
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING KOOPMAN REPRESENTATIONS WITH CON-
TROLLABILITY GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning nonlinear dynamical models from data is central to control. Two funda-
mental challenges exist: (1) how to learn accurate models from limited data, and
(2) how to ensure the learned models are suitable for control design of the nominal
system. We address both by enforcing a critical a priori property of the nominal
system during learning: controllability. Controllability guarantees the existence
of control policies that can drive the learned model from any initial state to any de-
sired state. From a modeling perspective, it captures key structural features of the
nominal system, thereby improving data efficiency. For downstream control, it en-
ables the use of modern techniques such as model predictive control (MPC). Our
approach is based on controllability-preserving Koopman representation learning.
Rather than learning dynamics directly in the nominal state space, we learn in a
latent space where the system admits a linear representation. We prove that con-
trollability of the learned latent model implies controllability in the nominal state
space. To enforce this property, we introduce a novel canonical parameterization
of the latent dynamics matrices. We further incorporate Gramian-based regular-
ization to shape the degree of controllability, yielding well-conditioned models
for control. Implemented as an end-to-end Neural ODE framework, our method
learns models that are both predictive and controllable from limited data. Exper-
iments on nonlinear benchmarks demonstrate accurate long-horizon prediction,
reliable MPC performance, and substantially improved data efficiency.

1 INTRODUCTION

Learning dynamical models from data is crucial for control design, analysis, and verification.
For linear systems, methods such as ARX/ARMAX and subspace identification are well es-
tablished, with strong theory and efficient algorithms (Ljung, 1998). Nonlinear extensions
such as NARX (Billings, 2013), Volterra models, Hammerstein–Wiener structures (Billings,
1980), Gaussian processes (Kocijan, 2016), and grey-box approaches remain more challeng-
ing, as they often impose restrictive assumptions or scale poorly with system dimension.

Figure 1: Encoding priors such as controlla-
bility reduces the search space

Deep learning–based methods, including neural
state-space models (Rangapuram et al., 2018), recur-
rent architectures (Hochreiter & Schmidhuber, 1997;
Chung et al., 2014), and Neural ODEs (Chen et al.,
2018; Rahman et al., 2022), offer expressive param-
eterizations capable of capturing complex nonlinear
dynamics. While effective for trajectory prediction,
the resulting models are often ill-suited for control:
their nonlinear structure hinders the application of
tools such as MPC, and they rarely provide guaran-
tees on critical closed-loop properties such as safety
and stability.

A broader limitation of both classical and learning-
based identification is the difficulty of incorporating structural priors of the nominal system. For
control, one of the most critical priors is controllability (Klamka, 1963). As illustrated in Figure 1,
restricting the search to controllable models greatly reduces the parameter space, thereby improving
data efficiency. However, encoding controllability during training is challenging: even verifying it

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for nonlinear systems requires complex rank conditions over infinitely many Lie brackets (Isidori,
1985). Consequently, most learning procedures focus solely on trajectory fitting, leaving structural
properties to be checked or enforced only after training. This disconnect often produces models
that predict well but are unsuitable for control. While such analysis is routine for linear systems, it
remains a major challenge in the nonlinear setting. A promising path to bridge this gap is through
the Koopman operator.

Koopman-based modeling has long been explored in control theory to render nonlinear systems more
amenable to analysis and feedback. The key idea is to approximate nonlinear dynamics with linear
surrogates in a lifted space, enabling the use of linear systems theory (Koopman, 1931). Early meth-
ods such as dynamic mode decomposition (DMD) and its extensions relied on pre-specified basis
functions (Williams et al., 2015; Kaiser et al., 2021; Brunton et al., 2022), while recent approaches
integrate representation learning via autoencoders and neural networks. The common motivation is
to obtain models that interface naturally with linear controllers, particularly MPC (Korda & Mezić,
2018). The appeal of Koopman representation learning lies in combining the expressiveness of
nonlinear modeling with the tractability of linear control synthesis.

Related work and Gap. Learning-based Koopman approaches approximate nonlinear dynamics
by training neural networks to construct observables, thereby lifting the system into a space where
linear dynamics can be identified (Lusch et al., 2018; Yeung et al., 2019). The main benefit of lifting
is that in the lifted space, traditional optimization based control methods can be easily implemented
because of the linear dynamics (Korda & Mezić, 2018; Zinage & Bakolas, 2023). Existing variants
differ in how operators are estimated (Han et al., 2020; Wang et al., 2021; Shi & Meng, 2022; Xiao
et al., 2022) and in whether the operators are fixed or time varying (Li et al., 2025), yet the overall
pipeline largely targets multi-step prediction. Structural properties, however, are seldom addressed.
Controllability has been considered only rarely, typically by adding the Kalman rank condition of
the lifted system as a loss (Han et al., 2020), which neither guarantees nor reflects the property.
A recent paper (Choi et al., 2024) studied controllability preservation conditions, but it is limited
to theoretical analysis under assumptions of exact representation. No computational methods were
proposed in that work. Other priors have been explored even less. The first attempt incorporated
stabilizability through LMI-based parameterizations (Fan et al., 2024), and a more recent direction
embeds control inputs nonlinearly via neural networks (Guo et al., 2025), which requires post hoc
Lie bracket checks and nonlinear optimization. In short, existing methods emphasize reconstruction
but neither guarantee controllability nor exploit it as a structural prior to reduce the search space and
guide training. This gap motivates our framework, which enforces controllability by construction,
yielding models that are both predictive and reliable for control. Further discussion of related work
is provided in Appendix A.

Our contributions. The contributions of this work are as follows:

• We propose a Koopman-based framework for learning nonlinear dynamical models within a neu-
ral ODE architecture. The approach yields linear surrogate models that are both accurate for pre-
diction and efficient for control. The proposed framework accommodates irregular or multi rate
sampling data and allows the learned continuous time dynamics to be used at control frequencies
that differ from those in the training data without requiring modification or retraining.

• To ensure controllability of the learned model, we introduce a canonical parameterization of the
Koopman operators. This guarantees controllability by construction in both single- and multi-
input settings, while preserving expressiveness through learnable similarity transforms.

• To enhance control performance, we incorporate controllability Gramians into the training ob-
jective to increase the degree of controllability. By shaping their spectrum, we obtain better-
conditioned models that reduce control effort in downstream tasks.

• We validate the framework on several nonlinear benchmarks. Experiments demonstrate improved
data efficiency, higher prediction accuracy, and superior MPC performance, with greater feasibil-
ity and more reliable closed-loop behavior than unstructured baselines.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

2.1 PROBLEM SETUP

We study the learning of nonlinear dynamical models. Specifically, we consider system

ẋ(t) = f(x(t), u(t)), x(t) ∈ Rn, u(t) ∈ Rm, (1)

where f(x, u) is unknown but locally controllable as a priori.
Definition 1 (Controllability (Kalman et al., 1960)). The control system (1) is said to have Control-
lability (or ‘be controllable’) if for any x(t0) = x0 ∈ Rn and xT ∈ Rn, there exists a continuous
control signal u(·) : [t0, tf]→ Rm such that

x(tf) =

∫ tf

0

f(x(t), u(t))dt

∣∣∣∣
x(t0)=x0

= xT

The task is to construct, from data, a dynamical model f̂(x(t), u(t)) that accurately captures the
input–state evolution (1) and remains controllable for control design. This entails not only perform-
ing supervised learning but also a mechanism that preserves controllability in the learned model
f̂(x(t), u(t)).

Data of (1) is sampled as a time series from the initial state x0, using a continuous control signal
u(·) : [0, dK]→ Rm:

X := [x(0) x(d1) x(d2) . . . x(dK)]

U := [u(0) u(d1) u(d2) . . . u(dK)]

2.2 NEURAL ODES WITH INPUT

Neural Ordinary Differential Equations (ODEs) (Chen et al., 2018) extends the idea of deep residual
networks (He et al., 2016). It has shown great success in learning continuous time dynamical models.
Definition 2 (Neural ODE with input). With hx : Rnx → Rnz , hy : Rnz → Rny representing the
input network and output network respectively, a Neural ODE with input is a system of the form{

z (t0) = hx(x(t0))
ż (t) = F (t, z (t) , u (t) , θ) , t ∈ S
y(t) = hy(z(t))

(2)

where S := [t0, tf] (t0, tf ∈ R+) is the depth domain and F is a neural network referred to as
ODENet with parameter θ; u(t) is the input at time t.

The terminal state x(tf), obtained by solving the initial value problem (IVP), represents the evolved
system state. In Neural ODEs, depth corresponds to continuous evolution over time, with ResNets
interpretable as Euler discretizations. To encode structural priors into the learned model, we adopt
the Koopman representation framework, which introduces a linear map F(·).

2.3 KOOPMAN OPERATOR

For the nonlinear control system (1), the goal of Koopman-based modeling is to obtain a linear
representation of the dynamics in a higher-dimensional space of observables. In this setting, the
nonlinear evolution of (x, u) is described by a linear operator acting on functions of (x, u). Koopman
operator theory establishes the existence of an infinite-dimensional operatorK acting on observables
Ψ(x, u):

d

dt
Ψ(x(t), u(t)) = KΨ(x(t), u(t)).

In applications, it usually uses a finite-dimensional approximation for the Koopman operator on a
finite-dimensional function space. A standard construction is to select observables of the form:

Ψ(x, u) =

[
z
u

]
, z = ϕ(x) ∈ RN ,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Rn

RN

x

z

ż = Az +Bu

Lift

Linear

Reconstruction

Representation

z → x

ẋ = f(x, u)
Nonlinear

Representation

Figure 2: Koopman-based dynamical model representation.

Figure 3: Illustration of the Koopman based Neural ODE learning pipeline.

where ϕ : Rn → RN with N ≫ n is a set of nonlinear lifiting functions applied to the state x, and
the input u is retained in its original coordinates. Since prediction and control only require the lifted
state dynamics, it suffices to retain the first N rows of this operator. This leads to the following
Koopman representation as an ODE:

ż(t) = Az(t) +Bu(t), x̂(t) = h(z(t)), z(t) = ϕ(x(t))

In many applications, h is chosen to be linear, i.e., h(z) = Cz with C ∈ Rn×N . The functionality
of the Koopman operator is illustrated in Figure 2, with further details provided in Appendix B.1.

3 KOOPMAN LEARNING FRAMEWORK

Building on the integration of the Koopman operator with Neural ODEs, we propose a Koopman-
based system learning framework, illustrated in Figure 3. This end-to-end pipeline couples a neural
encoder, a controllable Koopman operator, and a differentiable ODE solver. The goal is to learn a
Neural ODE of the form

ż(t) = Aθz(t) +Bθu(t), z(t) = ϕθ(x(t)) = [x(t) ψθ(x(t))] , x̂(t) = y(t) = Cz(t), (3)

that guarantees controllability while modeling the unknown but controllable dynamics ẋ = f(x, u).

The input network hx is specified as the observable encoder ϕθ in the “Encoder” block. To pre-
serve the nominal state explicitly, the first n components of ϕθ are included through identity lifting

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Overview of the relations among controllability notions. 1⃝ We show that the control-
lability of the original nonlinear system is equivalent to OOC of Koopman linear representation
(in main text); 2⃝ In the Koopman linear representation, we prove that OOC coincides with SOC
(Lemma 1and Theorem 1, proved in Appendix D); 3⃝ Based on this equivalence, we for the first
time introduce a SOC canonical form which can be used for OOC canonical form for Koopman
representation (Theorem 2, proved in Appendix D); 4⃝ Finally, we leverage this canonical form
to parameterize the neural Koopman operator, which enables constructing learning-based Koopman
representations of the original nonlinear system.

(x(t) ∈ Rn), while the remaining N − n entries are nonlinear observables ψθ(x) to be learned.
The “Koopman Operator (Controllable)” block specifies the structure of Aθ and Bθ that enforces
controllability of the learned Neural ODE. The “Forward Prediction” block follows standard prac-
tice: given an initial state x0 and input signal, the ODE solver propagates the dynamics to obtain the
terminal state.

Finally, to recover the nominal state x(t), we define the output network as hy(z) = Cz with

x̂(t) = y(t) = Cz(t), C = [In 0] ,

so that x(t) is obtained directly as the output of the Neural ODE.

3.1 CONTROLLABILITY ANALYSIS

Given that the nominal nonlinear system (1) is controllable and the learned Neural ODE (3) yields
the output x̂ = y = Cz, we ask whether the system can be driven from any initial condition to any
desired target output y(tf). This consideration motivates the following definition.
Definition 3 (State-to-Output Controllability (SOC)). System (3) is said to be state-to-output con-
trollable on (Z ⊆ RN ,Y ⊆ Rn) if, for any initial state condition z(t0) = z0 ∈ Z and a target
output yT ∈ Y , there exists a continuous input signal u : [t0, tf]→ Rm such that y(tf) = yT .
Definition 4 (Output-to-Output Controllability (OOC)). System (3) is said output-to-output control-
lable on Y ⊆ Rn if, for any initial output y(t0) = y0 ∈ Y and target output yT ∈ Y , there exists a
continuous input signal u : [t0, tf]→ Rm such that y(tf) = yT .

We are interested in OOC and SOC for system (3) because its output y recovers the state x of the
original nonlinear system. If (3) is OOC, then the corresponding nonlinear system is controllable in
the sense of Definition 1. However, verifying OOC is generally more difficult than SOC, which can
be checked using the Kalman rank condition, no comparably simple algebraic test exists for OOC
(Danhane et al., 2023). Within our Koopman representation framework with identity lift, we show
that SOC and OOC coincide in the following lemma.
Lemma 1. Consider system (3). Define the set Z ⊂ RN to be such that Z := ϕ(Rn). Then, the
system is OOC on Rn if and only if it is SOC on (Z,Rn).

While verifying OOC is generally difficult for linear systems, Lemma 1 establishes the equivalence
between OOC on Rn and SOC on (Z,Rn). This equivalence allows us to verify OOC of system (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

through SOC. OOC then implies controllability as per Definition 1 for the corresponding learned
nonlinear system. The verification criterion is stated in the following theorem.
Theorem 1. The system (3) is OOC on Rn if and only if the controllability matrix

C = C[Bθ AθBθ . . . AN−1
θ Bθ] (4)

is full-rank.

The proofs are provided in Appendix D. From a training perspective, one could promote SOC of
the Koopman linear system by adding a loss term of the form −min eig(C). However, as in many
learning problems, this approach provides no guarantees. To address these issues, we propose a
direct parameterization strategy that explicitly constrains the matrices Aθ and Bθ, ensuring that
the learned Neural ODE (3) is always OOC. An overview of the conceptual framework and our
contributions is provided in Figure 4 in Appendix C.

3.2 CONTROLLABILITY CANONICAL FORM

The following theorem shows the parameterization for Aθ and Bθ that ensures OOC of (3).
Theorem 2. Consider system (3). Then, the system is OOC on Rn if there exist matrices Ac

θ ∈
RN×N , Bc

θ ∈ RN×m and Pθ ∈ RN×N , where

Ac
θ =



0 1 0 0
0 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . 1 . . . 0
a1 a2 aN
b1 b2 bN
...

...
. . .

. . .
. . .

...
c1 c2 cN


Bc

θ =



0
0
...
0
1
d1
...

dN−n


Pθ = diag(P1, P2), (5)

such that
Aθ = PθA

c
θP

−1
θ Bθ = PθB

c
θ (6)

P1 ∈ Rn and P2 ∈ RN−n are both full rank matrices. The first n − 1 rows of Aθ only consists of
0 and 1, and all 1s are on the superdiagonal. All the other elements of Aθ are free. The first n − 1
rows of Bθ is 0, the nth row is 1, and all the other rows are free.

The proof is provided in Appendix D. Equipped with Theorems 1 and 2, we can learn a Neural ODE
(3) that models the original nonlinear system (1) while preserving controllability. It is important
to note that Theorem 2 applies to single-input systems (m = 1). The results can be extended to
multi-input settings via the Brunovský decomposition, as discussed in Appendix E.1.

3.3 DEGREE OF CONTROLLABILITY VIA GRAMIANS

Beyond the binary notion of controllability, the degree of controllability determines the energy re-
quired to steer the system (Kailath, 1980). To quantify this, we use the finite-horizon output Gramian

W y
T =

∫ T

0

(CeAθτBθ)(Ce
AθτBθ)

⊤ dτ,

which measures how inputs excite the physical state over a finite time window. A small λmin(W
y
T)

indicates directions in the state space that require disproportionately high input energy to reach. A
large condition number κ(W y

T) implies unbalanced controllability and ill-conditioned optimization
problems. To address this, we introduce the regularizer

Rgram(Aθ, Bθ) =
1

λmin(W
y
T)

+ γ κ(W y
T),

with γ > 0 a trade-off parameter. This term encourages a larger smallest eigenvalue while discour-
aging large condition numbers, promoting balanced controllability across directions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1: Training Neural ODEs based Koopman representation with controllability guar-
antees
Input: Dataset D, horizon [t0, tf], decay η, Gramian horizon T , weight λgram
Output: Parameters θ
Initialize θ = {θϕ, θAc

θ
, θBc

θ
, θP };

for epoch = 1 to E do
Sample mini-batch B ⊂ D;
for trajectory (x, u) ∈ B do

z(t0)← Ψθ(x(t0)) ; // Encode initial state
(Aθ, Bθ)← P−1

θ (Ac
θ, B

c
θ)Pθ ; // Koopman dynamics

z(t)← ODESolver(ż = Aθz +Bθu), [t0, tf]) ; // Rollout in lifted space
x̂(t)← Cz(t) ; // Recover state prediction
Lpred ←

∫
w(t)∥x̂(t)− x(t)∥2dt ; // Trajectory loss

Rgram ← Regularizer(W y
T) ; // Gramian shaping

L ← Lpred + λgramRgram ; // Total loss

θ ← Optimizer(θ,∇θL) ; // Parameter update

3.4 LOSS FUNCTIONS DESIGN

The state matrices Aθ and Bθ are parameterized as in (6), where (Ac
θ, B

c
θ) denotes the canonical

controllable form from (5), and Pθ is a trainable invertible transformation. This construction pre-
serves controllability by design while maintaining flexibility: without Pθ, the input would have only
limited influence on the identity coordinates.

Given an input trajectory u : [t0, tf] → Rm and initial condition x(t0), the Neural ODE dynamics
(3) with initial state z(t0) = Ψθ(x(t0)) generate a predicted state trajectory x̂(t) = Cz(t). We
define the prediction loss as

Lpred(θ) =
1

tf − t0

∫ tf

t0

w(t) ∥x̂(t)− x(t)∥22 dt,

where w(t) is a nonnegative weight function. This loss evaluates accuracy over the entire rollout
rather than only at the next step, thereby encouraging stable long-horizon predictions. We choose
w(t) with a decay rate that emphasizes early prediction errors while still accounting for the full
trajectory. The integral is computed in discretized form, with the discretization determined by the
dataset’s sampling scheme.

To complement predictive accuracy with controllability, we augment this loss with the Gramian
regularizer from Section 3.3, yielding the full training objective

min
θ
Lpred(θ) + λgramRgram(Aθ, Bθ).

Gradients are computed through the ODE solver, enabling an end-to-end formulation that yields
models accurate over long horizons, controllable by design, and numerically well conditioned for
downstream control.

3.5 MODEL PREDICTIVE CONTROL ON LEARNED MODELS

We deploy MPC on the learned Neural ODE (3) by discretizing it with sampling time ∆t under
zero-order hold:

Ad
θ = eAθ∆t, Bd

θ =

∫ ∆t

0

eAθτBθ dτ, xk = Czk.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

At time k we solve the following finite-horizon MPC on the discrete-time surrogate:

min
{uj|k}k+H−1

j=k

k+H−1∑
j=k

(
∥Czj|k − xref∥2Q + ∥uj|k − uj−1|k∥2R

)
+ ∥Czk+H|k − xref∥2P , (7)

s.t. zj+1|k = Ad
θzj|k +Bd

θuj|k, j = k, . . . , k +H − 1, (7a)

zk|k = Ψθ(xk), (7b)

Czj|k ∈ X , uj|k ∈ U . (7c)

Here xref is a reference in the physical coordinates, and Q,R, P ⪰ 0 are standard MPC weights;
the input-smoothing term ∥uj|k − uj−1|k∥2R can be replaced by ∥uj|k∥2R if desired. Since the opti-
mization is posed entirely on the linear surrogate (Ad

θ , B
d
θ , C), (7) is a convex quadratic program. At

each sampling instant we apply the first control u⋆k|k, measure xk+1, reset zk+1|k+1 = Ψθ(xk+1),
and repeat in the receding-horizon fashion.

4 EMPIRICAL EVALUATION

1 3 5 7 9 11 13 15
Step

0.40

0.35

0.30

0.25

0.20

St
at

e
0

True
MLP
DKO
Ours

1 3 5 7 9 11 13 15
Step

2.0

1.5

1.0

0.5

0.0

0.5

St
at

e
1

True
MLP
DKO
Ours

Figure 5: 15 Steps Prediction Results on test
case of Pendulum

The experimental evaluation is designed to assess
both model learning accuracy and control perfor-
mance. We first study widely used nonlinear control
benchmarks: pendulum swing-up, mountain car, and
cartpole stabilization.

To evaluate data efficiency, we train each model
with different fractions of the available dataset
(1%, 5%, 10%, 30%, 50%, 100%) and measure both
short- and long-horizon prediction errors. The first
baseline is the Deep Koopman Operator (DKO)
(Han et al., 2020; Wang et al., 2021; Xiao et al.,
2022; Shi & Meng, 2022), which employs deep neu-
ral networks to learn Koopman representations. Al-
though existing variants differ in technical details,
their overall pipeline is similar; in our experiments
we adopt a continuous-time realization. The sec-
ond baseline is a multilayer perceptron (MLP) (Chua
et al., 2018) trained directly on the nonlinear dynam-
ics, representing a purely data-driven approach with-
out structural priors.

We compare these against our method on (i) trajectory prediction error, (ii) cumulative input energy
for control. These metrics reflect both the model fitting ability and the downstream control utility of
the learned dynamics. In the end, we extend our framework to the multi-input setting and validate it
on a six-dimensional gene regulatory network (GRN) (Elowitz & Leibler, 2000) system. All exper-
imental settings, including dataset generation, training details, and hyperparameters, are described
in Appendix G.

Prediction performance Table 1 reports model learning errors across varying training dataset
sizes. Our framework consistently outperforms both DKO and MLP when less than 30% of the data
is available. With abundant data, our framework and DKO achieve comparable accuracy, indicating
that both are sufficiently expressive to capture the underlying dynamics. The key distinction is that
our method guarantees controllability by construction, whereas DKO can only assess it a posteriori
without guarantees during training. Figure 5, trained with only 30% of the pendulum dataset, shows
that our model closely tracks the true trajectory, while the baselines deviate despite using the same
data. This advantage stems from enforcing controllability as a structural prior, which reduces the
parameter search space and guides optimization toward meaningful solutions. Consequently, our
model attains lower errors with fewer samples and converges faster during training. The training
curves in Figure 6 support this view. Our losses decrease rapidly and stabilize at a lower level,
whereas DKO starts with large errors and converges slowly. Although nonlinear, the discrete MLP

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
step

0.000

0.001

0.002

0.003

0.004

0.005

lo
ss

DKO
Ours

(a) Mountain Car

0 2000 4000 6000 8000
step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

lo
ss

DKO
Ours

(b) Pendulum

0 1000 2000 3000 4000
step

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

lo
ss

DKO
Ours

(c) Cartpole

Figure 6: Loss versus training step on Mountain Car, Pendulum, and Cartpole. Our method con-
verges faster than DKO.

Table 1: Comparison of prediction error (MSE) across environments with varying fractions of train-
ing data. Our method shows clear advantages under limited training data, highlighting its data
efficiency.

Environment Method 1% 5% 10% 30% 50% 100%

Mountain Car
MLP 0.0758 0.0571 0.0178 0.00510 0.00418 0.0002
DKO 0.0200 0.00022 0.00016 ≤ 1× 10−4

Ours 0.0032 0.00019 0.00011

Pendulum
MLP 1.1778 0.5998 0.2610 0.0470 0.0218 0.0091
DKO 1.5347 0.1079 0.0390 0.0086 ≤ 6× 10−3

Ours 0.3747 0.0318 0.0114 0.0061

Cartpole
MLP 0.0465 0.0296 0.0202 0.00727 0.0039 0.0021
DKO 0.1306 0.01452 0.007585 0.00064 ≤ 5× 10−4

Ours 0.0095 0.0024 0.001153 0.000571

baseline struggles to capture continuous dynamics, leading to rapid error accumulation over rollouts.
In summary, controllability provides not only a downstream guarantee but also a powerful inductive
bias that improves data efficiency, accelerates convergence, and stabilizes prediction.

Control Performance We next evaluate control performance by embedding the learned models
into MPC. As shown in Table 2, differences in prediction accuracy translate directly into control
outcomes. With limited training data, DKO often fails to complete the task due to inaccurate or
uncontrollable models that render MPC infeasible. In contrast, by encoding controllability as a
structural prior, our method learns more accurate models from scarce data and produces MPC solu-
tions that require substantially less input energy.

Figure 7 illustrates this effect in the mountain car task. With only 1% of the dataset, DKO fails to
stabilize the car under MPC, whereas our model successfully drives the system to the target. Even
with 5% of the data, our approach requires substantially less control effort than DKO, highlighting
the advantages of accurate and controllable dynamics. Similar trends are observed in pendulum
swing-up and cartpole stabilization.

Another line of work introduces time-varying Koopman operators (Li et al., 2025), where the state
matrix A is generated at each step from past trajectories rather than fixed. This increases flexibility
and can improve prediction, but at the cost of higher computational burden for MPC, since A must
be recomputed at each step. Moreover, since trajectory history is required (e.g., 30 prior steps), a real
system must first be driven with preliminary inputs before control actions can be computed, com-
plicating deployment. Controllability analysis is also more challenging for time-varying Koopman
models. General nonlinear models such as Neural ODEs and LSTMs can achieve strong predictive
accuracy by directly parameterizing the dynamics. Their limitation lies in downstream use: embed-
ding them in MPC typically leads to nonconvex optimization problems that are much slower to solve
and lack convergence guarantees, unlike linear formulations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: MPC input cost comparison at selected dataset fractions. “Fail” indicates that the controller
was unable to complete the task.

Environment Task Data DKO Cost Our Cost Rel.↓ (%)

Mountain Car Hilltop 1% Fail 186.59 –
5% 297.51 165.21 44.5

Pendulum Swing-up & hold 5% Fail 100.25 –
10% 239.2 43.50 81.8

Cartpole Balance 30% Fail 19.61 –

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Position

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Ve
lo

ci
ty

Mountain Car
DKO (1%)
DKO (5%)
Ours (1%)
Ours (5%)
Start
Goal

(a) Phase trajectories

0 25 50 75 100 125 150 175
Time step

2

0

2

4

Co
nt

ro
l u

Control Actions
DKO (1%)
DKO (5%)
Ours (1%)
Ours (5%)

(b) Control inputs

Figure 7: Comparison of Mountain Car experiments on control task.

Multi-input extension. We extend our framework to the multi-input setting and validate it on other
more complex robotics environments including Reacher (Mujoco) and 7-DoF Franka manipulator
environment used in Shi & Meng (2022). As shown in Appendix G, the results demonstrate that our
method can scale to larger and multi-input systems and still show higher data efficiency. We also ex-
tend our approach on a six-dimensional gene regulatory network (GRN) (Elowitz & Leibler, 2000)
with three control inputs. Under the same protocol as the single-input tasks, our controllability-
preserving Koopman model attains a test MSE of 1.0 × 10−4, compared to 3.0 × 10−4 for DKO.
On the associated control task, where one state must be regulated at a setpoint of 6, our method
achieves an input cost of 80.96, lower than the 89.98 required by DKO. These results demonstrate
that the proposed canonical parameterization and training procedure scale beyond single-input sys-
tems, while also highlighting the added challenges of multi-input settings, where optimization is
harder to stabilize and performance degrades more quickly with limited data.

5 CONCLUSION

We proposed an end-to-end framework for learning nonlinear dynamical models with controllability
guarantees, built on Koopman representations learned through Neural ODEs. To ensure controlla-
bility, we introduced novel OOC controllability canonical forms that parameterize the state matrices
of the Koopman surrogate, providing guarantees by construction. Simulations on nonlinear bench-
marks demonstrate superior data efficiency and control performance compared to state-of-the-art
baselines. At the same time, there are some open challenges: multi-input controllability introduces
additional complexity in initialization and parameterization, and in practice it is often unclear how
to assign control inputs to state variables. Addressing these issues is an important direction for fu-
ture work, and progress here could significantly broaden the applicability of controllability-aware
system identification.

Reproducibility Statement. Source code can be found at
https://anonymous.4open.science/r/Controllable-Koopman-61FC; for theoretical results, clear
explanations of any assumptions and a complete proof of the claims can be found in the Ap-
pendix D; for any datasets used in the experiments, a complete description of the data processing
steps can be found in Appendix G.

10

https://anonymous.4open.science/r/Controllable-Koopman-61FC

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement This work involves only simulated environments and raises no ethical concerns.

Use of LLMs We used a large language model (LLM) solely to aid and polish the writing and
improve the clarity of exposition. All research ideas, technical contributions, experiments, and
analyses are our own.

REFERENCES

Stephen A Billings. Identification of nonlinear systems–a survey. In IEE Proceedings D (Control
Theory and Applications), volume 127, pp. 272–285. IET, 1980.

Stephen A Billings. Nonlinear system identification: NARMAX methods in the time, frequency, and
spatio-temporal domains. John Wiley & Sons, 2013.

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. SIAM Review, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Joonwon Choi, Minhyun Cho, Hyunsang Park, Vishnu Vijay, and Inseok Hwang. On the control-
lability preservation of koopman bilinear surrogate model. In 2024 IEEE 63rd Conference on
Decision and Control (CDC), pp. 3457–3462. IEEE, 2024.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Baparou Danhane, Jérôme Lohéac, and Marc Jungers. Characterizations of output controllability
for lti systems. Automatica, 154:111104, 2023.

Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regula-
tors. Nature, 403(6767):335–338, 2000.

Fletcher Fan, Bowen Yi, David Rye, Guodong Shi, and Ian R Manchester. Learning stable koopman
embeddings for identification and control. arXiv preprint arXiv:2401.08153, 2024.

Luca Furieri, Clara Lucı́a Galimberti, and Giancarlo Ferrari-Trecate. Neural system level synthesis:
Learning over all stabilizing policies for nonlinear systems. In 2022 IEEE 61st Conference on
Decision and Control (CDC), pp. 2765–2770. IEEE, 2022.

Yue Guo, Milan Korda, Ioannis G Kevrekidis, and Qianxiao Li. Learning parametric koopman
decompositions for prediction and control. SIAM Journal on Applied Dynamical Systems, 24(1):
744–781, 2025.

Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep learning of koopman representation for con-
trol. In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 1890–1895. IEEE,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Alberto Isidori. Nonlinear control systems: an introduction. Springer, 1985.

Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of koopman eigenfunc-
tions for control. Machine Learning: Science and Technology, 2(3):035023, 2021.

Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. soc. mat. mexicana,
5(2):102–119, 1960.

J Klamka. Controllability of linear dynamical systems. Contrib. Theory Differ. Equ, 1:189–213,
1963.

Juš Kocijan. Modelling and control of dynamic systems using Gaussian process models. Springer,
2016.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149–160, 2018.

Zhaoyang Li, Minghao Han, and Xunyuan Yin. Mamko: Mamba-based koopman operator for
modeling and predictive control. In The Thirteenth International Conference on Learning Repre-
sentations, 2025.

Lennart Ljung. System identification. In Signal analysis and prediction, pp. 163–173. Springer,
1998.

David Luenberger. Canonical forms for linear multivariable systems. IEEE Transactions on Auto-
matic Control, 12(3):290–293, 2003.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Yuji Okamoto and Ryosuke Kojima. Learning deep dissipative dynamics. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 19749–19757, 2025.

Aowabin Rahman, Ján Drgoňa, Aaron Tuor, and Jan Strube. Neural ordinary differential equations
for nonlinear system identification. In 2022 American control conference (ACC), pp. 3979–3984.
IEEE, 2022.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

C Ricardo Constante-Amores, Alec J Linot, and Michael D Graham. Enhancing predictive capabil-
ities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ode
approaches. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(4), 2024.

Haojie Shi and Max Q-H Meng. Deep koopman operator with control for nonlinear systems. IEEE
Robotics and Automation Letters, 7(3):7700–7707, 2022.

Sunbochen Tang, Themistoklis Sapsis, and Navid Azizan. Learning chaotic dynamics with embed-
ded dissipativity. arXiv preprint arXiv:2410.00976, 2024.

Rongyao Wang, Yiqiang Han, and Umesh Vaidya. Deep koopman data-driven control framework for
autonomous racing. In Proc. Int. Conf. Robot. Autom.(ICRA) Workshop Opportunities Challenges
Auton. Racing, pp. 1–6, 2021.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation
of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science,
25(6):1307–1346, 2015.

Yongqian Xiao, Xinglong Zhang, Xin Xu, Xueqing Liu, and Jiahang Liu. Deep neural networks
with koopman operators for modeling and control of autonomous vehicles. IEEE transactions on
intelligent vehicles, 8(1):135–146, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations
for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference
(ACC), pp. 4832–4839. IEEE, 2019.

He Yin, Peter Seiler, Ming Jin, and Murat Arcak. Imitation learning with stability and safety guar-
antees. IEEE Control Systems Letters, 6:409–414, 2021.

Vrushabh Zinage and Efstathios Bakolas. Neural koopman lyapunov control. Neurocomputing, 527:
174–183, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED RELATED WORK

Learning-based Koopman approaches (Lusch et al., 2018; Yeung et al., 2019; Ricardo Constante-
Amores et al., 2024) approximate nonlinear dynamics by training neural networks to construct ob-
servables, thereby lifting the system into a space where linear dynamics are identified. Despite
differences in implementation, the pipeline is largely consistent: an encoder maps the state into a
latent space, and operators (A,B) are then estimated either through direct regression (e.g., least
squares) or as trainable parameters within an end-to-end framework (Han et al., 2020; Wang et al.,
2021; Shi & Meng, 2022; Xiao et al., 2022). Variants further differ in whether the operators are
kept fixed or allowed to vary with time (Li et al., 2025), but the overall objective remains multi-
step trajectory reconstruction. Crucially, structural properties of the underlying system are rarely
incorporated.

Very few works have even attempted to consider controllability in this setting, and those that do
typically include the Kalman rank condition as a loss term (Han et al., 2020). This suffers from
two major issues. First, placing the condition in the loss provides no guarantee of preserving con-
trollability. Second, and more importantly, requiring controllability of the entire lifted system is
unrealistic and misguided: the lift is often very high dimensional while the input dimension remains
small, making global controllability virtually impossible; moreover, in control tasks the relevant
quantity is the reachability of the original physical state, not arbitrary auxiliary observables. As a
result, such lifted-space conditions fail to capture the property that actually matters.

Research on incorporating structural priors into Koopman learning remains limited. The first such
attempt considered stabilizability, introducing LMI-based parameterizations of the Koopman op-
erator (Fan et al., 2024). This was the earliest demonstration that parameterization can embed
system-theoretic properties into Koopman models, but stabilizability is a weaker requirement than
controllability and cannot guarantee capabilities such as trajectory tracking. It is also worth noting
that, more broadly, some recent works have introduced properties such as stability, stabilizability, or
dissipativity into dynamics or control learning, for example via Neural System Level Synthesis (Fu-
rieri et al., 2022), or SDP/QP formulations (Yin et al., 2021; Tang et al., 2024; Okamoto & Kojima,
2025). While these demonstrate that inductive biases can be beneficial, such approaches either im-
pose heavy computational burdens through projection-based optimization, or rely on the availability
of base stabilizing controllers, and in any case highlight that structural priors are gaining attention
while simple and efficient mechanisms remain highly needed.

A very recent effort, parametric Koopman models, embeds the control input nonlinearly via neural
networks (Guo et al., 2025). Here controllability can only be verified post hoc using Lie bracket
conditions, and because the input enters nonlinearly, the resulting control problems remain nonlinear
optimizations, limiting the practical benefit of the linear surrogate.

In summary, existing Koopman learning methods focus primarily on reconstruction accuracy, with
occasional efforts to enforce stabilizability or to post hoc analyze controllability. None provide
guarantees of controllability during training, nor do they shape its degree in a way that affects the
feasibility and efficiency of MPC. Moreover, by neglecting controllability as a structural prior, they
miss the opportunity to reduce the effective parameter search space and to guide the training process
itself. This gap motivates our framework, which enforces controllability by construction and explic-
itly regularizes the degree of reachability, yielding models that are both predictive and reliable for
control.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DETAILED PRELIMINARIES

B.1 KOOPMAN OPERATOR

To handle inputs explicitly, the system can be reformulated on an augmented state space,

X (t) =
[
x(t)
u(t)

]
,

d

dt
X (t) = F(X (t)) =

[
f(x(t), u(t))

u̇(t)

]
.

The dynamics are autonomous in X (t), so one can define a Koopman operator acting on observables
Ψ : Rn+m → RÑ . This operator is linear but infinite-dimensional, and satisfies

d

dt
Ψ(X (t)) = KΨ(X (t)).

In other words, the nonlinear flow of (x, u) induces linear dynamics in the lifted coordinates Ψ(X).
Since K is infinite-dimensional, a finite-dimensional approximation is required for practical use. A
standard construction is to select observables of the form

Ψ(X) =
[
ϕ(x)
u

]
, z = ϕ(x) ∈ RN ,

where ϕ : Rn → RN (N ≫ n) is a set of nonlinear lifting functions applied to the state, and the
input u is retained in its original coordinates. With this choice, the operator reduces to a block-matrix
structure,

d

dt

[
z(t)
u(t)

]
= KΨ

[
z(t)
u(t)

]
, KΨ =

[
A B
∗ ∗

]
.

Here A ∈ RN×N governs the autonomous dynamics of the lifted state, B ∈ RN×m describes how
control inputs affect the lifted state, and the lower blocks (denoted by ∗) capture the evolution of
the input coordinates themselves. Since prediction and control only require the lifted state dynam-
ics, it suffices to retain the first N rows of this operator. This leads to the following Koopman
representation as an ODE:

ż(t) = Az(t) +Bu(t), x̂(t) = h(z(t)), z(t) = ϕ(x(t))

The tuple (ϕ,A,B, h) constitutes a finite-dimensional approximation of the infinite-dimensional
controlled Koopman operator. In many applications h is taken to be linear, i.e. h(z) = Cz with
C ∈ Rn×N .

B.2 CONTROLLABILITY OF LINEAR SYSTEMS

Consider the linear control system defined globally

ż(t) = Az(t) +Bu(t), z(t) ∈ RN , u(t) ∈ Rm,

with A ∈ RN×N and B ∈ RN×m.

Dislike the challenging nonlinear controllability verification problem, the problem is tractable for
linear systems.
Proposition 1 (Kalman Rank Condition). The linear system with matrices (A,B) is controllable if
and only if the controllability matrix

C =
[
B AB A2B · · · AN−1B

]
has full row rank, i.e. rank(C) = N . In this case, the columns of C span the entire state space, so
any state can be reached from any initial condition by a suitable input.

Equivalently, controllability can also be characterized through the controllability Gramian

WT =

∫ tf

t0

eAτBB⊤eA
⊤τ dτ,

which is positive definite for some sufficiently large time interval if and only if (A,B) is controllable.
The eigenvalues of WT further quantify the directions that are more or less easily influenced by the
inputs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proposition 2 (Controllable Canonical Form). If the linear system with matrices (A,B) is control-
lable, there exists an invertible matrix P such that the transformed pair

Ac
θ = P−1AP, Bc

θ = P−1B

takes a block companion form. In the single-input case (m = 1), Ac
θ is the companion matrix

Ac
θ =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
a1 a2 a3 · · · aN

 , Bc
θ =


0
0
...
0
1

 ,
where (a1, . . . , aN) are real coefficients. In the multi-input case (m > 1), Ac

θ can be written in
Brunovský block form with each block corresponding to an input channel. These canonical represen-
tations show that every controllable pair is equivalent, up to a similarity transform, to a structured
form where controllability is explicit.

Definition 5 (State-to-Output Controllability (SOC)). Consider the linear system ż(t) = Az(t) +
Bu(t) with output y(t) = Cz(t), y(t) ∈ Rp. The triple (A,B,C) is state-to-output controllable if,
for any initial state z(0) = z(t0) and target output yT ∈ Rp, there exists a finite horizon and input
sequence u(t) ∈ Rm, t ∈ [t0, tf), such that y(tf) = yT .

Output controllability can be characterized by the output controllability matrix

Cy =
[
CB CAB · · · CAN−1B

]
∈ Rp×Nm.

The system (A,B,C) is output controllable if and only if rank(Cy) = p, i.e. the columns of Cy span
the entire output space. When C = I , this reduces to the Kalman rank condition for state control-
lability. Output controllability generalizes state controllability by focusing only on the directions
visible through C. When C = I , the two notions coincide.

If (A,B) is not controllable, there exist directions in the state space that cannot be influenced by any
admissible input, which limits the effectiveness of feedback and may render stabilization or trajec-
tory tracking tasks impossible. Even when a system is controllable in the binary sense, the degree of
controllability encoded by the Gramian eigenvalues strongly affects input energy requirements and
numerical conditioning in control algorithms. For this reason, ensuring or promoting controllability
in identified models is essential when the ultimate goal is to use them for control.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C CONCEPTUAL OVERVIEW AND CONTRIBUTIONS

Figure 8: Overview of the relations among controllability notions.

Fig 8 illustrates how different notions of controllability are connected in our framework and our
contributions:

1⃝ We show that the controllability of the original nonlinear system is equivalent to OOC of
Koopman linear representation (in main text).

2⃝ In the Koopman linear representation, we prove that OOC coincides with SOC
(Lemma 1and Theorem 1, proved in Appendix D).

3⃝ Based on this equivalence, we for the first time introduce a SOC canonical form which
can be used for OOC canonical form for Koopman representation (Theorem 2, proved in
Appendix D).

4⃝ Finally, we leverage this canonical form to parameterize the neural Koopman operator,
which enables constructing learning-based Koopman representations of the original non-
linear system.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D PROOF

Proof of Lemma 1. We begin by proving that the map T : Z → Rn with y = T z is bijective.
The map is well-defined from the definition of set Z . For any z1, z2 ∈ Rn, if y1 = y2, then
z1 = ϕ(y1) = z2 = ϕ(y2). This indicates that T is injective. On the other hand, any y1 ∈ Z
corresponds to one z1 = ϕ(y1). This shows that T is surjective. We conclude that the map T is
bijective.

We then prove sufficiency of the claimant. From the definition, for any y0 ∈ Rn, the system can
reach any output yT ∈ Rn. Consider z0 ∈ Z and zT ∈ Z , let y0 = Cz0 and yT = CzT . Given
that T is bijective, it holds that z0 = ϕ(y0) and zT = ϕ(yT). From OOC, the system starts from
output y0 can reach yT , which indicates that the system starts from state z0 can reach zT . Given
that states z0 and zT are arbitrarily chosen, SOC holds. Necessity of the claimant holds with similar
arguments.

Proof of Theorem 1. We begin by proving that the system (3) is SOC on (Z,Rn) if and only if
C is full-rank. Consider an arbitrary z0 ∈ Z and yT ∈ Rn, if there exists an input sequence
u(·) : [t0, tf]→ Rm that drives the system from z0 to yT , then we have

yT = C

(
eAθ(tf−t0)z0 +

∫ tf

t0

eAθ(tf−t0−τ)Bθu(τ)dτ

)
(8)

Rearranging the terms and applying Taylor expansion for eAθ(tf−t0−τ) =
∑∞

k=0
Aθ(tf−t0−τ)k

k! , we
have

yT − CeAθ(tf−t0)z0 = C

∞∑
k=0

Ak
θBθ

(∫ tf

t0

(tf − t0 − τ)k

k!
u(τ)dτ

)
(9)

yT −CeAθ(tf−t0)z0 spans Rn because yT and z0 are independent, and yT spans Rn. Under this, we
deduce that the existence of u(τ) is equivalent to C is full rank. Using Lemma 1, we conclude that
the system is OOC on Rn if and only if the controllability matrix C is full-rank.

In the proof of Theorem 1, we use the fact that yT −CeAθ(tf−t0)z0 spans Rn because yT and z0 are
independent, and yT spans Rn. The subspace Z does not influence the result. This indicates that for
any subspace H ⊆ RN the Koopman linear system is SOC on (H,Rn) if and only if it is SOC on
(RN ,Rn).

Proof of Theorem 2. The proof is based on some algebraic calculation. From (5), AθBθ and A2
θBθ

are given by

AθBθ = P



0
0
...
0
1︸︷︷︸

(n − 1)th row
...
...


A2

θBθ = Pθ



0
0
...
0
1︸︷︷︸

(n-2)th row
...
...


(10)

Using induction, Ak
θBθ for 1 ≤ k ≤ n− 1 are given by

Ak
θBθ = Pθ



0
0
...
0
1︸︷︷︸

(n-k)th row
...
...


(11)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The OOC controllability matrix has the following structure

C = CP



0 0 . . . 0 1︸︷︷︸
nth column

. . .

0 0 . . . 1︸︷︷︸
(n − 1)th column

.

...
...

.
...

0 1︸︷︷︸
(n − 1)th row

.
...

1︸︷︷︸
(n)th row

.
...

...
.

...



= P1



0 0 . . . 0 1︸︷︷︸
nth column

. . .

0 0 . . . 1︸︷︷︸
(n − 1)th column

.

...
...

.
...

0 1︸︷︷︸
(n − 1)th row

.
...

1︸︷︷︸
(n)th row

.
...



(12)

Clearly, C has full row rank as P1 has full rank and the matrix that multiplies P1 also has full rank.
From Theorem 1, system (3) under canonical form (5) is OOC on Rn.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E EXTENSIONS

E.1 MULTI-INPUT PARAMETERIZATION

We extend Theorem 2 to multi-input systems with m ≥ 2. The idea is to consider the Brunovsky
canonical form (Luenberger, 2003).

Theorem 3. Consider system (3) with m ≥ 2. Then, the system is OOC on Rn if and only if there
exist matrices Ac

θ ∈ RN×N , Bc
θ ∈ RN×m and P ∈ RN×N , where

Ac
θ =



A1 0 0 0
f1 A2 0 0 . . . 0
...

...
. . .

. . .
. . .

...
f2 f3 . . . Am . . . 0
b1 b2 bN
...

...
. . .

. . .
. . .

...
c1 c2 cN


Bc

θ =



B1 0 . . . 0
g1 B2 0 . . .
...

...
. . .

...
g2 g3 . . . Bm

d1 d2 . . . dm
...

...
. . .

...
e1 e2 . . . em


P = diag(P1, P2).

(13)
such that

Aθ = PθA
c
θP

−1
θ Bθ = PθB

c
θ (14)

P1 ∈ Rn, P2 ∈ RN−n are both full rank matrices. The blocks Ai ∈ RNi×Ni and Bi ∈ RNi×1 are
in the forms of

Ai =


0 1 0 0
0 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...
0 0 1
a1 a2 aNi

 Bi =


0
0
...
0
1

 , (15)

where
∑m

i=1Ni = n, the elements in rows from n+ 1 to N of both Ac
θ and Bc

θ are free.

Proof. To show the structure of the OOC matrix C, we consider using mathematical induction. For
2 < k < N , suppose that

Ak
θBθ = Pθ



Ak
1B1 0 . . . 0
g′1 Ak

2B2 0 . . .
...

...
. . .

...
g′2 g′3 . . . Ak

mBm

d′1 d′2 . . . d′m
...

...
. . .

...
e′1 e′2 . . . e′m


20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Given that we focus on the structure of the matrix, we use g′1, . . . , e
′
m to represent some variables or

matrices, with a slight abuse of notation. From this, we obtain

Ak+1
θ Bθ = Aθ ·Ak

θBθ

= Pθ



A1 0 0 0
f1 A2 0 0 . . . 0
...

...
.

...
f2 f3 . . . Am . . . 0
b1 b2 bN
...

...
.

...
c1 c2 cN





Ak
1B1 0 . . . 0
g′1 Ak

2B2 0 . . .
...

...
. . .

...
g′2 g′3 . . . Ak

mBm

d′1 d′2 . . . d′m
...

...
. . .

...
e′1 e′2 . . . e′m



= Pθ



Ak+1
1 0 . . . 0
g′1 Ak+1

2 B2 0 . . .
...

...
. . .

...
g′2 g′3 . . . Ak+1

m Bm

d′1 d′2 . . . d′m
...

...
. . .

...
e′1 e′2 . . . e′m



(16)

which satisfies the induction for k+1. It an be verified thatA2
θBθ also fulfills the structural assump-

tion. Using the result, the OOC matrix C is given by

C =CP



B1 0 . . . 0 A1B1 0 AN−1
1 B1 0 0 . . .

g′1 B2 0 . . . g′2 A2B2 0 . . . g′3 AN−1
2 B2 0 . . .

...
...

g′4 . . . Bm g′5 AmBm g′6 AN−1
m Bm . . .

g′7 g′8
...

...



=P1


B1 0 . . . 0 A1B1 0 AN−1

1 B1 0 0 . . .
g′1 B2 0 . . . g′2 A2B2 0 . . . g′3 AN−1

2 B2 0 . . .
...

...
g′4 . . . Bm g′5 AmBm g′6 AN−1

m Bm . . .


(17)

From the companion structure of each Ai and Bi, it is known that for each i:[
Bi AiBi . . . AN−1

i Bi

]
(18)

is full rank. Inserting zero blocks into the matrix will not change the rank, we then immediately
obtain that C is full rank as well. Using Theorem 1, we conclude that system (3) is OOC.

E.2 SIMPLIFIED PARAMETERIZATION

In the following, we propose another simplified canonical form for single input case.
Proposition 3. Consider system (3) with m = 1 (single-input). Then, an OOC canonical form is
given by

Aθ =

[
Ã 0n×(N−n)

0(N−n)×n A′

]
Bθ =

[
B̃
B′

]
, (19)

where Ã ∈ Rn×n and B̃ ∈ Rn×1 are given by

Ã =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
a0 a1 · · · an−2 an−1

 B̃ =


0
0
0
...
1

 . (20)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A′ ∈ R(N−n)×(N−n) and B′ ∈ R(N−n)×1 are free matrices.

Proof. From (19), the state controllability matrix is given by

Cs =
[
B̃ ÃB̃ Ã2B̃ . . . ÃN−1B̃
B′ A′B′ A′2B′ . . . A′N−1B′

]
(21)

From Theorem 1, the OOC controllability matrix is given by

C = CCs =
[
B̃ ÃB̃ Ã2B̃ . . . ÃN−1B̃

]
. (22)

From (20), the matrix [
B̃ ÃB̃ Ã2B̃ . . . Ãn−1B̃

]
(23)

is full rank. From the Cayley-Hamilton Theorem, C is also full rank.

This canonical form requires Aθ to be block diagonal, unlike the one in Theorem 2. This form can
be conservative in practice, particularly for the Koopman linear system. This is because the states x
and ϕ(x) in z have no correlation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F DISCUSSIONS OF LIMITATIONS

F.1 THE STRUCTURE OF Pθ

The canonical forms in Theorems 2 and 3 reply on an invertible matrix Pθ. This matrix is critical
as it provides extra degree of freedom in linearly transforming the coordinates. In these theorems,
the matrix Pθ is constructed as block diagonal Pθ = diag(P1, P2) because of the OOC structure: it
is the first n rows of [Bc

θ Ac
θB

c
θ . . . (Ac

θ)
N−1Bθ] that needs to be full rank. Too see why the

block diagonal structure is important, we re-evaluate the OOC matrix C for m − 1. First, it is clear
that

C = CP [Bc
θ Ac

θB
c
θ . . . (Ac

θ)
N−1Bθ]︸ ︷︷ ︸

:=Cc

Let matrices Cc1 ∈ Rn×n, Cc2 ∈ Rn×(N−n), Cc3 ∈ R(N−n)×n, Cc4 ∈ R(N−n)×(N−n) be such that

Cc =
[
Cc1 Cc2
Cc3 Cc4

]
The companion forms of Ac

θ and Bc
θ in Equations (5) and (13) ensure that

rank(Cc1) = n =⇒ rank
(
[Bc

θ Ac
θB

c
θ . . . (Ac

θ)
N−1Bθ]

)
≥ n

Assuming that Pθ is full rank but not block diagonal:

P =

[
P1 P2

P3 P4

]
.

Then we have
C = CPCc = [P1Cc1 + P2Cc2 P1Cc2 + P2Cc4.]

Although P1, P2 and Cc1 are ensured to be full rank, P1Cc1 +P2Cc2 is not ensured to be full rank. One
sufficient condition for C to be full rank is

P2 = 0, P1 is full rank. (24)

For (24) holds and Pθ is full rank, we adopt a block diagonal structure where both P2 and P3 are set
to zero, and P1, P4 ≻ 0. This will unavoidably introduce conservativeness in training.
As we admit that making P1Cc1 + P2Cc full rank by construction is hard, we can still consider
constructing a full rank matrix Pθ with only P2 = 0 to reduce conservativeness. This is left for
future investigation.

We also provide some practical insight: any full rank matrix P result in a full rank C almost surely.
If one fix a full rank matrix Cc1 and a not necessarily full rank matrix Cc2, and randomly construct
a matrix P from a continuous distribution. Then, P1Cc1 + P2Cc2 is almost surely full rank. This is
because the determinant of is a nontrivial polynomial in the entries of P1Cc1 +P2Cc2. The zero set of
any nontrivial polynomial has Lebesgue measure zero in Rn2

. Since both P1 and P2 are constructed
from a continuous joint distribution, it assigns probability zero to Lebesgue-null sets. If P1Cc1+P2C22
is almost surely full rank, then so is C.

F.2 THE MULTI-INPUT CANONICAL FORM

In Theorem 3, we provides a multi-input canonical form (13). This is obtained from the single-input
canonical form within a Brunovsky structure. The whole matrix Ac

θ consists of m small matrix
Ai ∈ RNi×Ni . In linear system theory, the dimensions Ni, also termed as controllability indices,
can be determined via rank checks. More specifically, the index Ni ≥ 3 for input i is the smallest
integer such that

rank([Bθ AθBθ . . . ANi−1
θ B])− rank([Bθ AθBθ . . . ANi−2

θ B]) = 1. (25)

This condition can be readily verified a posteriori for given Aθ and Bθ. However, the indices are
hard to be determined by construction, as the correspondence of state and input on the lifted space is
unknown. In the experiments, we consider a conservative method that uniformly assigned indices.
This is, clearly, not the optimal assignment in general.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G EXPERIMENTS

G.1 DATA COLLECTION

For each environment we simulate continuous-time nonlinear dynamics under random control in-
puts. At the beginning of each rollout an initial state x0 is drawn uniformly from a prescribed range.
The system then evolves according to its ground-truth ODE ẋ = f(x, u) while, at each step, the
control input u(t) is sampled uniformly from the admissible bounds. Trajectories are recorded at
fixed sampling intervals, yielding sequences of length 250 steps.

Sampling details. The integration step size differs across environments: for mountain car and
GRN we use ∆t = 1.0 s, while for pendulum and cartpole we use ∆t = 0.02 s. Although our
experiments use regularly sampled data, modeling the system in continuous time allows the same
framework to handle irregular sampling if required.

Dataset size.

• Mountain Car: 5000 training trajectories, 1000 test trajectories.
• Pendulum: 5000 training trajectories, 1000 test trajectories.
• Cartpole: 10000 training trajectories, 1000 test trajectories.
• GRN: 10000 training trajectories, 1000 test trajectories.
• Reacher: 5000 training trajectories, 1000 test trajectories.
• Franka: 5000 training trajectories, 1000 test trajectories.

Training usage. During training, we do not use the entire 250-step rollouts directly. Instead, a
sliding window of length 15 is randomly sampled from a trajectory. This increases sample diversity
and ensures that the learned models are trained on local temporal contexts.

G.2 EXPERIMENTS SETTINGS

Mountain Car dynamics. The continuous-time Mountain Car dynamics are:

ṗ = v,

v̇ = a · P − 0.0025 cos(3p),

where p is the position, v the velocity, a the input action, and P the action scaling coefficient.

Table 3: Hyperparameters for Mountain Car.

Hyperparameter Value
Batch size 64
Learning rate 1× 10−3

Prediction horizon 15
Dimension of observables N 16
Number of layers of ψ 3
Hidden dimension of ψ 64
Activation function ReLU

Pendulum dynamics. The continuous-time Pendulum dynamics are:

θ̇ = ω,

ω̇ =
3g

2l
sin θ +

3

ml2
τ,

where θ is the angle, ω the angular velocity, m the mass, l the length, τ the input torque, and g the
gravity constant.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for Pendulum.

Hyperparameter Value
Batch size 64
Learning rate 1× 10−3

Prediction horizon 15
Dimension of observables N 16
Number of layers of ψ 3
Hidden dimension of ψ 64
Activation function ReLU

CartPole dynamics. The continuous-time CartPole dynamics are:

ẋ = ẋ,

ẍ =
f + lθ̇2 sin θ

M
− lθ̈ cos θ

M
,

θ̇ = θ̇,

θ̈ =
g sin θ − cos θ

(
f+lθ̇2 sin θ

M

)
l
(

4
3 −

m cos2 θ
M

) ,

where x is cart position, θ the pole angle, M the total mass, m the pole mass, l the pole length, f
the input force, and g the gravity constant.

Table 5: Hyperparameters for CartPole.

Hyperparameter Value
Batch size 64
Learning rate 1× 10−3

Prediction horizon 15
Dimension of observables N 25
Number of layers of ψ 3
Hidden dimension of ψ 64
Activation function ReLU

GRN dynamics. The continuous-time GRN dynamics with 6 states and 3 inputs are:

ẋ1 = −γx1 + a
1

K + x26
+ u1,

ẋ2 = −γx2 + a
1

K + x24
+ u2,

ẋ3 = −γx3 + a
1

K + x25
+ u3,

ẋ4 = −cx4 + βx1,

ẋ5 = −cx5 + βx2,

ẋ6 = −cx6 + βx3,

where x1, . . . , x6 are the states, u1, u2, u3 are the control inputs, and γ, a,K, c, β are system param-
eters.

Reacher (Mujoco). Reacher is a two-jointed robot arm. The goal is to move the robot’s end
effector (called fingertip) close to a target as Figure 9 shown. Note that we should exclude redundant
or non-independent states when constructing the OOC canonical form; only the independent degrees
of freedom should enter the canonical structure.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters for GRN.

Hyperparameter Value
Batch size 64
Learning rate 1× 10−3

Prediction horizon 15
Dimension of observables N 30
Number of layers of ψ 3
Hidden dimension of ψ 64
Activation function ReLU

Figure 9: Reacher Environment.

Franka (7 DoF Manipulator). Franka is a 7 DoF robotic manipulator. The goal is to move the
robot’s end effector (called fingertip) close to a target. The environment setting in our experiments
is the same as provided in Shi & Meng (2022). Note that we should exclude redundant or non-
independent states when constructing the OOC canonical form; only the independent degrees of
freedom should enter the canonical structure.

G.3 ADDITIONAL RESULTS

Mountain Car The comparison of prediction performance on Mountain Car Environment with
1% training dataset are shown in Figure 10

Pendulum The comparison of control performance on Pendulum environment is shown is Fig-
ure 11

Cartpole The comparison of prediction and control performance on Cartpole environment is
shown in Figure 12 and Figure 13.

GRN The results of prediction on GRN environment by our method is shown in Figure 16.

Reacher The results of prediction on Reacher environment over different amount of training by
DKO and our methos are shown in in Table 9. Also, the training loss versus step is shown in
Figure 15a. Our losses decrease rapidly and stabilize at a lower level, whereas DKO starts with
large errors and converges slowly.

Franka The results of prediction on Reacher environment over different amount of training by
DKO and our methos are shown in in Table 9. Also, the training loss versus step is shown in
Figure 15b. The results of prediction on GRN environment by our method is shown in Figure 16. It
can be found that our method learns faster with fewer data needed to achieve satisfying prediction
performance.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters for Reacher.

Hyperparameter Value
Batch size 64
Learning rate 1× 10−2

Prediction horizon 15
Dimension of observables N 16
Number of layers of ψ 3
Hidden dimension of ψ 64
Activation function ReLU

Table 8: Hyperparameters for Franka.

Hyperparameter Value
Batch size 64
Learning rate 1× 10−3

Prediction horizon 15
Dimension of observables N 16
Number of layers of ψ 3
Hidden dimension of ψ 64
Activation function ReLU

G.4 ROLE OF CONTROLLABILITY LOSS

Suitable penalty on controllability loss will also contribute to accuracy. However, too large penalty
makes the model must trade off matching the true dynamics versus enlarging controllability, then
may damage prediction accuracy. Although MPC can compensate for prediction inaccuracies to
some extent, poor prediction quality results in higher control effort in the end. The experiments on
Pendulum with different weights on gramian loss (0.005 and 0.05) are shown in Figure 17.

G.5 ADDING ENCODER FOR INPUT

Adding an input encoder as shown in Figure 18 effectively introduces a nonlinear dependence of the
control signal on the state, since the input to the lifted dynamics becomes û = gθ⊙u rather than the
raw control signal. Formally, this representation takes the form:

ż(t) = Aθz(t) +Bθû(t), z(t) = ϕθ(x(t)),

x̂(t) = y(t) = Cz(t), û(t) = gθ(x̂(t))⊙ u(t)

Although g may depend on the state, the surrogate system can still be regarded as linear in its
effective input û. Consequently, the controllability analysis remains unchanged: as long as the
encoder does not map all admissible inputs to zero, the pair (A,B) governs reachability in exactly
the same way as in the standard formulation without encoding. In this sense, the encoder enriches the
expressiveness of the Koopman representation without undermining the controllability guarantees.

The prediction performance of our framework with input encoder is shown in Table 10. It can be
found the prediction is even more accurate. However, the reason why we still choose the framework
without input encoder is: in this case the effective input becomes û = g(x̂)⊙u, leading to a bilinear
system ż = Az + B(g(Cz) ⊙ u). This breaks the standard linear structure used in MPC (which
could be our future research direction); one could optimize over û, but then the original control u is
no longer explicit, making constraints and interpretation of the optimization objective difficult. We
therefore focus on the direct-input setting, which integrates more naturally with control design.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) Trajectories of 3 cases predicted by DKO. (b) Trajectories of 3 cases predicted by Ours.

Figure 10: Comparison of Prediction Performance on Mountain Car Environment with 1% training
dataset

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Angle

2

0

2

4

6

8

An
gl

e
Ve

lo
ci

ty

Pendulum
DKO (5%)
DKO (10%)
Ours (5%)
Ours (10%)
Start
Goal

(a) Phase trajectories

0 25 50 75 100 125 150 175
Time step

15

10

5

0

5

10

Co
nt

ro
l u

Control Actions
DKO (5%)
DKO (10%)
Ours (5%)
Ours (10%)

(b) Control inputs

Figure 11: Comparison of Pendulum experiments. (a) trajectories in angle–velocity space; (b) cor-
responding control sequences.

Table 9: Comparison of prediction error (MSE) across environments with varying fractions of train-
ing data for Reacher and Franka.

Environment Method 1% 5% 10% 30% 50% 100%

Reacher DKO
> 5

3.47 1.55 0.5613 0.2572 0.0194
Ours 0.0199 0.0135 0.0039 ≤ 1× 10−4

Franka DKO 0.0453 0.022 0.0068 10−4 ≤ 1× 10−5

Ours 0.039 0.00064 ≤ 1× 10−5

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) Trajectories of 3 cases predicted by DKO. (b) Trajectories of 3 cases predicted by Ours.

Figure 12: Comparison of Prediction Performance on Cartpole Environment with 10% training
dataset

(a) Control performance of DKO (fail) (b) Control performance of Ours

Figure 13: Comparison of Control performance on Cartpole with 30% training dataset

Table 10: Comparison of prediction error (MSE) across environments with varying fractions of
training data. Our method shows clear advantages under limited training data, highlighting its data
efficiency.

Environment Method 1% 5% 10%

Mountain Car w/o Input Encoder 0.0032 0.00019 0.00011
w/ Input Encoder 0.00087 0.00018 0.00011

Pendulum w/o Input Encoder 0.3747 0.0318 0.0114
w/ Input Encoder 0.1338 0.0067 0.0065

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 14: Prediction Performance on GRN Environment

0 2500 5000 7500 10000 12500 15000 17500 20000
step

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

DKO
Ours

(a) Reacher

0 500 1000 1500 2000
step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
ss

1e 5

DKO
Ours

(b) Franka

Figure 15: Loss versus training step on Reacher and Franka. Our method converges faster than
DKO.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) Trajectories of end effector predicted by DKO. (b) Trajectories of end effector predicted by Ours.

Figure 16: Prediction Performance (end effector position) on Franka Environment with 10% training
dataset

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) Small weight: MPC control (b) Small weight: MPC trajectory

(c) Larger weight: MPC control (d) Larger weight: MPC trajectory

Figure 17: Comparison of MPC performance under small and larger weights settings. The larger
weight setting shows larger eigenvalues but poorer predictive control (larger energy use and over-
shoot in trajectory).

Figure 18: With Input Encoder

32

	Introduction
	Preliminaries
	Problem setup
	Neural ODEs with input
	Koopman Operator

	Koopman Learning Framework
	Controllability Analysis
	Controllability Canonical Form
	Degree of controllability via Gramians
	Loss Functions Design
	Model predictive control on learned models

	Empirical Evaluation
	Conclusion
	Detailed Related Work
	Detailed Preliminaries
	Koopman Operator
	Controllability of Linear Systems

	Conceptual Overview and Contributions
	Proof
	Extensions
	Multi-input Parameterization
	Simplified Parameterization

	Discussions of Limitations
	The Structure of P
	The Multi-input Canonical Form

	Experiments
	Data Collection
	Experiments Settings
	Additional Results
	Role of controllability loss
	Adding encoder for input

