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Abstract

Designing effective collaboration structure for001
multi-agent systems to stimulate collective rea-002
soning capability is crucial yet remains under-003
explored. In this paper, we systematically inves-004
tigate how collaborative reasoning performance005
is affected by three key design factors: (1)006
expertise-domain alignment, (2) collaboration007
paradigm (structured workflow vs. diversity-008
driven integration), and (3) system scale. Our009
findings reveal that expertise alignment bene-010
fits are highly domain-contingent, proving most011
effective for contextual reasoning tasks. Fur-012
thermore, collaboration focused on integrating013
diverse responses consistently outperforms se-014
quential functional cooperation. Finally, we015
empirically explore the impact of scaling the016
multi-agent system with expertise specializa-017
tion and study the computational trade off, high-018
lighting the need for more efficient commu-019
nication protocol design. Our work provides020
concrete guidelines for configuring specialized021
multi-agent system and identifies critical archi-022
tectural trade-offs and bottlenecks for scalable023
multi-agent reasoning.024

1 Introduction025

Collective intelligence, the emergent problem-026

solving capability arising from structured group027

interactions, has long been recognized as028

a cornerstone of complex human decision-029

making (Surowiecki, 2004). Through mechanisms030

like deliberative debate and systematic knowledge031

integration, human collectives consistently outper-032

form individual experts in tasks requiring multi-033

perspective analysis and contextual synthesis.034

The recent evolution of large language and rea-035

soning models (LLMs/LRMs; Yang et al., 2025;036

Jaech et al., 2024; Team et al., 2025) has spurred037

parallel investigations into machine collective in-038

telligence. Contemporary research has developed039

artificial analogs of human collaboration patterns040

through techniques such as multi-agent debate041

I have some questions related to Math, Business, Health, and Law. Could 
you use your expert knowledge to help me understand and solve them?

Math
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How to perform collaborative expert reasoning better?

Discussion/Debate Discussion/Debate Discussion/Debate Discussion/Debate

Figure 1: Workflow diagram for a multi-agent reasoning
system with specialized agents.

frameworks and workflow orchestration (Li et al., 042

2024c; Du et al., 2024; Liang et al., 2024). These 043

approaches primarily focus on either enhancing in- 044

dividual model performance through collective ver- 045

ification processes or establishing general-purpose 046

problem-solving workflow pipelines. 047

A prevalent strategy to enhance collective in- 048

telligence in these systems is collaborative exper- 049

tise specialization, where LLMs are instructed to 050

simulate specific expert personas (e.g., “act as an 051

experienced lawyer”; Li et al., 2024a; Xu et al., 052

2024a). This approach is hypothesize to operate 053

through two primary mechanisms: (1) knowledge 054

recall: activating relevant domain-specific knowl- 055

edge latent within the LLMs via contextual role 056

framing, and (2) perspective synthesis: leveraging 057

diverse expert viewpoints to foster emergent, robust 058

problem-solving patterns. 059

Although expertise specialization is widely 060

adopted in multi-agent system (Wang et al., 2024a; 061

Li et al., 2024a), the impact of varying collabora- 062

tive expertise domain on distinct downstream sce- 063

narios remains underexplored, making configuring 064

multiple expert roles unclear in multi-agent study. 065

To address this gap, we empirically evaluate the 066

influence of different collaborative expertise con- 067

figurations on task performance across four repre- 068
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sentative domains from MMLU-pro (Wang et al.,069

2024d). Our findings in Section 4 demonstrate a070

positive correlation between task performance071

and the alignment of group expertise with the072

task domain, further underscoring the necessity of073

accurately matching the multi-agent system exper-074

tise with downstream tasks.075

Another dimension concerning the multi-076

agent system design is the collaboration077

paradigm—namely, the mechanism governing078

how specialist agents interact in a multi-agent079

system. Currently, the collaboration paradigm080

predominantly used in recent studies could be081

categorized into two kinds: (1) Diversity-Driven082

Perspective Integration, where agents, often083

embodying different viewpoints or roles, are084

encouraged to generate diverse responses to enrich085

the solution space (Wang et al., 2024b; Chen et al.,086

2024b; Hu et al., 2025). (2) Structured Workflow087

Cooperation, where different agents are assigned088

distinct sub-tasks within a predefined pipeline to089

collaboratively construct a solution (Chen et al.,090

2024c; Hong et al., 2024; Zhang et al., 2025).091

To understand the preference of collaboration092

paradigm in collaborative expertise specialization,093

we design comparative experiments which unveil094

the performance differences between paradigms.095

Our observations in Section 5 reveal a consistent096

advantage for diversity-driven collaboration097

over structured workflow collaboration, sug-098

gesting the superiority of the diversity-driven099

paradigm. Detailed analysis regarding intra-100

system viewpoint diversity are also conducted101

to study the impact of agent response diversity102

in multi-agent system, where we find a higher103

diversity could indicate a better performance.104

Finally, constructing large-scale multi-agent sys-105

tem has become a critical, yet often enigmatic106

aspect of multi-agent system design (Chen et al.,107

2024c; Piao et al., 2025). While intuition and some108

preliminary studies (Qian et al., 2024; Li et al.,109

2023) suggest that larger groups would lead to110

a better reasoning performance, the actual effec-111

tiveness of scaling within the context of collab-112

orative expertise specialization and the potential113

computation-performance trade-off, are not well114

understood. Motivated by the lack of clarity on115

scaling effects in collaborative expertise specializa-116

tion, we specifically study how performance scales117

in multi-agent systems composed of specialized118

experts. Our systematic experiments involve incre-119

mentally increasing the system scale to examine120

potential scaling laws. The results in Section 6 un- 121

cover non-linear dynamics; specifically, adding 122

more experts tends to improve the collective rea- 123

soning ability of the system. This positive trend 124

holds regardless of whether the larger system 125

scale contains greater viewpoint diversity or a 126

more comprehensive workflow structure, indi- 127

cating a general benefit to increasing the number 128

of expert agents and encouraging such designs for 129

enhanced system performance. Furthermore, our 130

analysis of the computational trade-offs associated 131

with system scaling reveals that, while the system 132

would benefit from the expansion, there remains 133

a critical need for more efficient communication 134

protocols between agents for more scalable and 135

cost-effective multi-agent reasoning process. 136

2 Related Works 137

2.1 Multi-Agent Collaboration 138

Multi-Agent Collaboration adopts multiple LLMs 139

to solve the problem collaboratively. Abundant 140

researches have investigated the multi-agent col- 141

laboration framework to improve decision-making 142

capability of the system (Wang et al., 2024b; Liang 143

et al., 2024; Du et al., 2024). In addition to collab- 144

oration among LLMs, several researchers instruct 145

the agents to cooperate in a workflow to study the 146

multi-agent systems’ ability of solving real world 147

challenges (Li et al., 2024b; Xu et al., 2024b; Chen 148

et al., 2024a). While Qian et al. (2024), Yang et al. 149

(2024) and Wang et al. (2024c) has investigate the 150

effect of varying the scale of multi-agent system 151

on reasoning and simulation, prior researches have 152

not systematically examined the interplay between 153

collective expertise specialization, collaboration 154

mechanisms, and the impact of system scale simul- 155

taneously. In this work, we conduct extensive ex- 156

periments to formally analyze the influence of these 157

three critical dimensions on multi-agent collabo- 158

rative reasoning. Our findings provide actionable 159

insights toward more effective system design. 160

2.2 LLMs as Domain Experts 161

The rapid evolution of LLMs has endowed them 162

with vast repositories of domain-specific knowl- 163

edge, enabling their application across a wide 164

range of expert tasks. Recent researches have ex- 165

plored the potential of LLMs to emulate specific 166

personas by conditioning them on detailed char- 167

acter profiles (Chan et al., 2024; Samuel et al., 168

2024; Xu et al., 2023). These studies demon- 169
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Expertise-Domain 
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• Proof Metrologist
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Figure 2: Demonstration of three key factors characterizing research on multi-agent collaborative reasoning systems.
(1) expertise-domain alignement, (2) collaboration paradigm, and (3) scale of the multi-agent system.

strate that by providing LLMs with demographic or170

role-specific prompts, they can effectively exhibit171

human-like personality traits and behaviors. Fur-172

thermore, Kong et al. (2024) and Xu et al. (2023)173

have shown that instructing LLMs to simulate do-174

main experts can enhance their reasoning capabili-175

ties in specialized contexts, underscoring the neces-176

sity of introducing expert knowledge into reasoning177

process. Despite these advancements and the grow-178

ing prominence of multi-agent systems in research,179

the specific impact of collaborative expertise spe-180

cialization on reasoning performance remains un-181

derexplored. In this paper, through meticulously182

designed experiments, we systematically investi-183

gate the impact of expertise specialization within184

multi-agent reasoning systems. Our findings re-185

veal that simulating specialized roles significantly186

enhances performance on tasks requiring contex-187

tual reasoning, while showing limited influence188

on those primarily dependent on factual recall or189

mathematical deduction.190

3 Preliminary191

3.1 Problem Setup192

Formally, given a multi-agent system Mn =193

{A1,A2, ...,An} where n indicates the number of194

agents inside the system and Ai represents the i-th195

agent of the system, a query Q, and a set of can-196

didate options S. A multi-agent system reasoning197

process is expressed as:198

Y = F(A1(Q,S),A2(Q,S), ...,An(Q,S))199

where Y stands for the final answer generated by200

the system. Ai(Q,S) represents the answer of201

agent i, F stands for the communication proto- 202

col manually customized by the design of the sys- 203

tem which aggregate the answer of each agents 204

into the final answer. Typically, it could be ma- 205

jority vote, debate, etc (Kaesberg et al., 2025; Liu 206

et al., 2024a). In our specific setup, we adopt a 207

sequential processing communication mechanism 208

inspired by Qian et al. (2024) to prevent context ex- 209

plosion (Liu et al., 2024b; Xu et al., 2024c). In this 210

mechanism, for i = 2, ..., n, agent Ai receives the 211

complete output generated by the immediately pre- 212

ceding agent Ai−1. In contrast, from the preceding 213

agents {A1, ...,Ai−2}, Ai receives only the final 214

answers. The detailed communication algorithm 215

could be found in Appendix A Algorithm 1. 216

3.2 Dataset 217

For our experiments, we select four distinct do- 218

mains from MMLU-pro (Wang et al., 2024d): 219

Math, Health, Business, and Law. These four do- 220

mains are selected for being representative and fre- 221

quently studied in contemporary multi-agent rea- 222

soning research (Cui et al., 2023; Lei et al., 2024; 223

Ghezloo et al., 2025). We further classify these four 224

domains into three categories based on the primary 225

reasoning type required: (1) Mathematical Rea- 226

soning: Domains requiring formal mathematical 227

deduction to derive the answer. (2) Factual Recall 228

Reasoning: Domains primarily requiring the re- 229

call of domain-specific factual knowledge, seldom 230

needing extensive reasoning steps other than simple 231

mathematical calculations. (3) Contextual Rea- 232

soning: Domains requiring not only the retrieval of 233

relevant expert knowledge but also its application 234

within the reasoning process of specific scenarios 235

3



or contexts. This choice of evaluation domains and236

fine-grained classification of their reasoning types237

allow us to investigate the effects of collaborative238

expertise specialization on multi-agent system from239

a more systematic manner.240

3.3 Collaborative Expertise Specialization241

In this paper, we primarily studied the effect of col-242

laborative expertise specialization on better multi-243

agent system design from the perspective of expert-244

domain alignment, collaboration paradigms and245

system scale. To formalize the role and responsi-246

bility of the agents in the multi-agent system, we247

define each expert to be of the following format:248

Ai ← (EG,FR,R, ID)249

where Ai stands for agent i, EG, FR and R repre-250

sent Expert Group, Formal Role and Responsibility251

respectively. ID represents an agent’s index within252

the group of all agents who share the same role.253

3.4 General Experiment Setup254

As detailed in Section 3.2, we select 4 represen-255

tative domains from MMLU-pro to investigate256

the effects of collaborative expertise specializa-257

tion. To be consistent with all experiments, we258

utilize DeepSeek-R1-Distill-Qwen-7B (DeepSeek-259

AI et al., 2025) as the foundational model for all260

agents. Each agent is initialized with its specific261

expert description and responsibilities via its sys-262

tem prompt, while the task instance is provided263

through the user prompt. The detailed prompts264

could be found in Appendix B. All experiments265

adopt accuracy as the evaluation metric.266

4 Leveraging the “Right” Agent267

Expertise specialization is a widely adopted tech-268

nique in agent research, demonstrably enhancing269

the reasoning capabilities of LLMs within specific270

domains (Li et al., 2024b). While the benefits271

of specialization for individual agents are well-272

established, the effect of collaborative expertise273

specialization on the collective reasoning perfor-274

mance of multi-agent systems remains underex-275

plored. This section presents our experimental in-276

vestigation into this critical area, designed to unveil277

how different collaborative expertise specialization278

configurations influence the reasoning capabilities279

of multi-agent systems.280

4.1 Setup 281

Considering the primary principle of multi-agent 282

reasoning system is to incorporate more diverse 283

agent viewpoints and integrate them in the final 284

answer (Liang et al., 2024), in our experiments, 285

we adopt diversity-driven collaboration paradigm 286

where we distribute each agent with a specific do- 287

main expert configuration and instruct them to gen- 288

erate responses based on their expertise. At this 289

stage, we fix the size of the multi-agent reason- 290

ing system to be 3 for controllable computational 291

cost. We employ GPT-4o (OpenAI et al., 2024) 292

for expert configuration generation. The detailed 293

prompts utilized for this automated role generation 294

process are provided in Appendix C. 295

4.2 “Right” Expertise Helps Reasoning 296

Our experiments demonstrate a clear perfor- 297

mance advantage when the collaborative ex- 298

pertise specialization of the multi-agent system 299

aligns with the domains of the downstream task. 300

Misaligned expertise configurations often under- 301

perform compared to aligned ones. This primary 302

finding is quantitatively supported by the results 303

presented in Table 1. Specifically, in 75% of 304

the aligned cases (diagonal entries), the system 305

achieves the highest accuracy compared to configu- 306

rations where the agent group simulates expertise 307

from other domains for the same task. 308

To gain a more nuanced understanding of when 309

expertise alignment is most beneficial, we analyze 310

the system performance according to the primary 311

reasoning type required by each domain, as cate- 312

gorized in Section 3.2. Our analysis reveals that 313

the benefits of expertise alignment are most pro- 314

nounced for tasks demanding contextual reason- 315

ing—Health and Law. Systems operating on these 316

two domains exhibit an average relative perfor- 317

mance improvement of 6.75% when expertise is 318

correctly aligned, compared to the misaligned con- 319

figurations which perform the second best for those 320

tasks. Conversely, for domains requiring mathemat- 321

ical reasoning—Math and Business, the specialized 322

experts yield only marginal gains or even degrada- 323

tion relative to misaligned configurations. We hy- 324

pothesize this divergence stems from the inherent 325

strengths of LLMs on math. These models often 326

possess robust mathematical reasoning capabilities 327

due to extensive pre-training, potentially reducing 328

the added value of specialized agents. Contextual 329

reasoning tasks, however, appear to benefit more 330
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Dom.\Exp. Math Fina Med Law ∆h ∆abs

Math 78.0 76.3 76.3 76.4 2.1% 1.6 ↑
Business 65.4 64.3 62.4 62.4 -1.7% 1.1 ↓
Health 28.9 26.8 30.4 26.1 5.2% 1.5 ↑
Law 18.3 19.2 18.5 20.8 8.3% 1.6 ↑

Table 1: This table shows the impact of collaborative ex-
pertise specialization for different expert groups across
various domains. "Dom." and "Exp." abbreviate Do-
main and Expert Group, respectively. ∆rel/∆abs in-
dicate the relative/absolute performance improvement
of the domain-aligned expert group compared to the
best-performing alternative group respectively.

from the structured integration of specialized per-331

spectives provided by the multi-agent reasoning332

system since applying domain knowledge in these333

contexts often requires nuanced interpretation, syn-334

thesis of information, and reasoning beyond direct335

mathematical deduction.336

4.3 Analysis on Expert-Domain Alignment337

Furthermore, our experimental results reveal a pos-338

itive correlation between how well the simulated339

group expertise aligns with the downstream task340

domain and the observed performance gain. This341

relationship is visualized in the expertise-domain342

correlation heatmap presented in Figure 3. Specifi-343

cally, configurations where the simulated expertise344

is more relevant to the target task domain tend to345

yield greater performance improvements compared346

to less relevant configurations.347

To quantify this expertise-task relevance, we first348

establish a relevance matrix. We randomly sample349

100 instances from each of the four primary task350

domains. For each instance, we prompt Deepseek-351

V3 (DeepSeek-AI et al., 2025) to identify a list of352

2-3 key expertise domains pertinent to solving the353

task. We then aggregate these identified candidate354

domains across all instances within each primary355

task domain. The relevance scores are calculated by356

counting the occurrences where a specific knowl-357

edge domain (e.g., Business) is deemed relevant358

for tasks in a primary domain (e.g., Math). These359

frequencies form a relevance matrix, visualized as360

a heatmap in Figure 3, where deeper color indicate361

higher relevance scores.362

Comparing this relevance heatmap with the re-363

sults in Table 1, we observe a consistent pattern364

supporting our initial finding—Higher expertise-365

domain relevance, indicated by deeper colors in the366

Figure 3: Heatmap illustrating the correlation between
specialized group expertise and task domains. Deeper
colors indicate stronger correlations.

heatmap entries, generally corresponds to better 367

reasoning performance. Many cells with high rele- 368

vance scores in Figure 3 correspond to performance 369

that are bolded or underlined in Table 1, signify- 370

ing the best or second-best performance among 371

group expertise specialization performance for that 372

task domain. Conversely, low relevance scores 373

typically correspond to misaligned configurations 374

which barely demonstrate distinct advantages con- 375

ferred by their specific (misaligned) expertise. 376

Our findings further support the established use 377

of collective expertise specialization in multi-agent 378

reasoning systems, while simultaneously highlight- 379

ing the critical importance of aligning expertise 380

design with the specific requirements of the target 381

downstream domains, paving a fundamental guid- 382

ance for future specialization technique application 383

in multi-agent reasoning system design. 384

5 Structured Collaboration versus 385

Diversified Discussion 386

A further critical consideration in multi-agent sys- 387

tem design is the selection of an effective collab- 388

oration paradigm. Even when individual agents 389

possess appropriate domain knowledge, the overar- 390

ching mechanism governing their interaction can 391

impact overall system performance. In this sec- 392

tion, we present comparative experiments designed 393

to analyze these distinct collaboration paradigms. 394

Our objective is to investigate their potential ad- 395

vantages, thereby providing empirically grounded 396

insights for effective collaboration paradigm choice 397

in multi-agent system design. 398
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Figure 4: Comparative analysis of diversity-driven ver-
sus structured workflow collaboration paradigms. Pos-
itive values signify Diversity-Driven’s advantage over
Structured Workflow.

5.1 Setup399

Our analysis leverages the results presented in Fig-400

ure 4, where we demonstrate both domain-wise401

and group-wise comparisons for a comprehen-402

sive overview. The detailed distinction between403

paradigms are illustrated as follows:404

Diversity-Driven Collaboration: This paradigm405

emphasizes assigning agents highly specialized,406

fine-grained expertise within a broader domain407

(e.g., specific sub-fields of Laws). The objective is408

to foster collaboration through the integration of di-409

verse, complementary knowledge perspectives dur-410

ing the reasoning process. Each agent contributes411

deep expertise from a narrow viewpoint.412

Structured Workflow Collaboration: Conversely,413

this paradigm assigns roles based on distinct func-414

tional responsibilities within a predefined problem-415

solving process, in our case, solver, critic and co-416

ordinator. Collaboration centers on agents execut-417

ing specific steps and refining intermediate outputs418

based on their functional role, rather than primarily419

contributing unique domain knowledge specializa-420

tions. The differentiation between agents stems421

from their function within the workflow.422

Figure 5: Illustration of response diversity across four
distinct domains, where lower inter-agent response sim-
ilarity corresponds to higher diversity.

To ensure a plausible, accurate generation of 423

expert role descriptions, we continue to employ 424

GPT-4o with collaboration paradigm as extra input. 425

5.2 Diversity Matters in Collaboration 426

Our primary finding is that the diversity-driven 427

paradigm generally yields superior performance 428

compared to the structured workflow paradigm. 429

This advantage holds true both when considering 430

performance from both domain-wise and group- 431

wise perspectives. 432

A domain-wise analysis, depicted in Figure 4, 433

confirms this trend. Irrespective of the domain’s 434

primary reasoning type categorized in Section 3.2, 435

the diversity-driven approach consistently results 436

in performance gains over structured workflow. 437

Notably, the most substantial improvements are 438

observed in business and health domains, which 439

demonstrate an average relative performance in- 440

crease of 1.75% under diversity-driven paradigm. 441

This indicates the potential of expertise with finer- 442

granularity perform well across different domains. 443

Examining the results from group-wise perspec- 444

tive further supports this conclusion. With the ex- 445

ception of math expert group, all other specialized 446

groups achieve higher average performance across 447

all task domains when employing diversity-driven 448

paradigm. When including the math group, the 449

overall average relative performance improvement 450

facilitated by the diversity-driven approach across 451

all groups is 1.25%, indicating consistent benefits 452

regardless of the task domain encountered. 453

Synthesizing these observations, the diversity- 454
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driven collaboration paradigm demonstrates a con-455

sistent performance advantage over structured456

workflow collaboration paradigm across both differ-457

ent tested domains and distinct expertise configura-458

tions. This suggests that multi-agent systems could459

benefit significantly from collaboration structures460

that emphasize fine-grained expertise allocation461

which stimulates viewpoint diversity, providing a462

solid empirical basis for future research directions463

in designing multi-agent reasoning system’s collab-464

oration pattern.465

5.3 Analysis on Response Diversity466

To quantitatively characterize how the collabora-467

tion paradigm influences the diversity of agent468

contributions, we further design a response di-469

versity analysis. We leverage semantic embed-470

dings derived from Sentence-BERT (Reimers and471

Gurevych, 2019). For each task instance solved by472

the multi-agent system, we generate embeddings473

for the output of each agent. We then measure the474

internal diversity of the system’s responses by cal-475

culating the pairwise cosine similarity between the476

embeddings of outputs from different agents. This477

provides a measure of how semantically distinct478

the contributions are at different stages.479

The distributions of these pairwise similarity480

scores for both the diversity-driven and structured481

workflow paradigms are presented in Figure 5. The482

results clearly indicate that, the pairwise cosine483

similarity values are consistently lower for the484

diversity-driven collaboration paradigm compared485

to the structured workflow paradigm. This finding486

demonstrates that the diversity-driven approach,487

which emphasizes fine-grained expertise, fosters488

greater semantic diversity among agent responses489

throughout the collaborative reasoning, further con-490

firming that enhancing the diversity of perspectives491

within a multi-agent system would be a key factor492

in improving its overall reasoning performance.493

6 Scaling Up Reasoning Experts494

Finally, the most complicated dimension in design-495

ing multi-agent systems to foster collective intelli-496

gence is the system scale. While the deployment497

of large-scale multi-agent systems for simulating498

social behaviors has received considerable atten-499

tion, the implications of scaling under collaborative500

expertise specialization setup remain unexplored.501

This section details our investigation into the ef-502

fects of varying system scale on both the reasoning503
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Figure 6: Domain-wise relative performance improve-
ment by scaling up the multi-agent system (3, 6, and 10
agents), shown for different collaboration mechanisms.

performance of multi-agent systems and the associ- 504

ated computational trade-offs. We aim to elucidate 505

how increasing the number of agents influences 506

collective reasoning efficacy and to call for a better 507

communication protocol design through our perfor- 508

mance/token overhead trade-off analysis. 509

6.1 Setup 510

We expand our experimental setup from 3 agents 511

to systems comprising 6 and 10 agents. For these 512

larger systems, we systematically replicate the ex- 513

periments previously introduced, allowing for a 514

direct comparison across different scales. 515

Generating coherent and appropriately special- 516

ized expert role configurations for these larger sys- 517

tems requires extending the initial configurations 518

of the 3 agent system and we continue to leverage 519

GPT-4o for this purpose. The detailed prompts 520

employed for this role augmentation process are 521

provided in Appendix C 522
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6.2 More Experts, More Intelligent System523

We evaluate the effect of system scale on reasoning524

performance by comparing the results from larger525

agent systems against the baseline 3 agent system.526

Specifically, we calculate the domain-wise relative527

performance difference for the system size of 6 and528

10 with respect to system of size 3. These relative529

performance differences are illustrated in Figure 6.530

Our findings reveal a consistent trend: increasing531

the number of agents generally enhances the multi-532

agent system’s reasoning performance across the533

evaluated domains, regardless of whether diversity-534

driven or structured workflow paradigm is em-535

ployed. However, the magnitude of this improve-536

ment varies significantly by domain. Corroborating537

our earlier observations regarding domain-specific538

analysis in Section 4, the performance gains within539

math domain are marginal, even when scaling up540

to 10 agents. Conversely, domains that necessi-541

tate substantial contextual reasoning and knowl-542

edge application demonstrate significantly larger543

performance improvements with increased system544

scale. This disparity suggests that the benefits de-545

rived from incorporating additional agents are most546

pronounced for tasks requiring the integration of547

diverse knowledge perspectives or complex, case-548

specific analysis inherent in non-mathematical rea-549

soning. For domains characterized by intense math-550

ematical reasoning, simply increasing the number551

of agents could barely yield diminishing returns.552

We believe our finding offers valuable insight for553

constructing large-scale multi-agent systems in-554

tended for diverse domains.555

6.3 Token-Performance Trade-off556

We further explore the token-performance trade-off557

inherent in scaling multi-agent reasoning systems558

by calculating the ratio of performance improve-559

ment over token overhead (PoT) with quantitative560

results presented in Figure 7. We use the sum of rea-561

soning token and answer token for the calculation562

of token overhead. All the performance improve-563

ment and token consumption overhead are counted564

relatively against system of size 3.565

Our analysis reveals distinct trends both across566

and within domains. Cross-domain comparisons567

demonstrate that tasks requiring substantial con-568

textual reasoning, such as those in health and law,569

yield higher PoT ratios. This suggests that increas-570

ing agent collaboration is particularly beneficial in571

these areas, as greater token consumption during572

Figure 7: Performance improvement versus token over-
head ratio across different domains. Both performance
and token overhead are measured as relative increases
compared to the system of size 3.

the reasoning process leads to higher performance 573

improvements. Conversely, mathematical reason- 574

ing tasks exhibit only marginal performance gains 575

with additional agents, which implies smaller en- 576

sembles can achieve comparable performance with 577

lower computational overhead, making large-scale 578

multi-agent systems unnecessary for these tasks. 579

For intra-domain analysis, while structured 580

workflows improved PoT in 75% of domains and 581

diversity-driven approaches in 50% respectively, 582

the critical finding is that neither collaboration 583

paradigm guarantees an enhanced PoT across all 584

domains tested. This widespread inconsistency in 585

scaling behavior, regardless of the collaboration 586

paradigm, highlights the pressing need for advance- 587

ments in multi-agent communication protocols to 588

achieve more stable and predictable performance 589

enhancements as system complexity increases. 590

7 Conclusions 591

In conclusion, this paper systematically investi- 592

gates the three factors of multi-agent system ex- 593

pertise specialization on collective reasoning intel- 594

ligence: expertise-domain alignment, collaboration 595

paradigm, and system scale. Our experiments ver- 596

ify the advantage brought by expertise specializa- 597

tion in multi-agent reasoning system, demonstrate 598

the superiority of diversity-driven collaboration and 599

indicate the existence of scaling law in multi-agent 600

reasoning system with experts. These findings pro- 601

vide actionable insights for designing specialized 602

multi-agent reasoning systems in future researches 603

and underscore the need for developing more effi- 604

cient coordination protocol as systems scale. 605
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Limitations606

Our adoption of MMLU-pro for evaluating special-607

ized multi-agent reasoning system across diverse608

domains, while leveraging its strength in assess-609

ing varied domain-specific knowledge, inherently610

limits our assessment scope. Specifically, its focus611

on these reasoning paradigms means other crucial612

multi-agent capabilities, such as coding, might be613

overlooked. Apart from that, to enhance align-614

ment with real-world scenarios, our evaluation con-615

centrates on four key domains: Math, Business,616

Health, and Law, selected for their prominence617

in mainstream research. A direct limitation of618

this focused approach is that other potentially rele-619

vant domains would remain underexplored in the620

present study. Moreover, To simplify the research621

setup and promote more stable conclusions, we ex-622

clusively utilize one message propagation mecha-623

nism. This methodological choice, however, means624

that the potential influence of diverse communi-625

cation strategies on system performance remains626

an unexplored aspect in our current study. Finally,627

We select DeepSeek-R1-Distilled-Qwen-7B as the628

base model for all experiments to ensure control-629

lable computational overhead. This decision, while630

practical, limits our current investigation, deferring631

the study of multi-agent system architectures with632

larger-scale models to future research.633
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Our study involves publicly available datasets and635

use Large Language Models through APIs. Con-636

sequently, the ethical considerations of this paper637

could be listed as follow:638

Datasets: We use publicly available datasets only639
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personal data has been involved.641
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API provider’s policy strictly, maintaining fair use643

and respecting intellectual property.644

Transparency: We provide detailed descriptions645

of our method and the prompts used in our ex-646

periments, in line with standard practices in the647

research community. We will also make our code648
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Appendices 1108

A Agent Communication Algorithm 1109

In this section, we provide our detailed algorithm 1110

for inter-agent communication protocol and its cor- 1111

responding notation table in below. 1112

Algorithm 1 Communication Mechanism
procedure COLLABORATION(Q,S,Mn)

for Ai inMn do
if i = n then
Y ← An(Q,S,A1, ...,Af

n−1)
return Y

else if i = 1 then
Y ← A1(Q,S)

else
Y ← Ai(Q,S,A1, ...,Af

i−1)
end if

end for
end procedure

Symbol Meaning
Ai The output without rationale of agent Ai

Af
i Full output with rationale of agent Ai

Q Input question
S The candidate answers of the question
Y The final answer of the system

Table 2: Notation used in Algorithm 1

13

https://doi.org/10.48550/ARXIV.2412.14161
https://openreview.net/forum?id=xw5nxFWMlo
https://openreview.net/forum?id=xw5nxFWMlo
https://openreview.net/forum?id=xw5nxFWMlo
https://doi.org/10.48550/ARXIV.2501.15383
https://doi.org/10.48550/ARXIV.2501.15383
https://doi.org/10.48550/ARXIV.2501.15383
https://doi.org/10.48550/ARXIV.2411.11581
https://doi.org/10.48550/ARXIV.2411.11581
https://doi.org/10.48550/ARXIV.2411.11581
https://openreview.net/forum?id=z5uVAKwmjf


B Role System Prompt1113

In this section, we demonstrate the system prompt adopted for passing expertise role configuration and1114

the user prompt for LLMs to receive the queries from MMLU-pro.1115

System Prompt

[ROLE ASSIGNMENT]

You are a {title} specializing in {domain}.
Your professional responsibility is to {duty}.
IMPORTANT: Think and respond EXACTLY as a real {title} in {domain} would.
Use terminology, methods, and perspectives specific to your professional field.

1116

User Prompt

Previous discussion: {message_hist} PROBLEM TO SOLVE: problem RESPONSE INSTRUCTIONS: 1. Begin with:
"As a {title} in {domain}, I..." 2. Analyze the problem using your professional expertise 3. Provide your expert
recommendation 4. End with: "My answer is
boxed{{X}}" where X is the answer index
REQUIREMENTS: - Maintain your {title} perspective throughout - Use terminology from {domain} - Keep response
under 150 words - Your answer MUST be in
boxed{{}} format
Remember: You are a {title}, not an AI assistant. Think and respond accordingly.

1117

C Expert Generation Prompts1118

In this section, we provide the prompts used for expert configuration generation for multi-agent system of1119

size 3 and prompts for expert configuration augmentation for system of size 6 and 10.1120

C.1 Primary Expert Generation Prompts1121

Prompt for Structured Workflow Expert Generation

Variables: {Domain}

Prompt: Generate me an expert group in Domain domain of size three, assigning them roles of solver, critic and
coordinator together with their detailed responsibilities.

1122

Prompt for Diversity-Driven Expert Generation

Variables: {Domain}

Prompt: Generate an expert group of size 3 in the Domain domain, each specializing in a distinct sub-domain of
Domain. Provide a detailed configuration for each expert, including their role and responsibility, ensuring that their roles
are complementary and collectively form a balanced, high-functioning team capable of addressing complex challenges
in the domain. For example, an expert in a sub-domain of business could be “Global Compliance Architect”.

1123

C.2 Expert Augmentation Process1124

Prompt for Structured Workflow Expert Augmentation

Variables: {Domain},{System Size},{Group Description of Size 3}

Prompt: Here is a expert group configuration in Domain domain of size 3: Group Description of Size 3.
Please augment the group size to System Size by assigning new experts with roles of solver, critic, strategist and
coordinator. Output your configuration following the format of the given group configuration.

1125

14



Prompt for Diversity-Driven Expert Augmentation

Variables: {Domain},{System Size},{Group Description of Size 3}

Prompt: Here is a expert group configuration in Domain domain of size 3: Group Description of Size 3.
Please augment the group size to System Size by assigning new experts with roles of expert in other sub-domains
in Domain together with their responsibilities. Output your configuration following the format of the given group
configuration.

1126

D Social Group Role Examples 1127

In this section, we present all the prompts for different expert agent groups of size 3 under different 1128

collaboration paradigms. The group under diversity-driven collaboration paradigm are exhibited in black 1129

while groups under structured workflow collaboration paradigm are shown in blue. 1130

Math Group of 3

I. Differential Topologist

Responsibilities:
1. Analyze manifold embeddings using Whitney’s conditions
2. Verify cobordism relations through Morse homology
3. Calculate characteristic classes via Čech-de Rham complexes

II. Proof Metrologist

Responsibilities:
1. Audit natural deduction derivations for intuitionistic consistency
2. Identify unstated ZFC dependencies
3. Verify category-theoretic diagram commutativity

III. Spectral Synthesizer

Responsibilities:
1. Decompose operator algebras using K-theory invariants
2. Construct Gelfand-Naimark-Segal representations
3. Analyze C*-algebra extension groups

1131

Math Group of 3

I. Solver

Responsibilities:
execute core problem analysis using mathematical principles, formulate key equations, and establish foundational
solution components with logical progression.

II. Critic

Responsibilities:
Analyze solution structure for conceptual consistency, identify invalid logical leaps, and verify fundamental
mathematical truth of initial assumptions.

III. Coordinator

Responsibilities:
Integrate analytical components into unified framework, maintain mathematical coherence between steps, and prepare
final solution presentation.

1132
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Finance Group of 3

I. Ethics & Compliance Officer

Responsibilities:
1. Merge UNGC/SBE mapping with FTC/ASA/CAP compliance
2. Conduct combined PESTEL/SWOT analyses
3. Integrate CSR violation detection with greenwashing audits
4. Handle stakeholder prioritization with power-interest matrices
5. Develop unified compliance solutions using BIA/GVV frameworks

II. Stakeholder Impact Strategist

Responsibilities:
1.Combine emotional valence analysis with reputational scoring
2.Merge Maslow’s hierarchy applications with PROTECT framework
3.Manage supply chain/social impact predictions
4.Balance shareholder-stakeholder priorities
5.Coordinate multi-channel communication plans

III. Strategic Decision Leader

Responsibilities:
1.Integrate Monte Carlo simulations with game theory models
2.Oversee crisis protocol development/implementation
3.Manage alternative scenario planning
4.Conduct comprehensive risk-reward analysis
5.Finalize violation classifications/severity gradations

1133

Finance Group of 3

I. Solver

Responsibilities:
Analyze regulatory compliance requirements, develop ethical frameworks, and optimize corporate governance strategies.

II. Critic

Responsibilities:
Evaluate stakeholder impact scenarios, identify compliance gaps, and verify ethical decision-making processes.

III. Coordinator

Responsibilities:
Integrate global compliance standards with local operations, balance stakeholder priorities, and ensure ethical crisis
management.

1134
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Medical Group of 3

I. Disease Control Integrator

Responsibilities:
1.Combine SEIR modeling with transmission vector mapping
2.Merge clinical/public health intervention analysis
3.Integrate prevention frameworks with treatment protocols
4.Conduct combined cost-effectiveness/equity assessments
5.Develop unified outbreak response plans

II. Health Systems Engineer

Responsibilities:
1.Synthesize care delivery models with infrastructure analysis
2.Optimize vaccine protocols with screening algorithms
3.Manage digital health/supply chain integration
4.Balance individual/population health needs
5.Conduct pandemic preparedness simulations

III. Medical Priority Strategist

Responsibilities:
1.Reconcile SDG targets with local health realities
2.Apply GRADE criteria to population health approaches
3.Design risk-stratified intervention cascades
4.Finalize biological plausibility/scalability assessments
5.Produce multi-level prevention-treatment packages

1135

Medical Group of 3

I. Solver

Responsibilities:
Analyze disease patterns and treatment effectiveness, develop care protocols, and optimize clinical workflows for patient
outcomes.

II. Critic

Responsibilities:
Evaluate treatment safety and efficacy, identify gaps in care standards, and verify compliance with medical guidelines.

III. Coordinator

Responsibilities:
Integrate preventive care with treatment services, manage resource allocation, and ensure continuity of care across
providers.

1136
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Law Group of 3

I. Contract Architect

Responsibilities:
1.Analyze UCC provisions vs common law principles
2.Identify material breach vs substantial performance
3.Map consideration adequacy through benefit-detriment analysis
4.Prepare parol evidence rule applicability matrix

II. Litigation Strategist

Responsibilities:
1.Develop FRCP-compliant pleading alternatives
2.Optimize discovery plan using proportionality standards
3.Calculate summary judgment probability scores
4.Prepare jury demand vs bench trial analysis

III. Regulatory Compliance Auditor

Responsibilities:
1.Conduct Chevron/Mead framework analysis
2.Map agency guidance through FOIA-obtained materials
3.Prepare preemption challenge vulnerability index
4.Maintain regulatory change tracking dashboard

1137

Law Group of 3

I. Solver

Responsibilities:
Analyze contract validity and compliance, evaluate breach of duty scenarios, and develop legal documentation
frameworks.

II. Critic

Responsibilities:
Audit regulatory adherence, identify compliance vulnerabilities, and verify proper application of legal precedents.

III. Coordinator

Responsibilities:
Integrate litigation strategies with dispute resolution mechanisms, balance evidentiary requirements, and ensure
procedural compliance.

1138

E Relevance Prompt1139

In this section, we provide the prompt used for generating related domain for queries in MMLU-pro. The1140

generated related domains are then used for expertise-domain correlation heatmap generation.1141

Prompt for expertise-domain correlation analysis

You are an expert in identifying the domains of expertise required to solve a given problem. You will be provided with a
question, and your task is to determine which domains from the following list are relevant: [’Math’, ’Law’, ’Business’,
’Health’].
Please analyze the question and return the appropriate domains. There could be more than one domain that is necessary.
Please directly output a python list of the domains without other output.
Please limit your output to 2-3 domains.
For example: [’Med’, ’Fina’]
Please directly output the list that is loadable by python, no other output. 2-3 domains should be outputted, no more or
less.

1142

18



F All Experiments 1143

In this section, we provide an overview of the experiment results across different expert groups and 1144

domains. The shadowed bars stand for the results of diversity-driven collaboration paradigm and the 1145

non-shadowed bars stand for the results of structured workflow collaboration paradigm.

1146
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