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ABSTRACT

While recent advances in Diffusion Transformers (DiTs) have significantly ad-
vanced text-to-image generation, text-driven image editing remains challenging.
Existing approaches either struggle to balance structural preservation with flexible
modifications or require costly fine-tuning of large models. To address this, We in-
troduce W-Edit, a training-free framework for text-driven image editing based on
wavelet-based frequency-aware feature decomposition. W-Edit employs wavelet
transforms to decompose diffusion features into multi-scale frequency bands, dis-
entangling structural anchors from editable details. A lightweight replacement
module selectively injects these components into pretrained models, while an
inversion-based frequency modulation strategy refines sampling trajectories using
structural cues from attention features. Extensive experiments demonstrate that
W-Edit achieves high-quality results across a wide range of editing scenarios, out-
performing previous training-free approaches. Our method establishes frequency-
based modulation as both a sound and efficient solution for controllable image
editing.

1 INTRODUCTION

In recent years, diffusion models have become the dominant paradigm for image generation (Ho
et al.} 2020;|Sohl-Dickstein et al., 2015;|Song et al., [2020;Song & Ermon, 2019), achieving remark-
able progress in large-scale text-to-image (T2I) generation. Early designs such as Stable Diffusion
(Rombach et al.| 2022) employ U-Net (Ronneberger et al., 2015) backbones, whereas recent frame-
works including FLUX (Labs| 2024) and SD3 (Esser et al., 2024) replace U-Net with Diffusion
Transformers (DiT) (Peebles & Xiel[2023)) and integrate flow matching (Albergo & Vanden-Eijnden,
2022;|Lipman et al.,2022; |Liu et al., 2022) to improve fidelity and efficiency. Despite these advances
in generation, controllable text-driven image editing remains a significant challenge.

Text-driven image editing aims to modify images according to natural language instructions, sup-
porting operations such as object replacement, attribute modification, style transfer, and background
editing, as shown in Fig.[I] The central difficulty lies in achieving precise and flexible modifications
while preserving the global layout and contextual coherence of the reference image. Existing meth-
ods fall into two groups. Training-based methods (Zhang et al., 2023bj; | Kawar et al., 2023} [Zhang
et al., 2023a) adapt diffusion models to reconstruct reference images before applying edits. While
effective, this process is computationally expensive and prone to catastrophic forgetting. In contrast,
training-free approaches achieve editing by modifying the sampling trajectory of pretrained models
at inference time, without additional training. Among them, Inversion-based methods (Brack et al.,
2024; |Cao et al., [2023; Deutch et al., 2024} |Aberman et al., 2024)) avoid retraining by mapping
images into noise space and resampling with new prompts, but suffer from trajectory drift and lim-
ited controllability. Attention-injection approaches such as Prompt-to-Prompt (Hertz et al.| [2022)
improve structure preservation but are highly sensitive to layer selection and fail under complex
edits. More recently, Stable-Flow (Avrahami et al.,|2025b)) introduced the idea of vital layer in flow-
based diffusion models and performs injection only at these selected layers. This strategy improves
stability and enables the completion of certain edits, but it enforces overly rigid constraints, often
preventing necessary changes such as scene-level modifications. As shown in Fig. [2] these methods
either maintain structure while missing edits, or realize edits at the cost of consistency.

We argue that this difficulty arises from the entanglement of global semantics (e.g., layout, object
identity) and local signals (e.g., texture, color, fine attributes) in the spatial domain. This entan-
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Figure 1: Representative editing results produced by W-Edit. Our training-free editing method
is able to perform various types of image editing operations, including non-rigid editing, object
addition, object removal, and global scene editing. These different edits are accomplished using the
same mechanism.
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Figure 2: Comparison of editing consistency and modification fidelity across representative
methods. Using different textual prompts with the same initial seed, we observe the following:
(1) FLUX produces relatively stable outputs but often fails to accomplish the intended edits; (2)
MagicBrush struggles to generate precise edits that faithfully follow textual instructions; (3) Stable-
Flow delivers more stable results and completes editing tasks, but its mechanism enforces overly
rigid constraints on diversity and can still introduce inconsistencies (e.g., the background remains
unchanged despite text modifications); and (4) in contrast, W-Edit produces edits that align closely
with textual descriptions while preserving the consistency of unrelated content. Fine details are best
viewed when zoomed in.

glement makes it difficult to simultaneously preserve structure and introduce modifications. The
frequency domain, in contrast, offers a natural decomposition that aligns with editing objectives.
Low-frequency components encode layouts and semantics and thus can serve as reliable anchors for
consistency, while high-frequency components capture textures and variations and thus are suitable
for flexible modification. This natural separation aligns directly with editing objectives, enabling
explicit control over which parts of the image should remain stable and which parts can be modified.
Building on this insight, we analyze the feature representations of Diffusion Transformers (DiTs)
from a frequency-domain perspective and discover a block-wise frequency progression. We find
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that early blocks predominantly focus on low-frequency structures, while later blocks refine high-
frequency details as shown in Fig. 4] Building on this insight, we reformulate text-driven editing as
multi-level frequency control.

Building on this progression, we propose W-Edit, a training-free framework for text-guided image
editing from a frequency-domain perspective. We introduce three key innovations. First, we employ
wavelet-guided decomposition to provide multi-scale frequency bands with spatial locality, allowing
separate treatment of structure and detail. Second, we design a lightweight frequency-band replace-
ment module that selectively injects these components into pretrained diffusion models, avoiding the
need for costly retraining. Third, we develop an inversion-based frequency modulation strategy that
refines the sampling trajectory using structural cues from attention features, minimizing structural
drift and improving controllability.

Extensive experiments show that W-Edit achieves high-quality results across diverse editing sce-
narios. Compared with prior training-free approaches, W-Edit delivers more faithful, consistent,
and visually coherent edits, establishing frequency-based modulation as a principled and efficient
solution for controllable diffusion editing.

2 RELATED WORK

2.1 TEXT-GUIDED IMAGE EDITING METHODS

Text-driven image editing usually builds upon pretrained T2I diffusion models (Huberman-
Spiegelglas et al., 2024} [Samuel et al., 2023} Tumanyan et al., [2023} [Wallace et al., [2023; Wu &
De la Torre, 2023)), ranging from early U-Net based backbones such as Stable Diffusion to recent
Transformer based models like FLUX (Labs| [2024) and SD3 (Esser et al., [2024). Existing ap-
proaches can be divided into training-based and training-free methods. Training-based methods,
such as InstructPix2Pix (Brooks et al., 2023)) and MagicBrush (Zhang et al.,2023a)), construct large-
scale instruction—image triplets to learn direct mappings for editing. IMagic (Kawar et al.,2023)) and
SINE (Zhang et al., |2023b)) reconstruct reference images by adapting pretrained models, but this is
costly and prone to catastrophic forgetting. While effective, these methods demand heavy annota-
tion and training costs and often generalize poorly to unseen domains such as video or fine-grained
edits. Training-free methods (Brack et al.l 2024; |Cao et al., 2023} |Deutch et al., 2024} /Aberman
et al.l 2024), which dominate recent research, avoid dataset construction and leverage pretrained
priors instead. Among them, inversion-based approaches (Song et al., [2020; Wu & De la Torre}
2023) reconstruct a reference image in the diffusion latent space before applying edits, but suffer
from trajectory drift or reconstruction errors. Later improvements, such as optimization-based cal-
ibration and structural regularization (Brack et al., 2024; |Cao et al.| 2023; |/Aberman et al., 2024;
Parmar et al., 2023 [Tumanyan et al.| |2023)), enhance stability and control. Attention-modulation
techniques (Hertz et al.| [2022; |Tumanyan et al., 2023)) improve spatial control by injecting cross-
and self-attention features, yet they remain sensitive to block selection, computationally expensive,
and prone to semantic inconsistency. While these methods achieve promising results, they still
struggle to preserve global structure while enabling flexible local modifications without retraining.

2.2 FREQUENCY PERSPECTIVE IN DEEP LEARNING

Beyond spatial-domain manipulation, frequency-domain analysis has proven useful in a variety of
vision tasks. Early CNN-based studies integrated Discrete Cosine Transform (DCT) to acceler-
ate convergence (Ghosh & Chellappal 2016) or introduced frequency-aware dynamic networks for
super-resolution (Xie et al.,[2021). Though not intended for editing, these studies demonstrated the
potential of frequency representations in vision. More recently, diffusion-based works further lever-
age frequency cues for generation and editing: FDDiff (Wang et al., [2024) restores high-frequency
details in low-resolution images, FDG-Diff (Zhang et al., [2025) enforces spatial-frequency consis-
tency, WaveDiff (Phung et al.|[2023)) decomposes latent features into sub-bands for improved texture
preservation, FreeU (Si et al.| 2024) regulates frequency responses to improve the generation qual-
ity, ConsisID (Yuan et al.| [2025) maintains identity in video generation via frequency control, and
FCDiffusion (Gao et al 2024) designs multi-branch frequency pathways for diverse translations.
However, these methods typically require additional objectives or architectural modifications, limit-
ing their plug-and-play applicability. This line of inquiry has been extended to image editing, where
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methods like FlexiEdit (Koo et al.| [2024) refine the DDIM latent space by selectively attenuating
high-frequency components to enhance fidelity in non-rigid edits, and FDS (Ren et al.| 2025) pro-
poses a frequency-aware denoising score to improve the stability and quality of text-guided edits.
However, these methods typically require additional objectives or architectural modifications, lim-
iting their plug-and-play applicability. In contrast, W-Edit introduces a training-free, wavelet-based
frequency modulation framework for text-driven image editing. Instead of relying on handcrafted
attention injections or heavy retraining, it decomposes intermediate diffusion features into multi-
scale wavelet bands and selectively injects them to guide the sampling process. This lightweight
design enables controllable and structurally consistent editing across diverse tasks, bridging the gap
between frequency-domain analysis and practical editing applications.

3 METHOD

Our goal is to enable controllable text-driven image editing without retraining preserves consistency
while producing faithful modifications. To this end, we introduce W-Edit, a wavelet-based frame-
work that disentangles global structure and local details in the frequency domain. As illustrated in
Fig.[3] we first extract an inversion trajectory from the reference image, then applies wavelet-based
frequency decomposition and fusion at selected blocks, and finally performs frequency-guided edit-
ing with structural cues. Specifically, Sec. introduces wavelet-based frequency decomposition,
Sec. 3.2 analyzes block-level frequency characteristics that underpin structural and detail preserva-
tion, and Sec. [3.3|details our wavelet-based editing framework and modulation strategy.
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Figure 3: Overall Framework of W-Edit. Given an input image and a corresponding text in-
struction, we first perform inversion on the input image to obtain the initial noise and the inversion
trajectory. Next, starting from both the inverted noise and new random noise, we sample to gener-
ate the reference image and the edited image simultaneously. Within the pretrained T2I model, we
selectively choose different Transformer blocks and decompose the reference image’s keys (K) and
values (V') into multi-scale frequency bands using wavelet transforms. An energy-aware adaptive
frequency fusion mechanism is then applied to inject these frequency-domain features from the ref-
erence image into the sampling process of the edited image. This procedure guides the execution
of the editing task, resulting in high-quality images that preserve structural consistency while accu-
rately reflecting the desired semantic modifications.

3.1 WAVELET-BASED FREQUENCY DECOMPOSITION

A central challenge in editing is that global semantics (e.g., layout, object identity) and local details
(e.g., texture, color, fine attributes) tend to be entangled in the spatial domain. This entanglement
makes it difficult to preserve unchanged components while selectively modifying target regions. To
address this issue, we seek to project diffusion features into the frequency domain, where struc-
tural anchors and fine details can be explicitly disentangled. Traditional transforms like the Fourier
Transform provide a global frequency decomposition but discard spatial localization, making them
unsuitable for tasks that require local or multi-scale control. To overcome this limitation, we adopt



Under review as a conference paper at ICLR 2026

the wavelet transform, which introduces basis functions localized in both space and frequency, en-
abling to simultaneously capture global structures and fine details in a principled way.

Suppose that ¢ represents an independent variable. A mother wavelet ¢ (¢) generates scaled and
shifted versions ¢, (t), where a is the scale parameter controlling dilation (larger a corresponds
to lower frequencies), and b is the translation parameter controlling position along the t-axis. The
continuous wavelet transform (CWT) provides a joint time-frequency representation W (a, b):

1 t—b oo .
wa,b(t) = ﬁw ( a ) , a>0, be R, W(aab) = /_OO f(t)’(/)mb(t)dt (1
The discrete wavelet transform (DWT), in contrast, yields a compact hierarchical decomposition.
For 2D images, one-level DWT produces four sub-bands:

F 25 Fa,Fu, Fy, Fp, 2
where F 4 is the low-frequency approximation, and F g, Fy, Fp capture horizontal, vertical, and
diagonal high-frequency details. Recursive application of DWT to F 4 yields a multi-level decompo-
sition that represents both global structures and fine-grained textures. This decomposition naturally
separates global and local signals: low-frequency components encode layout and semantics, serv-
ing as reliable anchors for structural consistency, while high-frequency components capture textures
and variations, enabling flexible and precise modifications. Such multi-scale, spatially localized
frequency representation forms the foundation of our W-Edit framework.

This decomposition provides a natural separation of consistency (low-frequency) and editability
(high-frequency), forming the basis for frequency-aware analysis in Sec.

3.2 BLOCK-WISE FREQUENCY PROGRESSION IN DIFFUSION TRANSFORMERS

In U-Net based diffusion models, editing is "-eetdogstanding. 3T model
often heuristically guided by selecting early ET?%P[%T ‘ﬁ] moge

blocks for structure and later blocks for details. z =;i i;=
This intuition stems from the encoder—decoder E :
~ = el

hierarchy of U-Nets, where spatial resolution
decreases and then recovers. However, such .
heuristics do not apply to Diffusion Transform- Attention feature map
ers (DiTs), whose blocks are architecturally ho- | :
mogeneous and lack clear semantic stages. As
a result, it is unclear how information is orga-
nized across blocks, and whether some blocks
emphasize structural cues while others capture
fine details.

Target Image
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To address this question, we analyze interme-
diate features of DiTs in the frequency domain.
Suppose that z¥ is the output feature map at the
k-th block, where each block processes the in-
termediate feature at a specific stage of the dif-
fusion process. We compute the Fourier trans-
form of 2" as:

Figure 4: Frequency progression in T2I models.
Attention features in DiTs progressively capture
coarse layouts in early blocks and refined details
in later blocks, with outputs progressively refined
during sampling, providing strong image priors
for generation.

2 (u,v) = FI2%,  (u,v) € F? 3)
where ¥ (u, v) denotes the frequency-domain representation of z*, (u, v) are horizontal and vertical

frequency indices and F{-} denotes the 2D discrete Fourier transform, and F? represents the 2D
frequency domain.

To quantify frequency contributions, we define a mid-to-high frequency energy metric. We first
define the Mid-Frequency Radius, 4, Which acts as the boundary separating the low-frequency
and high-frequency regimes

Tmid = Tmax//Q 4)
where 7.« 1S the maximum possible radial distance in the frequency domain. This 7,4 specifies the
radius corresponding to the intermediate frequency band and serves as our division threshold. We
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then define the Mid-To-High Frequency Energy (Efyy) as the total energy accumulated from the
radius 7yiq up to the maximum frequency:

max_radius

By = Z Pr(2") &)

T="mid

Here, P,.(£*) is the radial power spectrum (the average energy at radius 7). Ey is a scalar value
that directly measures the mid-to-high frequency components of the feature map.

For completeness, low- and high-frequency energies are computed as:

Ellf)w = Z |2k(u7v)|27 Elllcigh = Z |2k(u7v)|2 (6)
(u,v) EQow (u,v) € nign

Here, Q0w and Qpign denote frequency index sets determined by radial thresholds. We compute the
Bk for both SingleStreamBlocks and DoubleStreamBlocks of FLUX and visualize the results to-
gether with the attention maps in Fig.[d Since these blocks employ different fusion strategies, we
visualize them separately to highlight distinct frequency behaviors. In the visualizations, darker re-
gions correspond to low-frequency components, while brighter regions indicate higher frequencies.
The contours in the attention maps show that early blocks mainly encode low-frequency structural
foundations, whereas later blocks exhibit sparser attention distributions that refine high-frequency
details. Based on these observations, we select blocks with either very high or very low mid-to-high
frequency energy as the target blocks for frequency-domain information fusion.

To validate this choice, we compare our selected blocks with the vital layers identified in prior work
(Avrahami et al., 2025a)), in which blocks importance was measured using DINOv2 (Oquab et al.,
2023). We find that these vital layers largely coincide with our selected fusion blocks, indicating a
strong correspondence between block importance and frequency response. Leveraging these func-
tional characteristics, we implement selective frequency-domain injection across different modules.
This strategy offers two main advantages. First, it allows each module to operate optimally within
its functional domain. Second, it enables frequency-aware guidance during sampling, significantly
reducing computational overhead while maintaining precise control over both structure and fine-
grained details.

3.3 WAVELET-BASED FREQUENCY-GUIDED EDITING

As illustrated in Fig. [3] our method builds upon pretrained diffusion or flow models. We employ
wavelet-based frequency modulation to selectively replace specific frequency bands. This enables
precise, flexible, and high-fidelity visual editing in pretrained diffusion models. Notably, our ap-
proach is training-free and compatible with a wide range of mainstream diffusion architectures. The
framework comprises two primary trajectories: the inversion trajectory and the editing trajectory.
During inversion, intermediate noisy latents and key—value (K,V') attention pairs are recorded,
capturing the evolutionary trajectory of the source image and serving as references for subsequent
editing. The editing trajectory starts from pure noise and incorporates these stored key—value pairs
while following new textual instructions. This ensures that latent representations are guided toward
the original structure, preserving maximum fidelity and editing precision.

We first implement our framework on FLUX, a flow model. Flow models generate samples by
transporting a prior distribution py (Gaussian noise) toward the data distribution p; (image man-
ifold). In R, we define a time-dependent density p; : [0,1] x R? — R and a vector field
ug 1 [0,1] x RY — R?. The flow ¢ is generated via the ODE:

2 — @), dolw) = @

transporting samples from p, toward p;. To edit real images, we invert them into the latent space,
i.e., transport samples from p; back to py. Using the reverse Euler solver in FLUX, given the forward
update and its reverse:

21 =2t + (041 — 01) ue(2e), ze =21+ (0r — opg1) we(2e-1) (8)

where z; is the latent at timestep ¢, oy is the transport standard deviation, and u; is the vector field,
assuming u;(z:) & u¢(z¢—1) for sufficiently small steps. This inversion maps images back to noise
while storing key—value pairs for editing.
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Frequency Decomposition via Wavelet Transform. To capture multi-scale visual information,
we apply discrete wavelet transform (DWT) to intermediate model features. Given a feature tensor
F ¢ REXCXHXW (or flattened attention F € REXNXD) we apply DWT to decompose it into
low-frequency approximation F 4 and high-frequency detail coefficients F p,:

DWT

F —— {Fa,Fp1,Fpa,...,Fp,} 9)
where F 4 encodes global structure, and F p, capture edges and textures. This provides a multi-scale
representation for separate treatment of global structure and fine details.

Adaptive Frequency Fusion. We propose an energy-aware adaptive frequency fusion mecha-
nism. Let B, = Y |Fre,;|? denote the energy of the i-th sub-band. We select the minimal set of
sub-bands whose cumulative energy reaches a threshold 7:

F, = Frer,i, if Zj:} E; <n)_ Bk, (10)
F;, otherwise.

Since visual energy in natural images is predominantly concentrated in low-frequency components
representing global structure (Khayam) 2003; Pimpalkhute et al.| [2021]), this energy-based selection
explicitly locks the reference image’s layout. By preserving these high-energy bands and allowing
the model to generate the remaining low-energy high-frequency bands, we achieve a balance where
the scene structure remains consistent while fine-grained details are free to adapt to text instructions
7 balances guidance strength and feature preservation.

Integration with Attention. After fusion, coefficients are reconstructed via inverse DWT (IDWT)
and then integrated into attention:

PV R R F, Y = At (QK, V) = SOftmax(QdeiT) V1
with K’ = F'Wgk, V' = F'Wy, and Q = FWg. Modulating key—value pairs in the frequency
domain guides both global and local generation. Low-frequency bands control composition; high-
frequency bands refine details. Energy-aware fusion allows blending multiple references or edits
dynamically. Compared with DCT-based or learned frequency-control methods, our wavelet-based
approach automatically selects informative frequency components according to energy distribution,
offering superior spatial-frequency localization. Integration into attention enables precise, dynamic
control while remaining training-free.

4 EXPERIMENTS

In Sec. 4.1} we benchmark W-Edit against baseline methods using both qualitative and quantitative
evaluations. Sec. presents a user study evaluating alignment, consistency, realism, and plausi-
bility from a human perspective. Sec. 4.3 reports ablation studies that isolate the contribution of
each component, while Sec. .4 demonstrates W-Edit’s generality and adaptability across different
diffusion architectures.

4.1 QUALITATIVE AND QUANTITATIVE COMPARISON

In this section, we compare the performance of W-Edit with several state-of-the-art text-driven image
editing methods. Our framework is built upon the FLUX.1-dev model, and we adopt the official
public implementations of P2P (Hertz et al., 2022), MagicBrush (Zhang et al.| [2023a)), Flow-Edit
(Kulikov et al.l [2024])), and Stable-Flow (Avrahami et al.,[2025b)) for fair comparison.

Qualitative Comparison. As shown in Fig. [5] our proposed W-Edit achieves precise editing in
the target regions while faithfully preserving the unedited areas. Specifically, existing methods of-
ten struggle to preserve the overall layout when applying local edits. For instance, Stable-Flow
distorts the bicycle pedals and other baselines misplace the basket, leading to global inconsisten-
cies. In contrast, our method faithfully maintains the bicycle’s frame geometry and basket position,
demonstrating superior structural consistency. Similarly, for a snake coiled around a tree, Stable-
Flow captures the pose but produces a physically implausible floating body and an anomalous tail,
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whereas W-Edit generates a natural configuration consistent with the scene’s overall structure These
examples demonstrate that W-Edit, by leveraging frequency-based modulation, can effectively bal-
ance local edits with global structure preservation, producing more realistic and consistent results
compared to other methods.

Quantitative Comparison. In addition to qualitative comparisons, we quantitatively evaluate the
methods using the PIE-Bench dataset (Ju et al., 2023), which is specifically constructed for the
systematic validation of image editing methods. As shown in Table [T, W-Edit achieves the lowest
FID of 65.44 and the highest CLIP score of 31.84 among all compared methods. This represents
an 18.6% reduction in FID and a 4.5% improvement in CLIP score over Flow-Edit. These gains
highlight its superiority in both visual realism and semantic alignment with the editing instructions,
driven by advanced generative priors and our wavelet-based editing strategy that faithfully trans-
lating textual modifications while avoiding artifacts. Moreover, W-Edit consistently outperforms
baselines by achieving a PSNR of 24.06, which is 14.5% higher than the second-best method, and
a LPIPS of 0.1028, representing 32.5% improvement, underscoring its ability to maintain structural
fidelity and perceptual quality. In particular, our method demonstrates a strong capability to pre-
serve global composition and background details, while applying precise and localized edits in the
target regions. Together, these results provide compelling evidence that W-Edit achieves a more
favorable balance between fidelity, alignment, and controllability compared to existing training-free
approaches. Moreover, compared with FLUX, our method only increases inference time by 10.8%
and GPU memory usage by 1.6%. More efficiency comparisons are presented in Appendix A.2.

VLM Evaluation. In addition to conventional pixel or feature-level metrics, we employ vi-
sion—language models (VLMs) to provide a more semantic evaluation of editing quality. Following
Stable-Flow, we use Phi-3.5-vision (Marah Abdin, |2024) to evaluate two criteria: Text Following,
which measures whether the edited image matches the prompt, and Minimal Modification, which
assesses whether edits are restricted to the described regions. As shown in Table[I] W-Edit achieves
the best balance between semantic fidelity and structural preservation. Unlike MagicBrush, which
tends to prioritize text alignment at the expense of global consistency, W-Edit faithfully follows
instructions while avoiding unnecessary alterations in unedited areas.

Table 1: Quantitative Comparison of Different Methods

Method PIE-Bench VLM Evaluation User Study Scores
CLIPt FID| PSNRT LPIPS| TextFol. Modify Align. Consist. Real. Plaus.
P2P 28.13  320.65 15.12 0.4736 31.5% 24.0% 2.7 3.0 29 2.6
MagicBrush  29.06  206.19  15.68 0.4615 84.5% 33.5% 35 2.3 24 22
Flow-Edit 3048  80.35 18.33 0.2642 76.0% 54.5% 3.6 3.6 3.6 34
Stable-Flow  29.16  89.78 21.02 0.1522 77.5% 58.0% 3.7 3.7 4.1 3.4
W-Edit 31.84 65.44 24.06 0.1028 81.0% 63.0% 3.8 3.9 4.2 3.8

4.2 USER STUDY

We conducted a user study to evaluate our editing approach. Specifically, we used GPT-4 to generate
100 prompt sets, each consisting of four editing instructions covering object addition, removal,
replacement, attribute modification, style transfer, and background change. Fifteen participants rated
the editing results on a five-point Likert scale across four dimensions: (1) alignment with the target
prompt, (2) consistency with the reference image, (3) realism, and (4) physical plausibility. As
shown in Table [T] our method consistently outperforms all other methods across nearly all aspects,
with particularly notable improvements in realism and physical plausibility.

4.3 ABLATION STUDY

To better understand the contribution of dif- Table 2: Ablation study
ferent components in W-Edit, we conduct an

. . Method CLIPimg CLIPtxt CLIPdir Average
ablation study and report results in Table 2. —

. .. Selected-block injection 0.9749 0.3068 0.0826 0.4548

Among all configurations, selected-block injec-  ir-plock injection 09988 02839  0.0013  0.4280

tlon achleves the best Overall balance across the w/o SingleStreamBlocks 0.9184 0.3162 0.0880 0.4409

. . . . w/o DualStreamBlocks 0.9458 0.3089  0.0871 0.4473
three CLIP-based metrics, yielding the highest o nigh-frequency 09391 03092 00821 04301
average score Of 45.48 (See Appendix Al for w/o low-frequency 0.9249 0.3125 0.0954 0.4443
metric definitions). In contrast, all-block injec-

tion maximizes image similarity but almost collapses in directional consistency, suggesting that
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Figure 5: Qualitative comparison. Our method more faithfully adheres to target prompts while

preserving the original image’s structure.

overly aggressive injection enforces the reference too strongly and suppresses textual guidance.
Removing SingleStreamBlocks or DualStreamBlocks also leads to performance degradation. The
absence of SingleStreamBlocks harms similarity, while excluding DualStreamBlocks reduces text
alignment and consistency. Frequency components further play complementary roles. Without high-
frequency signals, the model loses fine-grained consistency, whereas ablating low-frequency com-
ponents damages structural preservation, resulting in lower CLIPimg (See Appendix A.2 for visual-
ization of frequency domain component decoupling.). These findings confirm that W-Edit benefits
from both frequency bands and carefully chosen fusion blocks, which together enable a favorable
trade-off between fidelity, alignment, and editing controllability.

To determine the optimal value for 7, we per-

formed a quantitative sensitivity analysis on Table 3: Sensitivity Analysis of (1)
the PIE-Bench dataset]l. We evaluated perfor-

mance using three complementary CLIP-based  —, | CLIPimg (1) CLIPtxt(f) CLIPdir (1) Ave. (1)

metrics. As shown in the Tab[3] 7 functions as a

.. . . . 0.2 0.8920 0.3210 0.0540 0.4223
critical slider balancing structural preservation 4 0.9350 0.3140 0.0780 0.4423
(CLIPimg) and editability (CLIPtxt/CLIPdir). 0.6 0.9749 0.3068 0.0826 0.4548
Lower values (n < 0.4) favor text alignment 08 0.9910 0.2760 0.0610 0.4427

1.0 0.9990 0.2620 0.0050 0.4220

at the cost of structural integrity, while higher

values (n > 0.8) over-preserve the reference,
suppressing the intended edit. Among the tested parameters, 0.6 achieved the highest CLIPdir score
indicating the most accurate semantic transformation while maintaining a high degree of structural
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fidelity. These quantitative findings align with the qualitative visualizations presented in Fig[6] Con-
sequently, we fixed 7 = 0.6 to maintain robust performance across diverse tasks while ensuring
framework simplicity and efficiency.

n=10

Figure 6: Visualization of the impact of different n values on the generated results

Reference Lmle glrl Little Bay Elderly man Young man

F <.

Reference

D
SIS
& \& ,A
Reference Bmd Pitt Lincoln Elon Musk Trump

Temple

Generated Image

Figure 7: Qualitative editing results achieved on ~ Figure 8: Qualitative editing results achieved on
StableDiffusion-v1.5. CogVideoX-1.0.

4.4 GENERALIZATION ANALYSIS

To evaluate the generalization ability of our method, we apply W-Edit to StableDiffusion-v1.5 and
CogVideoX-1.0 (Yang et all [2024), achieving effective style transfer and subject replacement (see
Fig.[7]and Fig.[8). On StableDiffusion-v1.5, it transforms a girl into multiple identities, generates
diverse subjects under consistent style, and converts images into architectural styles like London
landmarks and the Arc de Triomphe. On CogVideoX-1.0, it performs coherent video edits, such
as cat-to-dog and girl-to-boy transformations, maintaining background consistency and preserving
identity cues. These results demonstrate W-Edit’s generalization across both image and video diffu-
sion models.

5 CONCLUSIONS

We present W-Edit, a training-free image editing framework leveraging wavelet decomposition and
frequency-guided modulation. By exploiting multi-scale frequency analysis, it ensures consistency
and stability across editing operations. Extensive experiments show competitive performance and
strong generality in tasks such as object addition, removal, and replacement. Our frequency-domain
perspective offers a novel avenue for integrating spectral priors into editing and generative frame-
works, paving the way for more controllable and versatile content creation.
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A APPENDIX

A.1 EXPERIMENTAL EVALUATION SETUP

Experimental Details. Given the advanced generative capabilities of FLUX, we first conduct ex-
periments on the FLUX framework, where we select blocks [0, 1, 2, 17, 18, 28, 53, 54, 56] for
frequency-domain fusion. Haar wavelets are used as the basis for multi-level decomposition, with
the maximum frequency energy weight set to 0.6. For CogVideoX-1.0, we experiment with blocks
[0, 1, 2, 3], employing the bior3.3 wavelet basis for decomposition. On Stable Diffusion v1.5, we
operate on the overall features between UNet blocks, using Haar as the wavelet basis. To dispel
concerns that the frequency variations shown in Fig 4] might be isolated cases and to verify the
generalizability of our observations, we conducted the following extended experiments: We con-
structed a dataset containing k = 64 diverse text cues (generated by ChatGPT, covering different
environments, object sets, and subjects) and calculated the average frequency energy distribution of
these samples. The results strongly confirm that the transition from low-frequency structure dom-
inance in early blocks to high-frequency detail dominance in later blocks is a consistent feature of
the FLUX DiT architecture, rather than an artifact specific to any particular image. This statistical
result strongly supports the robustness of our frequency-based block selection strategy.

Datasets. PIE-Bench (Prompt-based Image Editing Benchmark) is a benchmark dataset specifi-
cally constructed for the systematic validation of image editing methods. It aims to evaluate the
editing strategy proposed in this study and compare it with existing inversion methods, while ad-
dressing the lack of standardized evaluation criteria for current image inversion and editing tech-
niques. The dataset comprises 700 images covering both natural scenes and artificial scenes (such
as paintings), which are divided into ten editing types: random editing (written by volunteers), object
modification, object addition, object deletion, object content alteration, object pose change, object
color adjustment, object material modification, background replacement, and image style transfor-
mation. Within each editing type, the images are evenly distributed between natural and artificial
scenes and balanced across four categories: animals, humans, indoor environments, and outdoor
environments. Each image sample includes five key annotations: a source image prompt, a target
image prompt, an editing instruction, a description of the editing subject, and an editing mask. The
editing mask is particularly critical for accurately defining the expected editing region and is essen-
tial for precision evaluation. The dataset was constructed using a combination of automated and
manual methods—random editing types were directly written by volunteers, while the other types
utilized BLIP-2 to generate source image prompts and GPT-4 to produce target prompts and editing
instructions. The results were then manually corrected to ensure accuracy, with two annotators and
one reviewer collaboratively completing the annotation of editing subjects and masks. This process
provides a standardized, high-quality evaluation benchmark for image editing research.

VLMs Experiment(Phi-3.5-vision) Phi-3.5-vision is a highly capable VLM that demonstrates
strong proficiency in both visual perception and linguistic reasoning. Its architecture is designed to
enable joint understanding and reasoning about the complex interplay between visual content and
textual descriptions. The utilization of the VLM for quantitative evaluation is motivated by sev-
eral key factors. Firstly, traditional automated metrics, such as LPIPS or PSNR, primarily focus on
low-level pixel-wise or structural similarity, which often fail to capture high-level semantic align-
ment between images and text prompts. In contrast, VLMs like Phi-3.5-vision are inherently suited
for this task, as they can directly assess whether the visual content semantically conforms to the
provided textual instruction. Secondly, evaluating “Minimal Modification” requires a model to not
only understand the intended edit but also to recognize and preserve the unaltered regions of the
source image. The joint understanding capability of VLMs allows them to perform this nuanced
comparison more effectively than metrics that operate on image pairs without semantic guidance.
By leveraging the reasoning capabilities of Phi-3.5-vision, our evaluation framework delivers a more
semantically meaningful and reliable performance measure, particularly for instruction-based image
editing tasks where faithfulness to both the text and the original image structure is paramount.

CLIP Metrics To comprehensively evaluate the performance of our image editing framework, we
employ three CLIP-based metrics that measure different aspects of editing quality as follows.
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(1) CLIPimg (Image Similarity) quantifies the visual fidelity between the edited image and the orig-
inal input by measuring their feature-space cosine similarity in the CLIP image encoder. Higher
values (closer to 1.0) indicate better preservation of the original image’s content and structure, en-
suring that edits maintain the essential characteristics of the source material.

(2) CLIPtxt (Text Alignment) assesses how well the edited image corresponds to the target textual
instruction by computing the cosine similarity between CLIP image features of the output and CLIP
text features of the prompt. This metric captures the semantic alignment between visual content and
textual description, with higher values indicating more accurate interpretation of editing commands.

(3) CLIPdir (Directional Consistency) measures the precision of attribute manipulation by calculat-
ing the cosine similarity between the vector from original to edited image in CLIP space and the
vector from source to target text. This metric specifically evaluates whether the editing direction
follows the intended semantic pathway, with positive values indicating consistent transformations
and negative values suggesting deviation from the desired editing trajectory.

Together, these three metrics provide a multi-dimensional assessment of image editing systems,
balancing the trade-offs between content preservation (CLIPimg), instruction faithfulness (CLIPtxt),
and editing precision (CLIPdir).

A.2 QUALITATIVE AND QUANTITATIVE EXPERIMENTS.

To comprehensively demonstrate W-Edit’s versatility across diverse editing scenarios, we present
qualitative results for six core editing tasks: non-rigid editing, object addition, object removal,
object replacement, attribute modification, and background editing. Each task is designed to
evaluate distinct aspects of the framework’s capabilities, from precise local manipulations to global
semantic transformations, while maintaining structural and semantic consistency with the reference
image.The non-rigid editing task handles deformable transformations including pose changes and
facial expressions. Object addition tests spatial reasoning when introducing new elements. Object
removal assesses background reconstruction proficiency. Object replacement evaluates semantic
understanding when swapping objects. Attribute modification validates fine-grained control over
object characteristics. Background editing examines global scene transformation capacity. These
tasks span from localized object manipulations to comprehensive scene transformations, providing
thorough evaluation across various editing complexities.

Quantitative results. Based on the quanti- Table 4: CLIP metrics comparison across differ-
tative results in Table [} our method demon- ent tasks
strates complementary strengths across edit-

ing tasks. The Add operation excels in im- Task CLIPimg CLIPtxt CLIPdir
age preservation (CLIPimg: 0.9740), while Re- Add 0.9740 02869  0.0679
move achieves the best text alignment (CLIP- Attr 0.9224  0.2857  0.0990
txt: 0.2943). Scene editing shows superior di- Replace 090;3 0-2835 0.1184
rectional control (CLIPdir: 0.1195), and Re- Remove 09358~ 0.2943  0.0728

.. Scene 0.9139 0.2811 0.1195
place maintains balanced performance across Non-rigid 09291 02837  0.0493

metrics. These specialized capabilities provide
users with flexible editing strategies tailored to
different requirements—whether prioritizing visual fidelity, semantic accuracy, or edit controllabil-
ity. The consistent performance validates our method’s robustness across diverse editing scenarios.

Ablation Study In addition to quantitative metrics, we also qualitatively analyze the ablation re-
sults, as shown in Fig.[9] When all blocks are used for injection, the editing signal becomes overly
strong, causing the output to almost replicate the reference image and significantly degrading text
similarity. Using only single-stream or dual-stream blocks similarly reduces text alignment and in-
troduces inconsistencies with the reference layout. In fact, injecting only at dual-stream blocks even
leads to erroneous generation, such as altering the appearance of the crocodile. This occurs because
dual-stream blocks lie at lower depths and thus primarily capture low-frequency structure—while
preserving global layout, they lack high-frequency information, resulting in distorted object details.
Conversely, ablating high-frequency components causes loss of fine details (e.g., the crocodile’s
teeth), whereas ablating low-frequency components disrupts structural integrity, leading to issues
such as inconsistent background regions (e.g., mismatched trees).
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Figure 9: Visualization results of ablation experiments

Table 5: Memory and time usage

Memory and time usage Table [5] compares the computa-

tional efficiency of different methods, revealing notable per- Method Memory (GB) _Time (5)
formance differences. MagicBrush, built on the U-Net archi- MaigcBrush 1675 20.38
tecture, requires only 16.75 GB of memory with a processing ~ FLUX 35.58 46.00
time of 20.38 seconds. In contrast, the other methods are based g%fgf@w gg'gg ig'gg
on the FLUX framework, consuming similar memory (around  w.ggit 35.59 50.00

35.5-36.1 GB) but with longer processing times ranging from
46 to 50 seconds. Our method achieves superior editing perfor-
mance while incurring only a 10.8% increase in runtime and a 1.6% increase in memory usage com-
pared to FLUX. While W-Edit delivers competitive editing quality, this efficiency analysis provides
practical guidance for selecting methods under given computational resource and time constraints.

Qualitative results. Figures showcase results for object-centric edits. For object addition
(Fig. [T3), W-Edit exhibits strong spatial reasoning by integrating new objects (e.g., a ceramic vase
on a wooden table, hardcover books on a shelf, and lit candles on a birthday cake) into the existing
scene geometry without occluding unrelated elements or introducing visual artifacts. The added
objects inherit lighting conditions and texture consistency from the reference, ensuring perceptual
coherence. In object removal (Fig. [T4), the framework not only eliminates target elements (e.g.,
scattered rocks, a folding chair, park benches) but also inpaints the resulting regions with contex-
tually appropriate content—such as extending grassy terrain or matching wall textures—avoiding
the blurred edges or semantic inconsistencies common in baseline methods. For object replace-
ment (Fig. [T5), W-Edit preserves fine-grained spatial relationships (e.g., the position of a cake on
a plate, bread on a cutting board) while substituting objects with semantically distinct alternatives,
demonstrating its ability to disentangle object identity from scene layout. For non-rigid editing
(Fig.[T6), W-Edit demonstrates remarkable capability in handling complex deformable transforma-
tions, including facial expression changes, animal pose adjustments, and body posture modifications,
while maintaining structural integrity and avoiding unrealistic distortions. In attribute modification
(Fig. [T7), the framework achieves precise control over object characteristics such as color, mate-
rial, and texture, enabling fine-grained edits like altering car colors or modifying book appearances
without affecting unrelated regions. Finally, for background editing, W-Edit seamlessly transforms
entire environments while preserving consistency of foreground objects, showcasing its capacity for
comprehensive scene-level modifications that maintain both semantic coherence and visual plausi-
bility.
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As demonstrated in Fig. 2T] we comprehensively visualize the editing capabilities of the proposed
W-Edit model across the diverse PIE-Bench dataset. Specifically, W-Edit successfully executes vari-
ous complex operations, including but not limited to: adding or removing objects in a scene, altering
the subject’s content, pose, background, material, and color, as well as applying overall style trans-
fer. These examples encompass diverse subjects such as animals, humans, and everyday objects,
qualitatively validating the model’s robustness and precision in understanding and executing com-
plex editing instructions, thereby confirming its powerful and versatile image editing performance.

We also compared W-Edit with the current large-scale pre-trained model FLUX.1 Kontext in Fig[T9]
As the qualitative comparison in the provided images shows, W-Edit’s structural fidelity is not infe-
rior to FLUX.1 Kontext when performing specific edits. For example, in the pose transformations
of eagles and dogs, although our method’s background consistency is slightly worse than FLUX.1
Kontext, the subject consistency of the edited image is worse than our method. For example, the sub-
jects of the dog and eagle change, and the ability to preserve the subject structure is not as good as
our frequency domain method. However, in the cat example, it can be seen that FLUX.1 Kontext’s
generation is more reasonable and of better quality. But in the bridge example, FLUX.1 Kontext
cannot even edit correctly. Therefore, in terms of structural fidelity, W-Edit is not inferior to some
current resource-intensive pre-trained editing models, based on the qualitative results.

The impact of the value of 7 on the results. To investigate the impact of the hyperparameter 7
on the editing results, we conducted a detailed qualitative analysis, as shown in Fig.[f] In the W-Edit
framework, n plays a critical role by essentially controlling the amount of frequency sub-band energy
retained from the reference image, thereby striking a balance between structural fidelity and editing
flexibility. Our analysis indicates that there exists an optimal range for the value of . When 7 is set
too low (e.g., n j 0.4), the model retains too little structural information from the reference image.
This leads to issues such as structural collapse or loss of subject identity in the edited results, as
illustrated in the first column of Fig.[6] This effect is similar to the "low-frequency removal” scenario
in the ablation study in Section 4.3, where the basic composition of the original image cannot be
maintained. Conversely, when 7 is set too high (e.g., n ¢ 0.8), an excessive amount of frequency
information from the reference image is preserved, which overly suppresses the text-guided editing
capability. As shown in the last column of Figure X, the editing effect becomes minimal, with the
image almost unchanged, resembling the results of the “full-block injection” baseline. As shown
in the Tab [3] we found that setting 7 to 0.6 achieves the best balance in most scenarios. Under
this configuration, W-Edit is able to firmly preserve the overall structure and subject identity of
the source image while effectively responding to textual instructions to produce clear and natural
editing effects. The choice of this optimal value is further supported by the quantitative evaluation
in Section 4.2, where our method achieved the highest CLIP Score under this setting, demonstrating
its superiority in semantic consistency and editing quality. In conclusion, 7=0.6 is established as our
default parameter, providing W-Edit with stable and adaptive performance.

Wavelet Transform Feature Decomposition To validate the frequency-aware mechanism of the
W-Edit framework, we performed Wavelet Transform decomposition and frequency domain analysis
on features from various blocks of the FLUX architecture. The W decomposes the feature /" into a
Low-Frequency Approximation Component (/4 ) (structure information) and a High-Frequency De-
tail Component (Fp) (texture information). Visualization reveals a non-uniform “Low-Frequency
Foundation - High-Frequency Refinement” evolution trend: early blocks are dominated by F4 (es-
tablishing structure), while later blocks exhibit significantly increased F'p energy (generating fine-
grained texture). Quantitative analysis of the mid-frequency energy further confirms this by showing
the feature energy centroid shifting from the low-frequency region to the high-frequency region with
increasing layer depth. The strong consistency between the visualization and quantification validates
the frequency evolution in the FLUX architecture. Ultimately, this provides a solid theoretical ba-
sis for W-Edit’s adaptive block selection based on energy metrics, enabling balanced control over
structure preservation and detail editing by aligning F'A/F D coefficients in the wavelet domain.

Decomposition Level. To determine the optimal recursive level for Wavelet decomposition, we
systematically visualized the impact of different levels on key features and calculated the resulting
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Table 6: Comparison of selected layer.

LayerID | R.f | Rour | d= Rsf — Rour d? | Stable-Flow Drop (%) | Ours Drop(%)

28 6 6 0 0 7.2 7.5
54 9 9 0 0 9.5 6.2
2 4 5 1 0 8.5 8.8
53 7 8 1 1 6.8 6.8
0 2 2 1 1 9.5 9

56 8 7 -1 1 6.8 7

1 5 3 2 4 7.8 9.3
17 1 1 0 0 12.1 12.5
18 3 4 1 1 6.7 8.5

energy retention rate, as shown in Fig. [IT] Qualitative analysis indicated that the decomposition
level significantly affects feature representation. For instance, at Level 1, the low-frequency com-
ponent effectively captures the image’s overall structure, and the high-frequency component retains
clear details. However, as the decomposition level increases (e.g., Level 6), the low-frequency in-
formation becomes overly coarse due to repeated downsampling, failing to carry meaningful visual
patterns; concurrently, the resolution of the high-frequency components decreases significantly, de-
grading their ability to represent fine details. Using Parseval’s theorem, we performed a quantitative
assessment via the energy retention rate, which demonstrated that Level 2 decomposition achieves
the optimal balance between structural and detailed information while preserving approximately
85% of the original feature energy. In contrast, Level 1 decomposition might introduce noise due
to information redundancy, while excessive levels (such as > 4) compromise editing quality due to
excessive information loss. Based on these qualitative observations and quantitative calculations,
we ultimately selected Level 2 decomposition as the core parameter for the W-Edit framework. This
choice ensures that the model can fully utilize the low-frequency components to maintain structural
consistency and leverage high-quality high-frequency components for detail synthesis in subsequent
editing, thus balancing visual fidelity with computational efficiency.

Layer Comparsion. Tab. [6] compares the layer selections and performance metrics between
Stable-Flow (based on DINOV2 structural saliency) and our frequency energy-based method. The
layers [0, 1,2, 17, 18, 28, 53, 54, 56] were evaluated using two key metrics: Jaccard Similarity Coef-
ficient (0.9) indicates high overlap in layer set composition, demonstrating that our frequency-driven
selection aligns closely with Stable-Flow’s structural importance criteria. Spearman Rank Correla-
tion Coefficient ( = 0.925) quantifies the agreement in importance rankings derived from ablation
studies on edit quality (CLIPimg Score). This strong correlation validates that frequency energy
response effectively captures structural significance, supporting our method as a robust alternative
to DINOv2-based approaches. The reduction percentages further illustrate comparable performance
in stability metrics across methods.

We initially calculated the total energy (E¢ota1) of the feature map and obtained Ejow and Epigh
by summing the spectral energy values within their respective frequency bands. We then calculated
the Lo norm for all 128 generated samples and averaged the Ejqw and Epjgn ratios relative to
E¢otal for each block. Based on this quantitative data, we designed two core visualization charts
to illustrate the analysis results intuitively. The Energy Progression 3D Plot uses the Training Step
Index and Network Block Index as the horizontal axes and Energy Value as the vertical axis to
clearly demonstrate the 3D distribution of Ejqw and Epsgn energy across different training phases
and network depths. This highlights the shift in energy dominance from low to high frequencies.
Furthermore, the Macro Energy Ratio Pie Chart presents the average proportion of low-frequency
and high-frequency energy within the total feature representation across the entire diffusion process.
These quantitative results strongly confirm a highly significant shift in spectral energy dominance
from early to late blocks. We have included a new progression curve figure in the Appendix, shown
as Fig@, that clearly visualizes the evolution trend of the Ejow and Epjgn curves across all blocks.
This systematic quantitative and statistical analysis provides the necessary and rigorous theoretical
foundation for W-Edit’s frequency-aware block-wise injection strategy.
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* Block[15] Block[17]

Figure 10: Frequency domain evolution pattern with block.

Level: 2 Level: 6

Figure 11: Results of features at different decomposition levels.

Decoupling of high and low frequencies. To further validate this conclusion, we conduct a vi-
sualization experiment where only specific frequency bands are injected. As shown in Fig. [T8]
injecting only low-frequency components alters global structure and layout but fails to refine local
details. Injecting only high-frequency components preserves the overall structure while modifying
textures and fine-grained attributes.Combining both yields faithful and coherent edits simultane-
ously maintaining global consistency and enabling precise modifications, This evidence confirms
that multi-level frequency control is key to balancing stability and flexibility in editing.

Table 7: Our method yields results for different edit types on the PIE-Bench dataset.

Categories  Structure p;segance PSNR  LPIPS  MSE SSIM  CLIPsim CLIP

random 0.043 20.627 0.170 0.014 0.804 24891  31.563
obj 0.041 19.101 0.181 0.015 0.780  24.729  32.123

add 0.014 24.612 0.082 0.004 0918 24499  31.587
delete 0.015 24614 0.081 0.005 0.887 24499  30.997
content 0.014 25.772 0.084 0.004 0917 24397  31.665
pose 0.024 24310 0.104 0.007 0.881 26.297  32.823
change color 0.020 23956 0.096 0.007 0903 24888  32.659
material 0.012 25.997 0.075 0.003 0.936 24.268 31.762
background 0.014 25463 0.069 0.004 0.927 23.888  31.742
style 0.013 26.167 0.085 0.011 0913 23955 31.480
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“...bed with a stuffed animal”

“...street with people holding umbrellas” “...river with a bridge” ...door with a w I{’(IT/I

Figure 13: Object addition results. W-Edit accurately adds objects specified in the text prompt
while preserving the original image structure. For instance, it successfully adds a vase on the table,
books on the shelf, and candles to the birthday cake, demonstrating precise spatial understanding
and minimal disruption to existing content.

To verify that the separation of low-frequency structure and high-frequency details in W-Edit enables
precise and faithful editing, we conducted the following experiments by injecting low-frequency in-
formation and high-frequency information separately. We designed a rule where, when generating
an image based on a text prompt, if we force the preservation of the low-frequency components of
the reference image, the generated image is compelled to retain the overall composition and macro-
scopic appearance of the reference image. Under this strong constraint, the text prompt can only
perform subtle semantic replacements on local content, without changing the overall structure or
style. The high-frequency components encode the fine details, textures, outlines, and edges of the
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“Library with bookshelves and-tables” .. forest with trail end-signpost” “Museum with exhibits and-visitors”

Figure 14: Object removal results. W-Edit effectively removes target objects while maintaining
scene coherence. Examples include removing rocks from the field, eliminating the chair from the
room, and clearing benches from the park. The edited regions show natural inpainting that seam-
lessly blends with the background.

“ Vanilla cake”

“A battpoint fountain pen”

“A Siemese Maine Coon cat” “A ptastie paper bag” “A plastie glass bottle”

Figure 15: Object replacement results. W-Edit demonstrates strong capability in replacing objects
with semantically different alternatives while preserving spatial relationships and background con-
sistency. The method successfully replaces chocolate cake with vanilla cake, changes types of bread,
and transforms cat appearances, showcasing its flexibility in handling diverse replacement tasks.

objects in the image. By preserving the high-frequency components of the reference image, we are
able to precisely lock the geometric shape and contour structure of the object. Therefore, as shown
in Fig. In the upper row, text prompts such as “castle” or “factory” successfully capture local
features, like the style of the seaside house, but the image’s style, overall background, and layout are
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“A tree in summer autumn”

“A man standing with hands-in-poekets” Cloth st moving in wind”

“A woman walking g#aeequy qwckly “A balbof flattened dough’ “A man sriting-shightly laughing”

Figure 16: Non-rigid editing results. W-Edit demonstrates remarkable capability in handling com-
plex non-rigid transformations while presenting structural integrity. Our method successfully mod-
ifies facial expressions, adjusts body postures, and alters animal poses, showcasing its ability to
manage deformable objects without introducing artifacts or compromising the original image com-
position.

still preserved and controlled by the reference image’s low-frequency components. In the lower row,
when injecting high-frequency information and using a natural landscape (mountain range) as the
reference image, the generated image clearly retains the mountain’s contour, while its style and tex-
ture can be significantly changed according to the text prompt (e.g., “night,” ’spring,” or desert”).
This substantially improves the precision and creativity of local modifications. Consequently, this
verifies that the low-frequency components capture the global structure, macroscopic layout, main
color tones, lighting, and artistic style of the image. The high-frequency components encode the
fine details, textures, outlines, and edges of the objects in the image. Furthermore, it validates that
our method successfully achieves the separation of low-frequency and high-frequency information,
significantly enhancing the precision and flexibility of image editing and providing a foundation for
achieving excellent editing results.
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“A tivingroom kitchen” “Meadow witdflowers grass”

“A mountain t-swmmer in winter”

Figure 17: Attribute modification and scene editing. W-Edit does well in fine-grained attribute
control and comprehensive scene transformation. For attribute modification, it precisely adjusts ob-
ject properties such as color, material, and texture. For background editing, our method seamlessly
replaces entire environments while maintaining consistency of foreground objects.

: z 54 innig : o : : e
Real Image Without injection Low-frequency More Low- High and Low
injection frequency injection frequency injection

Figure 18: The impact of injecting a specific frequency band on the image.

B REPRODUCIBILITY STATEMENT

Implementation details, evaluation protocols, and dataset descriptions are provided in the main text
and appendix. Complete proofs are also included in the main text. The full source code will be
released upon acceptance.
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Reference

FLUX.1 Kontext

W-Edit

Figure 19: Comparison with FLUX.1 Kontext.

C THE USE OF LLM

Throughout the preparation of this paper, we employed a large language model (LLM) to improve
the writing and correct grammatical errors. The LLM was also used as an experimental tool to
generate certain prompts for testing purposes.
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Reference  Triumphal arch  Notre Dame Parthenon Temple Eiffel Tower Reference Castle Ancient Ruins Factories Drilling Platform

Reference  Chinese Street

Reference Elder Man

Reference Desert Night Spring  River at night Reference Winter Spring Autumn Sunny

Reference Van Gogh Monet City style Autumn Reference Van Gogh Pen sketch Autumn Water color

Reference Water color Pen sketch Autumn Sunny Reference Water color Night Pen sketch Autumn

Figure 20: Qualitative Results of Different Frequency Band Replacement Methods. For Low-
Frequency Band Replacement, both the appearance and layout of the generated image are controlled
by the reference image; for High-Frequency Band Replacement, the reference image controls the
contours of the generated image (which is better observed upon magnification).
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Change pose

\Ml‘

Change material

Change background

Delete ‘ Delet ‘ Change style Change style

Figure 21: Visualization results of W-Edit for different editing types on PIE-Bench.
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