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ABSTRACT

Reinforcement learning (RL) has recently become the core paradigm for aligning
and strengthening large language models (LLMs). Yet, applying RL in off-policy
settings—where stale data from past policies are used for training—improves sam-
ple efficiency, but remains challenging: policy entropy declines sharply, optimiza-
tion often becomes unstable and may even collapse. Through theoretical and em-
pirical analysis, we identify two key insights: (i) an imbalance in optimization,
where negative-advantage samples dominate the policy gradient, suppressing use-
ful behaviors and risking gradient explosions; and (ii) the derived Entropy-Clip
Rule, which reveals that the fixed clipping mechanism in PPO-like objectives sys-
tematically blocks entropy-increasing updates, thereby driving the policy toward
over-exploitation at the expense of exploration. Building on these insights, we
propose BAlanced Policy Optimization with Adaptive Clipping (BAPO), a sim-
ple yet effective method that dynamically adjusts clipping bounds to adaptively
re-balance positive and negative contributions, preserve entropy, and stabilize RL
optimization. Across diverse off-policy scenarios—including sample replay and
partial rollout—BAPO achieves fast, stable, and data-efficient training. On AIME
2024 and AIME 2025 benchmarks, our 7B BAPO model surpasses open-source
counterparts such as SkyWork-OR1-7B, while our 32B BAPO model not only
achieves state-of-the-art results among models of the same scale but also outper-
forms leading proprietary systems like o3-mini and Gemini-2.5-Flash-Thinking.
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Figure 1: Performance of BAlanced Policy Optimization with Adaptive Clipping (BAPO).

1 INTRODUCTION

Reinforcement learning (RL) has become a pivotal paradigm for optimizing large language models
(LLMs) (Zhang et al., 2025), delivering significant improvements in complex tasks such as reasoning
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Figure 2: Preliminary results with different data staleness. As the staleness increases, the model
suffers from unstable optimization, decreasing entropy, and even a sudden collapse in training.

(Jaech et al., 2024; Guo et al., 2025), coding (Anthropic, 2025), and agentic decision-making (Bai
et al., 2025). Among RL methods, off-policy RL—where the rollout policy (behavior policy) differs
from the training policy (target policy)—emerges as particularly promising (Roux et al., 2025; Arnal
et al., 2025). It offers high sample efficiency and tolerance to data staleness, making it well-suited for
extremely long-horizon and challenging scenarios, while also aligning more naturally with features
in modern AI infrastructures such as partial rollout (Team et al., 2025; Fu et al., 2025).

However, applying off-policy RL to LLMs introduces substantial challenges (Yu et al., 2025; Arnal
et al., 2025). As shown in Figure 2, increasing data staleness leads to unstable optimization, ex-
ploding gradient and even collapse. Meanwhile, policy entropy declines sharply, reflecting reduced
exploratory capacity and a bias toward over-exploitation. By contrast, on-policy training—where
rollout and target policies coincide—remains stable across metrics, consistent with prior studies
(Tang et al., 2024; Roux et al., 2025; Arnal et al., 2025).

To understand the instability of off-policy training, we conduct a comprehensive theoretical and em-
pirical analysis to reveal two key insights. We first demonstrate an imbalance in optimization: pol-
icy updates are often dominated by negative-advantage samples, producing excessive penalization
signals that suppress even neutral or correct actions and may cause gradient explosions (Gülçehre
et al., 2023). We then derive and empirically validate the Entropy-Clip Rule in the widely-used
PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024), showing that the clipping mecha-
nism in PPO-like objectives blocks many low-probability positive tokens while over-penalizing
low-probability negatives. This systematically excludes entropy-increasing updates, sharpens the
output distribution, and drives policies toward over-exploitation at the cost of exploration.

Based on these insights, we propose BAlanced Policy Optimization with Adaptive Clipping
(BAPO), a new method for stable and effective off-policy RL. BAPO dynamically adjusts the clip-
ping bounds to re-balance positive and negative contributions for each update step, incorporate low-
probability positives while filtering excessive negatives, and preserve policy entropy—achieving a
better balance between exploration and exploitation. An overview of our approach is illustrated on
the right side of Figure 3.

Experiments across diverse off-policy scenarios—including sample replay, partial rollout, and vary-
ing degrees of staleness—on base models such as DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025)
and OctoThinker-Llama3.2-3B-Long-Zero (Wang et al., 2025b) show that BAPO consistently yields
significant improvements. Our 7B model achieves scores of 70.8 on AIME24 and 62.5 on AIME25,
surpassing open-source counterparts such as SkyWork-OR1-7B (He et al., 2025). Moreover, our
32B model reaches 87.1 on AIME24 and 80.0 on AIME25, outperforming both comparably scaled
open-source models like Qwen3-32B (Yang et al., 2025a) and leading proprietary systems including
o3-mini-medium (OpenAI, 2025) and Gemini-2.5-Flash-Thinking (Comanici et al., 2025).

Our contributions are summarized as follows:

• We identify and analyze two key insights behind instability in off-policy RL for LLMs: the im-
balanced optimization and the Entropy-Clip Rule. (§3)

• We propose BAPO, a new RL algorithm that dynamically adjusts clipping bounds to balance
positive and negative signals, preserving entropy for exploration, and stabilizing training. (§4)

• We validate BAPO across multiple backbones, model scales, and off-policy settings, showing that
it achieves stable optimization and competitive results with proprietary systems. (§5)
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Figure 3: An illustration of our proposed BAPO. (Left) Baseline methods like GRPO use symmet-
ric fixed clipping bounds, reinforcing high-probability positive tokens while penalizing excessive
low-probability negatives, leading to sharp distributions and entropy collapse. (Right) BAPO dy-
namically adjusts the clipping bounds clow and chigh based on the loss contributions from positive
tokens. It excludes overly negative tokens to maintain a smoother distribution and incorporates
previously clipped positive tokens to preserve entropy balance.

2 PRELIMINARIES

Policy gradient. In the field of LLM RL (Trung et al., 2024; Jaech et al., 2024), policy gradient-
based (PG) algorithms (Williams, 1992) are widely used. Specifically, given an input prompt x, an
LLM πθ sequentially generates a T -token response y = (y1, ..., yT ):

πθ(y|x) =
∏T

t=1 πθ(yt|x,y<t) . (1)

Given a training dataset D = {x1, ...,xN} and reward function R, the RL objective is to maximize
the expected reward:

J(θ) = Ex∼D, y∼πθ(·|x) [R(x,y)] . (2)
PG algorithms then leverage gradient ascent to optimize the policy with the following gradient:

∇θJ(θ) = Ex∼D, y∼πθ(·|x)

[
T∑

t=1

∇θ log πθ(yt|x,y<t) ·At

]
, (3)

where At denotes the estimated advantage at time step t, i.e., how much better action yt is than the
expected action under the current policy.

Importance sampling and PPO objective. To improve sample efficiency and adapt to modern
infrastructure, mainstream RL algorithms for LLMs typically adopt a PPO-like surrogate objective
(Schulman et al., 2017):

JPPO(θ) = Ex∼D, y∼πθrollout (·|x)

T∑
t=1

[min(rt ·At, clip(rt, 1− ε, 1 + ε) ·At)] , (4)

where rt = πθ(yt|x,y<t)
πθrollout (yt|x,y<t)

is the importance weight that corrects for the distribution mismatch,
estimating the expected advantage of tokens generated by the behavior policy πθrollout under the target
policy πθ. The clipping mechanism in PPO serves to implicitly enforce a trust region between the
behavior and target policies, preventing overly large policy updates that could destabilize training.
The hyperparameter ε ∈ (0, 1) determines the width of this clipping interval.

We then analyze data with positive and negative advantages respectively. The policy gradient can
then be expressed as:

∇JPPO =
∑
At>0

πθ(yt) · I{rt < 1 + ε} ·At · ∇ log πθ(yt)︸ ︷︷ ︸
positive tokens

+
∑
At<0

πθ(yt) · I{rt > 1− ε} ·At · ∇ log πθ(yt)︸ ︷︷ ︸
negative tokens

,

(5)
where I represents the indicator function.

3
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Figure 4: Contribution of positive and negative
tokens to the policy-gradient loss and their pro-
portion of tokens during training.
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Figure 5: Relationship between token probabil-
ity and importance sampling weight.

3 MOTIVATION: IMBALANCED OPTIMIZATION AND ENTROPY-CLIP RULE

In this section, we first conduct preliminary experiments to show the influence of data staleness on
the RL optimization process. Next, we perform in-depth empirical and theoretical analysis to reveal
the underlying mechanisms and provide new insights.

Training instability with data staleness. We perform experiments under different levels of data
staleness using the popular GRPO algorithm. Results in Figure 2 show that, compared to on-policy
training, off-policy RL typically suffers from instability, and entropy decreases rapidly, reflecting
reduced exploratory capacity (He et al., 2025). As staleness increases, the entropy decline becomes
more severe and a larger number of tokens are clipped; meanwhile, training becomes more unstable.
In the following paragraphs, we attempt to explain this phenomenon from different perspectives and
summarize the motivation behind our method.

0 50 100
Step

5000

6000

7000

Average Response Length

Negative
Positive

Figure 6: Average model
response length during
training.

Excessive negative samples lead to imbalanced optimization.
Within the PPO-like objective for policy updates, we analyze tokens
with positive and negative advantages separately, as shown in Equa-
tion 5. Empirical results in Figure 4 reveal a pronounced imbalance:
positive samples constitute a minority both in number and in their con-
tribution to the policy-gradient loss. We attribute this skew to two main
factors: (i) the model tends to generate longer trajectories on difficult
queries, thereby producing more tokens in negative samples (Figure
6); and (ii) in early stages of training, the model has not yet acquired
sufficient capability, resulting in a higher proportion of negative sam-
ples. This observation may help explain the effectiveness of certain
curriculum-based approaches (Xi et al., 2024; Yuan et al., 2025).

In the RL training of LLMs, reinforcing positive samples is often more efficient for driving per-
formance gains than attempting to “suppress” the vast number of negative samples (Gülçehre et al.,
2023; Zhu et al., 2025). To this end, prior work has proposed amplifying positive signals through the
clip-higher technique (Yu et al., 2025). However, merely enlarging the clipping upper bound does
not mitigate the influence of negative data, thus failing to prevent them from dominating the opti-
mization process. Moreover, as shown in Equation 5, the accumulation of low-probability negative
tokens (i.e., πθ(yt) → 0, driving the log term toward −∞) may trigger gradient explosion, further
destabilizing training (Yang et al., 2025c).

The Entropy-Clip Rule exposes insufficient entropy promotion in optimization, leading to en-
tropy collapse. Theoretically, we derives Equation 6 (see Appendix C for detailed derivations) for
PPO surrogate objective to reveal the factors that influence the policy entropy (Roux et al., 2025):

∆H(πθ) ≈ −η · Covy∼πθ(·|x) [log πθ(yt|x,y<t), At · X (yt) + C] , (6)

where C is a constant, and

4
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X (yt) =


1, if At > 0 & rt < 1 + ϵ

or At < 0 & rt > 1− ϵ

0, otherwise.
(7)

We observe that changes in policy entropy are driven by the influence of unclipped tokens, which is
determined by the covariance between their log probabilities and advantages. We term this as the
Entropy-Clip Rule. The left side of Figure 3 illustrates how the optimization of different tokens in-
fluences the probability distribution, thereby affecting entropy. The Entropy-Clip Rule theoretically
explains the following statement: Specifically, updating the policy with positive high-probability
tokens (high advantage, high probability) and negative low-probability tokens (low advantage, low
probability) sharpens the distribution and consequently reduces entropy. Conversely, updating the
policy with negative high-probability tokens and positive low-probability tokens smooths the distri-
bution, resulting in an increase in entropy (detailed proofs are available in Appendix C.4.2).

Empirically, our statistical analysis on token probabilities and their importance sampling (IS)
weights further clarifies this dynamic. As shown in Figure 5, we find that tokens with either very
high or very low IS weights tend to have low probabilities. However, in standard algorithms with
symmetric clipping bounds (e.g., [0.8,1.2]), a majority of positive, low-probability tokens are pre-
vented from contributing to the optimization. This systematic exclusion of entropy-increasing up-
dates causes a continuous decline in entropy, ultimately crippling the model’s exploratory capacity
and resulting in a performance bottleneck.

Summary of motivation. Based on the above analysis, we can summarize two main motivations:
(1) to balance the contributions of positive and negative tokens while preventing gradient explosion,
and (2) to preserve policy entropy for sustaining exploration and preventing collapse.

4 METHODOLOGY

4.1 VALIDATION EXPERIMENT: ASYMMETRIC CLIPPING

0 50 100 150
Step

0.4

0.5

Training Reward

0 50 100 150
Step

0.0

0.2

0.4

0.6
Entropy

Clip=[0.8,1.5] Clip=[0.8,1.2] Clip=[0.5,1.2]

Figure 7: Training dynamics of asymmetric clip-
ping experiments.

The main idea of our method is to stabilize the
training and maintain exploration ability of the
policy by asymmetrically adjusting the trust re-
gion for positive and negative tokens, i.e., ad-
justing clow and chigh.

We then conduct preliminary validation exper-
iments to examine whether asymmetrically ad-
justing the clipping range could influence the
training dynamics. The results, shown in Figure
7, together with Figure 5, reveal that increasing
the upper bound chigh (which introduces more
low-probability positive tokens to policy up-
dates) improves performance while counteract-
ing the downward trend of entropy, albeit at a rapid pace. In contrast, relaxing the lower bound
clow (which introduces more low-probability negative tokens to policy updates) not only degrades
performance but also accelerates entropy collapse. These findings confirm the effectiveness of en-
tropy control through asymmetric clipping. Nevertheless, this approach remains relatively rigid and
manually specified, providing limited flexibility and adaptation.

4.2 BAPO: BALANCED POLICY OPTIMIZATION WITH ADAPTIVE CLIPPING

To this end, we propose BAlanced Policy Optimization with Adaptive Clipping (BAPO), a new
method to achieve stable, fast RL optimization for LLMs. The core insight of BAPO lies in its adap-
tive clipping mechanism, which dynamically adjusts the clipping bounds chigh and clow, to regulate
the positive contribution to the policy loss and maintain a balance in entropy throughout RL training.
Formally, for each update with a batch, our goal is to find a pair of chigh and clow that satisfy:

|
∑

At>0 πθrollout(yt) · [min(rt ·At, clip(rt, 0, chigh) ·At)] |
|
∑

At
πθrollout(yt) · [min(rt ·At, clip(rt, clow, chigh) ·At)] |

≥ ρ0 , (8)

5
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Algorithm 1: BAPO
Input: Initialized LLM policy πθ, training dataset D, reward function R, staleness E, movable

range of clipping bounds [a−, b−] and [a+, b+], step size of upper bound δ1, step size of
lower bound δ2, positive token contribution threshold ρ0

1 for step s = 1...S do
2 Procedure Sample and filter out responses
3 Update the old LLM policy πθrollout ← πθ ;
4 Sample the s-th batch Ds from D ;
5 Sample G responses {yi}Gi=1 ∼ πθrollout(·|x), where x ∈ Ds ;
6 Compute reward and advantage for each yi based on reward function R ;
7 for staleness = 0...E do
8 Procedure Dynamically adjusting the clipping bounds chigh and clow
9 Initialize clipping bounds clow = a− and chigh = a+ ;

10 while the positive token contribution ρ < ρ0 and clow + δ2 ≤ b−

11 do
12 if chigh + δ1 ≤ b+ then
13 chigh ← chigh + δ1
14 else
15 clow ← clow + δ2
16 end
17 end
18 Procedure Update the LLM policy πθ

19 Update the LLM policy πθ by maximizing the following objective:
20 JBAPO(θ) = Ey∼πθrollout (·|x)

∑T
t=1 [min(rt ·At, clip(rt, clow, chigh) ·At)]

21 end
22 end

where ρ0 is the target contribution of positive signals to the policy gradient loss. Specifically, BAPO
gradually increases chigh and clow with step sizes of δ1 and δ2, respectively, until the condition in
Equation 8 is met. We present an overview of BAPO in Figure 3 and summarize it in Algorithm 1.

Overall, BAPO offers several significant benefits. First, by dynamically adjusting chigh and clow for
each step, we can increase the contribution of positive tokens to the policy-gradient loss while pre-
venting negative tokens from excessively dominating the optimization objective. Second, based on
our earlier analysis of the relationship between IS weights and token probabilities in Figure 5, BAPO
incorporates more low-probability positive tokens and filters out more low-probability negative to-
kens, both of which contribute to maintaining entropy. Third, by setting the target contribution from
positive tokens, BAPO prevents uncontrolled entropy growth, avoids situations where positive to-
kens overwhelm the loss, and mitigates tail degradation—where the model overfits to easy problems
but fails to handle more challenging ones (Ding et al., 2025).

4.3 ANALYSIS

Stable and fast training of BAPO. As shown in Figure 9, BAPO enables a more stable opti-
mization process, characterized by rapidly increasing training rewards, greater contributions from
positive tokens, steady gradient normalization, and stable policy entropy—resulting in an improved
balance between exploration and exploitation.

0 50 100 150
Step

1

2

Clip Bound

Clip-High-Bound
Clip-Low-Bound

Figure 8: Clipping bounds.

We further visualize the adjustment process of the clipping bounds in
BAPO. As shown in Figure 8, the averaged upper and lower clipping
bounds both fluctuate during training, confirming that BAPO dynam-
ically adjusts the clipping for both types of data and adaptively bal-
ances their contributions to the loss. In contrast to approaches such
as DAPO (Yu et al., 2025) or the asymmetric clipping in Section 4.1,
which rely on empirical tuning, BAPO eliminates the need for com-
plex manual hyperparameter tuning, making it simple yet effective.
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Figure 9: Training dynamics of BAPO.

Probability
0.00.20.4

0.6
0.8

1.0
Weight

0.0
0.5

1.0
1.5

2.0
2.5

En
tro

py

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Prob vs Weight vs Entropy

0.50 0.75 1.00 1.25 1.50
Weight

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Weight vs Probability

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.5

1.0

1.5

2.0

2.5

En
tro

py

Top 20%
Lower 80%

Prob vs Entropy

80th Percentile

Figure 10: Relationship among token probabilities, importance sampling weights, and entropy.
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Figure 11: Results with different data staleness.

Effectiveness of BAPO across different stal-
eness. We conduct experiments using the
R1-Distill model (Guo et al., 2025) on the
SkyWork-OR1-RL dataset (He et al., 2025),
with a maximum sequence length of 32k. The
results in Figure 11 show that under different
data staleness, our method consistently outper-
forms both the baseline and the clip-higher ap-
proach, demonstrating its superiority.

The working mechanism of BAPO and its connection to prior work. To better understand the
working mechanism of BAPO, we present the relationship among token probabilities, IS weights,
and entropy during training in Figure 10. We find that as IS weights deviate further from 1, the
corresponding token probabilities decrease, and such low-probability tokens often exhibit higher
entropy. Based on this observation, we explain how BAPO relates to prior work. For example,
Clip-Higher in Yu et al. (2025) sets the clipping upper bound to 1.28, thereby including more low-
probability positive tokens in training, which stabilizes entropy while balancing the contributions of
positive and negative tokens. Similarly, Wang et al. (2025a) retain only the top 20% highest-entropy
tokens for training, ensuring stable entropy throughout optimization and preserving the model’s
exploratory capability, and the target entropy technique in He et al. (2025) plays a similar role,
which aligns with our motivation.

5 EXPERIMENTS AND DISCUSSION

5.1 EXPERIMENTAL SETUPS

Datasets and Models. We use SkyWork-OR1-RL-Data (He et al., 2025) as our RL dataset, as it is
widely adopted and of high quality. For evaluation, we employ both the AIME 2024 and the newly
released AIME 2025 (AIME, 2025) benchmarks. Our experiments cover a range of backbone mod-
els, including DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-32B
(Guo et al., 2025), and OctoThinker-Llama3.2-3B-Long-Zero (Wang et al., 2025b). In
addition, we incorporate two our own supervised fine-tuning (SFT) models, BP-Math-7B and
BP-Math-32B, which are derived from Qwen2.5-Math (Yang et al., 2024) through fine-tuning.

Implementation details. We leverage GRPO as the basis for BAPO. Both our preliminary and
validation experiments are conducted using DeepSeek-R1-Distill-Qwen-7B, with the max-
imum response length set to 8k, learning rate to 2× 10−6, and temperature to 0.6. For main results
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Table 1: Main evaluation results.
Model Model Size AIME 2024 AIME 2025 Average

≥ 100B Models and Proprietary Models
Qwen3-235B-A22B (Yang et al., 2025a) 235B 85.7 81.5 83.6
DeepSeek-R1 (Guo et al., 2025) 671B 79.8 70.0 74.9
DeepSeek-R1-0528 (Guo et al., 2025) 671B 91.4 87.5 89.5
o1medium (Jaech et al., 2024) - 83.3 79.0 81.2
o3-minimedium (OpenAI, 2025) - 79.6 76.7 78.2
o3-minihigh (OpenAI, 2025) - 87.3 86.5 86.9
Gemini-2.0Flash-Thinking (Google, 2024) - 73.3 53.5 63.4
Gemini-2.5Flash-Thinking-0520 (Comanici et al., 2025) - 82.3 72.0 77.2

10B - 100B Scale Models
Qwen3-30B-A3B (Yang et al., 2025a) 30B − 61.3 −
R1-Distill-Qwen-32B (Guo et al., 2025) 32B 72.6 54.9 63.8
QwQ-32B (Qwen, 2025) 32B 79.5 65.3 72.4
Qwen3-32B (Yang et al., 2025a) 32B 81.4 72.9 77.2
SkyWork-OR1-32B (He et al., 2025) 32B 82.2 73.3 77.8
BP-Math-32BSFT 32B 84.4 78.1 81.3
BP-Math-32BGRPO 32B 84.6 78.8 81.7
BP-Math-32BBAPO 32B 87.1 80.0 83.5

≤ 10B Models
R1-Distill-Qwen-7B (Guo et al., 2025) 7B 54.2 38.4 46.3
Light-R1-7B-DS (Wen et al., 2025) 7B 59.1 44.2 51.7
AReaL-boba-RL-7B (Fu et al., 2025) 7B 61.9 48.3 55.1
AceReason-Nemotron-7B (Chen et al., 2025) 7B 69.0 53.6 61.3
SkyWork-OR1-7B (He et al., 2025) 7B 70.2 54.6 62.4
BP-Math-7BSFT 7B 66.9 59.0 62.9
BP-Math-7BGRPO 7B 69.2 59.2 64.2
BP-Math-7BBAPO 7B 70.8 62.5 66.7

on BP-Math models, we set the maximum response length to 64k to align with the SFT setting.
To introduce staleness, we adopt multiple strategies, including experience reuse through ppo epoch
(Schulman et al., 2017) and the modern partial rollouts (Team et al., 2025; Fu et al., 2025). For
BAPO, we set the target contribution ρ0 = 0.4, the movable range a− = 0.6, b− = 0.9, a+ = 1.2,
b+ = 3.0, and the step size δ1 = 0.05, δ2 = 0.02. These hyperparameters are not finely tuned, as
they already demonstrate strong empirical performance. For evaluation, we report results averaged
over 16 rollouts.

Baselines. We include a variety of commercial and open-source models of different scales as base-
lines, as shown in Table 1, and report their performance as extracted from prior work. In addition,
we compare different training approaches, including SFT and GRPO.

5.2 MAIN RESULTS

The main results are shown in Figure 1 and Table 1.

Significant performance improvements across models of varying sizes. For strong SFT mod-
els, GRPO provides only marginal benefits—for instance, it improves performance by just 0.2 and
0.7 points on AIME24 and AIME25 with the BP-Math-32B model. In contrast, BAPO delivers
substantial gains across models of different scales. Specifically, with the BP-Math-32B model,
BAPO outperforms SFT by 2.7 and 1.9 points on AIME24 and AIME25, respectively; with the
BP-Math-7B model, it achieves even larger improvements of 3.9 and 3.5 points.

SOTA performance over open-source models of comparable sizes and competitive results
against proprietary models. Compared to open-source models of similar sizes, our BAPO-
trained models achieve state-of-the-art (SOTA) performance. For instance, among 32B models, BP-
Math-32BBAPO outperforms Qwen3-32B by 5.7 and 7.1 points on AIME24 and AIME25, respec-
tively, and surpasses SkyWork-OR1-32B by 4.9 and 6.7 points. Among 7B models, BP-Math-
7BBAPO also delivers a notable 7.9-point improvement over SkyWork-OR1-7B on AIME25.

Moreover, BP-Math-32BBAPO even outperforms some larger-scale models—for example, it sur-
passes DeepSeek-R1 by 7.3 and 10.0 points on AIME24 and AIME25, respectively—while
achieving performance comparable to o3-mini. Notably, even the smaller BP-Math-7BBAPO
yields results on par with Gemini-2.0-Flash-Thinking, underscoring the competitiveness
of our approach against commercial models.
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5.3 DISCUSSION
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Figure 12: Training dynamics with partial rollout.

Partial rollout. To speed up rollouts in LLM
reinforcement learning, modern AI infrastruc-
tures have introduced several techniques, with
partial rollout being particularly noteworthy
(Team et al., 2025; Fu et al., 2025). In this ap-
proach, long trajectories are split into segments:
when a rollout exceeds a fixed token budget, the
unfinished portion is stored in a replay buffer
and resumed in later iterations instead of being
regenerated from scratch. While this improves
training efficiency, it also introduces off-policy
learning, since different parts of the same trajectory may come from multiple outdated policies. We
evaluate BAPO under this setting, as shown in Figure 12. Compared to the baseline GRPO, BAPO
exhibits greater robustness to such off-policy infrastructures and achieves more stable optimization.

Table 2: Performance of Llama-based
models.

Method AIME 2024 AIME 2025 MATH
GRPO 2.5% 2.9% 58.4%

BAPO 5.4% 5.8% 66.0%

Results on OctoThinker-Llama3.2-3B-Long-Zero.
In addition to the DeepSeek-R1-Distill-Qwen, we also
conducted experiments on Llama-based models (Wang
et al., 2025b). As shown in Table 2 and Figure 13 in
Appendix B, our method achieves more competitive
results and exhibits greater stability in training dynamics.

6 RELATED WORK

Recent landmark models, like OpenAI o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025),
Gemini 2.5 (Comanici et al., 2025), QwQ (Qwen, 2025), have demonstrated that reinforcement
learning can effectively enable long chain-of-thought reasoning in LLMs (Shao et al., 2024; Zhang
et al., 2025). Mainstream algorithms include PPO (Schulman et al., 2017) and GRPO (Shao et al.,
2024): PPO constrains updates via a clipping-based surrogate objective, while GRPO enhances
long-horizon reasoning through group-based rewards.

Despite the remarkable success of RL for LLMs, ensuring stability and efficiency in optimization
remains a major challenge (Yu et al., 2025; Cui et al., 2025). Recent studies have sought to better
understand the underlying mechanisms of RL and proposed new methods to achieve a balance (Cui
et al., 2025; Zheng et al., 2025; Wang et al., 2025a; Yang et al., 2025b). For example, DAPO (Yu
et al., 2025) introduces techniques such as Clip-Higher and dynamic sampling to raise the perfor-
mance ceiling; Wang et al. (2025a) explore optimizing only a small subset of high-entropy tokens
for improved efficiency. He et al. (2025), Cui et al. (2025), and other works (Zheng et al., 2025;
Cheng et al., 2025; Liu et al., 2025) systematically investigate how to maintain entropy stability
during training, thereby preserving the model’s exploration ability. For off-policy RL, Roux et al.
(2025) and Arnal et al. (2025) introduce asymmetric clipping mechanisms. The most similar to our
work is DCPO (Yang et al., 2025b), which adjusts token-level clipping based on token prior proba-
bilities. However, our approach takes a holistic optimization perspective: we observe the imbalance
in loss contributions and derive the Entropy-Clip Rule for the PPO objective, enabling dynamic
control over global clipping bounds. We further validate the effectiveness of our method through
larger-scale experiments.

7 CONCLUSION

In this paper, we begin by analyzing the impact of data staleness on model training through both
empirical and theoretical studies. We reveal the imbalance between positive and negative samples
in RL optimization, and derive as well as empirically validate the Entropy-Clip Rule for PPO-like
objectives. Building on these insights, we propose BAPO, which dynamically adjusts the clipping
bounds to balance positive and negative samples while preserving the model’s exploratory capability
during training. We conduct extensive experiments across different models and settings to validate
our method. We hope our work provides key insights for the LLM RL community.
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ETHICS STATEMENT

This research introduces an RL methodology designed to augment reasoning capabilities. However,
we recognize that it may inadvertently strengthen other capabilities, including those with potential
for malicious use. We firmly state that this work is intended for ethical and constructive purposes.
Users of this method bear the full responsibility for ensuring it is applied in a safe, fair, and harmless
manner. Any misuse of this method is strictly against the intent of the authors.

REPRODUCIBILITY STATEMENT

We have describe our method and the hyperparameters in §4 and §5. To support reproducibility, we
will open-source our code. The datasets used for RL experiments are already publicly available.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs are utilized in this manuscript for partial grammatical checks and language polishing. The
authors are fully responsible for the final content.

B PERFORMANCE ON OCTOTHINKER-LLAMA

We illustrate the training dynamics on OctoThinker-Llama in Figure 13. Since Llama family models
behave badly in RL training, we choose the model after mid-training (Wang et al., 2025b) to show
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the robustness of BAPO. We can find that BAPO provides consistent and significant improvement
in training. For training details, we set the low bound as 0.8-0.9, high bound as 1.2-2.0, and target
positive loss contribution as 0.45.
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Figure 13: Training dynamics of OctoThinker-Llama-3B-Long-Zero.

C PROOFS OF EQUATION 6

C.1 EXPLANATIONS FOR ALL VARIABLES AND EXPRESSIONS

All notation used in the following justification, including variables and expressions, is provided with
detailed explanations in Table 3.

C.2 PREPARATION: REWRITE THE PPO DERIVATIVES

To facilitate the justification of the propositions below, we rewrite the PPO loss function in the
following form:

∇JPPO =
∑

A(yt)>0

πθ(yt) · I{r(yt) < 1 + ε} ·A(yt) · ∇ log πθ(yt)︸ ︷︷ ︸
positive tokens

+
∑

A(yt)<0

πθ(yt) · I{r(yt) > 1− ε} ·A(yt) · ∇ log πθ(yt)︸ ︷︷ ︸
negative tokens

where

πθ(yt) = πθ(yt|x,y<t) , r(yt) =
πθ(yt | x,y<t)

πθrollout(yt | x,y<t)
, A(yt) = A(yt|x,y<t) .

C.3 PROOFS OF THE MAIN PROPOSITIONS

The following derivation is inspired by the proof framework in Cui et al. (2025). While the original
work focuses mainly on the basic gradient formulation of naive REINFORCE to provide a heuristic
explanation, our study advances this approach by deriving the gradient expression specific to the
PPO objective. This refinement offers a specific, intuitive yet theoretical account of how policy
entropy is intrinsically shaped by the interaction between token-level advantages and their sampling
probabilities.

C.3.1 PRECLAIMS

Proofs of these three lemmas below are available in Cui et al. (2025).
Lemma 1. Let the actor policy πθ be a tabular softmax policy, the difference of information entropy
given prompt x between two consecutive steps k and k + 1 satisfies

H(πk+1
θ |x,y<t)−H(πk

θ |x,y<t) ≈ −Covyt∼πk
θ (·|x,y<t)

(
log πk

θ (yt), z
k+1
y,x − zky,x

)
.
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Table 3: Notation used in justification below.

Category Symbol Meaning

Variables

πθ The policy parameterized by θ

πθrollout
The standard sampling policy

x Given prompt

y A T-token response generated by πθ when given x

yt The t-th token of y

η Learning rate

Expressions

πθ(·|x,y<t) Probability of generating token · under policy πθ given input
x and previous tokens y<t

πθrollout
(yt|x,y<t) Probability of generating token · under standard sampling

policy πθrollout
given input x and previous tokens y<t

A(·|x,y<t) The measurement of how much better(or worse) selecting
token · is compared to the expected value under the current
policy, given x and y<t

H(·|x,y<t) The information entropy of policy · given x and y<t

Covyt∼πθ(·|x,y<t)(a(yt), b(yt)) The expected covariance of a(yt) and b(yt) over yt sampled
from the policy πθ, given x and y<t

I(a = b) Indicator function that equals 1 if a = b and 0 otherwise

Q(πθ)(·,x) The expected cumulative reward obtained by taking token ·
given input x and previous tokens under policy πθ

V (πθ)(x) The expected return of the new taking token given input x
and previous tokens under policy πθ

zy,x A quantity representing the cumulative weight of sequence
y given input x under policy πθ, reflecting its contribution
to the policy taken at the current optimization step

∇θyt,x
J(θ) The gradient of the policy taken with respect to the logit

parameter θyt,x, representing how the policy πθ should be
adjusted for token yt given input x

Lemma 2 (Derivative of softmax function).

∂ log πθ(yt)

∂θy′
t,x

= I{yt = y′t} − πθ(y
′
t)

Lemma 3 (Expectation of Advantage function given prompt x).

Eyt∼πθ(·|x,y<t)

[
Aπθ (yt)

]
= Eyt∼πθ(·|x,y<t)

[
Qπθ (yt,x)− V πθ (x)

]
= Eyt∼πθ(·|x,y<t)

[
Q(yt,x)

]
− Eyt∼πθ(·|x,y<t)

[
V (x)

]
= V (x)− V (x)

= 0

C.3.2 PRINCIPLE PROPOSITIONS

Proposition 1: Assume the actor policy πθ follows a tabular softmax policy and is optimized via
the PPO objective, the difference of zy,x between two consecutive steps k and k+1 satisfies

zk+1
y,x − zky,x = η · πθ(yt) · [A(yt) · X (yt) + C],
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where

X (yt) =


1, if A(yt) > 0 & r(yt) < 1 + ϵ

or A(yt) < 0 & r(yt) > 1− ϵ

0, otherwise

and C includes all clauses irrelevant to yt.

It is worth noting that X (yt) = 0 if and only if yt is clipped.

Proof. In tabular softmax policy, each trajectory-prompt pair (y,x) is associated with an individual
logit parameter zy,x = θyt,x. Through gradient backtracking, zy,x is updated via zk+1

y,x = zky,x+ η ·
∇θyt,x

J(θ). According to the loss function of PPO, we have

zk+1
y,x − zky,x = η · ∇θyt,x

JPPO(θ)

= η · Ey′
t∼πθ(·|x,y<t)

A(y′
t)>0

[
I{r(y′t) < 1 + ε} · ∇θyt,x

log πθ(y
′
t) ·A(y′t)

]
+ η · Ey′

t∼πθ(·|x,y<t)

A(y′
t)<0

[
I{r(y′t) > 1− ε} · ∇θyt,x

log πθ(y
′
t) ·A(y′t)

]
= η · Ey′

t∼πθ(·|x,y<t)

[
∇θyt,x

log πθ(y
′
t) ·A(y′t)

]︸ ︷︷ ︸
1

− η · Ey′
t∼πθ(·|x,y<t)

A(y′
t)>0

[
I{r(y′t) > 1 + ε} · ∇θyt,x

log πθ(y
′
t) ·A(y′t)

]
︸ ︷︷ ︸

2

− η · Ey′
t∼πθ(·|x,y<t)

A(y′
t)<0

[
I{r(y′t) < 1− ε} · ∇θyt.x

log πθ(y
′
t) ·A(y′t)

]
︸ ︷︷ ︸

3

= 1 − ( 2 + 3 ) (8)

We first perform the derivation on the term marked as 1 :

1 = η · Ey′
t∼πθ(·|x,y<t)

[
∂ log πθ(y

′
t)

∂θyt,x
·A(y′t)

]
Lemma 2
= η ·

∑
y′
t

[πθ(y
′
t) · (I{y′t = yt} − πθ(yt)) ·A(y′t)]

= η · πθ(yt) ·

(1− πθ(yt)) ·A(yt)−
∑
y′
t ̸=yt

πθ(y
′
t) ·A(y′t)


= η · πθ(yt) ·

A(yt)−∑
y′
t

πθ(y
′
t) ·A(y′t)


Lemma 3
= η · πθ(yt) · [A(yt)− 0]

= η · πθ(yt) ·A(yt)

To keep the presentation concise, we provide only the resulting derivations of Term 2 and 3 , as
the detailed steps follow similarly to those for Term 1 .
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2 + 3 = η · πθ(yt) ·A(yt) · (1−X (yt))

− η · πθ(yt) ·
∑

A(y′
t)>0

[I{r(y′t) > 1 + ε} · πθ(y
′
t) ·A(y′t)]

− η · πθ(yt) ·
∑

A(y′
t)<0

[I{r(y′t) < 1− ε} · πθ(y
′
t) ·A(y′t)]

By substituting the results of the above derivation into Clause (8), we observe that:

(8) = 1 − ( 2 + 3 )

= η · πθ(yt) ·
{
A(yt) · X (yt)

+
∑

A(y′
t)>0

[I{r(y′t) > 1 + ε} · πθ(y
′
t) ·A(y′t)]

+
∑

A(y′
t)<0

[I{r(y′t) < 1− ε} · πθ(y
′
t) ·A(y′t)]

}
By grouping all elements unrelated to yt into C, we are able to successfully establish our proposition.

Building on Proposition 1, we establish the relationship between policy entropy and the covariance
of specific tokens, which is stated as Proposition 2 below.

Proposition 2 (Equation 6): Let the actor policy πθ be tabular softmax policy, and πθ is updated
via PPO objective, the difference of information entropy given prompt x and trajectory part y<t

between two consecutive steps k and k+1 satisfies

H(πk+1
θ |x,y<t)−H(πk

θ |x,y<t) ≈ −η · Covyt∼πk
θ (·|x,y<t)

(
log πk

θ (yt), A(yt) · X (yt) + C
)
.

Proof. Leveraging the conclusions of Lemma 1 and Proposition 1, we find that, under policy opti-
mization and iteration via the PPO algorithm, the following relationship is satisfied:

zk+1
y,x − zky,x = η · (A(yt) · X (yt) + C).

Applying this into Lemma 1, we have

H(πk+1
θ |x,y<t)−H(πk

θ |x,y<t) ≈ −η · Covyt∼πk
θ (·|x,y<t)

(
log πk

θ (yt), A(yt) · X (yt) + C
)
.

C.4 ANALYSIS

C.4.1 DIRECT ANALYSIS: WHY VARYING ε ALTERS ENTROPY?

We begin by examining the covariance of the clipped token, denoted as α.

Based on the observation stated above, the contribution of α to the entropy can be expressed as:

−η · πk
θ (α) · Cov

(
log πk

θ (α), C
)
= 0,

which indicates that only the retained tokens contribute to the overall entropy.

In other words, we manipulate the number of tokens that can contribute to the entropy by altering
the parameter ε.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.4.2 ADVANCED ANALYSIS : WHICH TYPE OF TOKENS MATTER MOST FOR ENTROPY?

To understand how individual tokens contribute to the overall entropy, we first revisit the Proposition
C.3.2 established above. In this section, we provide a more precise definition of tokens with low/high
probabilities and advantages. It should be noted that in the analysis experiment (Figure 5), we
adopt the naive REINFORCE algorithm without clipping. Consequently, tokens with high or low
advantages are defined according to the sign of their advantage values, i.e., > 0 for high advantage
and < 0 for low advantage.

H(πk+1
θ |x,y<t)−H(πk

θ |x,y<t) ≈ −η · Covyt∼πk
θ (·|x,y<t)

(
log πk

θ (yt), A(yt) · X (yt) + C
)

= −η ·
T∑

p=1

πk
θ (yp|x,y<t) ·

(
log πk

θ (yp)− Eyi∼πk
θ (·|x,y<t)[log π

k
θ (yi)]

)
·
(
A(yp) · X (yp)− Eyi∼πk

θ (·|x,y<t)[A(yi) · X (yi)]
)
.

where T is the size of the dictionary.

For convenience, we denote Eyi
as Eyi∼πk

θ (·|x,y<t). As only retained tokens contribute to the en-
tropy, we focus only on tokens that are not clipped. We begin by making the following simplification:

Eyi
(A(yi) · X (yi)) = Eyclipped(A(yi) · 0) + Eyretained(A(yi) · 1) = Eyretained(A(yi)) .

So for a selected token ys, its contribution to the overall entropy can be expressed as:

−η · πθ(ys) · (log πθ(ys)− Eyi
(log πθ(yi))) · (A(ys)− EyretainedA(yretained)).

Next, we analyze how different types of tokens contribute to the overall entropy. To avoid ambiguity,
we first give strict definitions that distinguish between tokens with high/low probabilities and tokens
with high/low advantages.

Definition 1. For a token ys, we classify it as follows:

• High advantage: if
A(ys) > EyretainedA(yretained)

Otherwise, it is called low advantage.

• High probability: if
πθ(ys) > exp(Eyi(log πθ(yi))))

Otherwise, it is called low probability.

Secondly, we present two propositions that directly follow from the above definitions.

Proposition 3. For a token ys, we have

A(ys)− EyretainedA(yretained)

{
> 0, if ys is a high-advantage token,

< 0, if ys is a low-advantage token.

Proposition 4. For a token ys, we have

πθ(ys) · (log πθ(ys)− Eyi
(log πθ(yi)))

{
> 0, if ys is a high-probability token,

< 0, if ys is a low-probability token.

Proof. Let us denote
C = Eyi(log πθ(yi))),
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which is independent of ys, and let x = πθ(ys). As πθ(y) < 1 for every y, C < 0.
Consider the function

f(x) = x · (log(x)− C).

Figure 14 illustrates the behavior of this function.

Figure 14: Graph of the function f(x) = x(log x− C).

The proposition follows directly from the properties of f(x) as observed in the figure.

Due to the propositions given above, we have the table below:

∆H(ys) ≈ −η · πθ(ys) · (log πθ(ys)− Eyi(log πθ(yi)))︸ ︷︷ ︸
4

· (A(ys)− EyretainedA(yretained)︸ ︷︷ ︸
5

Table 4: Influence of token characteristics on ∆H(ys). The “prob” denotes the probability πθ(ys),
and the “adv” represents the advantage A(ys).

Token properties 4 5 ∆H(ys) (−η · 4 · 5 )
high prob, high adv > 0 > 0 < 0
high prob, low adv > 0 < 0 > 0
low prob, high adv < 0 > 0 > 0
low prob, low adv < 0 < 0 < 0

It should be noted that a token ys decreases the entropy if ∆H(ys) < 0, and increases it otherwise.

Therefore, we observe that tokens which are positive with high probabilities and high advantages,
or negative with low probabilities and low advantages, contribute to a reduction in the overall en-
tropy. Conversely, positive tokens with high probabilities but low advantages, and negative tokens
with high probabilities but low advantages, contribute to an increase in the overall entropy. This
observation justifies the statement made in the main part of the thesis.

20


	Introduction
	Preliminaries
	Motivation: Imbalanced Optimization and Entropy-Clip Rule
	Methodology
	Validation Experiment: Asymmetric Clipping
	BAPO: BAlanced Policy Optimization with Adaptive Clipping
	Analysis

	Experiments and Discussion
	Experimental Setups
	Main Results
	Discussion

	Related Work
	Conclusion
	The Use of Large Language Models
	Performance on OctoThinker-Llama
	Proofs of Equation 6 
	Explanations for all variables and expressions
	Preparation: Rewrite the PPO derivatives
	Proofs of the main Propositions
	Preclaims
	Principle Propositions

	Analysis
	Direct Analysis: Why Varying epsilon Alters Entropy?
	Advanced Analysis : Which Type of Tokens Matter Most for Entropy?



