

000 001 002 003 004 005 006 007 008 009 010 W-EDIT: A WAVELET-BASED FREQUENCY-AWARE 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FRAMEWORK FOR TEXT-DRIVEN IMAGE EDITING

Anonymous authors

Paper under double-blind review

ABSTRACT

While recent advances in Diffusion Transformers (DiTs) have significantly advanced text-to-image generation, text-driven image editing remains challenging. Existing approaches either struggle to balance structural preservation with flexible modifications or require costly fine-tuning of large models. To address this, We introduce W-Edit, a training-free framework for text-driven image editing based on wavelet-based frequency-aware feature decomposition. W-Edit employs wavelet transforms to decompose diffusion features into multi-scale frequency bands, disentangling structural anchors from editable details. A lightweight replacement module selectively injects these components into pretrained models, while an inversion-based frequency modulation strategy refines sampling trajectories using structural cues from attention features. Extensive experiments demonstrate that W-Edit achieves high-quality results across a wide range of editing scenarios, outperforming previous training-free approaches. Our method establishes frequency-based modulation as both a sound and efficient solution for controllable image editing.

1 INTRODUCTION

In recent years, diffusion models have become the dominant paradigm for image generation (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2020; Song & Ermon, 2019), achieving remarkable progress in large-scale text-to-image (T2I) generation. Early designs such as Stable Diffusion (Rombach et al., 2022) employ U-Net (Ronneberger et al., 2015) backbones, whereas recent frameworks including FLUX (Labs, 2024) and SD3 (Esser et al., 2024) replace U-Net with Diffusion Transformers (DiT) (Peebles & Xie, 2023) and integrate flow matching (Albergo & Vanden-Eijnden, 2022; Lipman et al., 2022; Liu et al., 2022) to improve fidelity and efficiency. Despite these advances in generation, controllable text-driven image editing remains a significant challenge.

Text-driven image editing aims to modify images according to natural language instructions, supporting operations such as object replacement, attribute modification, style transfer, and background editing, as shown in Fig. 1. The central difficulty lies in achieving precise and flexible modifications while preserving the global layout and contextual coherence of the reference image. Existing methods fall into two groups. Training-based methods (Zhang et al., 2023b; Kawar et al., 2023; Zhang et al., 2023a) adapt diffusion models to reconstruct reference images before applying edits. While effective, this process is computationally expensive and prone to catastrophic forgetting. In contrast, training-free approaches achieve editing by modifying the sampling trajectory of pretrained models at inference time, without additional training. Among them, Inversion-based methods (Brack et al., 2024; Cao et al., 2023; Deutch et al., 2024; Aberman et al., 2024) avoid retraining by mapping images into noise space and resampling with new prompts, but suffer from trajectory drift and limited controllability. Attention-injection approaches such as Prompt-to-Prompt (Hertz et al., 2022) improve structure preservation but are highly sensitive to layer selection and fail under complex edits. More recently, Stable-Flow (Avrahami et al., 2025b) introduced the idea of vital layer in flow-based diffusion models and performs injection only at these selected layers. This strategy improves stability and enables the completion of certain edits, but it enforces overly rigid constraints, often preventing necessary changes such as scene-level modifications. As shown in Fig. 2, these methods either maintain structure while missing edits, or realize edits at the cost of consistency.

We argue that this difficulty arises from the entanglement of global semantics (e.g., layout, object identity) and local signals (e.g., texture, color, fine attributes) in the spatial domain. This entan-

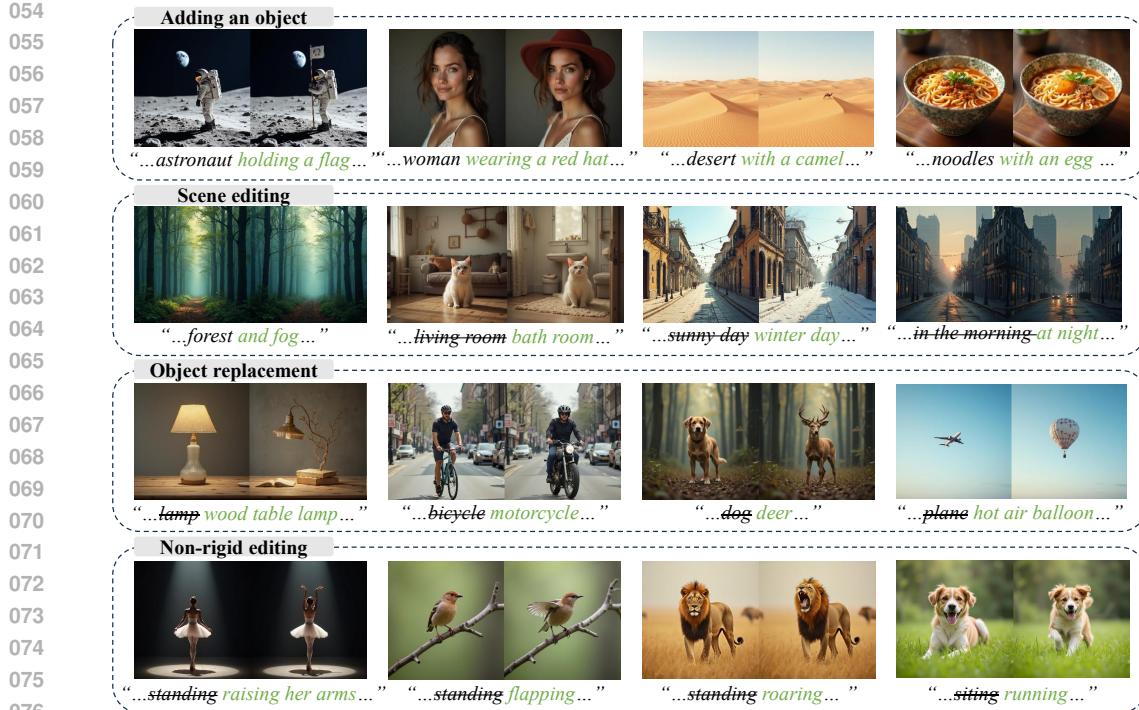


Figure 1: **Representative editing results produced by W-Edit.** Our training-free editing method is able to perform various types of image editing operations, including non-rigid editing, object addition, object removal, and global scene editing. These different edits are accomplished using the same mechanism.

Figure 2: **Comparison of editing consistency and modification fidelity across representative methods.** Using different textual prompts with the same initial seed, we observe the following: (1) FLUX produces relatively stable outputs but often fails to accomplish the intended edits; (2) MagicBrush struggles to generate precise edits that faithfully follow textual instructions; (3) Stable-Flow delivers more stable results and completes editing tasks, but its mechanism enforces overly rigid constraints on diversity and can still introduce inconsistencies (e.g., the background remains unchanged despite text modifications); and (4) in contrast, W-Edit produces edits that align closely with textual descriptions while preserving the consistency of unrelated content. Fine details are best viewed when zoomed in.

lement makes it difficult to simultaneously preserve structure and introduce modifications. The frequency domain, in contrast, offers a natural decomposition that aligns with editing objectives. Low-frequency components encode layouts and semantics and thus can serve as reliable anchors for consistency, while high-frequency components capture textures and variations and thus are suitable for flexible modification. This natural separation aligns directly with editing objectives, enabling explicit control over which parts of the image should remain stable and which parts can be modified. Building on this insight, we analyze the feature representations of Diffusion Transformers (DiTs) from a frequency-domain perspective and discover a block-wise frequency progression. We find

108 that early blocks predominantly focus on low-frequency structures, while later blocks refine high-
 109 frequency details as shown in Fig. 4. Building on this insight, we reformulate text-driven editing as
 110 multi-level frequency control.

111 Building on this progression, we propose **W-Edit**, a training-free framework for text-guided image
 112 editing from a frequency-domain perspective. We introduce three key innovations. First, we employ
 113 wavelet-guided decomposition to provide multi-scale frequency bands with spatial locality, allowing
 114 separate treatment of structure and detail. Second, we design a lightweight frequency-band replace-
 115 ment module that selectively injects these components into pretrained diffusion models, avoiding the
 116 need for costly retraining. Third, we develop an inversion-based frequency modulation strategy that
 117 refines the sampling trajectory using structural cues from attention features, minimizing structural
 118 drift and improving controllability.

119 Extensive experiments show that W-Edit achieves high-quality results across diverse editing sce-
 120 narios. Compared with prior training-free approaches, W-Edit delivers more faithful, consistent,
 121 and visually coherent edits, establishing frequency-based modulation as a principled and efficient
 122 solution for controllable diffusion editing.

124 2 RELATED WORK

125 2.1 TEXT-GUIDED IMAGE EDITING METHODS

126 Text-driven image editing usually builds upon pretrained T2I diffusion models (Huberman-
 127 Spiegelglas et al., 2024; Samuel et al., 2023; Tumanyan et al., 2023; Wallace et al., 2023; Wu &
 128 De la Torre, 2023), ranging from early U-Net based backbones such as Stable Diffusion to recent
 129 Transformer based models like FLUX (Labs, 2024) and SD3 (Esser et al., 2024). Existing ap-
 130 proaches can be divided into training-based and training-free methods. Training-based methods,
 131 such as InstructPix2Pix (Brooks et al., 2023) and MagicBrush (Zhang et al., 2023a), construct large-
 132 scale instruction–image triplets to learn direct mappings for editing. IMagic (Kawar et al., 2023) and
 133 SINE (Zhang et al., 2023b) reconstruct reference images by adapting pretrained models, but this is
 134 costly and prone to catastrophic forgetting. While effective, these methods demand heavy annota-
 135 tion and training costs and often generalize poorly to unseen domains such as video or fine-grained
 136 edits. Training-free methods (Brack et al., 2024; Cao et al., 2023; Deutch et al., 2024; Aberman
 137 et al., 2024), which dominate recent research, avoid dataset construction and leverage pretrained
 138 priors instead. Among them, inversion-based approaches (Song et al., 2020; Wu & De la Torre,
 139 2023) reconstruct a reference image in the diffusion latent space before applying edits, but suffer
 140 from trajectory drift or reconstruction errors. Later improvements, such as optimization-based cal-
 141ibration and structural regularization (Brack et al., 2024; Cao et al., 2023; Aberman et al., 2024;
 142 Parmar et al., 2023; Tumanyan et al., 2023), enhance stability and control. Attention-modulation
 143 techniques (Hertz et al., 2022; Tumanyan et al., 2023) improve spatial control by injecting cross-
 144 and self-attention features, yet they remain sensitive to block selection, computationally expensive,
 145 and prone to semantic inconsistency. While these methods achieve promising results, they still
 146 struggle to preserve global structure while enabling flexible local modifications without retraining.

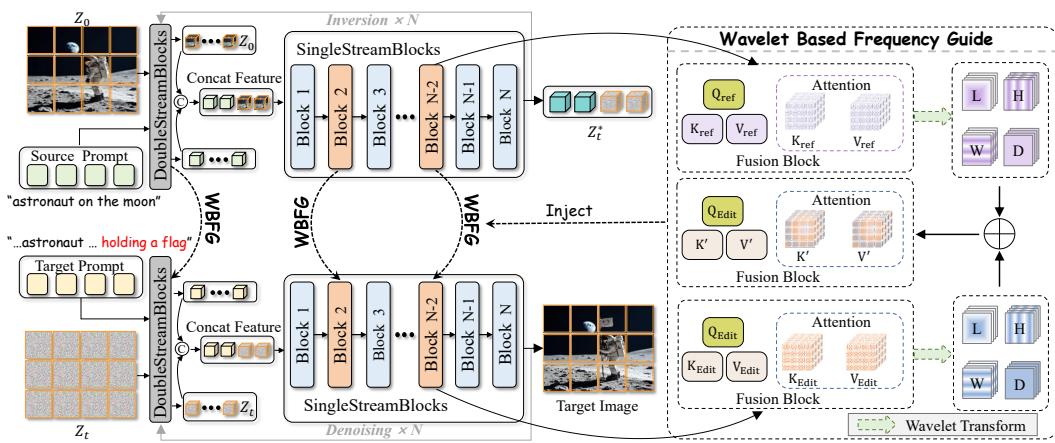
147 2.2 FREQUENCY PERSPECTIVE IN DEEP LEARNING

148 Beyond spatial-domain manipulation, frequency-domain analysis has proven useful in a variety of
 149 vision tasks. Early CNN-based studies integrated Discrete Cosine Transform (DCT) to acceler-
 150 ate convergence (Ghosh & Chellappa, 2016) or introduced frequency-aware dynamic networks for
 151 super-resolution (Xie et al., 2021). Though not intended for editing, these studies demonstrated the
 152 potential of frequency representations in vision. More recently, diffusion-based works further lever-
 153 age frequency cues for generation and editing: FDDiff (Wang et al., 2024) restores high-frequency
 154 details in low-resolution images, FDG-Diff (Zhang et al., 2025) enforces spatial–frequency consis-
 155 tency, WaveDiff (Phung et al., 2023) decomposes latent features into sub-bands for improved texture
 156 preservation, FreeU (Si et al., 2024) regulates frequency responses to improve the generation qual-
 157 ity, ConsisID (Yuan et al., 2025) maintains identity in video generation via frequency control, and
 158 FCDiffusion (Gao et al., 2024) designs multi-branch frequency pathways for diverse translations.
 159 However, these methods typically require additional objectives or architectural modifications, limit-
 160 ing their plug-and-play applicability. [This line of inquiry has been extended to image editing](#), where

162 methods like FlexiEdit (Koo et al., 2024) refine the DDIM latent space by selectively attenuating
 163 high-frequency components to enhance fidelity in non-rigid edits, and FDS (Ren et al., 2025) pro-
 164 poses a frequency-aware denoising score to improve the stability and quality of text-guided edits.
 165 However, these methods typically require additional objectives or architectural modifications, lim-
 166 iting their [plug-and-play applicability](#). In contrast, W-Edit introduces a training-free, wavelet-based
 167 frequency modulation framework for text-driven image editing. Instead of relying on handcrafted
 168 attention injections or heavy retraining, it decomposes intermediate diffusion features into multi-
 169 scale wavelet bands and selectively injects them to guide the sampling process. This lightweight
 170 design enables controllable and structurally consistent editing across diverse tasks, bridging the gap
 171 between frequency-domain analysis and practical editing applications.

3 METHOD

175 Our goal is to enable controllable text-driven image editing without retraining preserves consistency
 176 while producing faithful modifications. To this end, we introduce W-Edit, a wavelet-based frame-
 177 work that disentangles global structure and local details in the frequency domain. As illustrated in
 178 Fig. 3, we first extract an inversion trajectory from the reference image, then applies wavelet-based
 179 frequency decomposition and fusion at selected blocks, and finally performs frequency-guided edit-
 180 ing with structural cues. Specifically, Sec. 3.1 introduces wavelet-based frequency decomposition,
 181 Sec. 3.2 analyzes block-level frequency characteristics that underpin structural and detail preserva-
 182 tion, and Sec. 3.3 details our wavelet-based editing framework and modulation strategy.



198 **Figure 3: Overall Framework of W-Edit.** Given an input image and a corresponding text in-
 199 struction, we first perform inversion on the input image to obtain the initial noise and the inversion
 200 trajectory. Next, starting from both the inverted noise and new random noise, we sample to gen-
 201 erate the reference image and the edited image simultaneously. Within the pretrained T2I model, we
 202 selectively choose different Transformer blocks and decompose the reference image's keys (K) and
 203 values (V) into multi-scale frequency bands using wavelet transforms. An energy-aware adaptive
 204 frequency fusion mechanism is then applied to inject these frequency-domain features from the
 205 reference image into the sampling process of the edited image. This procedure guides the execution
 206 of the editing task, resulting in high-quality images that preserve structural consistency while accu-
 207 rately reflecting the desired semantic modifications.

3.1 WAVELET-BASED FREQUENCY DECOMPOSITION

210 A central challenge in editing is that global semantics (e.g., layout, object identity) and local details
 211 (e.g., texture, color, fine attributes) tend to be entangled in the spatial domain. This entanglement
 212 makes it difficult to preserve unchanged components while selectively modifying target regions. To
 213 address this issue, we seek to project diffusion features into the frequency domain, where struc-
 214 tural anchors and fine details can be explicitly disentangled. Traditional transforms like the Fourier
 215 Transform provide a global frequency decomposition but discard spatial localization, making them
 unsuitable for tasks that require local or multi-scale control. To overcome this limitation, we adopt

the wavelet transform, which introduces basis functions localized in both space and frequency, enabling to simultaneously capture global structures and fine details in a principled way.

Suppose that t represents an independent variable. A mother wavelet $\psi(t)$ generates scaled and shifted versions $\psi_{a,b}(t)$, where a is the *scale parameter* controlling dilation (larger a corresponds to lower frequencies), and b is the *translation parameter* controlling position along the t -axis. The continuous wavelet transform (CWT) provides a joint time-frequency representation $W(a, b)$:

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right), \quad a > 0, \quad b \in \mathbb{R}, \quad W(a, b) = \int_{-\infty}^{+\infty} f(t) \psi_{a,b}^*(t) dt. \quad (1)$$

The discrete wavelet transform (DWT), in contrast, yields a compact hierarchical decomposition. For 2D images, one-level DWT produces four sub-bands:

$$\mathbf{F} \xrightarrow{\text{DWT}} \mathbf{F}_A, \mathbf{F}_H, \mathbf{F}_V, \mathbf{F}_D, \quad (2)$$

where \mathbf{F}_A is the low-frequency approximation, and $\mathbf{F}_H, \mathbf{F}_V, \mathbf{F}_D$ capture horizontal, vertical, and diagonal high-frequency details. Recursive application of DWT to \mathbf{F}_A yields a multi-level decomposition that represents both global structures and fine-grained textures. This decomposition naturally separates global and local signals: low-frequency components encode layout and semantics, serving as reliable anchors for structural consistency, while high-frequency components capture textures and variations, enabling flexible and precise modifications. Such multi-scale, spatially localized frequency representation forms the foundation of our W-Edit framework.

This decomposition provides a natural separation of consistency (low-frequency) and editability (high-frequency), forming the basis for frequency-aware analysis in Sec. 3.2.

3.2 BLOCK-WISE FREQUENCY PROGRESSION IN DIFFUSION TRANSFORMERS

In U-Net based diffusion models, editing is often heuristically guided by selecting early blocks for structure and later blocks for details. This intuition stems from the encoder-decoder hierarchy of U-Nets, where spatial resolution decreases and then recovers. However, such heuristics do not apply to Diffusion Transformers (DiTs), whose blocks are architecturally homogeneous and lack clear semantic stages. As a result, it is unclear how information is organized across blocks, and whether some blocks emphasize structural cues while others capture fine details.

To address this question, we analyze intermediate features of DiTs in the frequency domain. Suppose that z^k is the output feature map at the k -th block, where each block processes the intermediate feature at a specific stage of the diffusion process. We compute the Fourier transform of z^k as:

$$\hat{z}^k(u, v) = \mathcal{F}[z^k], \quad (u, v) \in \mathbb{F}^2 \quad (3)$$

where $\hat{z}^k(u, v)$ denotes the frequency-domain representation of z^k , (u, v) are horizontal and vertical frequency indices and $\mathcal{F}\{\cdot\}$ denotes the 2D discrete Fourier transform, and \mathbb{F}^2 represents the 2D frequency domain.

To quantify frequency contributions, we define a mid-to-high frequency energy metric. We first define the Mid-Frequency Radius, r_{mid} , which acts as the boundary separating the low-frequency and high-frequency regimes

$$r_{\text{mid}} = r_{\text{max}} / 2 \quad (4)$$

where r_{max} is the maximum possible radial distance in the frequency domain. This r_{mid} specifies the radius corresponding to the intermediate frequency band and serves as our division threshold. We

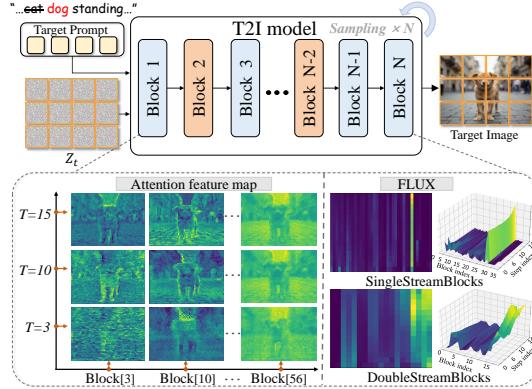


Figure 4: Frequency progression in T2I models. Attention features in DiTs progressively capture coarse layouts in early blocks and refined details in later blocks, with outputs progressively refined during sampling, providing strong image priors for generation.

270 then define the Mid-To-High Frequency Energy (E_{MTH}^k) as the total energy accumulated from the
 271 radius r_{mid} up to the maximum frequency:
 272

$$273 \quad E_{\text{MTH}}^k = \sum_{r=r_{\text{mid}}}^{\text{max_radius}} \mathcal{P}_r(\hat{z}^k) \quad (5)$$

274 Here, $\mathcal{P}_r(\hat{z}^k)$ is the radial power spectrum (the average energy at radius r). E_{MTH}^k is a scalar value
 275 that directly measures the mid-to-high frequency components of the feature map.
 276

277 For completeness, low- and high-frequency energies are computed as:
 278

$$279 \quad E_{\text{low}}^k = \sum_{(u,v) \in \Omega_{\text{low}}} |\hat{z}^k(u,v)|^2, \quad E_{\text{high}}^k = \sum_{(u,v) \in \Omega_{\text{high}}} |\hat{z}^k(u,v)|^2 \quad (6)$$

280 Here, Ω_{low} and Ω_{high} denote frequency index sets determined by radial thresholds. We compute the
 281 E_{MTH}^k for both SingleStreamBlocks and DoubleStreamBlocks of FLUX and visualize the results to-
 282 gether with the attention maps in Fig. 4. Since these blocks employ different fusion strategies, we
 283 visualize them separately to highlight distinct frequency behaviors. In the visualizations, darker re-
 284 gions correspond to low-frequency components, while brighter regions indicate higher frequencies.
 285 The contours in the attention maps show that early blocks mainly encode low-frequency structural
 286 foundations, whereas later blocks exhibit sparser attention distributions that refine high-frequency
 287 details. Based on these observations, we select blocks with either very high or very low mid-to-high
 288 frequency energy as the target blocks for frequency-domain information fusion.
 289

290 To validate this choice, we compare our selected blocks with the vital layers identified in prior work
 291 (Avrahami et al., 2025a), in which blocks importance was measured using DINOv2 (Oquab et al.,
 292 2023). We find that these vital layers largely coincide with our selected fusion blocks, indicating a
 293 strong correspondence between block importance and frequency response. Leveraging these func-
 294 tional characteristics, we implement selective frequency-domain injection across different modules.
 295 This strategy offers two main advantages. First, it allows each module to operate optimally within
 296 its functional domain. Second, it enables frequency-aware guidance during sampling, significantly
 297 reducing computational overhead while maintaining precise control over both structure and fine-
 298 grained details.
 299

300 3.3 WAVELET-BASED FREQUENCY-GUIDED EDITING

301 As illustrated in Fig. 3, our method builds upon pretrained diffusion or flow models. We employ
 302 wavelet-based frequency modulation to selectively replace specific frequency bands. This enables
 303 precise, flexible, and high-fidelity visual editing in pretrained diffusion models. Notably, our ap-
 304 proach is training-free and compatible with a wide range of mainstream diffusion architectures. The
 305 framework comprises two primary trajectories: the *inversion trajectory* and the *editing trajectory*.
 306 During inversion, intermediate noisy latents and key-value (K, V) attention pairs are recorded,
 307 capturing the evolutionary trajectory of the source image and serving as references for subsequent
 308 editing. The editing trajectory starts from pure noise and incorporates these stored key-value pairs
 309 while following new textual instructions. This ensures that latent representations are guided toward
 310 the original structure, preserving maximum fidelity and editing precision.
 311

312 We first implement our framework on FLUX, a flow model. Flow models generate samples by
 313 transporting a prior distribution p_0 (Gaussian noise) toward the data distribution p_1 (image mani-
 314 fold). In \mathbb{R}^d , we define a time-dependent density $p_t : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}_{>0}$ and a vector field
 315 $u_t : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$. The flow ϕ_t is generated via the ODE:
 316

$$\frac{d\phi_t(x)}{dt} = u_t(\phi_t(x)), \quad \phi_0(x) = x \quad (7)$$

317 transporting samples from p_0 toward p_1 . To edit real images, we invert them into the latent space,
 318 i.e., transport samples from p_1 back to p_0 . Using the reverse Euler solver in FLUX, given the forward
 319 update and its reverse:
 320

$$321 \quad z_{t-1} = z_t + (\sigma_{t+1} - \sigma_t) u_t(z_t), \quad z_t = z_{t-1} + (\sigma_t - \sigma_{t+1}) u_t(z_{t-1}) \quad (8)$$

322 where z_t is the latent at timestep t , σ_t is the transport standard deviation, and u_t is the vector field,
 323 assuming $u_t(z_t) \approx u_t(z_{t-1})$ for sufficiently small steps. This inversion maps images back to noise
 324 while storing key-value pairs for editing.
 325

324 **Frequency Decomposition via Wavelet Transform.** To capture multi-scale visual information,
 325 we apply discrete wavelet transform (DWT) to intermediate model features. Given a feature tensor
 326 $\mathbf{F} \in \mathbb{R}^{B \times C \times H \times W}$ (or flattened attention $\mathbf{F} \in \mathbb{R}^{B \times N \times D}$), we apply DWT to decompose it into
 327 low-frequency approximation \mathbf{F}_A and high-frequency detail coefficients \mathbf{F}_{D_i} :

$$328 \quad \mathbf{F} \xrightarrow{\text{DWT}} \{\mathbf{F}_A, \mathbf{F}_{D1}, \mathbf{F}_{D2}, \dots, \mathbf{F}_{Dn}\} \quad (9)$$

330 where \mathbf{F}_A encodes global structure, and \mathbf{F}_{D_i} capture edges and textures. This provides a multi-scale
 331 representation for separate treatment of global structure and fine details.

333 **Adaptive Frequency Fusion.** We propose an **energy-aware adaptive frequency fusion** mecha-
 334 nism. Let $E_i = \sum |\mathbf{F}_{\text{ref},i}|^2$ denote the energy of the i -th sub-band. We select the minimal set of
 335 sub-bands whose cumulative energy reaches a threshold η :

$$337 \quad \mathbf{F}'_i = \begin{cases} \mathbf{F}_{\text{ref},i}, & \text{if } \sum_{j=1}^i E_j \leq \eta \sum_k E_k, \\ \mathbf{F}_i, & \text{otherwise.} \end{cases} \quad (10)$$

340 Since visual energy in natural images is predominantly concentrated in low-frequency components
 341 representing global structure (Khayam, 2003; Pimpalkhute et al., 2021), this energy-based selection
 342 explicitly locks the reference image’s layout. By preserving these high-energy bands and allowing
 343 the model to generate the remaining low-energy high-frequency bands, we achieve a balance where
 344 the scene structure remains consistent while fine-grained details are free to adapt to text instructions
 η balances guidance strength and feature preservation.

346 **Integration with Attention.** After fusion, coefficients are reconstructed via inverse DWT (IDWT)
 347 and then integrated into attention:

$$348 \quad \mathbf{F}' \xleftarrow{\text{IDWT}} \{\mathbf{F}'_A, \mathbf{F}'_{D1}, \dots, \mathbf{F}'_{Dn}\} \quad \Rightarrow \quad \text{Attn}'(\mathbf{Q}, \mathbf{K}', \mathbf{V}') = \text{Softmax}\left(\frac{\mathbf{Q}\mathbf{K}'^\top}{\sqrt{d}}\right)\mathbf{V}' \quad (11)$$

351 with $\mathbf{K}' = \mathbf{F}'W_K$, $\mathbf{V}' = \mathbf{F}'W_V$, and $\mathbf{Q} = \mathbf{F}W_Q$. Modulating key–value pairs in the frequency
 352 domain guides both global and local generation. Low-frequency bands control composition; high-
 353 frequency bands refine details. Energy-aware fusion allows blending multiple references or edits
 354 dynamically. Compared with DCT-based or learned frequency-control methods, our wavelet-based
 355 approach automatically selects informative frequency components according to energy distribution,
 356 offering superior spatial-frequency localization. Integration into attention enables precise, dynamic
 357 control while remaining training-free.

358 4 EXPERIMENTS

360 In Sec. 4.1, we benchmark W-Edit against baseline methods using both qualitative and quantitative
 361 evaluations. Sec. 4.2 presents a user study evaluating alignment, consistency, realism, and plausi-
 362 bility from a human perspective. Sec. 4.3 reports ablation studies that isolate the contribution of
 363 each component, while Sec. 4.4 demonstrates W-Edit’s generality and adaptability across different
 364 diffusion architectures.

366 4.1 QUALITATIVE AND QUANTITATIVE COMPARISON

368 In this section, we compare the performance of W-Edit with several state-of-the-art text-driven image
 369 editing methods. Our framework is built upon the FLUX.1-dev model, and we adopt the official
 370 public implementations of P2P (Hertz et al., 2022), MagicBrush (Zhang et al., 2023a), Flow-Edit
 371 (Kulikov et al., 2024), and Stable-Flow (Avrahami et al., 2025b) for fair comparison.

372 **Qualitative Comparison.** As shown in Fig. 5, our proposed W-Edit achieves precise editing in
 373 the target regions while faithfully preserving the unedited areas. Specifically, existing methods of-
 374 ten struggle to preserve the overall layout when applying local edits. For instance, Stable-Flow
 375 distorts the bicycle pedals and other baselines misplace the basket, leading to global inconsis-
 376 tencies. In contrast, our method faithfully maintains the bicycle’s frame geometry and basket position,
 377 demonstrating superior structural consistency. Similarly, for a snake coiled around a tree, Stable-
 Flow captures the pose but produces a physically implausible floating body and an anomalous tail,

378 whereas W-Edit generates a natural configuration consistent with the scene’s overall structure. These
 379 examples demonstrate that W-Edit, by leveraging frequency-based modulation, can effectively balance local edits with global structure preservation, producing more realistic and consistent results
 380 compared to other methods.
 381

382 **Quantitative Comparison.** In addition to qualitative comparisons, we quantitatively evaluate the
 383 methods using the PIE-Bench dataset (Ju et al., 2023), which is specifically constructed for the
 384 systematic validation of image editing methods. As shown in Table 1, W-Edit achieves the lowest
 385 FID of 65.44 and the highest CLIP score of 31.84 among all compared methods. This represents
 386 an 18.6% reduction in FID and a 4.5% improvement in CLIP score over Flow-Edit. These gains
 387 highlight its superiority in both visual realism and semantic alignment with the editing instructions,
 388 driven by advanced generative priors and our wavelet-based editing strategy that faithfully trans-
 389 lating textual modifications while avoiding artifacts. Moreover, W-Edit consistently outperforms
 390 baselines by achieving a PSNR of 24.06, which is 14.5% higher than the second-best method, and
 391 a LPIPS of 0.1028, representing 32.5% improvement, underscoring its ability to maintain structural
 392 fidelity and perceptual quality. In particular, our method demonstrates a strong capability to pre-
 393 serve global composition and background details, while applying precise and localized edits in the
 394 target regions. Together, these results provide compelling evidence that W-Edit achieves a more
 395 favorable balance between fidelity, alignment, and controllability compared to existing training-free
 396 approaches. Moreover, compared with FLUX, our method only increases inference time by 10.8%
 397 and GPU memory usage by 1.6%. More efficiency comparisons are presented in Appendix A.2.
 398

399 **VLM Evaluation.** In addition to conventional pixel or feature-level metrics, we employ vi-
 400 sion-language models (VLMs) to provide a more semantic evaluation of editing quality. Following
 401 Stable-Flow, we use *Phi-3.5-vision* (Marah Abdin, 2024) to evaluate two criteria: **Text Following**,
 402 which measures whether the edited image matches the prompt, and **Minimal Modification**, which
 403 assesses whether edits are restricted to the described regions. As shown in Table 1, W-Edit achieves
 404 the best balance between semantic fidelity and structural preservation. Unlike MagicBrush, which
 405 tends to prioritize text alignment at the expense of global consistency, W-Edit faithfully follows
 406 instructions while avoiding unnecessary alterations in unedited areas.
 407

Table 1: Quantitative Comparison of Different Methods

Method	PIE-Bench				VLM Evaluation		User Study Scores			
	CLIP↑	FID↓	PSNR↑	LPIPS↓	Text Fol.	Modify	Align.	Consist.	Real.	Plaus.
P2P	28.13	320.65	15.12	0.4736	31.5%	24.0%	2.7	3.0	2.9	2.6
MagicBrush	29.06	206.19	15.68	0.4615	84.5%	33.5%	3.5	2.3	2.4	2.2
Flow-Edit	30.48	80.35	18.33	0.2642	76.0%	54.5%	3.6	3.6	3.6	3.4
Stable-Flow	29.16	89.78	21.02	0.1522	77.5%	58.0%	3.7	3.7	4.1	3.4
W-Edit	31.84	65.44	24.06	0.1028	81.0%	63.0%	3.8	3.9	4.2	3.8

4.2 USER STUDY

415 We conducted a user study to evaluate our editing approach. Specifically, we used GPT-4 to generate
 416 100 prompt sets, each consisting of four editing instructions covering object addition, removal,
 417 replacement, attribute modification, style transfer, and background change. **Fifteen participants** rated
 418 the editing results on a five-point Likert scale across four dimensions: (1) alignment with the target
 419 prompt, (2) consistency with the reference image, (3) realism, and (4) physical plausibility. As
 420 shown in Table 1, our method consistently outperforms all other methods across nearly all aspects,
 421 with particularly notable improvements in realism and physical plausibility.
 422

4.3 ABLATION STUDY

424 To better understand the contribution of dif-
 425 ferent components in W-Edit, we conduct an
 426 ablation study and report results in Table 2.
 427 Among all configurations, selected-block injec-
 428 tion achieves the best overall balance across the
 429 three CLIP-based metrics, yielding the highest
 430 average score of 45.48 (see Appendix A.1 for
 431 metric definitions). In contrast, all-block injec-
 432 tion maximizes image similarity but almost collapses in directional consistency, suggesting that

Table 2: Ablation study

Method	CLIPimg	CLIPtxt	CLIPdir	Average
Selected-block injection	0.9749	0.3068	0.0826	0.4548
All-block injection	0.9988	0.2839	0.0013	0.4280
w/o SingleStreamBlocks	0.9184	0.3162	0.0880	0.4409
w/o DualStreamBlocks	0.9458	0.3089	0.0871	0.4473
w/o high-frequency	0.9391	0.3092	0.0821	0.4301
w/o low-frequency	0.9249	0.3125	0.0954	0.4443

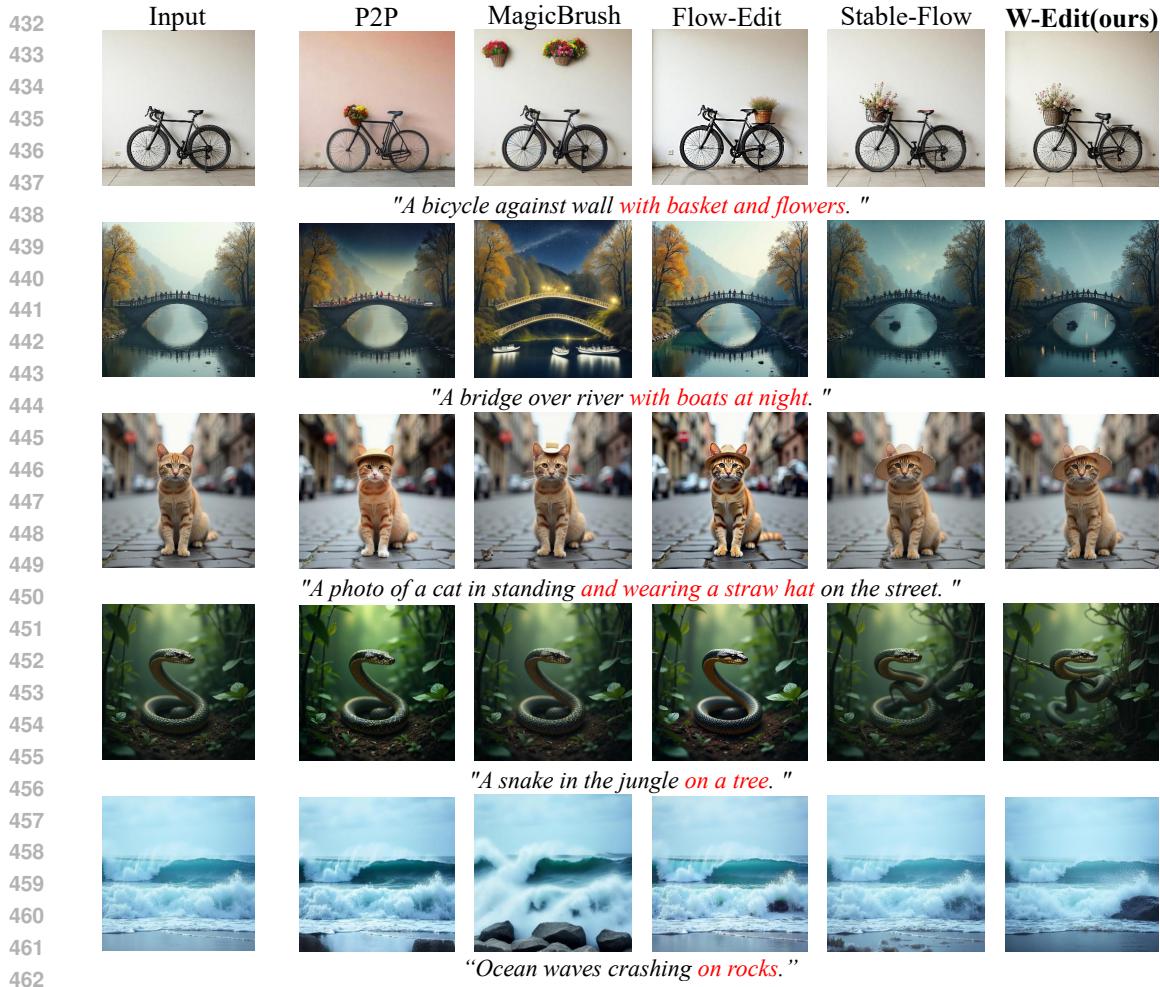


Figure 5: **Qualitative comparison.** Our method more faithfully adheres to target prompts while preserving the original image’s structure.

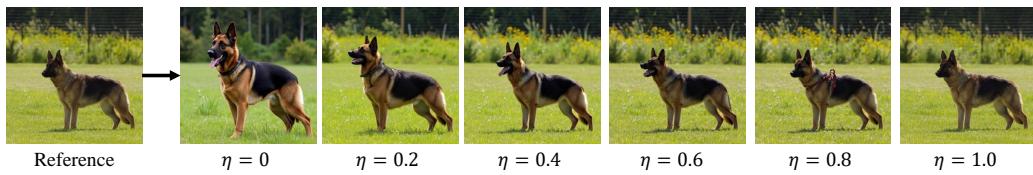
overly aggressive injection enforces the reference too strongly and suppresses textual guidance. Removing SingleStreamBlocks or DualStreamBlocks also leads to performance degradation. The absence of SingleStreamBlocks harms similarity, while excluding DualStreamBlocks reduces text alignment and consistency. Frequency components further play complementary roles. Without high-frequency signals, the model loses fine-grained consistency, whereas ablating low-frequency components damages structural preservation, resulting in lower CLIPImg (See Appendix A.2 for visualization of frequency domain component decoupling.). These findings confirm that W-Edit benefits from both frequency bands and carefully chosen fusion blocks, which together enable a favorable trade-off between fidelity, alignment, and editing controllability.

To determine the optimal value for η , we performed a quantitative sensitivity analysis on the PIE-Bench dataset1. We evaluated performance using three complementary CLIP-based metrics. As shown in the Tab 3, η functions as a critical slider balancing structural preservation (CLIPImg) and editability (CLIPtxt/CLIPdir). Lower values ($\eta < 0.4$) favor text alignment at the cost of structural integrity, while higher values ($\eta > 0.8$) over-preserve the reference, suppressing the intended edit. Among the tested parameters, 0.6 achieved the highest CLIPdir score indicating the most accurate semantic transformation while maintaining a high degree of structural

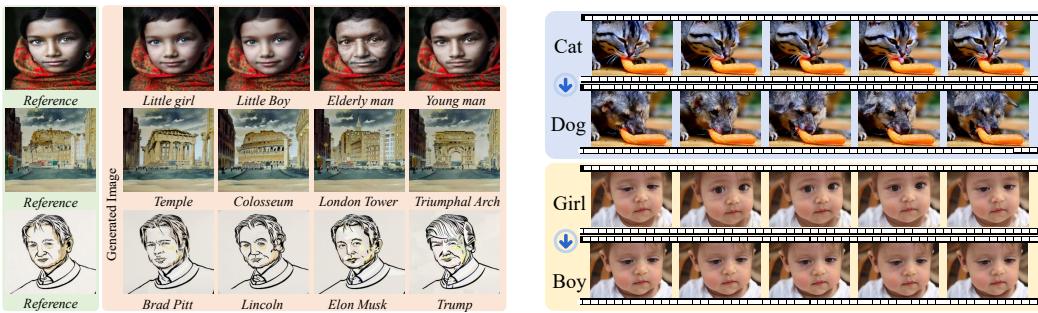
Table 3: Sensitivity Analysis of (η)

η	CLIPImg (\uparrow)	CLIPtxt (\uparrow)	CLIPdir (\uparrow)	Avg. (\uparrow)
0.2	0.8920	0.3210	0.0540	0.4223
0.4	0.9350	0.3140	0.0780	0.4423
0.6	0.9749	0.3068	0.0826	0.4548
0.8	0.9910	0.2760	0.0610	0.4427
1.0	0.9990	0.2620	0.0050	0.4220

486 fidelity. These quantitative findings align with the qualitative visualizations presented in Fig 6. Con-
 487sequently, we fixed $\eta = 0.6$ to maintain robust performance across diverse tasks while ensuring
 488 framework simplicity and efficiency.



496 Figure 6: Visualization of the impact of different η values on the generated results



509 Figure 7: Qualitative editing results achieved on
 510 StableDiffusion-v1.5.

509 Figure 8: Qualitative editing results achieved on
 510 CogVideoX-1.0.

511 4.4 GENERALIZATION ANALYSIS

513 To evaluate the generalization ability of our method, we apply W-Edit to StableDiffusion-v1.5 and
 514 CogVideoX-1.0 (Yang et al., 2024), achieving effective style transfer and subject replacement (see
 515 Fig. 7 and Fig. 8). On StableDiffusion-v1.5, it transforms a girl into multiple identities, generates
 516 diverse subjects under consistent style, and converts images into architectural styles like London
 517 landmarks and the Arc de Triomphe. On CogVideoX-1.0, it performs coherent video edits, such
 518 as cat-to-dog and girl-to-boy transformations, maintaining background consistency and preserving
 519 identity cues. These results demonstrate W-Edit’s generalization across both image and video diffu-
 520 sion models.

521 5 CONCLUSIONS

523 We present W-Edit, a training-free image editing framework leveraging wavelet decomposition and
 524 frequency-guided modulation. By exploiting multi-scale frequency analysis, it ensures consistency
 525 and stability across editing operations. Extensive experiments show competitive performance and
 526 strong generality in tasks such as object addition, removal, and replacement. Our frequency-domain
 527 perspective offers a novel avenue for integrating spectral priors into editing and generative frame-
 528 works, paving the way for more controllable and versatile content creation.

530 REFERENCES

- 532 Kfir Aberman, Amir HERTZ, Yael Pritch Knaan, Ron Mokady, Jay Tenenbaum, and Daniel Cohen-
 533 or. Prompt-to-prompt image editing with cross-attention control, February 1 2024. US Patent
 534 App. 18/228,614.
- 535 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
 536 polants. *arXiv preprint arXiv:2209.15571*, 2022.
- 538 Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
 539 Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In *Proceedings of the*
Computer Vision and Pattern Recognition Conference (CVPR), pp. 7877–7888, June 2025a.

- 540 Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
 541 Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In *Proceedings of the*
 542 *computer vision and pattern recognition Conference*, pp. 7877–7888, 2025b.
- 543
- 544 Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
 545 Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models.
 546 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 547 8861–8870, 2024.
- 548 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 549 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 550 *recognition*, pp. 18392–18402, 2023.
- 551 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinjiang Zheng. Mas-
 552 actrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In
 553 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 22560–22570,
 554 2023.
- 555 Gilad Deutch, Rinon Gal, Daniel Garibi, Or Patashnik, and Daniel Cohen-Or. Turboedit: Text-based
 556 image editing using few-step diffusion models. In *SIGGRAPH Asia 2024 Conference Papers*, pp.
 557 1–12, 2024.
- 558 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 559 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 560 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 561 2024.
- 562 Xiang Gao, Zhengbo Xu, Junhan Zhao, and Jiaying Liu. Frequency-controlled diffusion model
 563 for versatile text-guided image-to-image translation. In *Proceedings of the AAAI Conference on*
 564 *Artificial Intelligence*, volume 38, pp. 1824–1832, 2024.
- 565 Aritha Ghosh and Rama Chellappa. Deep feature extraction in the dct domain. In *2016 23rd*
 566 *International conference on pattern recognition (ICPR)*, pp. 3536–3541. IEEE, 2016.
- 567 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
 568 Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*,
 569 2022.
- 570 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 571 *neural information processing systems*, 33:6840–6851, 2020.
- 572 Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
 573 space: Inversion and manipulations. In *Proceedings of the IEEE/CVF conference on computer*
 574 *vision and pattern recognition*, pp. 12469–12478, 2024.
- 575 Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Direct inversion: Boosting
 576 diffusion-based editing with 3 lines of code. *arXiv preprint arXiv:2310.01506*, 2023.
- 577 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
 578 Michal Irani. Imagic: Text-based real image editing with diffusion models. In *Proceedings of the*
 579 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 6007–6017, 2023.
- 580 Syed Ali Khayam. The discrete cosine transform (dct): theory and application. *Michigan State*
 581 *University*, 114(1):31, 2003.
- 582 Gwanhyeong Koo, Sunjae Yoon, Ji Woo Hong, and Chang D Yoo. Flexedit: Frequency-aware
 583 latent refinement for enhanced non-rigid editing. In *European Conference on Computer Vision*,
 584 pp. 363–379. Springer, 2024.
- 585 Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit:
 586 Inversion-free text-based editing using pre-trained flow models. *arXiv preprint arXiv:2412.08629*,
 587 2024.
- 588
- 589 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

- 594 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 595 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 596
- 597 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 598 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
 599
- 600 et al. Marah Abdin, Jyoti Aneja. Phi-3 technical report: A highly capable language model locally
 601 on your phone, 2024. URL <https://arxiv.org/abs/2404.14219>.
 602
- 603 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 604 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 605 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
 606
- 607 Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
 608 Zero-shot image-to-image translation. In *ACM SIGGRAPH 2023 conference proceedings*, pp.
 609 1–11, 2023.
 610
- 611 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 612 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 613
- 614 Hao Phung, Quan Dao, and Anh Tran. Wavelet diffusion models are fast and scalable image gener-
 615 ators. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 616 pp. 10199–10208, 2023.
 617
- 618 Varad A Pimpalkhute, Rutvik Page, Ashwin Kothari, Kishor M Bhurchandi, and Vipin Milind Kam-
 619 ble. Digital image noise estimation using dwt coefficients. *IEEE transactions on image process-
 620 ing*, 30:1962–1972, 2021.
 621
- 622 Yufan Ren, Zicong Jiang, Tong Zhang, Søren Forchhammer, and Sabine Süsstrunk. Fds: Frequency-
 623 aware denoising score for text-guided latent diffusion image editing. In *Proceedings of the Com-
 624 puter Vision and Pattern Recognition Conference*, pp. 2651–2660, 2025.
 625
- 626 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 627 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 628 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 629
- 630 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 631 ical image segmentation. In *International conference on medical image computing and computer-
 632 assisted intervention*, pp. 234–241. Springer, 2015.
 633
- 634 Dvir Samuel, Barak Meiri, Haggai Maron, Yoad Tewel, Nir Darshan, Shai Avidan, Gal Chechik, and
 635 Rami Ben-Ari. Lightning-fast image inversion and editing for text-to-image diffusion models.
 636 *arXiv preprint arXiv:2312.12540*, 2023.
 637
- 638 Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu. Freeu: Free lunch in diffusion u-net. In
 639 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4733–
 640 4743, 2024.
 641
- 642 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 643 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 644 ing*, pp. 2256–2265. pmlr, 2015.
 645
- 646 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 647 preprint arXiv:2010.02502*, 2020.
 648
- 649 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 650 *Advances in neural information processing systems*, 32, 2019.
 651
- 652 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
 653 text-driven image-to-image translation. In *Proceedings of the IEEE/CVF conference on computer
 654 vision and pattern recognition*, pp. 1921–1930, 2023.
 655
- 656 Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled trans-
 657 formations. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 658 pp. 22532–22541, 2023.
 659

- 648 Xingjian Wang, Li Chai, and Jiming Chen. Frequency-domain refinement with multiscale diffusion
649 for super resolution. *arXiv preprint arXiv:2405.10014*, 2024.
650
- 651 Chen Henry Wu and Fernando De la Torre. A latent space of stochastic diffusion models for zero-
652 shot image editing and guidance. In *Proceedings of the IEEE/CVF international conference on*
653 *computer vision*, pp. 7378–7387, 2023.
- 654 Wenbin Xie, Dehua Song, Chang Xu, Chunjing Xu, Hui Zhang, and Yunhe Wang. Learning
655 frequency-aware dynamic network for efficient super-resolution. In *Proceedings of the IEEE/CVF*
656 *international conference on computer vision*, pp. 4308–4317, 2021.
657
- 658 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
659 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
660 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.
- 661 Shanghai Yuan, Jinfa Huang, Xianyi He, Yunyang Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and
662 Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. In *Proceed-
663 ings of the computer vision and pattern recognition conference*, pp. 12978–12988, 2025.
- 664 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
665 dataset for instruction-guided image editing. *Advances in neural information processing systems*,
666 36:31428–31449, 2023a.
667
- 668 Ruicheng Zhang, Kanghui Tian, Zeyu Zhang, Qixiang Liu, and Zhi Jin. Fdg-diff: Frequency-
669 domain-guided diffusion framework for compressed hazy image restoration, 2025. URL <https://arxiv.org/abs/2501.12832>.
670
- 671 Zhixing Zhang, Ligong Han, Arnab Ghosh, Dimitris N Metaxas, and Jian Ren. Sine: Single image
672 editing with text-to-image diffusion models. In *Proceedings of the IEEE/CVF conference on*
673 *computer vision and pattern recognition*, pp. 6027–6037, 2023b.
674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702
703
704
705
706
A APPENDIX707
708
709
710
711
712
713
714
715
716
717
718
719
A.1 EXPERIMENTAL EVALUATION SETUP720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
Experimental Details. Given the advanced generative capabilities of FLUX, we first conduct experiments on the FLUX framework, where we select blocks [0, 1, 2, 17, 18, 28, 53, 54, 56] for frequency-domain fusion. Haar wavelets are used as the basis for multi-level decomposition, with the maximum frequency energy weight set to 0.6. For CogVideoX-1.0, we experiment with blocks [0, 1, 2, 3], employing the bior3.3 wavelet basis for decomposition. On Stable Diffusion v1.5, we operate on the overall features between UNet blocks, using Haar as the wavelet basis. To dispel concerns that the frequency variations shown in Fig 4 might be isolated cases and to verify the generalizability of our observations, we conducted the following extended experiments: We constructed a dataset containing $k = 64$ diverse text cues (generated by ChatGPT, covering different environments, object sets, and subjects) and calculated the average frequency energy distribution of these samples. The results strongly confirm that the transition from low-frequency structure dominance in early blocks to high-frequency detail dominance in later blocks is a consistent feature of the FLUX DiT architecture, rather than an artifact specific to any particular image. This statistical result strongly supports the robustness of our frequency-based block selection strategy.720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
Datasets. PIE-Bench (Prompt-based Image Editing Benchmark) is a benchmark dataset specifically constructed for the systematic validation of image editing methods. It aims to evaluate the editing strategy proposed in this study and compare it with existing inversion methods, while addressing the lack of standardized evaluation criteria for current image inversion and editing techniques. The dataset comprises 700 images covering both natural scenes and artificial scenes (such as paintings), which are divided into ten editing types: random editing (written by volunteers), object modification, object addition, object deletion, object content alteration, object pose change, object color adjustment, object material modification, background replacement, and image style transformation. Within each editing type, the images are evenly distributed between natural and artificial scenes and balanced across four categories: animals, humans, indoor environments, and outdoor environments. Each image sample includes five key annotations: a source image prompt, a target image prompt, an editing instruction, a description of the editing subject, and an editing mask. The editing mask is particularly critical for accurately defining the expected editing region and is essential for precision evaluation. The dataset was constructed using a combination of automated and manual methods—random editing types were directly written by volunteers, while the other types utilized BLIP-2 to generate source image prompts and GPT-4 to produce target prompts and editing instructions. The results were then manually corrected to ensure accuracy, with two annotators and one reviewer collaboratively completing the annotation of editing subjects and masks. This process provides a standardized, high-quality evaluation benchmark for image editing research.738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
VLMs Experiment(Phi-3.5-vision) Phi-3.5-vision is a highly capable VLM that demonstrates strong proficiency in both visual perception and linguistic reasoning. Its architecture is designed to enable joint understanding and reasoning about the complex interplay between visual content and textual descriptions. The utilization of the VLM for quantitative evaluation is motivated by several key factors. Firstly, traditional automated metrics, such as LPIPS or PSNR, primarily focus on low-level pixel-wise or structural similarity, which often fail to capture high-level semantic alignment between images and text prompts. In contrast, VLMs like Phi-3.5-vision are inherently suited for this task, as they can directly assess whether the visual content semantically conforms to the provided textual instruction. Secondly, evaluating “Minimal Modification” requires a model to not only understand the intended edit but also to recognize and preserve the unaltered regions of the source image. The joint understanding capability of VLMs allows them to perform this nuanced comparison more effectively than metrics that operate on image pairs without semantic guidance. By leveraging the reasoning capabilities of Phi-3.5-vision, our evaluation framework delivers a more semantically meaningful and reliable performance measure, particularly for instruction-based image editing tasks where faithfulness to both the text and the original image structure is paramount.754
755
CLIP Metrics To comprehensively evaluate the performance of our image editing framework, we employ three CLIP-based metrics that measure different aspects of editing quality as follows.

(1) CLIPImg (Image Similarity) quantifies the visual fidelity between the edited image and the original input by measuring their feature-space cosine similarity in the CLIP image encoder. Higher values (closer to 1.0) indicate better preservation of the original image’s content and structure, ensuring that edits maintain the essential characteristics of the source material.

(2) CLIPtxt (Text Alignment) assesses how well the edited image corresponds to the target textual instruction by computing the cosine similarity between CLIP image features of the output and CLIP text features of the prompt. This metric captures the semantic alignment between visual content and textual description, with higher values indicating more accurate interpretation of editing commands.

(3) CLIPdir (Directional Consistency) measures the precision of attribute manipulation by calculating the cosine similarity between the vector from original to edited image in CLIP space and the vector from source to target text. This metric specifically evaluates whether the editing direction follows the intended semantic pathway, with positive values indicating consistent transformations and negative values suggesting deviation from the desired editing trajectory.

Together, these three metrics provide a multi-dimensional assessment of image editing systems, balancing the trade-offs between content preservation (CLIPImg), instruction faithfulness (CLIPtxt), and editing precision (CLIPdir).

773 A.2 QUALITATIVE AND QUANTITATIVE EXPERIMENTS.

To comprehensively demonstrate W-Edit’s versatility across diverse editing scenarios, we present qualitative results for six core editing tasks: **non-rigid editing**, **object addition**, **object removal**, **object replacement**, **attribute modification**, and **background editing**. Each task is designed to evaluate distinct aspects of the framework’s capabilities, from precise local manipulations to global semantic transformations, while maintaining structural and semantic consistency with the reference image. The non-rigid editing task handles deformable transformations including pose changes and facial expressions. Object addition tests spatial reasoning when introducing new elements. Object removal assesses background reconstruction proficiency. Object replacement evaluates semantic understanding when swapping objects. Attribute modification validates fine-grained control over object characteristics. Background editing examines global scene transformation capacity. These tasks span from localized object manipulations to comprehensive scene transformations, providing thorough evaluation across various editing complexities.

Quantitative results. Based on the quantitative results in Table 4, our method demonstrates complementary strengths across editing tasks. The Add operation excels in image preservation (CLIPImg: 0.9740), while Remove achieves the best text alignment (CLIPtxt: 0.2943). Scene editing shows superior directional control (CLIPdir: 0.1195), and Replace maintains balanced performance across metrics. These specialized capabilities provide users with flexible editing strategies tailored to different requirements—whether prioritizing visual fidelity, semantic accuracy, or edit controllability. The consistent performance validates our method’s robustness across diverse editing scenarios.

Ablation Study In addition to quantitative metrics, we also qualitatively analyze the ablation results, as shown in Fig. 9. When all blocks are used for injection, the editing signal becomes overly strong, causing the output to almost replicate the reference image and significantly degrading text similarity. Using only single-stream or dual-stream blocks similarly reduces text alignment and introduces inconsistencies with the reference layout. In fact, injecting only at dual-stream blocks even leads to erroneous generation, such as altering the appearance of the crocodile. This occurs because dual-stream blocks lie at lower depths and thus primarily capture low-frequency structure—while preserving global layout, they lack high-frequency information, resulting in distorted object details. Conversely, ablating high-frequency components causes loss of fine details (e.g., the crocodile’s teeth), whereas ablating low-frequency components disrupts structural integrity, leading to issues such as inconsistent background regions (e.g., mismatched trees).

Table 4: CLIP metrics comparison across different tasks

Task	CLIPImg	CLIPtxt	CLIPdir
Add	0.9740	0.2869	0.0679
Attr	0.9224	0.2857	0.0990
Replace	0.9073	0.2885	0.1184
Remove	0.9558	0.2943	0.0728
Scene	0.9139	0.2811	0.1195
Non-rigid	0.9291	0.2837	0.0493

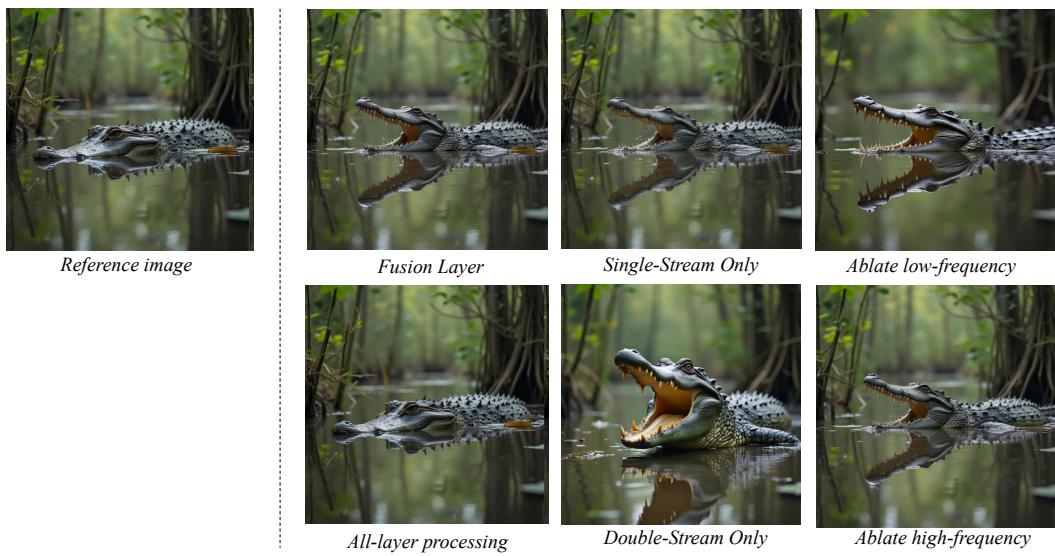


Figure 9: Visualization results of ablation experiments

Memory and time usage Table 5 compares the computational efficiency of different methods, revealing notable performance differences. MagicBrush, built on the U-Net architecture, requires only 16.75 GB of memory with a processing time of 20.38 seconds. In contrast, the other methods are based on the FLUX framework, consuming similar memory (around 35.5–36.1 GB) but with longer processing times ranging from 46 to 50 seconds. Our method achieves superior editing performance while incurring only a 10.8% increase in runtime and a 1.6% increase in memory usage compared to FLUX. While W-Edit delivers competitive editing quality, this efficiency analysis provides practical guidance for selecting methods under given computational resource and time constraints.

Qualitative results. Figures showcase results for object-centric edits. For object addition (Fig. 13), W-Edit exhibits strong spatial reasoning by integrating new objects (e.g., a ceramic vase on a wooden table, hardcover books on a shelf, and lit candles on a birthday cake) into the existing scene geometry without occluding unrelated elements or introducing visual artifacts. The added objects inherit lighting conditions and texture consistency from the reference, ensuring perceptual coherence. In object removal (Fig. 14), the framework not only eliminates target elements (e.g., scattered rocks, a folding chair, park benches) but also inpaints the resulting regions with contextually appropriate content—such as extending grassy terrain or matching wall textures—avoiding the blurred edges or semantic inconsistencies common in baseline methods. For object replacement (Fig. 15), W-Edit preserves fine-grained spatial relationships (e.g., the position of a cake on a plate, bread on a cutting board) while substituting objects with semantically distinct alternatives, demonstrating its ability to disentangle object identity from scene layout. For non-rigid editing (Fig. 16), W-Edit demonstrates remarkable capability in handling complex deformable transformations, including facial expression changes, animal pose adjustments, and body posture modifications, while maintaining structural integrity and avoiding unrealistic distortions. In attribute modification (Fig. 17), the framework achieves precise control over object characteristics such as color, material, and texture, enabling fine-grained edits like altering car colors or modifying book appearances without affecting unrelated regions. Finally, for background editing, W-Edit seamlessly transforms entire environments while preserving consistency of foreground objects, showcasing its capacity for comprehensive scene-level modifications that maintain both semantic coherence and visual plausibility.

Table 5: Memory and time usage

Method	Memory (GB)	Time (s)
MaigcBrush	16.75	20.38
FLUX	35.58	46.00
Flow-Edit	36.09	48.00
Stable-Flow	35.59	47.00
W-Edit	35.59	50.00

864 As demonstrated in Fig. 21, we comprehensively visualize the editing capabilities of the proposed
 865 W-Edit model across the diverse PIE-Bench dataset. Specifically, W-Edit successfully executes vari-
 866 ous complex operations, including but not limited to: adding or removing objects in a scene, altering
 867 the subject’s content, pose, background, material, and color, as well as applying overall style trans-
 868 fer. These examples encompass diverse subjects such as animals, humans, and everyday objects,
 869 qualitatively validating the model’s robustness and precision in understanding and executing com-
 870 plex editing instructions, thereby confirming its powerful and versatile image editing performance.
 871

872 We also compared W-Edit with the current large-scale pre-trained model FLUX.1 Kontext in Fig 19.
 873 As the qualitative comparison in the provided images shows, W-Edit’s structural fidelity is not infe-
 874 rior to FLUX.1 Kontext when performing specific edits. For example, in the pose transforma-
 875 tions of eagles and dogs, although our method’s background consistency is slightly worse than FLUX.1
 876 Kontext, the subject consistency of the edited image is worse than our method. For example, the sub-
 877 jects of the dog and eagle change, and the ability to preserve the subject structure is not as good as
 878 our frequency domain method. However, in the cat example, it can be seen that FLUX.1 Kontext’s
 879 generation is more reasonable and of better quality. But in the bridge example, FLUX.1 Kontext
 880 cannot even edit correctly. Therefore, in terms of structural fidelity, W-Edit is not inferior to some
 881 current resource-intensive pre-trained editing models, based on the qualitative results.
 882
 883

884 **The impact of the value of η on the results.** To investigate the impact of the hyperparameter η
 885 on the editing results, we conducted a detailed qualitative analysis, as shown in Fig. 6. In the W-Edit
 886 framework, η plays a critical role by essentially controlling the amount of frequency sub-band energy
 887 retained from the reference image, thereby striking a balance between structural fidelity and editing
 888 flexibility. Our analysis indicates that there exists an optimal range for the value of η . When η is set
 889 too low (e.g., $\eta \downarrow 0.4$), the model retains too little structural information from the reference image.
 890 This leads to issues such as structural collapse or loss of subject identity in the edited results, as
 891 illustrated in the first column of Fig. 6. This effect is similar to the “low-frequency removal” scenario
 892 in the ablation study in Section 4.3, where the basic composition of the original image cannot be
 893 maintained. Conversely, when η is set too high (e.g., $\eta \uparrow 0.8$), an excessive amount of frequency
 894 information from the reference image is preserved, which overly suppresses the text-guided editing
 895 capability. As shown in the last column of Figure X, the editing effect becomes minimal, with the
 896 image almost unchanged, resembling the results of the “full-block injection” baseline. As shown
 897 in the Tab 3, we found that setting η to 0.6 achieves the best balance in most scenarios. Under
 898 this configuration, W-Edit is able to firmly preserve the overall structure and subject identity of
 899 the source image while effectively responding to textual instructions to produce clear and natural
 900 editing effects. The choice of this optimal value is further supported by the quantitative evaluation
 901 in Section 4.2, where our method achieved the highest CLIP Score under this setting, demonstrating
 902 its superiority in semantic consistency and editing quality. In conclusion, $\eta=0.6$ is established as our
 903 default parameter, providing W-Edit with stable and adaptive performance.

904 **Wavelet Transform Feature Decomposition** To validate the frequency-aware mechanism of the
 905 W-Edit framework, we performed Wavelet Transform decomposition and frequency domain analysis
 906 on features from various blocks of the FLUX architecture. The W decomposes the feature F into a
 907 Low-Frequency Approximation Component (F_A) (structure information) and a High-Frequency De-
 908 tail Component (F_D) (texture information). Visualization reveals a non-uniform “Low-Frequency
 909 Foundation - High-Frequency Refinement” evolution trend: early blocks are dominated by F_A (es-
 910 tablishing structure), while later blocks exhibit significantly increased F_D energy (generating fine-
 911 grained texture). Quantitative analysis of the mid-frequency energy further confirms this by showing
 912 the feature energy centroid shifting from the low-frequency region to the high-frequency region with
 913 increasing layer depth. The strong consistency between the visualization and quantification validates
 914 the frequency evolution in the FLUX architecture. Ultimately, this provides a solid theoretical ba-
 915 sis for W-Edit’s adaptive block selection based on energy metrics, enabling balanced control over
 916 structure preservation and detail editing by aligning F_A/F_D coefficients in the wavelet domain.

916 **Decomposition Level.** To determine the optimal recursive level for Wavelet decomposition, we
 917 systematically visualized the impact of different levels on key features and calculated the resulting

918
919
Table 6: Comparison of selected layer.
920

Layer ID	R_{sf}	R_{our}	$d = R_{sf} - R_{our}$	d^2	Stable-Flow Drop (%)	Ours Drop(%)
28	6	6	0	0	7.2	7.5
54	9	9	0	0	9.5	6.2
2	4	5	1	0	8.5	8.8
53	7	8	1	1	6.8	6.8
0	2	2	1	1	9.5	9
56	8	7	-1	1	6.8	7
1	5	3	2	4	7.8	9.3
17	1	1	0	0	12.1	12.5
18	3	4	1	1	6.7	8.5

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
energy retention rate, as shown in Fig. 11. Qualitative analysis indicated that the decomposition level significantly affects feature representation. For instance, at Level 1, the low-frequency component effectively captures the image’s overall structure, and the high-frequency component retains clear details. However, as the decomposition level increases (e.g., Level 6), the low-frequency information becomes overly coarse due to repeated downsampling, failing to carry meaningful visual patterns; concurrently, the resolution of the high-frequency components decreases significantly, degrading their ability to represent fine details. Using Parseval’s theorem, we performed a quantitative assessment via the energy retention rate, which demonstrated that Level 2 decomposition achieves the optimal balance between structural and detailed information while preserving approximately 85% of the original feature energy. In contrast, Level 1 decomposition might introduce noise due to information redundancy, while excessive levels (such as ≥ 4) compromise editing quality due to excessive information loss. Based on these qualitative observations and quantitative calculations, we ultimately selected Level 2 decomposition as the core parameter for the W-Edit framework. This choice ensures that the model can fully utilize the low-frequency components to maintain structural consistency and leverage high-quality high-frequency components for detail synthesis in subsequent editing, thus balancing visual fidelity with computational efficiency.

949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Layer Comparsion. Tab. 6 compares the layer selections and performance metrics between Stable-Flow (based on DINOv2 structural saliency) and our frequency energy-based method. The layers [0, 1, 2, 17, 18, 28, 53, 54, 56] were evaluated using two key metrics: Jaccard Similarity Coefficient (0.9) indicates high overlap in layer set composition, demonstrating that our frequency-driven selection aligns closely with Stable-Flow’s structural importance criteria. Spearman Rank Correlation Coefficient ($= 0.925$) quantifies the agreement in importance rankings derived from ablation studies on edit quality (CLIPImg Score). This strong correlation validates that frequency energy response effectively captures structural significance, supporting our method as a robust alternative to DINOv2-based approaches. The reduction percentages further illustrate comparable performance in stability metrics across methods.

959
960
961
962
963
964
965
966
967
968
969
970
971
We initially calculated the total energy (E_{total}) of the feature map and obtained E_{low} and E_{high} by summing the spectral energy values within their respective frequency bands. We then calculated the L_2 norm for all 128 generated samples and averaged the E_{low} and E_{high} ratios relative to E_{total} for each block. Based on this quantitative data, we designed two core visualization charts to illustrate the analysis results intuitively. The Energy Progression 3D Plot uses the Training Step Index and Network Block Index as the horizontal axes and Energy Value as the vertical axis to clearly demonstrate the 3D distribution of E_{low} and E_{high} energy across different training phases and network depths. This highlights the shift in energy dominance from low to high frequencies. Furthermore, the Macro Energy Ratio Pie Chart presents the average proportion of low-frequency and high-frequency energy within the total feature representation across the entire diffusion process. These quantitative results strongly confirm a highly significant shift in spectral energy dominance from early to late blocks. We have included a new progression curve figure in the Appendix, shown as Fig 12, that clearly visualizes the evolution trend of the E_{low} and E_{high} curves across all blocks. This systematic quantitative and statistical analysis provides the necessary and rigorous theoretical foundation for W-Edit’s frequency-aware block-wise injection strategy.

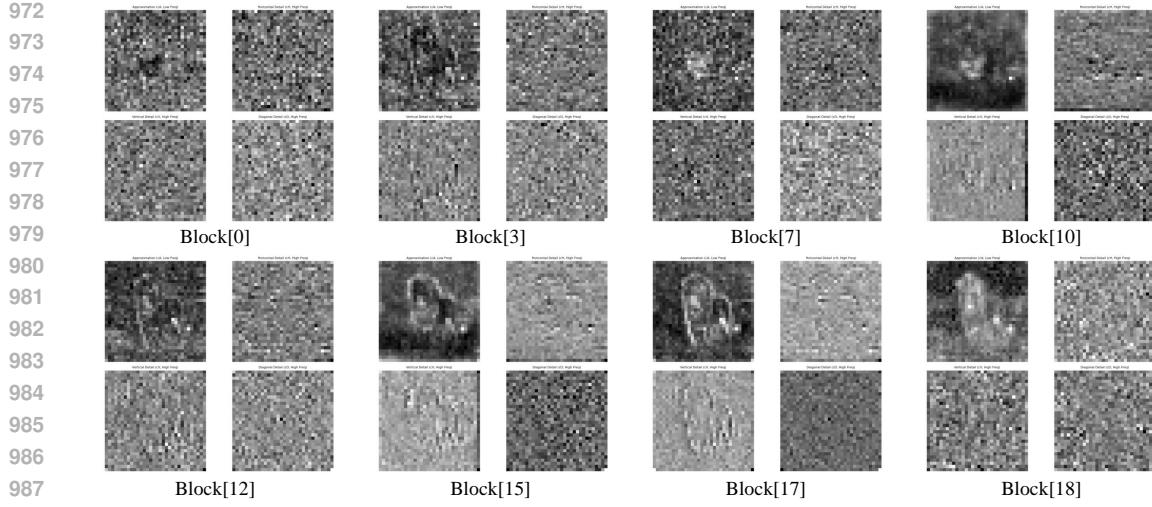


Figure 10: Frequency domain evolution pattern with block.

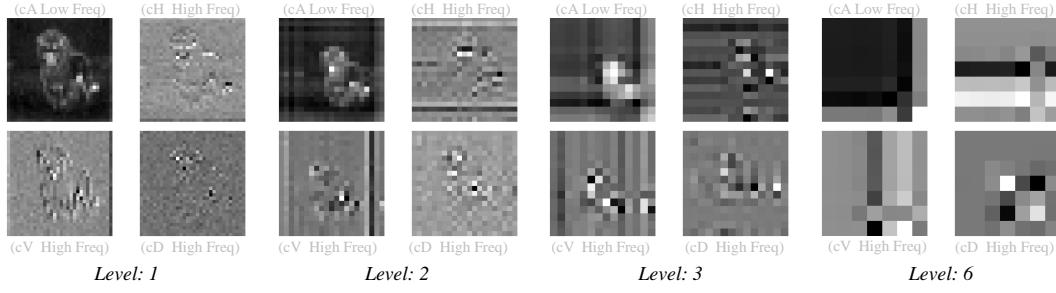


Figure 11: Results of features at different decomposition levels.

Decoupling of high and low frequencies. To further validate this conclusion, we conduct a visualization experiment where only specific frequency bands are injected. As shown in Fig. 18, injecting only low-frequency components alters global structure and layout but fails to refine local details. Injecting only high-frequency components preserves the overall structure while modifying textures and fine-grained attributes. Combining both yields faithful and coherent edits simultaneously maintaining global consistency and enabling precise modifications. This evidence confirms that multi-level frequency control is key to balancing stability and flexibility in editing.

Table 7: Our method yields results for different edit types on the PIE-Bench dataset.

Categories	Structure _{Distance}	PSNR	LPIPS	MSE	SSIM	CLIPsim	CLIP
random	0.043	20.627	0.170	0.014	0.804	24.891	31.563
obj	0.041	19.101	0.181	0.015	0.780	24.729	32.123
add	0.014	24.612	0.082	0.004	0.918	24.499	31.587
delete	0.015	24.614	0.081	0.005	0.887	24.499	30.997
content	0.014	25.772	0.084	0.004	0.917	24.397	31.665
pose	0.024	24.310	0.104	0.007	0.881	26.297	32.823
change color	0.020	23.956	0.096	0.007	0.903	24.888	32.659
material	0.012	25.997	0.075	0.003	0.936	24.268	31.762
background	0.014	25.463	0.069	0.004	0.927	23.888	31.742
style	0.013	26.167	0.085	0.011	0.913	23.955	31.480

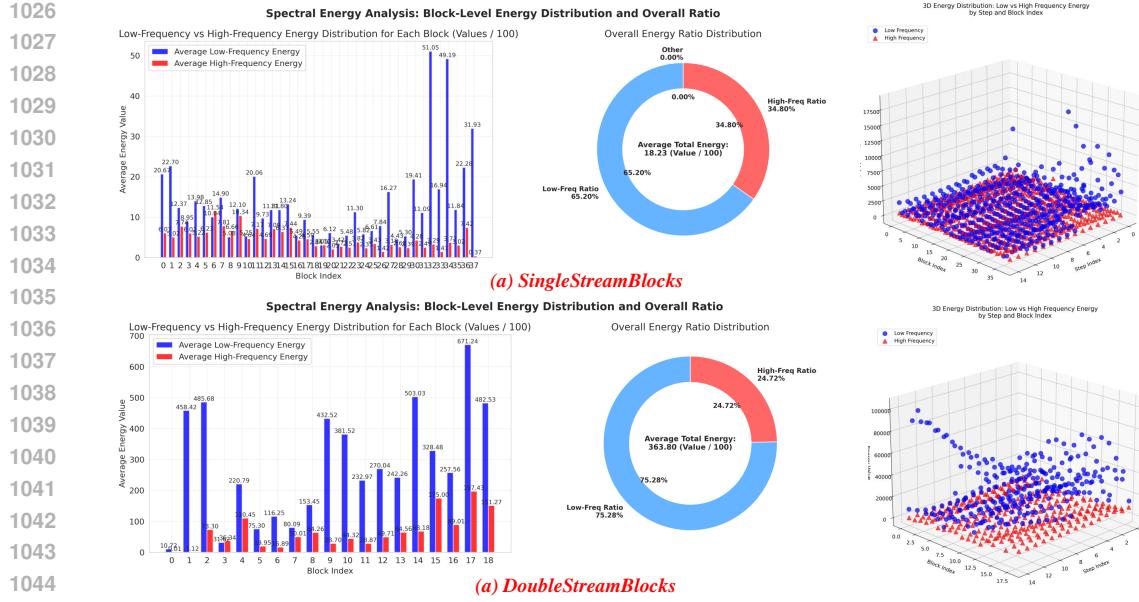


Figure 12: Block-Wise Frequency Progression.

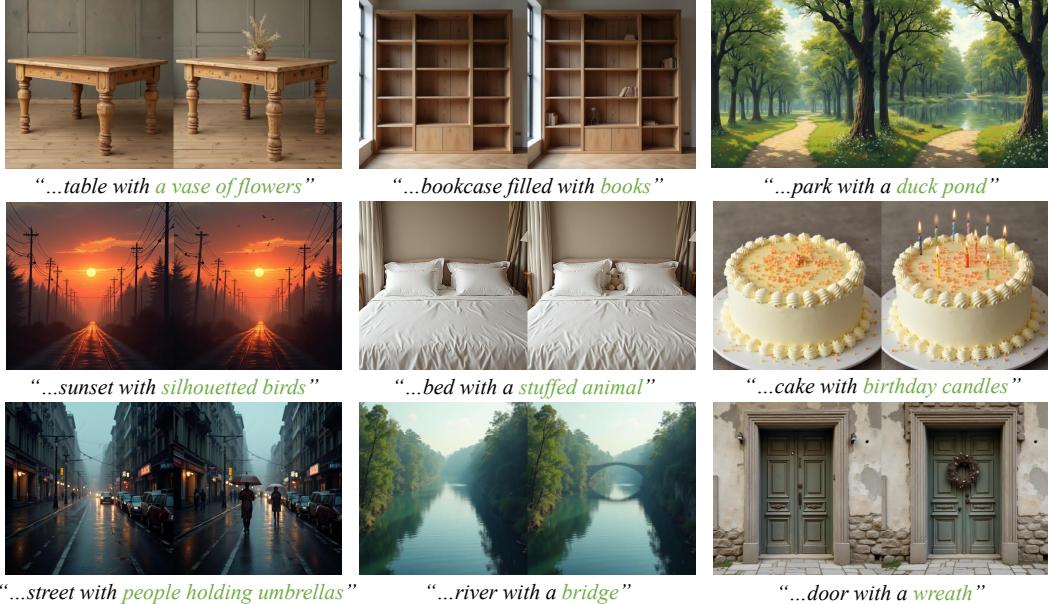


Figure 13: **Object addition results.** W-Edit accurately adds objects specified in the text prompt while preserving the original image structure. For instance, it successfully adds a vase on the table, books on the shelf, and candles to the birthday cake, demonstrating precise spatial understanding and minimal disruption to existing content.

To verify that the separation of low-frequency structure and high-frequency details in W-Edit enables precise and faithful editing, we conducted the following experiments by injecting low-frequency information and high-frequency information separately. We designed a rule where, when generating an image based on a text prompt, if we force the preservation of the low-frequency components of the reference image, the generated image is compelled to retain the overall composition and macroscopic appearance of the reference image. Under this strong constraint, the text prompt can only perform subtle semantic replacements on local content, without changing the overall structure or style. The high-frequency components encode the fine details, textures, outlines, and edges of the

Figure 16: **Non-rigid editing results.** W-Edit demonstrates remarkable capability in handling complex non-rigid transformations while presenting structural integrity. Our method successfully modifies facial expressions, adjusts body postures, and alters animal poses, showcasing its ability to manage deformable objects without introducing artifacts or compromising the original image composition.

still preserved and controlled by the reference image’s low-frequency components. In the lower row, when injecting high-frequency information and using a natural landscape (mountain range) as the reference image, the generated image clearly retains the mountain’s contour, while its style and texture can be significantly changed according to the text prompt (e.g., “night,” “spring,” or “desert”). This substantially improves the precision and creativity of local modifications. Consequently, this verifies that the low-frequency components capture the global structure, macroscopic layout, main color tones, lighting, and artistic style of the image. The high-frequency components encode the fine details, textures, outlines, and edges of the objects in the image. Furthermore, it validates that our method successfully achieves the separation of low-frequency and high-frequency information, significantly enhancing the precision and flexibility of image editing and providing a foundation for achieving excellent editing results.

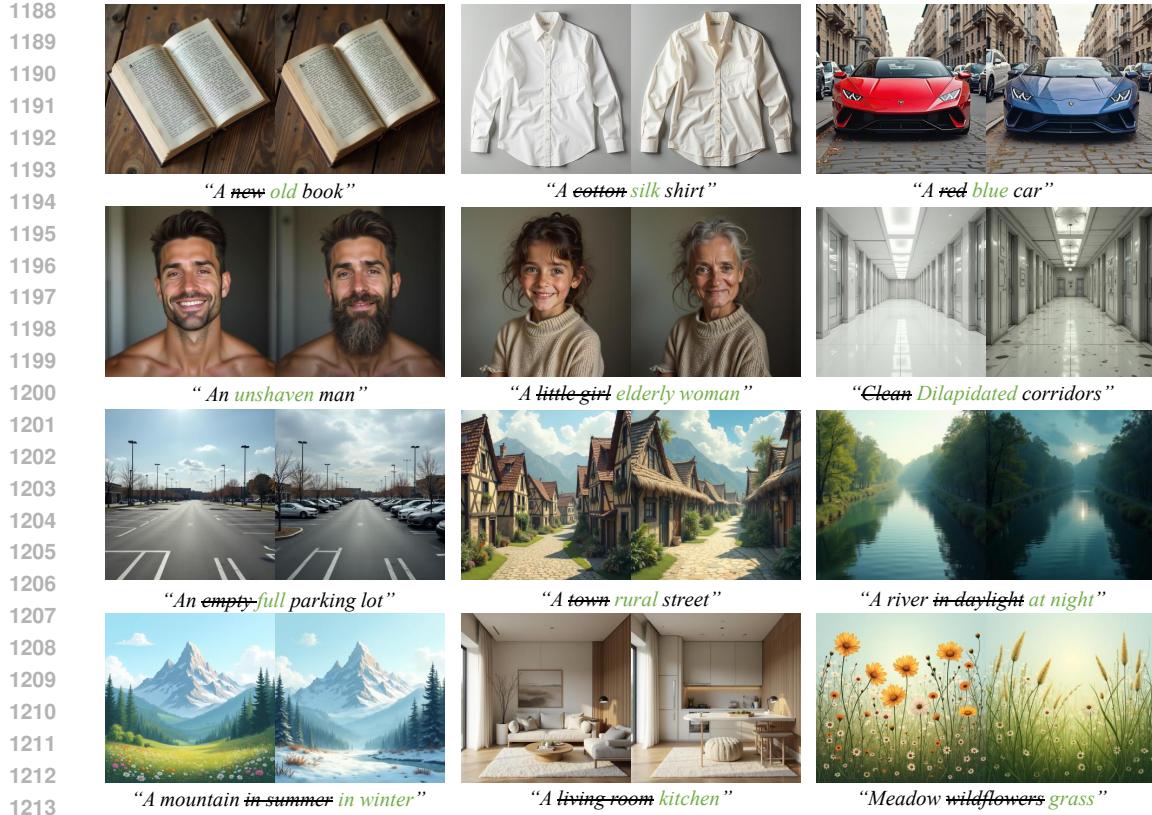


Figure 17: **Attribute modification and scene editing.** W-Edit does well in fine-grained attribute control and comprehensive scene transformation. For attribute modification, it precisely adjusts object properties such as color, material, and texture. For background editing, our method seamlessly replaces entire environments while maintaining consistency of foreground objects.

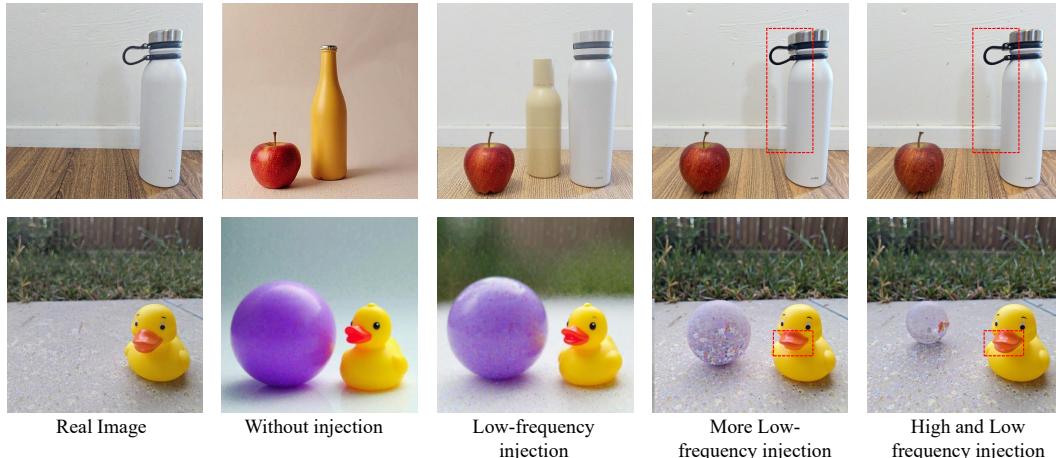


Figure 18: The impact of injecting a specific frequency band on the image.

B REPRODUCIBILITY STATEMENT

Implementation details, evaluation protocols, and dataset descriptions are provided in the main text and appendix. Complete proofs are also included in the main text. The full source code will be released upon acceptance.

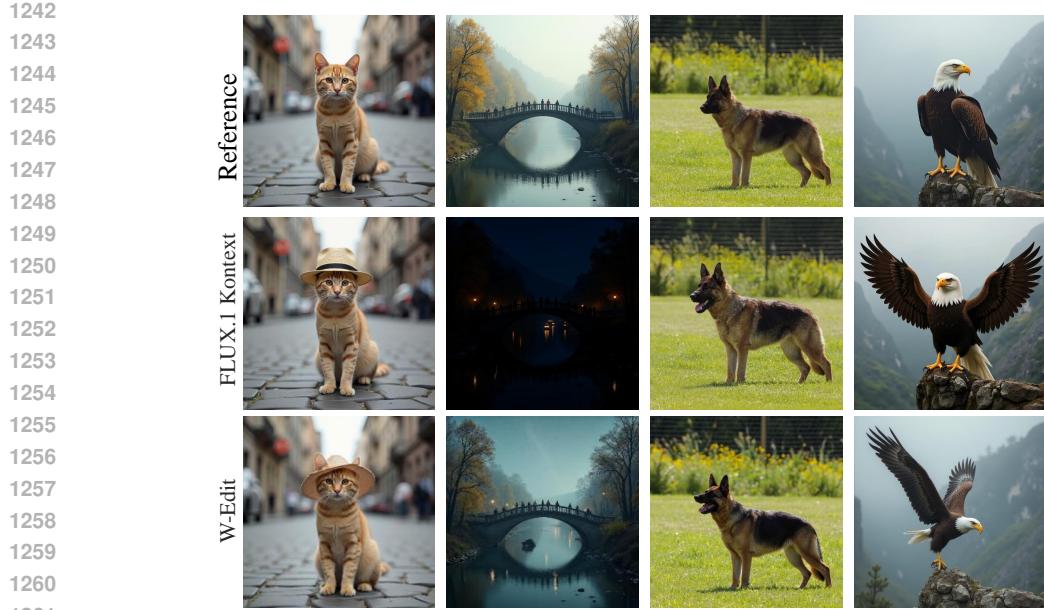


Figure 19: Comparison with FLUX.1 Kontext.

C THE USE OF LLM

Throughout the preparation of this paper, we employed a large language model (LLM) to improve the writing and correct grammatical errors. The LLM was also used as an experimental tool to generate certain prompts for testing purposes.

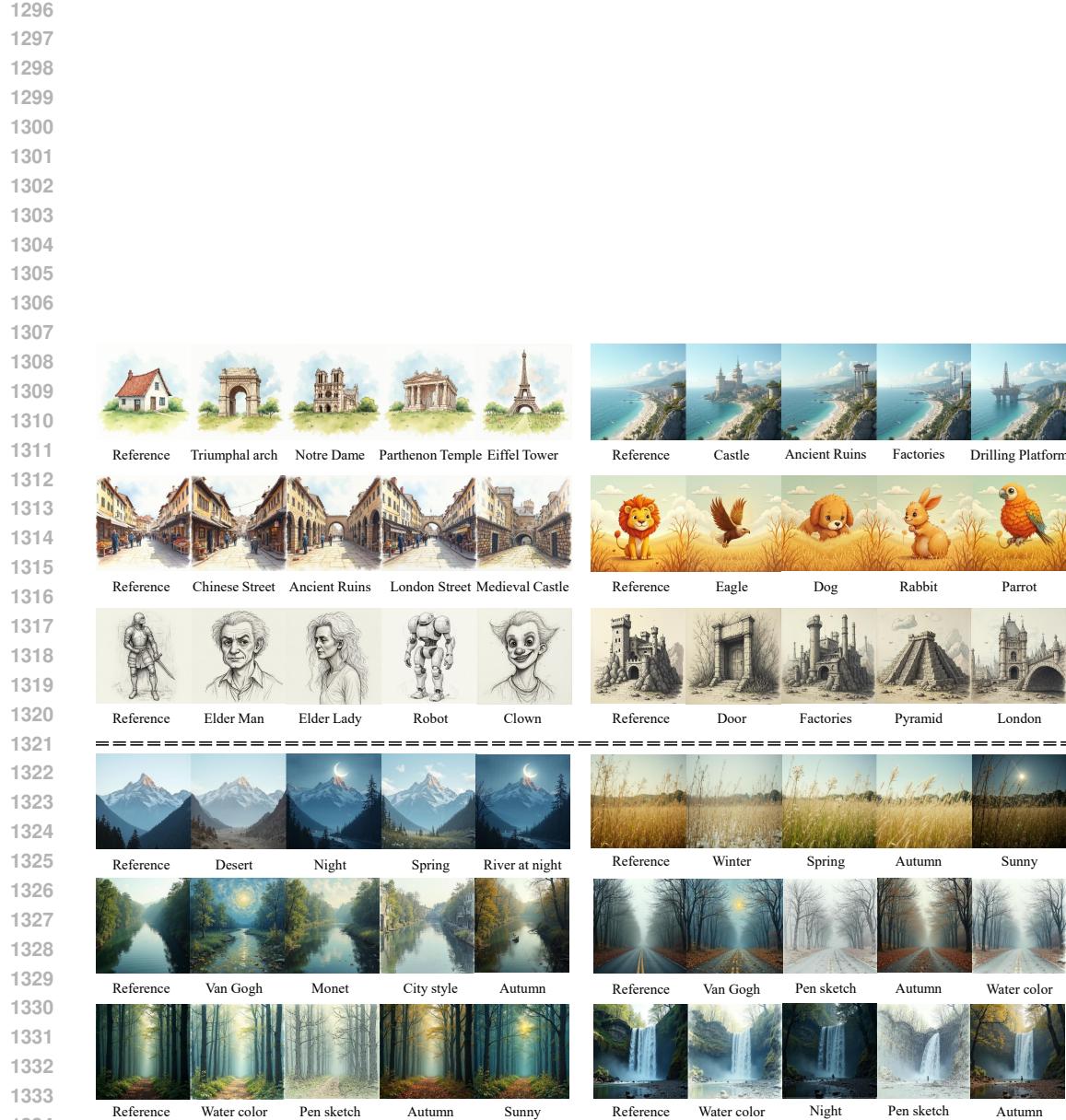
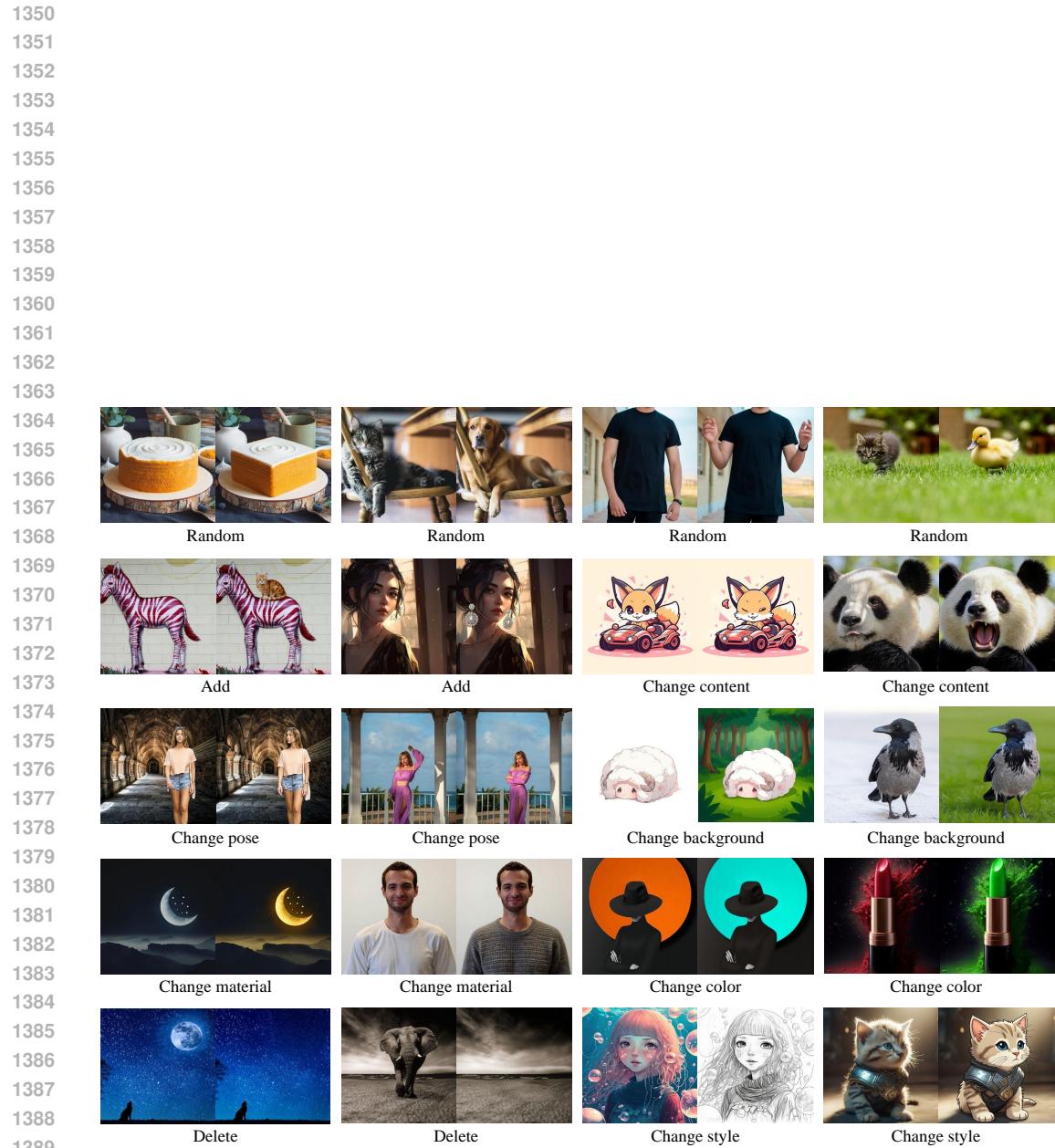


Figure 20: Qualitative Results of Different Frequency Band Replacement Methods. For Low-Frequency Band Replacement, both the appearance and layout of the generated image are controlled by the reference image; for High-Frequency Band Replacement, the reference image controls the contours of the generated image (which is better observed upon magnification).

Figure 21: [Visualization results of W-Edit for different editing types on PIE-Bench.](#)