [2022)), offer expressive param-
eterizations capable of capturing complex nonlinear
dynamics. While effective for trajectory prediction,
the resulting models are often ill-suited for control:
their nonlinear structure hinders the application of
tools such as MPC, and they rarely provide guaran-
tees on critical closed-loop properties such as safety

Search Space
(Controllable)

Real Model

Admissible Controllable Models

and stability. Figure 1: Encoding priors such as controlla-

A broader limitation of both classical and learning- Pility reduces the search space

based identification is the difficulty of incorporating structural priors of the nominal system. For
control, one of the most critical priors is controllability (Klamka, [1963). As illustrated in Figurem
restricting the search to controllable models greatly reduces the parameter space, thereby improving
data efficiency. However, encoding controllability during training is challenging: even verifying it

Under review as a conference paper at ICLR 2026

for nonlinear systems requires complex rank conditions over infinitely many Lie brackets (Isidori,
1985)). Consequently, most learning procedures focus solely on trajectory fitting, leaving structural
properties to be checked or enforced only after training. This disconnect often produces models
that predict well but are unsuitable for control. While such analysis is routine for linear systems, it
remains a major challenge in the nonlinear setting. A promising path to bridge this gap is through
the Koopman operator.

Koopman-based modeling has long been explored in control theory to render nonlinear systems more
amenable to analysis and feedback. The key idea is to approximate nonlinear dynamics with linear
surrogates in a lifted space, enabling the use of linear systems theory (Koopman), [1931). Early meth-
ods such as dynamic mode decomposition (DMD) and its extensions relied on pre-specified basis
functions (Williams et al., 2015} Kaiser et al., | 2021} |Brunton et al., | 2022)), while recent approaches
integrate representation learning via autoencoders and neural networks. The common motivation is
to obtain models that interface naturally with linear controllers, particularly MPC (Korda & Mezi¢,
2018). The appeal of Koopman representation learning lies in combining the expressiveness of
nonlinear modeling with the tractability of linear control synthesis.

Related work and Gap. Learning-based Koopman approaches approximate nonlinear dynamics
by training neural networks to construct observables, thereby lifting the system into a space where
linear dynamics can be identified (Lusch et al.,2018};|Yeung et al.,|2019). The main benefit of lifting
is that in the lifted space, traditional optimization based control methods can be easily implemented
because of the linear dynamics (Korda & Mezi¢} 2018; Zinage & Bakolas, [2023)). Existing variants
differ in how operators are estimated (Han et al.| |2020; Wang et al.,[2021; |Shi & Meng| 2022} Xiao
et al., 2022) and in whether the operators are fixed or time varying (Li et al., 2025), yet the overall
pipeline largely targets multi-step prediction. Structural properties, however, are seldom addressed.
Controllability has been considered only rarely, typically by adding the Kalman rank condition of
the lifted system as a loss (Han et al., |2020), which neither guarantees nor reflects the property.
A recent paper (Choti et al.l [2024) studied controllability preservation conditions, but it is limited
to theoretical analysis under assumptions of exact representation. No computational methods were
proposed in that work. Other priors have been explored even less. The first attempt incorporated
stabilizability through LMI-based parameterizations (Fan et al.,2024)), and a more recent direction
embeds control inputs nonlinearly via neural networks (Guo et al., 2025)), which requires post hoc
Lie bracket checks and nonlinear optimization. In short, existing methods emphasize reconstruction
but neither guarantee controllability nor exploit it as a structural prior to reduce the search space and
guide training. This gap motivates our framework, which enforces controllability by construction,
yielding models that are both predictive and reliable for control. Further discussion of related work
is provided in Appendix [A]

Our contributions. The contributions of this work are as follows:

* We propose a Koopman-based framework for learning nonlinear dynamical models within a neu-
ral ODE architecture. The approach yields linear surrogate models that are both accurate for pre-
diction and efficient for control. The proposed framework accommodates irregular or multi rate
sampling data and allows the learned continuous time dynamics to be used at control frequencies
that differ from those in the training data without requiring modification or retraining.

* To ensure controllability of the learned model, we introduce a canonical parameterization of the
Koopman operators. This guarantees controllability by construction in both single- and multi-
input settings, while preserving expressiveness through learnable similarity transforms.

* To enhance control performance, we incorporate controllability Gramians into the training ob-
jective to increase the degree of controllability. By shaping their spectrum, we obtain better-
conditioned models that reduce control effort in downstream tasks.

* We validate the framework on several nonlinear benchmarks. Experiments demonstrate improved
data efficiency, higher prediction accuracy, and superior MPC performance, with greater feasibil-
ity and more reliable closed-loop behavior than unstructured baselines.

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

2.1 PROBLEM SETUP

We study the learning of nonlinear dynamical models. Specifically, we consider system
w(t) = f(x(t),u(t), «(t) €R", u(t) € R™, (1)
where f(x,) is unknown but locally controllable as a priori.

Definition 1 (Controllability (Kalman et al.,|1960)). The control system is said to have Control-
lability (or ‘be controllable’) if for any x(ty) = xo € R™ and xr € R™, there exists a continuous
control signal u(-) : [to, tf] — R™ such that

a(ty) = / " fa(t), u(t))dt

w(to):wo

The task is to construct, from data, a dynamical model f(z(t),u(t)) that accurately captures the
input-state evolution (T)) and remains controllable for control design. This entails not only perform-
ing supervised learning but also a mechanism that preserves controllability in the learned model

Fla(t), u(t)).

Data of (I)) is sampled as a time series from the initial state x(, using a continuous control signal
u() : [0,dg] — R™:

2.2 NEURAL ODES WITH INPUT

Neural Ordinary Differential Equations (ODEs) (Chen et al.,[2018)) extends the idea of deep residual
networks (He et al.,[2016)). It has shown great success in learning continuous time dynamical models.

Definition 2 (Neural ODE with input). With h, : R"* — R", h, : R"> — R"v representing the
input network and output network respectively, a Neural ODE with input is a system of the form

{ z (to) = ha(x(to))
2()=F(t,z(t),u(t),0), teS 2)

y(t) = hy(2(1))

where S := [to,tf] (to,t; € RT) is the depth domain and F is a neural network referred to as
ODENet with parameter 0; u(t) is the input at time t.

The terminal state (¢), obtained by solving the initial value problem (IVP), represents the evolved
system state. In Neural ODEs, depth corresponds to continuous evolution over time, with ResNets
interpretable as Euler discretizations. To encode structural priors into the learned model, we adopt
the Koopman representation framework, which introduces a linear map F (-).

2.3 KOOPMAN OPERATOR

For the nonlinear control system (I)), the goal of Koopman-based modeling is to obtain a linear
representation of the dynamics in a higher-dimensional space of observables. In this setting, the
nonlinear evolution of (x, u) is described by a linear operator acting on functions of (x, u). Koopman
operator theory establishes the existence of an infinite-dimensional operator K acting on observables
U(x,u):

d
U ((0), u(t) = KU (a(t), u(t)).

In applications, it usually uses a finite-dimensional approximation for the Koopman operator on a
finite-dimensional function space. A standard construction is to select observables of the form:

u

U(z,u) = H . z2=¢(x) eRY,

Under review as a conference paper at ICLR 2026

N |{\:
R @ Linear
—
Representation
z
Reconstruction
Lift ¢ zZ—x
n
R z 4 Nonlinear '
Representation

Figure 2: Koopman-based dynamical model representation.

" Encoder 3 Koopman Operator (Controllable)
t
Current State x(£) i 44 B
0/1{0j0|0|0]|0]|0 0
ojo[1jojofojojol| [0
1

Y
Ja1y
2y

- ' - 1
>~ | Invertible C | e = PeAgPst
Transformation Pg ||~ Bg = PyB§

| Forward Prediction 2(ty) {z(O)}e=co,...t;

Initial State x(t,) — ODE Solver T 20)=t,...t
o —»[z’:Agz(t)+Bgu(t)]—>mm...ﬂ I

Input Sequence {u(t)}i=t,,...t »

Figure 3: Tllustration of the Koopman based Neural ODE learning pipeline.

where ¢ : R® — RY with N >> n is a set of nonlinear lifiting functions applied to the state z, and
the input w is retained in its original coordinates. Since prediction and control only require the lifted
state dynamics, it suffices to retain the first /N rows of this operator. This leads to the following
Koopman representation as an ODE:

2(t) = Az(t) + Bu(t), 2(t) = h(z(1)), =(t) = o(2(t))

In many applications, A is chosen to be linear, i.e., h(z) = Cz with C € R™*¥_ The functionality
of the Koopman operator is illustrated in Figure[2] with further details provided in Appendix [B.T}

3 KOOPMAN LEARNING FRAMEWORK

Building on the integration of the Koopman operator with Neural ODEs, we propose a Koopman-
based system learning framework, illustrated in Figure 3] This end-to-end pipeline couples a neural
encoder, a controllable Koopman operator, and a differentiable ODE solver. The goal is to learn a
Neural ODE of the form

(t) = Agz(t) + Bou(t), 2(t) = ¢o(x(t)) = [2(t) Po(z(1))], 2(t) = y(t) = C=z(t), (3)
that guarantees controllability while modeling the unknown but controllable dynamics & = f(z,).

The input network h, is specified as the observable encoder ¢y in the “Encoder” block. To pre-
serve the nominal state explicitly, the first n components of ¢y are included through identity lifting

Under review as a conference paper at ICLR 2026

Koopman Framework (containing identity lift)

...
K »,

Koopman Linear e Koopman Linear

0oC) soc

o = y1) (zo = y1)

Nonlinear System o SOC Tools:
Controllability Rank Condition
(xo = x7) Canonical Form

Figure 4: Overview of the relations among controllability notions. (I) We show that the control-
lability of the original nonlinear system is equivalent to OOC of Koopman linear representation
(in main text); @ In the Koopman linear representation, we prove that OOC coincides with SOC
(Lemma nd Theorem |1} proved in Appendix EI); @3 Based on this equivalence, we for the first
time introduce a SOC canonical form which can be used for OOC canonical form for Koopman
representation (Theorem [2| proved in Appendix @); @ Finally, we leverage this canonical form
to parameterize the neural Koopman operator, which enables constructing learning-based Koopman
representations of the original nonlinear system.

(z(t) € R™), while the remaining N — n entries are nonlinear observables y(x) to be learned.
The “Koopman Operator (Controllable)” block specifies the structure of Ay and By that enforces
controllability of the learned Neural ODE. The ‘“Forward Prediction” block follows standard prac-
tice: given an initial state 2y and input signal, the ODE solver propagates the dynamics to obtain the
terminal state.

Finally, to recover the nominal state z(t), we define the output network as h,(z) = Cz with
B(t) =y(t) = Cz(t), C=[0],
so that z(t) is obtained directly as the output of the Neural ODE.

3.1 CONTROLLABILITY ANALYSIS

Given that the nominal nonlinear system () is controllable and the learned Neural ODE (3) yields
the output £ = y = C'z, we ask whether the system can be driven from any initial condition to any
desired target output y(¢¢). This consideration motivates the following definition.

Definition 3 (State-to-Output Controllability (SOC)). System is said to be state-to-output con-
trollable on (2 C RN, Y C R") if, for any initial state condition z(ty) = zo € Z and a target
output yp € Y, there exists a continuous input signal u : [to,tf] — R™ such that y(ty) = yr.

Definition 4 (Output-to-Output Controllability (OOC)). System () is said output-to-output control-
lable on Y C R™ if, for any initial output y(to) = yo € Y and target output yr € Y, there exists a
continuous input signal w : [to,t¢] — R™ such that y(ty) = yr.

We are interested in OOC and SOC for system (3) because its output y recovers the state x of the
original nonlinear system. If (3 is OOC, then the corresponding nonlinear system is controllable in
the sense of Definition[I] However, verifying OOC is generally more difficult than SOC, which can
be checked using the Kalman rank condition, no comparably simple algebraic test exists for OOC
(Danhane et al., [2023). Within our Koopman representation framework with identity lift, we show
that SOC and OOC coincide in the following lemma.

Lemma 1. Consider system . Define the set Z C R to be such that Z := ¢(R™). Then, the
system is OOC on R™ if and only if it is SOC on (Z,R™).

While verifying OOC is generally difficult for linear systems, Lemma [I| establishes the equivalence
between OOC on R™ and SOC on (Z,R™). This equivalence allows us to verify OOC of system

Under review as a conference paper at ICLR 2026

through SOC. OOC then implies controllability as per Definition [I] for the corresponding learned
nonlinear system. The verification criterion is stated in the following theorem.

Theorem 1. The system (3) is OOC on R™ if and only if the controllability matrix
C=C[By A¢By ... A} 'By 4)
is full-rank.

The proofs are provided in Appendix [D} From a training perspective, one could promote SOC of
the Koopman linear system by adding a loss term of the form — min eig(C). However, as in many
learning problems, this approach provides no guarantees. To address these issues, we propose a
direct parameterization strategy that explicitly constrains the matrices Ay and By, ensuring that
the learned Neural ODE is always OOC. An overview of the conceptual framework and our
contributions is provided in Figure d]in Appendix [C]

3.2 CONTROLLABILITY CANONICAL FORM

The following theorem shows the parameterization for Ay and By that ensures OOC of .

Theorem 2. Consider system . Then, the system is OOC on R™ if there exist matrices Ay €
RN B e RY*™ gnd Py € RN*N where

[0 1 0 0] F 0
0 0 1 0O ... 0 0

c 6 0 ... 1 ... 0 c 0 '

A= \oy ay . eyl Bi=| 1 | P=dagPuR), O
b1 b2 bn dy
|1 C2 CN| _dN—n_

such that
A = PgAngl By = POB(S ©6)

P, € R" and P, € RN~ are both full rank matrices. The first n — 1 rows of Ag only consists of
0 and 1, and all 1s are on the superdiagonal. All the other elements of Ay are free. The first n — 1
rows of By is 0, the nth row is 1, and all the other rows are free.

The proof is provided in Appendix [D} Equipped with Theorems|[T|and 2] we can learn a Neural ODE
(3) that models the original nonlinear system (I)) while preserving controllability. It is important
to note that Theorem [2] applies to single-input systems (m = 1). The results can be extended to
multi-input settings via the Brunovsky decomposition, as discussed in Appendix [E. T}

3.3 DEGREE OF CONTROLLABILITY VIA GRAMIANS

Beyond the binary notion of controllability, the degree of controllability determines the energy re-
quired to steer the system (Kailath,|1980). To quantify this, we use the finite-horizon output Gramian

T
Wy = / (CeT By)(Ce™e™ By) T dr,
0

which measures how inputs excite the physical state over a finite time window. A small A, (W)
indicates directions in the state space that require disproportionately high input energy to reach. A
large condition number « (W) implies unbalanced controllability and ill-conditioned optimization
problems. To address this, we introduce the regularizer

1
Amin (W)

with v > 0 a trade-off parameter. This term encourages a larger smallest eigenvalue while discour-
aging large condition numbers, promoting balanced controllability across directions.

Rgram(A97B0) = + ’VK(W’]y“)a

Under review as a conference paper at ICLR 2026

Algorithm 1: Training Neural ODEs based Koopman representation with controllability guar-
antees

Input: Dataset D, horizon [tg, ¢ f], decay 1), Gramian horizon T', weight Agram

Output: Parameters 6

Initialize 6 = {(9¢, HA(S) 035, 9}3};

for epoch = 1 to E do

Sample mini-batch B C D;

for trajectory (z,u) € Bdo
z(to) « Yo(z(to)) 5 // Encode initial state
(Ag, Bg) + P; ' (Ag, B§) Py ; // Koopman dynamics
z(t) < ODESolver(z = Apz + Byu), [to,tf]); // Rollout in lifted space
Z(t) + Cz(t); // Recover state prediction
ﬁpred — fw(t)Hj(t) - l‘(t)||2dt; // Trajectory loss
Regram Regularizer(W7) ; // Gramian shaping
L+ Epred +)\grangram ; // Total loss

0 < Optimizer(0, Vo L) ; // Parameter update

3.4 Loss FUNCTIONS DESIGN

The state matrices Ay and By are parameterized as in @) where (A§, Bg) denotes the canonical
controllable form from @), and Py is a trainable invertible transformation. This construction pre-
serves controllability by design while maintaining flexibility: without Py, the input would have only
limited influence on the identity coordinates.

Given an input trajectory u : [to,ts] — R™ and initial condition (), the Neural ODE dynamics
with initial state z(tp) = Wy(z(to)) generate a predicted state trajectory Z(t) = Cz(t). We
define the prediction loss as

Lonaa(®) = - [w®)2(0) ~ 2(0)3at

ot —to Jy,

where w(t) is a nonnegative weight function. This loss evaluates accuracy over the entire rollout
rather than only at the next step, thereby encouraging stable long-horizon predictions. We choose
w(t) with a decay rate that emphasizes early prediction errors while still accounting for the full
trajectory. The integral is computed in discretized form, with the discretization determined by the
dataset’s sampling scheme.

To complement predictive accuracy with controllability, we augment this loss with the Gramian
regularizer from Section 3.3 yielding the full training objective

mein £pred(0) + >\gram Rgram(AOaBe)'

Gradients are computed through the ODE solver, enabling an end-to-end formulation that yields
models accurate over long horizons, controllable by design, and numerically well conditioned for
downstream control.

3.5 MODEL PREDICTIVE CONTROL ON LEARNED MODELS

We deploy MPC on the learned Neural ODE by discretizing it with sampling time At under
zero-order hold:

At
Ag = oAt Bg = / e By dr, zr = Czy.
0

Under review as a conference paper at ICLR 2026

At time k we solve the following finite-horizon MPC on the discrete-time surrogate:

k+H-1

min, S (U0 = 2N + g — wy1el) + ICzemp — B, ()
{52k j=k

S.t. Zj+1\k:Ang\k+Bguj\ka j=k,....k+H-1, (7a)

2ok = Yo(xr), ™b)

CZj|k€X, Uj|k ceu. (7)

ref ;

Here 2™ is a reference in the physical coordinates, and @, R, P > 0 are standard MPC weights;
the input-smoothing term ||uj;;, — u;_1)x||% can be replaced by ||u;||% if desired. Since the opti-
mization is posed entirely on the linear surrogate (Ag, Bg,), H is a convex quadratic program. At
each sampling instant we apply the first control UZW measure Ty 1, reset 2y 1jp41 = Yo(Tri1),
and repeat in the receding-horizon fashion.

4 EMPIRICAL EVALUATION

The experimental evaluation is designed to assess —0.20
both model learning accuracy and control perfor-
mance. We first study widely used nonlinear control
benchmarks: pendulum swing-up, mountain car, and
cartpole stabilization.

State 0
& & 5
w w N
w o w

To evaluate data efficiency, we train each model ~0.40
with different fractions of the available dataset i1 3 s 7 5 11 13 15
(1%, 5%, 10%, 30%, 50%, 100%) and measure both Step

short- and long-horizon prediction errors. The first
baseline is the Deep Koopman Operator (DKO) :
(Han et al.| [2020; [Wang et al. [2021; Xiao et al.| e
2022;[Shi & Meng| 2022)), which employs deep neu- L
ral networks to learn Koopman representations. Al- : MLP
though existing variants differ in technical details, ey ToKe
their overall pipeline is similar; in our experiments -2.0

we adopt a continuous-time realization. The sec- Step

ond baseline is a multilayer perceptron (MLP) (Chua

et al.,2018)) trained directly on the nonlinear dynam- Figure 5: 15 Steps Prediction Results on test
ics, representing a purely data-driven approach with- case of Pendulum

out structural priors.

State 1

We compare these against our method on (i) trajectory prediction error, (ii) cumulative input energy
for control. These metrics reflect both the model fitting ability and the downstream control utility of
the learned dynamics. In the end, we extend our framework to the multi-input setting and validate it
on a six-dimensional gene regulatory network (GRN) (Elowitz & Leibler, [2000) system. All exper-
imental settings, including dataset generation, training details, and hyperparameters, are described

in Appendix

Prediction performance Table [] reports model learning errors across varying training dataset
sizes. Our framework consistently outperforms both DKO and MLP when less than 30% of the data
is available. With abundant data, our framework and DKO achieve comparable accuracy, indicating
that both are sufficiently expressive to capture the underlying dynamics. The key distinction is that
our method guarantees controllability by construction, whereas DKO can only assess it a posteriori
without guarantees during training. Figure[5] trained with only 30% of the pendulum dataset, shows
that our model closely tracks the true trajectory, while the baselines deviate despite using the same
data. This advantage stems from enforcing controllability as a structural prior, which reduces the
parameter search space and guides optimization toward meaningful solutions. Consequently, our
model attains lower errors with fewer samples and converges faster during training. The training
curves in Figure [6] support this view. Our losses decrease rapidly and stabilize at a lower level,
whereas DKO starts with large errors and converges slowly. Although nonlinear, the discrete MLP

Under review as a conference paper at ICLR 2026

0.
0.30
0.005 DKO DKO 0.0175 DKO
—— Ours . —— Ours —
0.004 028 0.0150 ours
0.20 0.0125
0.003
a P oas m 0.0100
L o -]
0.002 = 0.0075
0.10
0.0050
0.001
0.05 0.0025
0.000 0.00 0.0000
o 500 1000 1500 2000 2500 3000 o 2000 4000 6000 8000 o 1000 2000 3000 4000
step step step
(a) Mountain Car (b) Pendulum (c) Cartpole

Figure 6: Loss versus training step on Mountain Car, Pendulum, and Cartpole. Our method con-
verges faster than DKO.

Table 1: Comparison of prediction error (MSE) across environments with varying fractions of train-
ing data. Our method shows clear advantages under limited training data, highlighting its data
efficiency.

Environment Method 1% 5% 10% 30% 50% 100%

MLP 0.0758 0.0571 0.0178 0.00510 0.00418 0.0002
Mountain Car DKO 0.0200 0.00022 0.00016 <1x10~4

Ours 0.0032 0.00019 0.00011 =

MLP 1.1778 0.5998 0.2610 0.0470 0.0218 0.0091
Pendulum DKO 1.5347 0.1079 0.0390 0.0086 <6 x10-3

Ours 0.3747 0.0318 0.0114 0.0061 SOX

MLP 0.0465 0.0296 0.0202 0.00727 0.0039 0.0021
Cartpole DKO 0.1306 0.01452 0.007585 0.00064 <5x10-4

Ours 0.0095 0.0024 0.001153 0.000571

baseline struggles to capture continuous dynamics, leading to rapid error accumulation over rollouts.
In summary, controllability provides not only a downstream guarantee but also a powerful inductive
bias that improves data efficiency, accelerates convergence, and stabilizes prediction.

Control Performance We next evaluate control performance by embedding the learned models
into MPC. As shown in Table [2] differences in prediction accuracy translate directly into control
outcomes. With limited training data, DKO often fails to complete the task due to inaccurate or
uncontrollable models that render MPC infeasible. In contrast, by encoding controllability as a
structural prior, our method learns more accurate models from scarce data and produces MPC solu-
tions that require substantially less input energy.

Figure [7|illustrates this effect in the mountain car task. With only 1% of the dataset, DKO fails to
stabilize the car under MPC, whereas our model successfully drives the system to the target. Even
with 5% of the data, our approach requires substantially less control effort than DKO, highlighting
the advantages of accurate and controllable dynamics. Similar trends are observed in pendulum
swing-up and cartpole stabilization.

Another line of work introduces time-varying Koopman operators (Li et al., [2025]), where the state
matrix A is generated at each step from past trajectories rather than fixed. This increases flexibility
and can improve prediction, but at the cost of higher computational burden for MPC, since A must
be recomputed at each step. Moreover, since trajectory history is required (e.g., 30 prior steps), a real
system must first be driven with preliminary inputs before control actions can be computed, com-
plicating deployment. Controllability analysis is also more challenging for time-varying Koopman
models. General nonlinear models such as Neural ODEs and LSTMs can achieve strong predictive
accuracy by directly parameterizing the dynamics. Their limitation lies in downstream use: embed-
ding them in MPC typically leads to nonconvex optimization problems that are much slower to solve
and lack convergence guarantees, unlike linear formulations.

Under review as a conference paper at ICLR 2026

Table 2: MPC input cost comparison at selected dataset fractions. “Fail” indicates that the controller
was unable to complete the task.

Environment Task Data DKO Cost Our Cost Rel.] (%)
. . 1% Fail 186.59 -
Mountain Car Hilltop 5% 297.51 165.21 445
. 5% Fail 100.25 -
Pendulum Swing-up & hold 10% 9239.2 43.50 818
Cartpole Balance 30% Fail 19.61 -
Mountain Car Control Actions
0.054 DKO (1%) DKO (1%)
—— DKO (5%) —— DKO (5%)
0.044 Ours (1%) 4 Ours (1%)
0.031 . :urs (5%) Ours (5%)
: tart E}
'g 0.02 Y “Goal E 2
;’ 0.014 & §
0.00 * * %) °
-0.01 = —
-0.024
7(‘).4 76.2 0?0 0‘2 0?4 0?6 OTE 1?0 0 2‘5 Sb 7‘5 160 125 léO 1%5
Position Time step
(a) Phase trajectories (b) Control inputs

Figure 7: Comparison of Mountain Car experiments on control task.

Multi-input extension. We extend our framework to the multi-input setting and validate it on other
more complex robotics environments including Reacher (Mujoco) and 7-DoF Franka manipulator
environment used in|Shi & Meng| (2022). As shown in Appendix[G] the results demonstrate that our
method can scale to larger and multi-input systems and still show higher data efficiency. We also ex-
tend our approach on a six-dimensional gene regulatory network (GRN) (Elowitz & Leibler, [2000)
with three control inputs. Under the same protocol as the single-input tasks, our controllability-
preserving Koopman model attains a test MSE of 1.0 x 10~%, compared to 3.0 x 10~* for DKO.
On the associated control task, where one state must be regulated at a setpoint of 6, our method
achieves an input cost of 80.96, lower than the 89.98 required by DKO. These results demonstrate
that the proposed canonical parameterization and training procedure scale beyond single-input sys-
tems, while also highlighting the added challenges of multi-input settings, where optimization is
harder to stabilize and performance degrades more quickly with limited data.

5 CONCLUSION

We proposed an end-to-end framework for learning nonlinear dynamical models with controllability
guarantees, built on Koopman representations learned through Neural ODEs. To ensure controlla-
bility, we introduced novel OOC controllability canonical forms that parameterize the state matrices
of the Koopman surrogate, providing guarantees by construction. Simulations on nonlinear bench-
marks demonstrate superior data efficiency and control performance compared to state-of-the-art
baselines. At the same time, there are some open challenges: multi-input controllability introduces
additional complexity in initialization and parameterization, and in practice it is often unclear how
to assign control inputs to state variables. Addressing these issues is an important direction for fu-
ture work, and progress here could significantly broaden the applicability of controllability-aware
system identification.

Reproducibility Statement. Source code can be found at
https://anonymous.4open.science/r/Controllable-Koopman-61FC; for theoretical results, clear
explanations of any assumptions and a complete proof of the claims can be found in the Ap-
pendix [D} for any datasets used in the experiments, a complete description of the data processing
steps can be found in Appendix [G]

10

https://anonymous.4open.science/r/Controllable-Koopman-61FC

Under review as a conference paper at ICLR 2026

Ethics Statement This work involves only simulated environments and raises no ethical concerns.

Use of LLMs We used a large language model (LLM) solely to aid and polish the writing and
improve the clarity of exposition. All research ideas, technical contributions, experiments, and
analyses are our own.

REFERENCES

Stephen A Billings. Identification of nonlinear systems—a survey. In IEE Proceedings D (Control
Theory and Applications), volume 127, pp. 272-285. IET, 1980.

Stephen A Billings. Nonlinear system identification: NARMAX methods in the time, frequency, and
spatio-temporal domains. John Wiley & Sons, 2013.

Steven L Brunton, Marko Budisi¢, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. SIAM Review, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Joonwon Choi, Minhyun Cho, Hyunsang Park, Vishnu Vijay, and Inseok Hwang. On the control-
lability preservation of koopman bilinear surrogate model. In 2024 IEEE 63rd Conference on
Decision and Control (CDC), pp. 3457-3462. IEEE, 2024.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Baparou Danhane, Jérdme Lohéac, and Marc Jungers. Characterizations of output controllability
for Iti systems. Automatica, 154:111104, 2023.

Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regula-
tors. Nature, 403(6767):335-338, 2000.

Fletcher Fan, Bowen Yi, David Rye, Guodong Shi, and Ian R Manchester. Learning stable koopman
embeddings for identification and control. arXiv preprint arXiv:2401.08153, 2024.

Luca Furieri, Clara Lucia Galimberti, and Giancarlo Ferrari-Trecate. Neural system level synthesis:
Learning over all stabilizing policies for nonlinear systems. In 2022 IEEE 61st Conference on
Decision and Control (CDC), pp. 2765-2770. IEEE, 2022.

Yue Guo, Milan Korda, Ioannis G Kevrekidis, and Qianxiao Li. Learning parametric koopman
decompositions for prediction and control. SIAM Journal on Applied Dynamical Systems, 24(1):
744-781, 2025.

Yiqgiang Han, Wenjian Hao, and Umesh Vaidya. Deep learning of koopman representation for con-
trol. In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 1890-1895. IEEE,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Alberto Isidori. Nonlinear control systems: an introduction. Springer, 1985.

Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.

11

Under review as a conference paper at ICLR 2026

Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of koopman eigenfunc-
tions for control. Machine Learning: Science and Technology, 2(3):035023, 2021.

Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. soc. mat. mexicana,
5(2):102-119, 1960.

J Klamka. Controllability of linear dynamical systems. Contrib. Theory Differ. Equ, 1:189-213,
1963.

Jus Kocijan. Modelling and control of dynamic systems using Gaussian process models. Springer,
2016.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315-318, 1931.

Milan Korda and Igor Mezi¢. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149—-160, 2018.

Zhaoyang Li, Minghao Han, and Xunyuan Yin. Mamko: Mamba-based koopman operator for
modeling and predictive control. In The Thirteenth International Conference on Learning Repre-
sentations, 2025.

Lennart Ljung. System identification. In Signal analysis and prediction, pp. 163—173. Springer,
1998.

David Luenberger. Canonical forms for linear multivariable systems. IEEE Transactions on Auto-
matic Control, 12(3):290-293, 2003.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Yuji Okamoto and Ryosuke Kojima. Learning deep dissipative dynamics. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 19749-19757, 2025.

Aowabin Rahman, Jan Drgona, Aaron Tuor, and Jan Strube. Neural ordinary differential equations
for nonlinear system identification. In 2022 American control conference (ACC), pp. 3979-3984.
1IEEE, 2022.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

C Ricardo Constante-Amores, Alec J Linot, and Michael D Graham. Enhancing predictive capabil-
ities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ode
approaches. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(4), 2024.

Haojie Shi and Max Q-H Meng. Deep koopman operator with control for nonlinear systems. IEEE
Robotics and Automation Letters, 7(3):7700-7707, 2022.

Sunbochen Tang, Themistoklis Sapsis, and Navid Azizan. Learning chaotic dynamics with embed-
ded dissipativity. arXiv preprint arXiv:2410.00976, 2024.

Rongyao Wang, Yigiang Han, and Umesh Vaidya. Deep koopman data-driven control framework for
autonomous racing. In Proc. Int. Conf. Robot. Autom.(ICRA) Workshop Opportunities Challenges
Auton. Racing, pp. 1-6, 2021.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data—driven approximation
of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science,
25(6):1307-1346, 2015.

Yonggian Xiao, Xinglong Zhang, Xin Xu, Xueqing Liu, and Jiahang Liu. Deep neural networks

with koopman operators for modeling and control of autonomous vehicles. IEEE transactions on
intelligent vehicles, 8(1):135-146, 2022.

12

Under review as a conference paper at ICLR 2026

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations
for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference
(ACC), pp. 4832-4839. IEEE, 2019.

He Yin, Peter Seiler, Ming Jin, and Murat Arcak. Imitation learning with stability and safety guar-
antees. IEEE Control Systems Letters, 6:409-414, 2021.

Vrushabh Zinage and Efstathios Bakolas. Neural koopman lyapunov control. Neurocomputing, 527:
174-183, 2023.

13

Under review as a conference paper at ICLR 2026

A DETAILED RELATED WORK

Learning-based Koopman approaches (Lusch et al.l [2018; |Yeung et al., 2019; Ricardo Constante-
Amores et al.| 2024)) approximate nonlinear dynamics by training neural networks to construct ob-
servables, thereby lifting the system into a space where linear dynamics are identified. Despite
differences in implementation, the pipeline is largely consistent: an encoder maps the state into a
latent space, and operators (A, B) are then estimated either through direct regression (e.g., least
squares) or as trainable parameters within an end-to-end framework (Han et al.| [2020; [Wang et al.,
20215 Shi1 & Meng, [2022} |Xiao et al.l 2022). Variants further differ in whether the operators are
kept fixed or allowed to vary with time (Li et al., 2025), but the overall objective remains multi-
step trajectory reconstruction. Crucially, structural properties of the underlying system are rarely
incorporated.

Very few works have even attempted to consider controllability in this setting, and those that do
typically include the Kalman rank condition as a loss term (Han et al., [2020). This suffers from
two major issues. First, placing the condition in the loss provides no guarantee of preserving con-
trollability. Second, and more importantly, requiring controllability of the entire lifted system is
unrealistic and misguided: the lift is often very high dimensional while the input dimension remains
small, making global controllability virtually impossible; moreover, in control tasks the relevant
quantity is the reachability of the original physical state, not arbitrary auxiliary observables. As a
result, such lifted-space conditions fail to capture the property that actually matters.

Research on incorporating structural priors into Koopman learning remains limited. The first such
attempt considered stabilizability, introducing LMI-based parameterizations of the Koopman op-
erator (Fan et al. 2024). This was the earliest demonstration that parameterization can embed
system-theoretic properties into Koopman models, but stabilizability is a weaker requirement than
controllability and cannot guarantee capabilities such as trajectory tracking. It is also worth noting
that, more broadly, some recent works have introduced properties such as stability, stabilizability, or
dissipativity into dynamics or control learning, for example via Neural System Level Synthesis (Fu-
rieri et al.,|2022), or SDP/QP formulations (Yin et al., 2021} |Tang et al.,[2024;|Okamoto & Kojima,
2025). While these demonstrate that inductive biases can be beneficial, such approaches either im-
pose heavy computational burdens through projection-based optimization, or rely on the availability
of base stabilizing controllers, and in any case highlight that structural priors are gaining attention
while simple and efficient mechanisms remain highly needed.

A very recent effort, parametric Koopman models, embeds the control input nonlinearly via neural
networks (Guo et al.| [2025). Here controllability can only be verified post hoc using Lie bracket
conditions, and because the input enters nonlinearly, the resulting control problems remain nonlinear
optimizations, limiting the practical benefit of the linear surrogate.

In summary, existing Koopman learning methods focus primarily on reconstruction accuracy, with
occasional efforts to enforce stabilizability or to post hoc analyze controllability. None provide
guarantees of controllability during training, nor do they shape its degree in a way that affects the
feasibility and efficiency of MPC. Moreover, by neglecting controllability as a structural prior, they
miss the opportunity to reduce the effective parameter search space and to guide the training process
itself. This gap motivates our framework, which enforces controllability by construction and explic-
itly regularizes the degree of reachability, yielding models that are both predictive and reliable for
control.

14

Under review as a conference paper at ICLR 2026

B DETAILED PRELIMINARIES

B.1 KOOPMAN OPERATOR

To handle inputs explicitly, the system can be reformulated on an augmented state space,

xo =) fao=Fee = |G,

The dynamics are autonomous in X (t), so one can define a Koopman operator acting on observables
U R — RN This operator is linear but infinite-dimensional, and satisfies
d
2 V(X () = KU (x(t)).
In other words, the nonlinear flow of (x, u) induces linear dynamics in the lifted coordinates ¥ (X).

Since K is infinite-dimensional, a finite-dimensional approximation is required for practical use. A
standard construction is to select observables of the form

(X)) = [Qs(x)} . z=¢(x) RV,

u

where ¢ : R® — RY (N > n) is a set of nonlinear lifting functions applied to the state, and the
input u is retained in its original coordinates. With this choice, the operator reduces to a block-matrix

structure,

d [2(t) 2(t) A B

T [u(t) =Koy By =ls |
Here A € RVNXN governs the autonomous dynamics of the lifted state, B € RY*™ describes how
control inputs affect the lifted state, and the lower blocks (denoted by *) capture the evolution of
the input coordinates themselves. Since prediction and control only require the lifted state dynam-

ics, it suffices to retain the first NV rows of this operator. This leads to the following Koopman
representation as an ODE:

2(t) = Az(t) + Bu(t), &(t) = h(z(t), 2(t) = o(x(t))
The tuple (¢, A, B, h) constitutes a finite-dimensional approximation of the infinite-dimensional

controlled Koopman operator. In many applications h is taken to be linear, i.e. h(z) = Cz with
C € RN,

B.2 CONTROLLABILITY OF LINEAR SYSTEMS

Consider the linear control system defined globally

2(t) = Az(t) + Bu(t), 2(t) € RN, u(t) € R™,
with A € RV*N and B € RV*™,
Dislike the challenging nonlinear controllability verification problem, the problem is tractable for
linear systems.
Proposition 1 (Kalman Rank Condition). The linear system with matrices (A, B) is controllable if
and only if the controllability matrix

C=[B AB A’B ... AN7!B]

has full row rank, i.e. rank(C) = N. In this case, the columns of C span the entire state space, so
any state can be reached from any initial condition by a suitable input.

Equivalently, controllability can also be characterized through the controllability Gramian

ty

W = / ATBBTAT dr,
to

which is positive definite for some sufficiently large time interval if and only if (A, B) is controllable.

The eigenvalues of W further quantify the directions that are more or less easily influenced by the

inputs.

15

Under review as a conference paper at ICLR 2026

Proposition 2 (Controllable Canonical Form). If the linear system with matrices (A, B) is control-
lable, there exists an invertible matrix P such that the transformed pair

A5 =P AP, By =P 'B

takes a block companion form. In the single-input case (m = 1), A is the companion matrix

o 1 0 --- 0 0
o 0o 1 --- 0 0
Ag = . . .) Bg = . ’
o o o --- 1 0
a; as ag -+ AN 1
where (a1,...,an) are real coefficients. In the multi-input case (m > 1), A§ can be written in

Brunovsky block form with each block corresponding to an input channel. These canonical represen-
tations show that every controllable pair is equivalent, up to a similarity transform, to a structured
form where controllability is explicit.

Definition 5 (State-to-Output Controllability (SOC)). Consider the linear system z(t) = Az(t) +
Bu(t) with output y(t) = Cz(t), y(t) € RP. The triple (A, B, C) is state-to-output controllable if,
Sor any initial state z(0) = z(to) and target output yr € RP, there exists a finite horizon and input
sequence u(t) € R™,t € [to,ty), such that y(ty) = yr.

Output controllability can be characterized by the output controllability matrix
Cy = [CB CAB --- CAN_lB} e RP*Nm,

The system (A, B, C) is output controllable if and only if rank(C,) = p, i.e. the columns of C,, span
the entire output space. When C' = I, this reduces to the Kalman rank condition for state control-
lability. Output controllability generalizes state controllability by focusing only on the directions
visible through C'. When C' = I, the two notions coincide.

If (A, B) is not controllable, there exist directions in the state space that cannot be influenced by any
admissible input, which limits the effectiveness of feedback and may render stabilization or trajec-
tory tracking tasks impossible. Even when a system is controllable in the binary sense, the degree of
controllability encoded by the Gramian eigenvalues strongly affects input energy requirements and
numerical conditioning in control algorithms. For this reason, ensuring or promoting controllability
in identified models is essential when the ultimate goal is to use them for control.

16

Under review as a conference paper at ICLR 2026

C CONCEPTUAL OVERVIEW AND CONTRIBUTIONS

Koopman Framework (containing identity lift)

Koopman Linear e Koopman Linear

00C <) SOC

o = yr) (zo = yr1)

Nonlinear System SOC Tools:
Controllability Rank Condition
(xo = x7) Canonical Form

Figure 8: Overview of the relations among controllability notions.

Fig [§] illustrates how different notions of controllability are connected in our framework and our
contributions:

@D We show that the controllability of the original nonlinear system is equivalent to OOC of
Koopman linear representation (in main text).

@) In the Koopman linear representation, we prove that OOC coincides with SOC
(Lemma [Thnd Theorem T} proved in Appendix D).

3 Based on this equivalence, we for the first time introduce a SOC canonical form which
can be used for OOC canonical form for Koopman representation (Theorem [2} proved in
Appendix D).

@ Finally, we leverage this canonical form to parameterize the neural Koopman operator,
which enables constructing learning-based Koopman representations of the original non-
linear system.

17

Under review as a conference paper at ICLR 2026

D PROOF

Proof of Lemmall] We begin by proving that the map 7 : £ — R™ with y = Tz is bijective.
The map is well-defined from the definition of set Z. For any 21,22, € R”, if y; = yo, then
z1 = ¢(y1) = z2 = ¢(y2). This indicates that T is injective. On the other hand, any y; € Z
corresponds to one z; = ¢(y1). This shows that 7 is surjective. We conclude that the map 7 is
bijective.

We then prove sufficiency of the claimant. From the definition, for any yo € R", the system can
reach any output y; € R"™. Consider zp € Z and 2z € Z, let ygp = Czp and yr = Czp. Given
that 7 is bijective, it holds that zg = ¢(yo) and zr = ¢(yr). From OOC, the system starts from
output yo can reach yr, which indicates that the system starts from state z; can reach zy. Given
that states zg and zr are arbitrarily chosen, SOC holds. Necessity of the claimant holds with similar
arguments. O

Proof of Theorem[l] We begin by proving that the system is SOC on (Z,R") if and only if
C is full-rank. Consider an arbitrary zg € Z and yr € R", if there exists an input sequence
u(+) : [to, ty] — R™ that drives the system from z(to yr, then we have

t
yr =C (eA"(tftf’)Zo +/ 6A"(tft°T)Beu(T)dT> (®)
to
Rearranging the terms and applying Taylor expansion for e0(ts—to=7) — ¢ Aoltrzto=n)” e
K k=0 [’
ave
o o (te —to — TR
yr — CcMotts =02 = 03" ABB, (/ Wumm) ©
k=0 to ’

Yy — CeAolts ’tﬂ)zo spans R"™ because y and z are independent, and yr spans R™. Under this, we
deduce that the existence of u(7) is equivalent to C is full rank. Using Lemma[l] we conclude that
the system is OOC on R™ if and only if the controllability matrix C is full-rank.

In the proof of Theorem|l} we use the fact that y — C eAo(tr—to) 5 spans R"™ because yr and 2z are
independent, and yr spans R™. The subspace Z does not influence the result. This indicates that for
any subspace H C R the Koopman linear system is SOC on (#, R") if and only if it is SOC on
(RN, R™).

Proof of Theorem[2] The proof is based on some algebraic calculation. From , AgBg and A2By
are given by

-0 - -0 -
0 0
0 0
AgBy = P 1 AZBy = Py 1 (10)
(n — 1)th row (n-2)th row

Using induction, A% B, for 1 < k < n — 1 are given by

0
0

0
AkBy = Py 1 (11)
(n-k)th row

18

Under review as a conference paper at ICLR 2026

The OOC controllability matrix has the following structure

Clearly, C has full row rank as P; has full rank and the matrix that multiplies P;

r o0

0

1
~~

(n)th row

1
~~

L (n)th row

0

0

1
~~

(n — 1)th row

1
~~

(n — 1)th row

0 1
~—~
nth column
1
~—~

(n — 1)th column

0 1
~—
nth column
1
~—

(n — 1)th column

From Theorem I} system (3] under canonical form (3] is OOC on R™.

19

12)

also has full rank.
O

Under review as a conference paper at ICLR 2026

E EXTENSIONS

E.1 MULTI-INPUT PARAMETERIZATION

We extend Theorem [2] to multi-input systems with m > 2. The idea is to consider the Brunovsky
canonical form (Luenberger, 2003).

Theorem 3. Consider system (3) with m > 2. Then, the system is OOC on R™ if and only if there
exist matrices A € RN*N B¢ e RN*™ gnd P € RV*N ywhere

A, 0 0 07 By 0 ... 0]
f1 A2 0 0 0 g1 BQ 0
by by by d do ... dp
L C1 Co ... CN] | €1 €9 €m |
(13)
such that
Ag = PyAgP;' By = PyBj (14)

P, € R™, P, € RN=" are both full rank matrices. The blocks A; € RN:*Ni and B; € RN <1 are
in the forms of

0 1 0 0 0
o 0o 1 0 ... O 0
A= o B;=|:], (15)
0 0 1 0
a] ao an; 1

where 2221 N; = n, the elements in rows fromn + 1 to N of both Ag and B are free.

Proof. To show the structure of the OOC matrix C, we consider using mathematical induction. For
2 < k < N, suppose that

rAKBL 0 .. 0T
gi A5B, 0
AfBy=Py | ¢, g ... AEB,
d} A d,
L €] eh e, |

Under review as a conference paper at ICLR 2026

Given that we focus on the structure of the matrix, we use ¢4, . . ., e/ to represent some variables or
matrices, with a slight abuse of notation. From this, we obtain
AETIBy = Ay - AEB,
A, 0 0 07TAYB;y 0 ... 0
=Py |fa fz3 .. Am ... O g:Q g}é) Aﬁlle

by b by d} 5 d,

lcn 2ooen] L€ eh e, | (16)

Ak+1 0 0]

! / !

1 2 dm

/ / /
€1 €2 Cm

which satisfies the induction for &k + 1. It an be verified that A2 By also fulfills the structural assump-
tion. Using the result, the OOC matrix C is given by

B, 0 ... 0 AB 0 R A 1 0 0
g/1 B2 0 . g/2 A2B2 0 . gé AéV7132 0
c—cp|: e ..
gy - Bmo A Ay B 96 AN-1B,,
B, 0 . 0 AB 0 AN=1B, 0 0
g, By 0 ... gb AyBy 0 . g4 ANT1B, 0
=P | .
gy .. Bmo A A B, ... 96 AN-1B
From the companion structure of each A; and B;, it is known that for each i:
(B, A;B; ... ANT'B] (18)
is full rank. Inserting zero blocks into the matrix will not change the rank, we then immediately
obtain that C is full rank as well. Using Theorem I} we conclude that system (3] is OOC. O

E.2 SIMPLIFIED PARAMETERIZATION

In the following, we propose another simplified canonical form for single input case.
Proposition 3. Consider system with m = 1 (single-input). Then, an OOC canonical form is
given by

— "Zl OnX(an) _ B
AQ_ O(N—n)xn A BG_ B’ (19)

where A € R"™™ and B € R™*! are given by

0 1 0 0 0
0 0 1 0 0
A= : B=|0 (20)
0 0 0 1 :
apg ai -+ Ap_2 Ap_1 1

21

o

Under review as a conference paper at ICLR 2026

A" e RIN=m)x(N=n) gnq B' € RIN=")X1 gre free matrices.

Proof. From (19), the state controllability matrix is given by

B AB A*B ... AN-'B
Cs = B A'B' A2B ... AN-1p/ (2D
From Theorem I} the OOC controllability matrix is given by
C=CC,=[B AB A’B ... AN-'B]. (22)
From (20), the matrix S o
(B AR A*B ... A"1B] (23)
is full rank. From the Cayley-Hamilton Theorem, C is also full rank. O

This canonical form requires Ay to be block diagonal, unlike the one in Theorem 2} This form can
be conservative in practice, particularly for the Koopman linear system. This is because the states x
and ¢(x) in z have no correlation.

22

Under review as a conference paper at ICLR 2026

F DISCUSSIONS OF LIMITATIONS

F.1 THE STRUCTURE OF Py

The canonical forms in Theorems [2] and [3| reply on an invertible matrix Py. This matrix is critical
as it provides extra degree of freedom in linearly transforming the coordinates. In these theorems,
the matrix Py is constructed as block diagonal Py = diag(P;, P») because of the OOC structure: it
is the first n rows of [Bf ASB§ ... (AS)"N !By that needs to be full rank. Too see why the
block diagonal structure is important, we re-evaluate the OOC matrix C for m — 1. First, it is clear
that

C=CP[B§ A§B ... (A5)N7'By]

:=C¢
Let matrices Cf € R"*™ C§ € R**(N=n) ¢ ¢ RWW—m)xn c¢ ¢ RIW=m)x(N=n) be such that

c_ |G €3
c=ld &

The companion forms of A and B§ in Equations (5) and (T3] ensure that
rank(C{) = n => rank ([B§ A§B§ ... (A5)V'By])>n

Assuming that Py is full rank but not block diagonal:

A P
P—[Pg PJ.

Then we have
Although Py, P and C¥ are ensured to be full rank, P;C{ 4+ P»C§ is not ensured to be full rank. One
sufficient condition for C to be full rank is

P, =0, P isfull rank. 24)

For @I) holds and Py is full rank, we adopt a block diagonal structure where both P, and Ps are set
to zero, and P;, P, > 0. This will unavoidably introduce conservativeness in training.

As we admit that making P;C{ + P»C¢ full rank by construction is hard, we can still consider
constructing a full rank matrix P with only P> = 0 to reduce conservativeness. This is left for
future investigation.

We also provide some practical insight: any full rank matrix P result in a full rank C almost surely.
If one fix a full rank matrix C{ and a not necessarily full rank matrix C§, and randomly construct
a matrix P from a continuous distribution. Then, P,C{ + PC§ is almost surely full rank. This is
because the determinant of is a nontrivial polynomial in the entries of P;C{ + P»C5. The zero set of
any nontrivial polynomial has Lebesgue measure zero in R™". Since both P and P, are constructed
from a continuous joint distribution, it assigns probability zero to Lebesgue-null sets. If P;C§+ P>C3
is almost surely full rank, then so is C.

F.2 THE MULTI-INPUT CANONICAL FORM

In Theorem 3] we provides a multi-input canonical form (I3)). This is obtained from the single-input
canonical form within a Brunovsky structure. The whole matrix A§ consists of m small matrix
A; € RNixNi [n linear system theory, the dimensions N;, also termed as controllability indices,
can be determined via rank checks. More specifically, the index N; > 3 for input 7 is the smallest
integer such that

rank([By A¢By ... Aév'i_lB]) —rank([By A¢Bg ... Ag['i_QB]) =1. (25)

This condition can be readily verified a posteriori for given Ay and By. However, the indices are
hard to be determined by construction, as the correspondence of state and input on the lifted space is
unknown. In the experiments, we consider a conservative method that uniformly assigned indices.
This is, clearly, not the optimal assignment in general.

23

Under review as a conference paper at ICLR 2026

G EXPERIMENTS

G.1 DATA COLLECTION

For each environment we simulate continuous-time nonlinear dynamics under random control in-
puts. At the beginning of each rollout an initial state x(is drawn uniformly from a prescribed range.
The system then evolves according to its ground-truth ODE & = f(z,u) while, at each step, the
control input u(t) is sampled uniformly from the admissible bounds. Trajectories are recorded at
fixed sampling intervals, yielding sequences of length 250 steps.

Sampling details. The integration step size differs across environments: for mountain car and
GRN we use At = 1.0s, while for pendulum and cartpole we use At = 0.02s. Although our
experiments use regularly sampled data, modeling the system in continuous time allows the same
framework to handle irregular sampling if required.

Dataset size.

* Mountain Car: 5000 training trajectories, 1000 test trajectories.
* Pendulum: 5000 training trajectories, 1000 test trajectories.

» Cartpole: 10000 training trajectories, 1000 test trajectories.

* GRN: 10000 training trajectories, 1000 test trajectories.

* Reacher: 5000 training trajectories, 1000 test trajectories.

* Franka: 5000 training trajectories, 1000 test trajectories.

Training usage. During training, we do not use the entire 250-step rollouts directly. Instead, a
sliding window of length 15 is randomly sampled from a trajectory. This increases sample diversity
and ensures that the learned models are trained on local temporal contexts.

G.2 EXPERIMENTS SETTINGS

Mountain Car dynamics. The continuous-time Mountain Car dynamics are:
p="v,
0 =a- P —0.0025 cos(3p),

where p is the position, v the velocity, a the input action, and P the action scaling coefficient.

Table 3: Hyperparameters for Mountain Car.

Hyperparameter Value
Batch size 64
Learning rate 1x1073
Prediction horizon 15
Dimension of observables N 16
Number of layers of ¥ 3

Hidden dimension of 1) 64
Activation function ReLU

Pendulum dynamics. The continuous-time Pendulum dynamics are:

0=w,
w = %Sino‘i’wT,

where 6 is the angle, w the angular velocity, m the mass, [the length, 7 the input torque, and g the
gravity constant.

24

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for Pendulum.

Hyperparameter Value
Batch size 64
Learning rate 1x1073
Prediction horizon 15
Dimension of observables N 16
Number of layers of) 3

Hidden dimension of 64
Activation function RelLU

CartPole dynamics. The continuous-time CartPole dynamics are:

T =1,
_ f+162sin6 B 16 cos 0
B M M
0=19,

. f+162sin 6
gsinf — cos 6 (%)

l 4 mcos20 ’
3 M

where x is cart position, 8 the pole angle, M the total mass, m the pole mass, [the pole length, f
the input force, and g the gravity constant.

é:

Table 5: Hyperparameters for CartPole.

Hyperparameter Value
Batch size 64
Learning rate 1x1073
Prediction horizon 15
Dimension of observables N = 25
Number of layers of ¥ 3

Hidden dimension of ¢ 64
Activation function ReLU

GRN dynamics. The continuous-time GRN dynamics with 6 states and 3 inputs are:

. 1
Ty = —yr1 +a———7 + ui,

K+ x§

. 1

Tg = —yT2 + Gm + ug,
. 1

T3 = —7YT3 + Gm + us,
&y = —cxy + B,

&5 = —cxs + B,

ie = —cxe + P,

where 1, . .., xg are the states, u1, us, ug are the control inputs, and v, a, K, ¢, 5 are system param-

eters.

Reacher (Mujoco). Reacher is a two-jointed robot arm. The goal is to move the robot’s end
effector (called fingertip) close to a target as Figure[9]shown. Note that we should exclude redundant
or non-independent states when constructing the OOC canonical form; only the independent degrees
of freedom should enter the canonical structure.

25

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters for GRN.

Hyperparameter Value
Batch size 64
Learning rate 1x1073
Prediction horizon 15
Dimension of observables N 30
Number of layers of) 3

Hidden dimension of 1) 64
Activation function RelLU

Figure 9: Reacher Environment.

Franka (7 DoF Manipulator). Franka is a 7 DoF robotic manipulator. The goal is to move the
robot’s end effector (called fingertip) close to a target. The environment setting in our experiments
is the same as provided in [Shi & Meng| (2022). Note that we should exclude redundant or non-
independent states when constructing the OOC canonical form; only the independent degrees of
freedom should enter the canonical structure.

G.3 ADDITIONAL RESULTS

Mountain Car The comparison of prediction performance on Mountain Car Environment with
1% training dataset are shown in Figure [I0]

Pendulum The comparison of control performance on Pendulum environment is shown is Fig-

ure [T1]

Cartpole The comparison of prediction and control performance on Cartpole environment is
shown in Figure[T2)and Figure [I3]

GRN The results of prediction on GRN environment by our method is shown in Figure [T6]

Reacher The results of prediction on Reacher environment over different amount of training by
DKO and our methos are shown in in Table 0] Also, the training loss versus step is shown in
Figure [[3a] Our losses decrease rapidly and stabilize at a lower level, whereas DKO starts with
large errors and converges slowly.

Franka The results of prediction on Reacher environment over different amount of training by
DKO and our methos are shown in in Table 0] Also, the training loss versus step is shown in
Figure[I5b] The results of prediction on GRN environment by our method is shown in Figure[T6] It
can be found that our method learns faster with fewer data needed to achieve satisfying prediction
performance.

26

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters for Reacher.

Hyperparameter Value
Batch size 64
Learning rate 1x1072
Prediction horizon 15
Dimension of observables N 16
Number of layers of) 3

Hidden dimension of 64
Activation function RelLU

Table 8: Hyperparameters for Franka.

Hyperparameter Value
Batch size 64
Learning rate 1x1073
Prediction horizon 15
Dimension of observables N 16
Number of layers of ¥ 3

Hidden dimension of 1) 64
Activation function ReLU

G.4 ROLE OF CONTROLLABILITY LOSS

Suitable penalty on controllability loss will also contribute to accuracy. However, too large penalty
makes the model must trade off matching the true dynamics versus enlarging controllability, then
may damage prediction accuracy. Although MPC can compensate for prediction inaccuracies to
some extent, poor prediction quality results in higher control effort in the end. The experiments on
Pendulum with different weights on gramian loss (0.005 and 0.05) are shown in Figure [I7}

G.5 ADDING ENCODER FOR INPUT

Adding an input encoder as shown in Figure [I§]effectively introduces a nonlinear dependence of the
control signal on the state, since the input to the lifted dynamics becomes @ = gg ® w rather than the
raw control signal. Formally, this representation takes the form:

() = Agz(t) + Boa(t), 2(t) = ¢o(x(t)),
B(t) = y(t) = C=(t), a(t) = go(&(t)) © u(t)

Although g may depend on the state, the surrogate system can still be regarded as linear in its
effective input 4. Consequently, the controllability analysis remains unchanged: as long as the
encoder does not map all admissible inputs to zero, the pair (A, B) governs reachability in exactly
the same way as in the standard formulation without encoding. In this sense, the encoder enriches the
expressiveness of the Koopman representation without undermining the controllability guarantees.

The prediction performance of our framework with input encoder is shown in Table[T0] It can be
found the prediction is even more accurate. However, the reason why we still choose the framework
without input encoder is: in this case the effective input becomes @ = ¢(Z) ® u, leading to a bilinear
system 2 = Az + B(g(Cz) ® u). This breaks the standard linear structure used in MPC (which
could be our future research direction); one could optimize over 4, but then the original control w is
no longer explicit, making constraints and interpretation of the optimization objective difficult. We
therefore focus on the direct-input setting, which integrates more naturally with control design.

27

Under review as a conference paper at ICLR 2026

Traj 0 - dim 0 (Normal) Traj 0 - dim 0 (Normal)
021 qruedimo 021 qruedimo
Pred dim 0 Pred dim 0
-0.4 4 -0.44
; -0.6 ; 061
Z Z
% 08 ® sl
-104 -104 ,/
o 2 4 6 8 l‘D 12 14 o 2' !‘l 6 8 l‘D 12 14
Time [s] Time [s]
Traj 1 - dim 0 (Normal) Traj 1 - dim 0 (Normal)
0.8 0.8
— True dim 0 — True dim 0
pred dim 0 Pred dim 0
0.6 0.6
° °
& &
E o E o4
0.24
0.2 —
-
3 2 3 6 8 10 12 1 3 2 3 6 8 10 12 1
Time [s] Time [s]
Traj 2 - dim 0 (Normal) 02 Traj 2 - dim 0 (Normal)
0.0 4 — True dim 0 ’ —— True dim 0
Pred dim 0 Pred dim 0
—014 00
o 02 e
2 03 g 021
& &
_0.4
—0.4 4
-0.5 4 _
. S T N T S S
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time [s] Time [s]
(a) Trajectories of 3 cases predicted by DKO. (b) Trajectories of 3 cases predicted by Ours.

Figure 10: Comparison of Prediction Performance on Mountain Car Environment with 1% training
dataset

Pendulum Control Actions
8
—— DKO (5%) 10 —— DKO (5%)
—— DKO (10%) —— DKO (10%)
6 * ours (5%) 5 Ours (5%)
2z Ours (10%) — Ours (10%)
S . * Start 3, M
9 2 6 -5
o o
<
0 -10
-2 -15
-35 -30 -25 -20 -15 -10 -05 0.0 0 25 50 75 100 125 150 175
Angle Time step
(a) Phase trajectories (b) Control inputs

Figure 11: Comparison of Pendulum experiments. (a) trajectories in angle—velocity space; (b) cor-
responding control sequences.

Table 9: Comparison of prediction error (MSE) across environments with varying fractions of train-
ing data for Reacher and Franka.

Environment Method 1% 5% 10% 30% 50% 100%

Reacher DKO 55 3.47 1.55 0.5613 0.2572 0.0194
Ours 0.0199 0.0135 0.0039 <1x10%

Franka DKO 0.0453 0.022 0.0068 1074 <1x107°
Ours 0.039 0.00064 <1x107°

28

Under review as a conference paper at ICLR 2026

Traj 0 - dim 1 (Normal) Traj 0 - dim 1 (Normal)

0.0+ \ N Trie dim 1 \ — —— Tuedim1
- — Pred dim 1 PO pred dim 1
-0.1 -0.1
- -
@ 2
g 02 £ -02
n]
03 -0.3
0.4 ~0.4 Al
0.00 0.05 010 015 0.20 0.25 0.00 0.05 010 015 0.20 0.35
Time [s] Time [s]
Traj 1 - dim 1 (Normal) Traj 1 - dim 1 (Normal)
0.8 { — Truedim 1 — Truedim 1
Pred dim 1
05 Pred dim 1
0.6
- -
@ @ 04
£ 04 2 0.4
& o]
0.2 0.2
0.0+ T T T T T T 0.0+ T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Time [s] Time [s]
Traj 2 - dim 1 (Normal) Traj 2 - dim 1 (Normal)
— True dim 1 044
Pred dim 1
0.4 4 031
- -
I @ 0.2 1
£ 021 H
& & 014
N
0.0 4 N
0.07 — Truedim 1
-0.1 4 Pred dim 1 T
0.00 0.05 010 015 0.20 0.25 0.00 0.05 010 015 020 0.25
Time [s] Time [s]

(a) Trajectories of 3 cases predicted by DKO. (b) Trajectories of 3 cases predicted by Ours.

Figure 12: Comparison of Prediction Performance on Cartpole Environment with 10% training

dataset

State Trajectory in 2D

State Trajectory in 2D

0.0
0.04
-0.1
< <
c c 003
s s
2 2
a —0.2 a
£ £
k] k]
o o 002
]]
tn —0.3 in
0.01
-0.4
0.00
-030 -025 020 -015 -0.10 —-0.05 0.00 —0.020 -0.015 -0.010 —0.005 0.000

State dimension 3

(a) Control performance of DKO (fail)

State dimension 3

(b) Control performance of Ours

Figure 13: Comparison of Control performance on Cartpole with 30% training dataset

Table 10: Comparison of prediction error (MSE) across environments with varying fractions of
training data. Our method shows clear advantages under limited training data, highlighting its data

efficiency.

Environment ~ Method 1% 5% 10%

Mountain Car w/o Input Encoder 0.0032 0.00019 0.00011
w/ Input Encoder 0.00087 0.00018 0.00011

Pendulum w/o Input Encoder ~ 0.3747 0.0318 0.0114
w/ Input Encoder 0.1338 0.0067 0.0065

29

Under review as a conference paper at ICLR 2026

Traj 0 - dim 0 (Normal) Traj 0 - dim 3 (Normal)

T — Tuedimo 10— Tuedim3
54 ——- Preddimo --- Preddim 3
54
o 5 m
@ Y 84
B4 g
@ a 7]
34
6
24
5 4
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time [s] Time [s]
Traj 0 - dim 1 (Normal) Traj 0 - dim 4 (Normal)
10
64 — Truedim1 —— True dim 4
——- Pred dim 1 94 " Pred dim 4
5
- -
PES 3 81
Z Z
& 5] &]
24 61
11 T T T T T T T T T T T T T T T T
0 2 a 6 8 10 12 14 0 2 4 6 8 10 12 14
Time [s] Time [s]
Traj 0 - dim 2 (Normal) Traj 0 - dim 5 (Normal)
8.5
54 — Truedim2 — True dim 5
——- Pred dim 2 801 -—- preddim5
44 7.5
~ w
@ @ 7.0
£ 3]
@ & 6.5
27 6.0
14 5.5 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time [s] Time [s]

Figure 14: Prediction Performance on GRN Environment

le-5
10 —— DKO 35 —— DKO
— Ours 3.0 —— Ours
0.8
2.5
wn 0.6 2.0
@ 2
o o
0.4 L3
1.0
0.2
0.5
0.0 0.0
o 2500 5000 7500 10000 12500 15000 17500 20000 (1) 500 1000 1500 2000
step step
(a) Reacher (b) Franka

Figure 15: Loss versus training step on Reacher and Franka. Our method converges faster than
DKO.

30

Under review as a conference paper at ICLR 2026

Traj 2 - dim 7 (Normal)

0.035 4

— True dim 7
0030 |~~~ Preddim7
~
S 0.0254
g | I
0,020 4
0.015 4
0.00 0.05 0.10 015 0.20 0.25
Time [s]
Traj 2 - dim 8 (Normal)
154 4 —— Truedim 8
= ——- Pred dim &
o 1531
2
e}
& 152
151
0.00 0.05 0.10 015 0.20 0.25
Time [s]
Traj 2 - dim 9 (Normal)
07304 =
0.725
o
@ 0.7204
| ~
¥ 0715 4
0.710 { — True dim 9
~~- Preddim 9
0.705 L— T T T T T
0.00 0.05 0.10 015 0.20 0.25

Time [s]

(a) Trajectories of end effector predicted by DKO.

Figure 16: Prediction Performance (end effector position) on Franka Environment with 10% training

dataset

31

Traj 2 - dim 7 (Normal)

0.035 4

0.030 1

0.025 4

State 7

0.020 1

0.015 4

—— True dim 7
——- Preddim 7

0.05 0.10 015 0.20
Time [s]

Traj 2 - dim 8 (Normal)

1.54 4

1.53 4

State 8

1.52 4

1.51 4

—— Truedim 8
——- Pred dim &

0.05 0.10 0.15 0.20
Time [s]

Traj 2 - dim 9 (Normal)

0.730 4

0.725 4

0.720 4

State 9

0.715 4

0.710

0.705

—— True dim 9
—=—- Pred dim 9

(b) Trajectories of end effector predicted by Ours.

0.05 0.10 015 0.20
Time [s]

Under review as a conference paper at ICLR 2026

Control Actions

(a) Small weight: MPC control

Control Actions

(c) Larger weight: MPC control

State dimension 2

State dimension 2

State Trajectory in 2D

10

3.0 25 2.0 -15 -1.0 -0.5 0.0
State dimension 1

(b) Small weight: MPC trajectory

State Trajectory in 2D

12

10

-3.0 -25 -2.0 -1.5 -1.0 -0.5 0.0
State dimension 1

(d) Larger weight: MPC trajectory

Figure 17: Comparison of MPC performance under small and larger weights settings. The larger
weight setting shows larger eigenvalues but poorer predictive control (larger energy use and over-

shoot in trajectory).

-
/

’ Encoder

Current State x(t)

Input Encoder gg
()

Figure 18: With Input Encoder

32

	Introduction
	Preliminaries
	Problem setup
	Neural ODEs with input
	Koopman Operator

	Koopman Learning Framework
	Controllability Analysis
	Controllability Canonical Form
	Degree of controllability via Gramians
	Loss Functions Design
	Model predictive control on learned models

	Empirical Evaluation
	Conclusion
	Detailed Related Work
	Detailed Preliminaries
	Koopman Operator
	Controllability of Linear Systems

	Conceptual Overview and Contributions
	Proof
	Extensions
	Multi-input Parameterization
	Simplified Parameterization

	Discussions of Limitations
	The Structure of P
	The Multi-input Canonical Form

	Experiments
	Data Collection
	Experiments Settings
	Additional Results
	Role of controllability loss
	Adding encoder for input

