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Abstract
Algorithmic fairness in clustering aims to bal-
ance the proportions of instances assigned to
each cluster with respect to a given sensitive at-
tribute. While recently developed fair clustering
algorithms optimize clustering objectives under
specific fairness constraints, their inherent com-
plexity or approximation often results in subopti-
mal clustering utility or numerical instability in
practice. To resolve these limitations, we propose
a new fair clustering algorithm based on a novel
decomposition of the fair K-means clustering ob-
jective function. The proposed algorithm, called
Fair Clustering via Alignment (FCA), operates
by alternately (i) finding a joint probability distri-
bution to align the data from different protected
groups, and (ii) optimizing cluster centers in the
aligned space. A key advantage of FCA is that
it theoretically guarantees approximately optimal
clustering utility for any given fairness level with-
out complex constraints, thereby enabling high-
utility fair clustering in practice. Experiments
show that FCA outperforms existing methods by
(i) attaining a superior trade-off between fairness
level and clustering utility, and (ii) achieving near-
perfect fairness without numerical instability.

1. Introduction
As artificial intelligence (AI) technology has advanced and
been successfully applied to diverse domains and tasks, the
requirement for AI systems to make fair decisions (i.e., al-
gorithmic fairness) has emerged as an important societal
issue. This requirement is particularly necessary when ob-
served data possess historical biases with respect to specific
sensitive attributes, leading to unfair outcomes of learned
models based on such biased data (Angwin et al., 2016;
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Ingold & Soper, 2016; Damodaran et al., 2018; Mehrabi
et al., 2019). Moreover, non-discrimination laws are also
increasingly emphasizing the importance of fair decision
making based on AI systems (Hellman, 2019). Specifically,
group fairness is a category within algorithmic fairness that
ensures models do not discriminate against certain protected
groups, which are defined by specific sensitive attributes
(e.g., race). In response, a large amount of research has been
conducted to develop algorithms for mitigating such biases
in various supervised learning tasks such as classification
(Zafar et al., 2017; Donini et al., 2018; Agarwal et al., 2018;
Quadrianto et al., 2019; Jiang et al., 2020) and regression
(Agarwal et al., 2019; Chzhen et al., 2020).

Along with supervised learning, algorithmic fairness for
unsupervised learning tasks, such as clustering, has also
gathered significant interest. Clustering algorithms have
long been employed as fundamental unsupervised learning
methods for machine learning, such as recommendation
systems (Widiyaningtyas et al., 2021), image processing (Le,
2013; Guo et al., 2020; Mittal et al., 2022), and language
modeling (Butnaru & Ionescu, 2017; Zhang et al., 2023).

Related works for Fair Clustering (FC) Combining al-
gorithmic fairness and clustering, the notion of Fair Clus-
tering (FC) was initially introduced in Chierichetti et al.
(2017). FC operates under the goal that the proportion of
each protected group within each cluster should be simi-
lar to that in the population. To achieve this goal, various
algorithms have been developed to minimize a given cluster-
ing objective under pre-specified fairness constraints (Bera
et al., 2019; Kleindessner et al., 2019; Backurs et al., 2019;
Li et al., 2020; Esmaeili et al., 2021; Ziko et al., 2021; Zeng
et al., 2023), to name a few.

We can roughly categorize the existing FC algorithms into
three: (i) pre-processing, (ii) in-processing, and (iii) post-
processing. Pre-processing methods (Chierichetti et al.,
2017; Backurs et al., 2019) involve transforming instances
into a fair space based on the concept of fairlets. Fairlets
are small subsets that satisfy (perfect) fairness, and thus
performing standard clustering on the fairlet space yields a
fair clustering. In-processing methods (Kleindessner et al.,
2019; Ziko et al., 2021; Li et al., 2020; Zeng et al., 2023)
aim to simultaneously find both the cluster centers and as-
signments of the fair clustering by solving constrained op-
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timization problems. Post-processing methods (Bera et al.,
2019; Harb & Lam, 2020) focus on finding fair assignments
given fixed cluster centers. The fixed cluster centers are
typically predetermined by a standard clustering algorithm.

Our contributions In this paper, we focus on the trade-off
between fairness level and clustering utility: our goal is to
maximize clustering utility while satisfying a given fairness
level. While the trade-off between the fairness and utility
is inevitable (Bertsimas et al., 2011; Chhabra et al., 2021),
achieving the optimal trade-off with existing FC algorithms
remains challenging. For example, pre- or post-processing
algorithms usually result in suboptimal clustering utility due
to indirect maximization of clustering utility (e.g., Backurs
et al. (2019); Esmaeili et al. (2021)). Even when designed
for achieving reasonable trade-off, in-processing algorithms
may have trouble due to numerical instability, particularly
when a given fairness level is high (e.g., Ziko et al. (2021)).

This paper aims to address these challenges by developing
a new in-processing algorithm that can practically achieve
a superior trade-off between fairness level and clustering
utility without numerical instability. The primary idea of our
proposed algorithm is to optimally align data from differ-
ent protected groups by transforming them into a common
space (called the aligned space), and then applying a stan-
dard clustering algorithm in the aligned space. We prove
that the optimal fair clustering, i.e., the clustering with min-
imal clustering cost under a given fairness constraint, is
equivalent to the optimal clustering in the aligned space.

Based on the theoretical result, we devise a new FC algo-
rithm, called Fair Clustering via Alignment (FCA)1. FCA
alternately finds the aligned space and the (approximately)
optimal clustering in the aligned space until convergence.
To find the aligned space, we develop a modified version
of an algorithm for finding the optimal transport map (Kan-
torovich, 2006), while a standard clustering algorithm (e.g.,
the K-means++ algorithm (Arthur & Vassilvitskii, 2007))
is applied to find the (approximately) optimal clustering in
the aligned space. It is worth noting that FCA can be partic-
ularly compared to the fairlet-based methods (e.g., Backurs
et al. (2019)). While existing fairlet-based methods first
find fairlets and then perform clustering sequentially, FCA
simultaneously builds the aligned space and performs clus-
tering to obtain an approximately optimal fair clustering. A
detailed comparison is provided in Remark 3.2.

The main contributions of this paper can be summarized as:

⋄ We provide a novel decomposition of the fair cluster-
ing cost into two components: (i) the transport cost
with respect to a joint distribution between two pro-

1Implementation code is available at https://github.
com/kwkimonline/FCA.

tected groups, and (ii) the clustering cost with respect
to cluster centers in the aligned space.

⋄ Building on this decomposition, we develop a novel FC
algorithm called FCA (Fair Clustering via Alignment),
which is stable and guarantees convergence.

⋄ Theoretically, we prove that FCA achieves an approx-
imately optimal trade-off between fairness level and
clustering utility, for any given fairness level.

⋄ Experimentally, we show that FCA (i) outperforms
existing baseline FC algorithms in terms of the trade-
off and numerical stability, and (ii) effectively controls
the trade-off across various fairness levels.

2. Preliminaries
Notations Let D = {(xi, si)}ni=1 be a given dataset (i.e.,
a set of observed instances), where xi ∈ Rd and si ∈ {0, 1}
are d-dimensional data and binary variable for the sensitive
attribute, respectively. We denote (X, S) as the random
vector whose joint distribution denoted as P is the empirical
distribution on D. Let Ps represents the conditional distribu-
tion of X given S = s. In this paper, we specifically define
these distributions to discuss the (probabilistic) matching
between two protected groups of different sizes. We denote
E and Es as the expectation operators of P and Ps, respec-
tively. Let X = {xi}ni=1, Xs = {xi ∈ X : si = s}, and
ns := |Xs| for s ∈ {0, 1}. Denote ∥ · ∥2 as the L2 norm.

We assume that the number of clusters, represented by
K ∈ N, is given a priori. The K-many cluster centers
are denoted as µ := {µ1, . . . , µK} where µk ∈ Rd,∀k ∈
[K] = {1, . . . ,K}. Let A : X × {0, 1} → SK be an as-
signment function that takes as input (x, s) ∈ X × {0, 1}
and returns the assignment probabilities over clusters for the
data point x, where SK is the K-dimensional simplex. We
consider this probabilistic assignment function to ensure the
existence of a perfectly fair clustering.

Clustering objective function We first present the math-
ematical formulation of the clustering objective function.
The objective of the standard (i.e., fair-unaware) K-means
clustering is to minimize the clustering cost C(µ,A) :=
1
n

∑K
k=1

∑
(x,s)∈D A(x, s)k∥x − µk∥2, with respect to µ

and A. Note that C(µ,A) can be equivalently re-written
as E

∑K
k=1 A(X, S)k∥X − µk∥2. Furthermore, the opti-

mal assignment function is deterministic, i.e., A(x, s)k =
1(argmink′∈[K] ∥x − µ⋄

k′∥2 = k) for a given (x, s) ∈
Xs × {0, 1}, where µ⋄

1, . . . , µ
⋄
K are the centers of the opti-

mal clustering. Thus, C(µ,A) becomes Emink ∥X−µk∥2,
and the optimal clustering is obtained by finding µ minimiz-
ing Emink ∥X− µk∥2.

Definition of fair clustering An assignment function A
is said to be fair in view of group (or proportional) fairness

2

https://github.com/kwkimonline/FCA
https://github.com/kwkimonline/FCA


Fair Clustering via Alignment

(Chierichetti et al., 2017), if it satisfies for all k ∈ [K],∑
xi∈X0

A(xi, 0)k

n0
≈
∑

xj∈X1
A(xj , 1)k

n1
. (1)

This constraint ensures the proportion of data belonging to
a cluster be balanced, resulting in fair clustering. That is,
we find the cluster center µ and the assignment function
A that minimize C(µ,A) among all µ and fair assignment
functions A satisfying eq. (1).

To assess the fairness level in clustering, Balance measure
is widely used (Chierichetti et al., 2017; Bera et al., 2019;
Backurs et al., 2019; Esmaeili et al., 2021; Ziko et al., 2021;
Zeng et al., 2023), which is defined as

min
k∈[K]

min

(∑
xi∈X0

A(xi, 0)k∑
xj∈X1

A(xj , 1)k
,

∑
xj∈X1

A(xj , 1)k∑
xi∈X0

A(xi, 0)k

)
.

Note that the higher balance is, the fairer the clustering is.
Furthermore, the balance of any given perfectly fair cluster-
ing is min (n0/n1, n1/n0) . The objective of FC is to mini-
mize C(µ,A) with respect to µ ∈ RK and A, under the fair-
ness constraint (e.g., balance ≈ min (n0/n1, n1/n0)). We
abbreviate A(·, s) = As(·) and C(µ,A) = C(µ,A0,A1)
when their meanings are clear.

For the case of perfect fairness, in Section 3, we prove that
the FC objective can be decomposed into the sum of (i) the
cost of transporting data from different protected groups to
a common space (called the aligned space), and (ii) the clus-
tering cost in the aligned space built by the transported data.
Building on the decomposition, in Section 4.1, we intro-
duce our proposed algorithm for perfect fairness. Then, in
Section 4.2, we extend the algorithm to control the fairness
level by relaxing the perfect fairness constraint.

3. Reformulation of fair clustering objective
This section presents our main theoretical contribution: we
derive a novel decomposition of the perfectly fair (i.e.,∑

xi∈X0
A0(xi)k/

∑
xj∈X1

A1(xj)k = n0/n1 for all k ∈
[K]) clustering objective, which motivates our proposed
algorithms in Section 4.

In Section 3.1, we introduce our idea through discussing the
simplest case where the two protected groups are of equal
size (n0 = n1). Then, in Section 3.2, we generalize to the
unequal case (n0 ̸= n1) by constructing the aligned space
defined by a given joint distribution on X0 ×X1. We prove
that there exists a joint distribution such that the objective
function of perfectly fair clustering can be decomposed
into the sum of the transport cost with respect to the joint
distribution and the clustering cost with respect to the cluster
centers on the aligned space. Full proofs of all the theoretical
findings in this section are given in Appendix B.

3.1. Case of equal sample sizes: n0 = n1

Assume that the sizes of two protected groups are equal
(i.e., n0 = n1). We consider deterministic assignment func-
tions, i.e., As(x)k ∈ {0, 1}, since the optimal perfectly fair
assignment function is deterministic when n0 = n1 (see
Remark 3.4 in Section 3.2). The case of probabilistic assign-
ment functions when n0 ̸= n1 is discussed in Section 3.2.

The core idea of FCA is to match two instances from differ-
ent protected groups and assign them to the same cluster.
By doing so – matching all instances from X0 to X1 in a one-
to-one fashion and assigning each pair to the same cluster –
the resulting clustering becomes perfectly fair.

Conversely, suppose we are given a perfectly fair clustering
constructed by a deterministic assignment function A. Since
n0 = n1 and A is deterministic, there exists a one-to-one
matching between X0 and X1 such that two matched in-
stances belong to the same cluster. Thus, we can decompose
the clustering cost in terms of the one-to-one matching, as
presented in Theorem 3.1.
Theorem 3.1. For any given perfectly fair deterministic
assignment function A and cluster centers µ, there exists a
one-to-one matching map T : Xs → Xs′ such that, for any
s ∈ {0, 1}, C(µ,A0,A1) =

Es

K∑
k=1

As(X)k

(
∥X−T(X)∥2

4︸ ︷︷ ︸
Transport cost w.r.t. T

+

∥∥∥∥X+T(X)

2
− µk

∥∥∥∥2

︸ ︷︷ ︸
Clustering cost w.r.t. µ and T

)
.

(2)

The assignment function A that minimizes eq. (2) given
µ and T assigns both x and T(x) to cluster k, where
k = argmink′∈[K] ∥

x+T(x)
2 − µk′∥2. Hence, the optimal

perfectly fair clustering can be found by minimizing
Es

(
∥X−T(X)∥2/4 + mink ∥(X+T(X))/2− µk∥2

)
with respect to µ and T, instead of finding the opti-
mal µ and A minimizing C(µ,A0,A1). We update
µ for a given T by applying a standard clustering
algorithm to {x+T(x)

2 ,x ∈ Xs}, which is called the
aligned space. To update T, any algorithm for finding
the optimal matching can be used, where the cost be-
tween two instances x0 ∈ X0 and x1 ∈ X1 is given by
∥x0−x1∥2/4+mink ∥(x0+x1)/2−µk∥2 (see Section 4.1
for the specific algorithm we use). Note that there are no
complex constraints in updating µ and T. Finally, we define
A corresponding to T, which assigns both x and T(x) to
the same cluster on the aligned space {x+T(x)

2 ,x ∈ Xs}.
See Appendix A.4 for a similar decomposition that extends
to other general distance metrics (e.g., the Lp norm for
p ≥ 1).
Remark 3.2 (Comparison to the fairlet-based methods).
Although our idea of matching data from different pro-
tected groups may seem similar to the fairlet-based methods
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Figure 1. Comparison between the fairlet-based method and our approach with n0 = n1 = 4 and K = 2. The representative of each fairlet
is set as the mean vector of the data within that fairlet, and the standard K-means algorithm is then applied to this set of representatives.
The clustering results are visualized using contours. While both the fairlet-based method and ours result in perfectly fair clustering, i.e.,
balance (Bal) = 1 = min(n0/n1, n1/n0), our approach yields a lower cost (9.82 < 10.22), due to more efficient matchings.

(Chierichetti et al., 2017; Backurs et al., 2019), they funda-
mentally differ:

Our method is an in-processing approach that directly mini-
mizes the clustering cost with respect to both the matching
map and cluster centers simultaneously. In contrast, the
fairlet-based method is a two-step pre-processing approach,
which does not directly minimize the clustering cost; in-
stead, it first searches for fairlets and then attempts to find
the optimal cluster centers on the set of representatives for
each fairlet. See Appendix A.1 for details about fairlets.
As a result, in the fairlet-based method, the matchings and
cluster centers are not jointly optimized, which may lead to
suboptimal clustering utility.

Figure 1 illustrates how the fairlet-based method can pro-
duce suboptimal clustering, when compared to our approach.
It implies that, more efficient matchings exist that yield
higher clustering utility than the matchings of fairlets, and
our approach is specifically designed to find these efficient
matchings. We confirm this claim more comprehensively
using real benchmark datasets in Section 5.2.

3.2. Case of unequal sample sizes: n0 ̸= n1

To handle the case of n0 ̸= n1, we follow a similar strat-
egy to that for n0 = n1, but replace the matching map T
with the joint distribution Q over X|S = 0 and X|S = 1.
For each s ∈ {0, 1}, let Xs denote the random variable
following the conditional distribution of X|S = s, i.e., Ps.
We reformulate the perfectly fair clustering cost in terms of
cluster centers µ and joint distribution Q whose marginal
distributions are Ps, s ∈ {0, 1}. Note that Q serves as a
smooth and stochastic version of T.

Let Q = {all joint distributions Q on X0 × X1 with Qs =
Ps, s ∈ {0, 1}}, where Qs is the marginal distribution of Q
on Xs. Theorem 3.3 below, which is the main theoretical
result and motivation of our proposed algorithm, proves
that the optimal perfectly fair clustering can be found by
optimizing the joint distribution Q and cluster centers µ.

Let πs = ns/(ns+ns′) for s ̸= s′ ∈ {0, 1}. We then define

TA(x0,x1) := π0x0 + π1x1

as the alignment map.

Theorem 3.3. Let µ∗ ∈ Rd and Q∗ ∈ Q be the cluster
centers and joint distribution minimizing

EQ

(
2π0π1∥X0 −X1∥2 +min

k
∥TA(X0,X1)− µk∥2

)
.

(3)

Then, (µ∗,A∗
0,A∗

1) is the solution of the per-
fectly fair K-means clustering, where A∗

0(x)k :=
Q∗ (argmink′ ∥TA(x,X1)− µk′∥2 = k|X0 = x

)
and

A∗
1(x)k is defined similarly.

This result implies that, by simultaneously minimizing the
transport cost ∥X0 − X1∥2 and finding the cluster cen-
ters in the aligned space {TA(X0,X1) : (X0,X1) ∼ Q},
we obtain the optimal perfectly fair clustering. A notable
observation is here that there is no explicit constraint in
eq. (3). In fact, the constraint for perfect fairness (i.e.,∑

xi∈X0
A(xi, 0)k/

∑
xj∈X1

A(xj , 1)k = n0/n1 for all
k ∈ [K]) is implicitly satisfied through the use of the align-
ment map TA together with the assignment functions A∗

0

and A∗
1. In conclusion, solving eq. (3) with respect to µ and

Q yields the optimal perfectly fair clustering. The algorithm
for solving eq. (3) is detailed in Section 4.
Remark 3.4 (A∗ becomes deterministic when n0 = n1).
Assume that n0 = n1. Then, for a given xi ∈ X0, note
that γi,j is positive for a unique j ∈ [n1], meaning that Q
in Theorem 3.3 corresponds to the one-to-one matching
map T in Theorem 3.1. In other words, finding Q becomes
equivalent to optimizing the optimal permutation between
[n0] and [n1]. See Remark 2.4 in Peyré & Cuturi (2020)
for the theoretical evidence. Then, we have A∗

0(xi)k :=
Q∗ (argmink′ ∥TA(xi,X1)− µk′∥2 = k|X0 = xi

)
=

1(argmink′ ∥xi+T(xi)
2 − µk′∥2 = k), which is determinis-

tic, provided that π0 = π1 = 1/2.
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4. Proposed algorithms
4.1. FCA: Fair Clustering via Alignment

Based on Theorem 3.3, we propose an algorithm for finding
the (approximately) optimal perfectly fair clustering, called
Fair Clustering via Alignment (FCA). FCA consists of
two phases. Phase 1 finds the joint distribution Q with the
cluster centers µ being fixed. Phase 2 updates the cluster
centers µ with the joint distribution Q being fixed. Then,
FCA iterates these two phases until cluster centers converge.

Phase 1: Finding the joint distribution Phase 1 finds the
optimal Q that minimizes the cost in eq. (3) given µ. For
this goal, we modify the Kantorovich problem (Kantorovich,
2006; Villani, 2008), which finds the optimal coupling be-
tween two measures for a given cost matrix. Appendix A.2
covers details regarding the Kantorovich problem along with
the optimal transport problem.

First, the transport cost matrix between the two (the first
term of eq. (3)) is defined by C := [ci,j ] ∈ Rn0×n1

+ where
ci,j = 2π0π1∥xi−xj∥2. The clustering cost matrix between
the aligned data and their assigned centers (the second term
of eq. (3)) is defined by D := [di,j ] ∈ Rn0×n1

+ where
di,j = mink∈[K] ∥TA(xi,xj) − µk∥2. Then, we find the
optimal coupling Γ = [γi,j ] ∈ Rn0×n1

+ solving

min
Γ

∥(C+D)⊙ Γ∥1 = min
γi,j

(ci,j + di,j)γi,j

subject to
n0∑
i=1

γi,j =
1

n1
,

n1∑
j=1

γi,j =
1

n0
, γi,j ≥ 0.

(4)

Note that this problem becomes the original Kantorovich
problem when D = 0. Hence, this objective can be also
efficiently solved using linear programming, similar to the
Kantorovich problem (Villani, 2008).

Based on the optimal coupling Γ that solves eq. (4), we
define the joint distribution as Q({xi,xj}) = γi,j . That
is, we have the measures (weights) {γi,j}i∈[n0],j∈[n1] for
the aligned points in {TA(xi,xj)}i∈[n0],j∈[n1]. As a re-
sult, we define the corresponding aligned space as the
n0 × n1 many pairs of the weight and the aligned points :
{(γi,j ,TA(xi,xj)}i∈[n0],j∈[n1].

Phase 2: Optimizing cluster centers Phase 2 op-
timizes the cluster centers µ on the aligned space
{(γi,j ,TA(xi,xj)}i∈[n0],j∈[n1] obtained from Phase 1, by
solving minµ

∑n0

i=1

∑n1

j=1 γi,j mink ∥TA(xi,xj)− µk∥2.
Standard clustering algorithms, such as the K-means++ al-
gorithm (Arthur & Vassilvitskii, 2007) or a gradient descent-
based algorithm, can be used to update µ. Note that in
Section 5.4, we empirically show that FCA is stable regard-
less of the algorithm used to optimize µ. See Algorithm 1
for the overall algorithm of FCA.

Algorithm 1 FCA algorithm

input (i) Dataset X0 ∪ X1. (ii) The number of clusters K.
1: Initialize cluster centers µ = {µk}Kk=1.
2: while µ has not converged do
3: Update Γ = [γi,j ] ∈ Rn0×n1

+ by solving eq. (4)
for a fixed µ. // Phase 1: update Γ

4: Update µ by solving
minµ

∑n0

i=1

∑n1

j=1 γi,j mink ∥TA(xi,xj)− µk∥2
for a fixed Γ. // Phase 2: update µ

5: end while
6: Build fair assignments: for xi ∈ Xs, define

As(xi)k :=
∑

xj∈Xs′
nsγi,j1(argmink′ ∥πsxi +

πs′xj − µk′∥2 = k), k ∈ [K].
output (i) Cluster centers µ = {µk}Kk=1. (ii) Assignments

A0(xi),xi ∈ X0 and A1(xj),xj ∈ X1.

In Appendix A.3, we introduce a practical extension of
FCA to scenarios involving multiple protected groups and
present experimental results on a real dataset that validate
this extension (see Table 4).

4.2. FCA-C: control of fairness level

It is also important to find the optimal non-perfectly fair
clustering. For this purpose, we introduce a feasible relax-
ation of FCA called FCA-Control (FCA-C), a variant of
FCA specifically designed for controlling the fairness level.

Let W ⊂ X0 ×X1 be a given subset. The idea of our relax-
ation is to apply FCA algorithm only to instances in Wc =
X0 ×X1 \W and to apply the standard K-means algorithm
to those in W. Note that W = ∅ becomes FCA, while W =
X0 ×X1 results in standard (fair-unaware) clustering. For
given µ and W, we define CFCA(µ,W) :=

(
2π0π1∥X0 −

X1∥2+mink ∥TA(X0,X1)−µk∥2
)
·1 ((X0,X1) ∈ Wc)

and CK-means(µ,W) :=
(
mink

(
π0∥X0 − µk∥2

)
+

mink
(
π1∥X1 − µk∥2

) )
·1 ((X0,X1) ∈ W) . Denote ε >

0 as a hyper-parameter that controls the fairness level. For a
given ε, FCA-C algorithm minimizes

EX0,X1∼Q
(
CFCA(µ,W) + CK-means(µ,W)

)
(5)

with respect to µ,Q and W satisfying Q((X0,X1) ∈
W) ≤ ε. Figure 2 visualizes an example of W and Q.

Then, we construct A as follows. For x0 ∈ X0, we define

A0(x0)k =

P1(argmin
k′

∥TA(x0,X1)− µk′∥2 = k, (x0,X1) ∈ Wc)

+ 1(argmin
k′

∥x0 − µk′∥2 = k) · P1((x0,X1) ∈ W),

and the assignment function A1 can be defined similarly.
(6)
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Figure 2. Example illustration of W and Γ (or equivalently Q)
when (n0, n1) = (2, 5) and ε = γ1,4 + γ2,2 + γ2,5.

In summary, FCA-C comprises three phases: the first two
mirror the Phases 1 and 2 of FCA, and the third updates W.
The overall algorithm for FCA-C is in Algorithm 2.

Algorithm 2 FCA-C algorithm

input (i) Dataset X0 ∪ X1. (ii) The number of clusters K.
(iii) Fairness level ε ∈ [0, 1].

1: Initialize cluster centers µ = {µk}Kk=1 and a subset
W ⊂ X0×X1 such that 1

n0n1

∑n0

i=1

∑n1

j=1 I((xi,xj) ∈
W) ≤ ε.

2: while µ has not converged do
3: Calculate the costs CK-means for (xi,xj) ∈ W and

CFCA for (xi,xj) ∈ Wc.
4: Update Γ by minimizing eq. (5) for fixed µ and W.

// Phase 1: update Γ
5: Update µ by minimizing eq. (5) for fixed Γ and W.

// Phase 2: update µ
6: For all (xi,xj) ∈ X0 × X1, calculate η(xi,xj) :=

2π0π1∥xi−xj∥2+mink ∥TA(xi,xj)−µk∥2. Let ηε
be the εth upper quantile. Update W = {(xi,xj) ∈
X0 ×X1 : η(xi,xj) > ηε}.

// Phase 3: update W
7: end while
8: Build fair assignment functions A0 and A1 following

Equation (6).
output (i) Cluster centers µ = {µk}Kk=1. (ii) Assignments

A0(xi),xi ∈ X0 and A1(xj),xj ∈ X1.

Theoretical validity of FCA-C Notably, FCA-C algo-
rithm achieves a solid theoretical guarantee for the (ap-
proximately) optimal trade-off between fairness level and
clustering utility, for any given fairness level to be satisfied.

First, Theorem 4.1 shows that solving the objective of
FCA-C algorithm in eq. (5) is equivalent to solve the
clustering cost C(µ,A) under a given fairness constraint,
whose proof is given in Appendix B.3. For technical sim-
plicity, assume that the densities of P0 and P1 exist (i.e.,
we consider the population version). See Remark B.1
in Appendix B when the densities do not exist. Recall
that Es(As(X)k) = 1

ns

∑
xi∈Xs

As(xi)k. Let Aε :=

{(A0,A1) :
∑K

k=1 |E0(A0(X)k) − E1(A1(X)k)| ≤ ε}
represent a set of fair assignment functions. Let C̃(Q,W,µ)
be the objective of FCA-C in eq. (5).

Theorem 4.1 (Equivalence between C̃ and constrained C).
Minimizing FCA-C objective C̃(Q,W,µ) with the corre-
sponding assignment function defined in eq. (6), is equiva-
lent to minimizing C(µ,A0,A1) subject to (A0,A1) ∈ Aε.

Note that Aε is based on the sum of unfairness for k ∈
[K], whereas several previous works (e.g., Bera et al.
(2019); Backurs et al. (2019)) focus on the proportions
for all k ∈ [K], which is more directly related to bal-
ance. However, Aε is also closely connected to bal-
ance: (i) ε = 0 ensures perfect fairness (i.e., balance =
min(n0/n1, n1/n0), and (ii) for all k ∈ [K], the gap be-
tween

∑
xi∈X0

A0(xi)k/
∑

xi∈X1
A1(xi)k and n0/n1 is

bounded by ε, as shown in Proposition 4.2. Its proof is
provided in Appendix B.4.

Proposition 4.2 (Relationship between balance and ε). For
any assignment function (A0,A1) ∈ Aε, we have

max
k∈[K]

∣∣∣∣∣
∑

xi∈X0
A0(xi)k∑

xj∈X1
A1(xj)k

− n0

n1

∣∣∣∣∣ ≤ cε, (7)

where c = n0

n1
maxk∈[K]

1
E1A1(X)k

.

Section 5.2 empirically validates Theorem 4.1 and Propo-
sition 4.2, by showing that the trade-off between fairness
(balance) and utility (cost) is effectively controlled by ε.

Lastly, we establish the approximation guarantee of FCA-C
in Theorem 4.3, similar to Bera et al. (2019). The approx-
imation error of a given algorithm is defined by an upper
bound on the ratio by which the cost of the solution of the
algorithm can exceed the optimal cost. Let τ be the ap-
proximation error of a standard clustering algorithm used
to find initial cluster centers without the fairness constraint.
Suppose that supx∈X ∥x∥2 ≤ R for some R > 0.

Theorem 4.3 (Approximation guarantee of FCA-C).
For any given ε, FCA-C algorithm returns an (τ +
2)-approximate solution with a violation 3Rε for
the optimal fair clustering, which is the solution of
minµ,A0,A1

C(µ,A0,A1) subject to (A0,A1) ∈ Aε.

A more formal statement is provided in Theorem B.2, with
the proof in Appendix B.5. For example, if we use K-
means++ initialization (Arthur & Vassilvitskii, 2007), then
we have τ = O(logK). The violation term 3Rε suggests
that FCA-C would be more efficient when ε is small.
Remark 4.4 (Comparison of the approximation rate with
existing approaches). The approximation rate τ+2 of FCA-
C is comparable to that of existing approaches. For example,
Bera et al. (2019) proposed an algorithm that achieves a (τ+
2)-approximate solution with a violation of 3. FCA-C and
the algorithm of Bera et al. (2019) provide the same rate of
τ+2, but FCA-C can attain a smaller violation when R = 1,
since ε ∈ [0, 1]. Furthermore, Schmidt et al. (2019) provided
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a (5.5τ +1)-approximation algorithm, which exceeds τ +2
for τ > 2/9.

4.3. Reducing computational complexity

As discussed in Section 4.1, finding the joint distribution Q
is technically equivalent to solving the Kantorovich problem,
which can be done by linear programming (Villani, 2008).
Its computational complexity is approximately O(n3) when
n0 = n1 = n (Bonneel et al., 2011), indicating a high
computational cost when n is large. To address this is-
sue in practice, we randomly split each group into L par-
titions of (approximately) same sizes: {X (l)

0 }Ll=1 of X0

and {X (l)
1 }Ll=1 of X1. We then calculate the optimal cou-

pling Γ(l) between X (l)
0 and X (l)

1 , by solving eq. (4). The
(full) optimal coupling between X0 and X1 is estimated by
Γ̂ := diag( 1

LΓ
(1), . . . , 1

LΓ
(L)). Let m = |X (l)

0 |+ |X (l)
1 | be

the partition size. This technique can theoretically reduce
complexity by O(n/m) × O(m3) = O(nm2). In our ex-
periments, we apply this technique with m = 1024, which
is significantly faster than using full datasets, while yielding
similar performance (see Section 5.4 for the results).

5. Experiments
This section presents experiments showing that (i) FCA out-
performs baseline methods in terms of the trade-off between
fairness and utility; (ii) FCA-C effectively controls the fair-
ness level; and (iii) FCA is numerically stable, efficient, and
scalable. We further illustrate the applicability of FCA to
visual clustering.

5.1. Settings

Datasets and performance measures We use three
benchmark tabular datasets, ADULT (Becker & Kohavi,
1996), BANK (Moro et al., 2012), and CENSUS (Meek et al.),
from the UCI Machine Learning Repository2 (Dua & Graff,
2017). The sensitive attribute is defined by gender, marital
status, and gender for ADULT, BANK, and CENSUS, respec-
tively. The number of clusters K is set to 10 for ADULT and
BANK, and 20 for CENSUS, following Ziko et al. (2021).
The features of data are scaled to have zero mean and unit
variance. We then optionally apply L2 normalization, as
used in Ziko et al. (2021). Further details are given in Ap-
pendix C.1.

We consider two performance measures, Cost and Bal.
The former assesses clustering utility, while the latter mea-
sures fairness level. For a given assignment function A,
let Ãs(x)k := 1(argmaxk′ As(x)k′ = k) be a determin-
istic version of A. Note that we use this deterministic Ã
instead of A itself for fair comparison with existing algo-

2https://archive.ics.uci.edu/datasets

rithms. For a given x, let k(x, s) be the index k such that
Ãs(x)k = 1. Then, for given µ = {µk}Kk=1, Cost and
Bal on D are defined as: Cost = 1

n

∑
(x,s)∈D ∥x −

µk(x,s)∥2 and Bal = mink min (r̃k, 1/r̃k) , where
r̃k =

∑
x∈X0

Ã0(x)k
/∑

x∈X1
Ã1(x)k. Let Bal⋆ :=

min(n0/n1, n1/n0) be the balance of perfectly fair clus-
tering for given D.

Baseline algorithms and implementation details For
the baseline algorithms compared with FCA, we consider
four methods: a pre-processing (fairlet-based) method SFC
from Backurs et al. (2019), two post-processing methods
FCBC from Esmaeili et al. (2021) and FRAC from Gupta
et al. (2023), and an in-processing method VFC from Ziko
et al. (2021), which differs from the other baselines as it
is specifically designed to control the trade-off between
fairness level Bal and clustering utility Cost. For details
of these baselines, refer to Appendix C.2.

When solving the linear program (i.e., finding the coupling
matrix Γ), we use the POT library (Flamary et al., 2021).
For finding cluster centers, we adopt the scikit-learn
library (Pedregosa et al., 2011) to run the K-means algo-
rithm. We specifically choose the K-means++ initializa-
tion (Arthur & Vassilvitskii, 2007) with Lloyd’s algorithm
(Lloyd, 1982). An ablation study comparing the Lloyd’s al-
gorithm and a gradient descent-based algorithm (i.e., Adam
(Kingma & Ba, 2014)) for finding cluster centers is pro-
vided in Section 5.4. The maximum number of iterations
is set to 100, and we select the best iteration when Cost is
minimized.

5.2. Performance comparison results

Trade-off: fairness level vs. clustering utility First, we
compare FC algorithms in terms of their ability to achieve
reasonable trade-off between fairness level (Bal) and clus-
tering utility (Cost). Specifically, we compare FCA with
three baselines: SFC, FCBC, and FRAC, all of which are
designed to achieve perfect fairness. Table 1 presents Bal
and Cost of the four methods, where FCA consistently
attains the lowest Cost (i.e., the highest utility).

Notably, FCA outperforms SFC by achieving higher Bal
and lower Cost, highlighting the effectiveness of in-
processing approach for finding better matchings. While
FCA requires slightly more iterations until convergence
(see Table 21 in Appendix C.3.8), it remains superior even
with a smaller number of iterations similar to SFC (see
Table 22 in Appendix C.3.8). Moreover, FCA also outper-
forms SFC in K-median clustering (see Table 23 in Ap-
pendix C.3.9), which is the original clustering objective of
SFC. Table 8 in Appendix C.3.1 additionally shows that
FCA also outperforms the first fairlet-based method intro-
duced by Chierichetti et al. (2017). Furthermore, FCBC and
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Table 1. Comparison of the trade-off between Bal and Cost on ADULT, BANK, and CENSUS datasets. We underline Bal values for the
cases of near-perfect fairness (i.e., Bal ≈ Bal⋆) and use bold face for the lowest Cost value among those cases. Similar results when
data are not L2-normalized are presented in Table 6 in Appendix C.3.1.

Dataset / Bal⋆ ADULT / 0.494 BANK / 0.649 CENSUS / 0.969

With L2 normalization Cost (↓) Bal (↑) Cost (↓) Bal (↑) Cost (↓) Bal (↑)

Standard (fair-unaware) 0.295 0.223 0.208 0.325 0.403 0.024
FCBC (Esmaeili et al., 2021) 0.314 0.443 0.685 0.615 1.006 0.926
SFC (Backurs et al., 2019) 0.534 0.489 0.410 0.632 1.015 0.937
FRAC (Gupta et al., 2023) 0.340 0.490 0.307 0.642 0.537 0.954
FCA ✓ 0.328 0.493 0.264 0.645 0.477 0.962

FRAC offer lower Bal and higher Cost than FCA in most
cases. Specifically for a fixed Cost ≈ 0.314, FCA achieves
a higher Bal than FCBC (see Table 7 in Appendix C.3.1).
These results suggest that FCA is the most effective algo-
rithm for maximizing utility under perfect fairness.

Table 2. Comparison of the two in-processing algorithms, VFC
and FCA, in terms of numerical stability when achieving the max-
imum Bal, on ADULT, BANK, and CENSUS datasets with L2

normalization. Bold-faced results are the highest Bal. Similar re-
sults without L2 normalization are in Table 9 in Appendix C.3.1.

Bal (Cost)

Dataset / Bal⋆ VFC (Ziko et al., 2021) FCA ✓

ADULT / 0.494 0.437 (0.310) 0.493 (0.328)
BANK / 0.649 0.568 (0.221) 0.645 (0.264)
CENSUS / 0.969 0.749 (0.432) 0.962 (0.477)

Numerical stability Second, we compare the two in-
processing algorithms, FCA and VFC, in terms of their
ability to achieve a high (near-perfect) fairness level (i.e.,
Bal ≈ Bal⋆) without numerical instability. To do so, we
obtain the maximum Bal that each algorithm can attain.
We also evaluate robustness to data pre-processing, i.e., the
impact of L2 normalization to numerical stability.

The results presented in Table 2 show that VFC achieves
Bal values no higher than 90% of Bal⋆. While FCA is
explicitly designed to achieve perfect fairness, VFC is de-
signed to control Bal using a hyper-parameter. However,
even with a large hyper-parameter (see Appendix C.2 for
the chosen hyper-parameter), VFC fails to achieve perfect
fairness (i.e., Bal remains significantly lower than Bal⋆).
Moreover, the performance gap between FCA and VFC be-
comes greater without L2 normalization than with it, and
VFC further fails on CENSUS dataset due to an overflow
(see Appendix C.3.1 for details on this issue).

Control of fairness level In addition to the previous analy-
sis for the scenario of perfect fairness (where Bal ≈ Bal⋆),
we also compare FCA-C and VFC in terms of controlling
Bal lower than Bal⋆. To this end, we assess the ability to

achieve reasonable Cost while controlling Bal.

Figure 3. Bal vs. Cost trade-offs on ADULT dataset. Black
square (■) is from the standard clustering, orange circle (•) is from
VFC, green star (⋆) is from FCA-C, orange dashed line (- -) is the
maximum of Bal that VFC can achieve, and blue line (–) is the
maximum achievable balance Bal⋆.

Figure 3 displays the performance of FCA-C and VFC
across various fairness levels, on ADULT dataset. It shows
that FCA-C achieves favorable trade-off for many values
of Bal (by controlling ε), with Cost similar to that of
VFC. Similar results on other datasets or without L2 nor-
malization are given in Figures 4 and 5 in Appendix C.3.1.
Furthermore, FCA-C can attain Bal beyond the orange
dashed vertical line, which is the maximum achievable Bal
by VFC. Refer to Appendix C.2 for details on selecting ε
for FCA and the hyper-parameters used in VFC.

Furthermore, the computation times of FCA-C (when ε > 0)
and FCA (i.e., FCA-C with ε = 0) are compared in Table 20
in Appendix C.3.8, indicating that finding W in FCA-C does
not require significant additional time.

5.3. Applicability to visual clustering

We further evaluate the applicability of FCA to visual clus-
tering using two image datasets, which are commonly used
in recent visual clustering algorithms (Li et al., 2020; Zeng
et al., 2023): (i) RMNIST, a mixture of the original MNIST
and a color-reversed version, and (ii) OFFICE-31, consisting
of images from two domains.

We compare FCA with SFC, VFC and two visual FC base-
lines: DFC (Li et al., 2020) and FCMI (Zeng et al., 2023).
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Note that DFC and FCMI are end-to-end algorithms that
simultaneously perform clustering and learn latent space us-
ing autoencoder with fairness constraints. In contrast, FCA,
SFC, and VFC are applied to a latent space pre-trained by
autoencoder without any fairness constraints. The clustering
utility is evaluated using ACC (accuracy based on assign-
ment indices and ground-truth labels) and NMI (normalized
mutual information between assigned cluster distribution
and ground-truth label distribution), as in Zeng et al. (2023).

Table 3. Comparison of clustering utility (ACC) and fairness level
(Bal) on two image datasets. ‘Standard (fair-unaware)’ indicates
autoencoder + K-means. The first-place values are bold, and
second-place values are underlined.

Dataset RMNIST OFFICE-31
Bal⋆ 1.000 0.282

A = ACC, B = Bal A (↑) B (↑) A (↑) B (↑)

Standard (fair-unaware) 41.0 0.000 63.8 0.192
SFC (Backurs et al., 2019) 51.3 1.000 61.6 0.267
VFC (Ziko et al., 2021) 38.1 0.000 64.8 0.212
DFC (Li et al., 2020) 49.9 0.800 69.0 0.165
FCMI (Zeng et al., 2023) 88.4 0.995 70.0 0.226
FCA ✓ 89.0 1.000 67.6 0.270

Table 3 compares FCA with the baseline methods, showing
its performance is comparable to the state-of-the-art FCMI
and generally better than SFC, VFC, and DFC. While DFC
achieves slightly higher ACC on the OFFICE-31 dataset, its
Bal is significantly lower (0.165 vs. 0.270 of FCA). No-
tably, while FCA operates as a two-step approach leveraging
the pre-trained latent space, while DFC and FCMI are end-
to-end methods. Moreover, FCA offers practical benefits: (i)
requiring fewer hyper-parameters, reducing burden of hyper-
parameter tuning in the absence of ground-truth labels, and
(ii) adaptability with any pre-trained latent space.

Further details are provided in Appendix C.3.2, where Ta-
ble 12 presents the full results of Table 3, which includes the
similar superiority of FCA in terms of NMI values. More-
over, Table 13 highlights FCA’s additional benefits over the
fairlet-based method (SFC), in terms of matching efficiency.

5.4. Ablation studies

(1) Selection of the partition size m We empirically
confirm the efficiency of the partitioning technique in Sec-
tion 4.3, by investigating the convergence of Bal and Cost
with respect to the partition size m. In Appendix C.3.3,
Figure 6 suggests that m = 1024 yields reasonable results,
while Table 14 shows a significant reduction in computation
time.

(2) Optimization and initialization of cluster centers µ:
We also analyze the stability with respect to (i) the choice of
optimization algorithm for finding cluster centers, and (ii)

the initialization of cluster centers. Appendix C.3.4 shows
that FCA is robust to both factors.

(3) Consistent outperformance across various K: We
confirm that FCA consistently outperforms baseline meth-
ods for various values of K. That is, as shown in Figure 8
in Appendix C.3.5, FCA outperforms the baseline methods
across all K ∈ {5, 10, 20, 40}.

(4) Scalability for large-scale data: We further inves-
tigate the adaptivity of FCA to large-scale data. To do
so, we compare FCA and VFC using a large-scale dataset
(n = 106), and observe that FCA still outperforms VFC
(see Appendix C.3.6).

(5) Linear program vs. Sinkhorn for optimizing Q In
our main experiments, we solve the objective in eq. (4) with
the linear programming. To explore alternative approaches,
we compare (i) FCA with the linear programming and (ii)
FCA with the Sinkhorn algorithm, in terms of Cost, Bal,
and runtime. Table 19 in Appendix C.3.7 shows that their
performances are comparable; however, the Sinkhorn algo-
rithm requires tuning a regularization parameter, suggesting
that solving the linear program remains a practical and reli-
able option.

6. Conclusion and discussion
This paper has proposed FCA, an in-processing algorithm
for fair clustering, inspired by the theoretical equivalence
between optimal perfectly fair clustering and finding cluster
centers in the aligned space. FCA algorithm is based on
well-known algorithms, the K-means algorithm and linear
programming, making it transparent and stable. Further-
more, we have developed FCA-C (a variant of FCA) to
control fairness level, and established its approximation
guarantee. Experimental results show FCA achieves near-
perfect fairness, superior clustering utility, and robustness
to data pre-processing, optimization methods, and initializa-
tion.

A promising direction for future work is to apply FCA to
other clustering algorithms such as model-based clustering,
e.g., Gaussian mixture, which we will pursue in near future.
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A. Supplementary discussion
A.1. Fairlet-based methods

Fairlet decomposition was first introduced in Chierichetti et al. (2017), providing a pre-processing method for fair clustering.
A fairlet is defined as a subset (as small as possible) of data in which the proportion of the sensitive attribute is balanced.
The dataset is then partitioned into disjoint fairlets. It is important to note that the fairlets are not built arbitrarily; instead, the
sum of distances among instances within each fairlet is minimized (i.e., each fairlet consists of similar instances). Finding
such fairlets can be done by solving the minimum cost flow problem.

Notably, when n0 = n1, building fairlets is equivalent to finding the optimal coupling Γ in the Kantorovich problem, which
can be understood as a special case of minimum cost problem (Peyré & Cuturi, 2020; Chen et al., 2022). Hence, we can say
that the fairlet-based methods find the coupling only once, then apply the standard clustering algorithm.

After building the fairlets, each fairlet is then deterministically assigned to a cluster. Since fairness is implicitly guaranteed
within each fairlet, the resulting clustering directly becomes also fair. The representatives of each fairlet can be arbitrarily
chosen when n0 = n1, or chosen by the medoids (or possibly the centroids) when n0 ̸= n1, as suggested by Chierichetti
et al. (2017). Then, a standard clustering algorithm is applied to the set of these chosen representatives.

On the other hand, the computational cost is high, with most of the time spent finding the fairlets due to the quadratic
complexity of the minimum cost flow problem. To address this issue, SFC (Backurs et al., 2019) proposed a scalable
algorithm for fairlet decomposition by using a reduction approach using metric embedding and trees. See Appendix C.2.3
for details on the SFC algorithm.

A.2. Optimal transport problem

The notion of Optimal Transport (OT) provides a geometric view of the discrepancy between two probability measures. For
two given probability measures P1 and P2, a map T : Supp(P1) → Supp(P2) is defined as ‘transport map’ if T#P1 = P2,
where T#P1(A) = P1(T

−1(A)),∀A, is the push-forward measure. The OT map is the minimizer of transport cost among
all transport maps. That is, the OT map from P1 to P2 is the solution of minT:T#P1=P2

EX∼P1
(c (X,T(X))) for a

pre-specified cost function c (e.g., L2 distance), which is so-called the Monge problem.

Kantorovich relaxed the Monge problem by seeking the optimal coupling (joint distribution) between two distributions. The
Kantorovich problem is mathematically formulated as infπ∈Π(P1,P2) EX,Y∼π (c(X,Y)) where Π(P1,P2) is the set of all
joint measures of P1 and P2. For two empirical measures, this problem can be solved by the use of linear programming as
follows. For given two empirical distributions on X0 = {xi}n0

i=1 and X1 = {xj}n1
j=1, the cost matrix between the two is

defined by C := [ci,j ] ∈ Rn0×n1
+ where ci,j = ∥xi − xj∥2. Then, the optimal coupling (joint distribution) is defined by the

matrix Γ = [γi,j ] ∈ Rn0×n1
+ that solves the following objective:

min
Γ

∥C⊙ Γ∥1 = min
γi,j

ci,jγi,j s.t.
n0∑
i=1

γi,j =
1

n1
,

n1∑
j=1

γi,j =
1

n0
, γi,j ≥ 0.

This problem can be solved by the use of linear programming. For the case of large n with n0 ̸= n1, various feasible
estimators have been developed (Cuturi, 2013; Genevay et al., 2016), e.g., the Sinkhorn algorithm (Cuturi, 2013). Note
only practical implementations, but theoretical aspects such as minimax estimation have also discussed deeply (Seguy et al.,
2018; Yang & Uhler, 2019; Deb et al., 2021; Hütter & Rigollet, 2021). Recently, the OT map is utilized in diverse domains,
for example, economics (Galichon, 2016; Chiappori et al., 2010), domain adaptation (Damodaran et al., 2018; Forrow et al.,
2019), and computer vision (Su et al., 2015; Salimans et al., 2018). Several studies, including Jiang et al. (2020); Chzhen
et al. (2020); Gordaliza et al. (2019); Kim et al. (2025), also employed the OT map in the field of algorithmic fairness for
supervised learning.

A.3. Extension to multiple protected groups

In this paper, we mainly focus on the case of two protected groups, for ease of discussion. However, it is possible to extend
FCA to handle multiple (more than two) protected groups. The idea is equivalent to the case of two protected groups:
matching multiple individuals from different protected groups.
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The case of equal sample sizes Let G be the number of protected groups, and denote s∗ ∈ {0, . . . , G − 1} as a fixed
sensitive attribute as an anchor (a reference) attribute. For the case of n0 = . . . = nG−1, we can similarly decompose the
objective function in terms of matching map, as follows. First, we decompose the clustering objective similar to the proof of
Theorem 3.1:

C(µ,A0, . . . ,AG−1) = E
K∑

k=1

AS(X)∥X− µk∥2

=
1

G
Es∗

K∑
k=1

As∗(X)k

∥X− µk∥2 +
∑
s′ ̸=s∗

∥Ts′(X)− µk∥2
 ,

where Ts′ is the one-to-one matching map from Xs∗ to Xs′ for s′ ∈ {0, . . . , G−1}. Note that Ts′ then becomes the identity
map from Xs∗ to Xs∗ for s′ = s∗. Then for any given x and µk, we can decompose ∥x− µk∥2 by∥∥∥∥

∑
s′ ̸=s∗(x−Ts′(x))

G

∥∥∥∥2 + ∥∥∥∥x+
∑

s′ ̸=s∗ Ts′(x)

G
− µk

∥∥∥∥2
+2

〈∑
s′ ̸=s∗(x−Ts′(x))

G
,
x+

∑
s̸=s∗ Ts′(x)

G
− µk

〉
.

We also similarly decompose ∥Ts′(x)− µk∥2 by∥∥∥∥∥
∑

s′′ ̸=s′,s′′∈{0,...,G−1}(Ts′(x)−Ts′′(x))

G

∥∥∥∥∥
2

+

∥∥∥∥x+
∑

s′ ̸=s∗ Ts′(x)

G
− µk

∥∥∥∥2

+2

〈∑
s′′ ̸=s′,s′′∈{0,...,G−1}(Ts′(x)−Ts′′(x))

G
,
x+

∑
s′ ̸=s∗ Ts′(x)

G
− µk

〉
.

By summing up the above G many terms, we have the final result that

C(µ,A0, . . . ,AG−1)

=
1

G
Es∗

K∑
k=1

As∗(X)k

(
G−1∑
s=0

∥∥∥∥
∑

s′ ̸=s(Ts(X)−Ts′(X))

G

∥∥∥∥2 + ∥∥∥∥X+
∑

s′ ̸=s∗ Ts′(X)

G
− µk

∥∥∥∥2
)
.

Note that this result holds for any anchor s∗ ∈ {0, . . . , G− 1}.

The case of unequal sample sizes For the case of unequal sample sizes, we also derive a similar decomposition (i.e.,
eq. (8)). We first define the alignment map as: TA(x0, . . . ,xG−1) := π0x0 + . . . + πG−1xG−1, where πs = ns/n for
s ∈ {0, . . . , G− 1}. Then, we find the joint distribution and cluster centers by minimizing the following objective:

E(X0,...,XG−1)∼Q

G−1∑
s=0

GπG

∥∥∥∥∑
s′ ̸=s

(Xs −Xs′)

∥∥∥∥2 +min
k

∥TA(X0, . . . ,XG−1)− µk∥2
 , (8)

where πG :=
∏G−1

s=0 πs.

The proof idea is similar to the case of two protected groups, in Theorem 3.3. We first recall the original K-means objective:
C(µ,A0, . . . ,AG−1) := E

∑K
k=1 AS(X)k∥X−µk∥2 =

∑G−1
s=0 πsEs

∑K
k=1 As(Xs)k∥Xs−µk∥2. Consider a set of joint

distributions of X0, . . . ,XG−1 given µ as Q := {Q({x0, . . . ,xG−1}|µ) : xs ∈ Xs, s ∈ {0, . . . , G− 1}}. Then, we can
show that there exists a Q = Q({x0, . . . ,xG−1}|µ) ∈ Q satisfying

C(µ,A0, . . . ,AG−1) =

G−1∑
s=0

πsEs

K∑
k=1

As(Xs)k∥Xs − µk∥2

= E(X0,...,XG−1)∼Q

(
G−1∑
s=0

πs∥Xs − µk∥2
)
,
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by using the same logic in the proof of Theorem 3.3. Furthermore, we can reformulate it as

E(X0,...,XG−1)∼Q

G−1∑
s=0

GπG

∥∥∥∥∑
s′ ̸=s

(Xs −Xs′)

∥∥∥∥2 +min
k

∥TA(X0, . . . ,XG−1)− µk∥2
 ,

with the assignment functions for fair clustering given as

As(xs)k := Q

argmin
k′

∥πsxs +
∑
s′ ̸=s

πs′Xs′ − µk′∥2 = k

∣∣∣∣Xs = xs

 ,∀s ∈ {0, . . . , G− 1}.

Furthermore, since finding the joint distribution for multiple protected groups is technically similar to the case of two
protected groups, the optimization of the objective in eq. (8) can be solved using a linear program.

Experiments To empirically confirm the validity of the extension, we use BANK dataset with three protected groups
defined by dividing marital status as single/married/divorced (directly following the approach of VFC (Ziko et al., 2021)).
We then compare the performance of FCA with VFC, which also can handle multiple protected groups. The result is
presented in Table 4 below, showing the superior performance of FCA: achieving a lower cost (0.222 < 0.228) along with a
higher balance (0.182 > 0.172).

Table 4. Comparison of VFC and FCA in terms of the trade-off between Bal and Cost, on BANK dataset with three protected groups.

BANK 3 groups (single/married/divorced)

Bal⋆ = 0.185 Cost (↓) Bal (↑)

VFC 0.228 0.172
FCA ✓ 0.222 0.182

A.4. Extension to K-clustering for general distance metrics

Let D : Rd×Rd → R+ be a given distance satisfying (i) D(v,w) ≤ D(v,u)+D(u,w), (ii) D(v,w) = D(v+u,w+u),
and (iii) D(λv, λw) = |λ|D(v,w), for all v,w,u ∈ Rd and λ ∈ R. For example, D can be the Lp norm on Rd for any
p ≥ 1. Then, for the balanced case n0 = n1, we can replicate the argument of Theorem 3.1 as follows:

E
K∑

k=1

AS(X)kD(X, µk) ≤ Es

K∑
k=1

AS(X)k

(
D

(
X

2
,
T(X)

2

)
+D

(
X+T(X)

2
, µk

))
.

Minimizing this upper bound yields a fair K-clustering procedure for any distance satisfying the above conditions. Note
that using the L1 norm for D corresponds to the K-median clustering.

See Appendix C.3.9 for experiments based on this approach, showing the outperformance FCA over SFC in view of the
K-median clustering.
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B. Proofs of the theorems
B.1. Proof of Theorem 3.1

Theorem 3.1. For any given perfectly fair deterministic assignment function A and cluster centers µ, there exists a
one-to-one matching map T : Xs → Xs′ such that, for any s ∈ {0, 1},

C(µ,A0,A1) = Es

K∑
k=1

As(X)k

(
∥X−T(X)∥2

4
+

∥∥∥∥X+T(X)

2
− µk

∥∥∥∥2
)
. (9)

Proof of Theorem 3.1. Without loss of generality, let s = 0. First, it is clear that we can construct a one-to-one map T that
maps each x ∈ X k,0 := {x ∈ X0 : A0(x)k = 1} to a unique x′ ∈ X k,1 := {x′ ∈ X1 : A1(x

′)k = 1} for all k ∈ [K].
That is, {T(x) : x ∈ X k,0} = X k,1,∀k ∈ [K] and {T(x) : x ∈ X0} = X1.

Then, for the given T, we can rewrite the clustering cost as

C(µ,A0,A1) = E
K∑

k=1

AS(X)k∥X− µk∥2 =
1

2
E0

K∑
k=1

A0(X)k
(
∥X− µk∥2 + ∥T(X)− µk∥2

)
. (10)

For any given x and µk, we decompose ∥x− µk∥2 as:

∥x− µk∥2 =

∥∥∥∥x− x+T(x)

2
+

x+T(x)

2
− µk

∥∥∥∥2
=

∥x−T(x)∥2

4
+

∥∥∥∥x+T(x)

2
− µk

∥∥∥∥2 + 2

〈
x− x+T(x)

2
,
x+T(x)

2
− µk

〉
.

We similarly decompose ∥T(x)− µk∥2 as:

∥T(x)− µk∥2 =

∥∥∥∥T(x)− x+T(x)

2
+

x+T(x)

2
− µk

∥∥∥∥2
=

∥x−T(x)∥2

4
+

∥∥∥∥x+T(x)

2
− µk

∥∥∥∥2 + 2

〈
T(x)− x+T(x)

2
,
x+T(x)

2
− µk

〉
.

Adding the two terms, we have

2

(
∥x−T(x)∥2

4
+

∥∥∥∥x+T(x)

2
− µk

∥∥∥∥2
)
.

Finally, we conclude that

1

2
E0

K∑
k=1

A0(X)k
(
∥X− µk∥2 + ∥T(X)− µk∥2

)
=

1

2
E0

K∑
k=1

A0(X)k · 2

(
∥X−T(X)∥2

4
+

∥∥∥∥X+T(X)

2
− µk

∥∥∥∥2
)
.

(11)

B.2. Proof of Theorem 3.3

Theorem 3.3. Let µ∗ and Q∗ be the cluster centers and joint distribution minimizing

min
µ,Q∈Q

E(X0,X1)∼Q

(
2π0π1∥X0 −X1∥2 +min

k
∥TA(X0,X1)− µk∥2

)
. (12)

Then, (µ∗,A∗
0,A∗

1) is the solution of the perfectly fair K-means clustering, where A∗
0(x)k :=

Q∗ (argmink′ ∥TA(x,X1)− µk′∥2 = k|X0 = x
)

and A∗
1(x)k is defined similarly.
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Proof of Theorem 3.3. Let Xs = X|S = s, s ∈ {0, 1}. For given (µ,A0,A1), recall the original K-means objective:
C(µ,A0,A1) := E

∑K
k=1 AS(X)k∥X−µk∥2 = π0E0

∑K
k=1 A0(X0)k∥X0−µk∥2+π1E1

∑K
k=1 A1(X1)k∥X1−µk∥2.

Consider a set of joint distributions of X0,X1 given µ as Q := {Q({x0,x1}|µ) : x0 ∈ X0,x1 ∈ X1}. We show that there
exists a Q = Q({x0,x1}|µ) ∈ Q satisfying

C(µ,A0,A1) = π0E0

K∑
k=1

A0(X0)k∥X0 − µk∥2 + π1E1

K∑
k=1

A1(X1)k∥X1 − µk∥2

= E(X0,X1)∼Q
(
π0∥X0 − µk∥2 + π1∥X1 − µk∥2

)
.

(13)

Let

Q({x0,x1}|µ) =
K∑

k=1

A0(x0)kA1(x1)k
Ck

P0({x0})P1({x1}), (14)

where Ck := EAS(X)k = E0A0(X0)k = E1A1(X1)k. Then,

E(X0,X1)∼Q
(
π0∥X0 − µk∥2 + π1∥X1 − µk∥2

)
=

K∑
k=1

(∑
x0

A0(x0)kπ0∥x0 − µk∥2P0({x0}) +
∑
x1

A1(x1)kπ1∥x1 − µk∥2P1({x1})

)

=

K∑
k=1

(
E0π0A0(X0)k∥X0 − µk∥2 + E1π1A1(X1)k∥X1 − µk∥2

)
= C(µ,A0,A1),

(15)

which concludes eq. (13). Our original aim is to find (µ,A0,A1) minimizing C(µ,A0,A1). Let µ(x) = µk∗ , where
k∗ = argmink ∥x− µk∥2. Let µ̃(x0,x1) := µk′ , where k′ = argmink ∥π0x0 + π1x1 − µk∥2. For given Q defined in eq.
(14), similar to Theorem 3.1, we can reformulate

E(X0,X1)∼Q
(
π0∥X0 − µ(X0)∥2 + π1∥X1 − µ(X1)∥2

)
= E(X0,X1)∼Q

(
2π0π1∥X0 −X1∥2 + ∥π0X0 + π1X1 − µ̃(X0,X1)∥2

)
.

(16)

In turn, the assignment functions are given as

A0(x0)k := Q
(
argmin

k′
∥π0x0 + π1X1 − µk′∥2 = k

∣∣∣∣X0 = x0

)
(17)

and

A1(x1)k := Q
(
argmin

k′
∥π0X0 + π1x1 − µk′∥2 = k

∣∣∣∣X1 = x1

)
. (18)

Hence, C(µ,A0,A1) = E(X0,X1)∼Q
(
2π0π1∥X0 −X1∥2 +mink ∥π0X0 + π1X1 − µk∥2

)
.

B.3. Proof of Theorem 4.1

Theorem 4.1. Minimizing FCA-C objective C̃(Q,W,µ) with the corresponding assignment function defined in eq. (6), is
equivalent to minimizing C(µ,A0,A1) subject to (A0,A1) ∈ Aε.

Proof of Theorem 4.1. It suffices to show the followings: A and B.

A. For given Q,W,µ, let A0 and A1 be the constructed assignment functions, defined in eq. (6). Then, we have
C̃(Q,W,µ) = C(µ,A0,A1) and (A0,A1) ∈ Aε.

B. (i) For given µ and (A0,A1) ∈ Aε, there exist Q and W s.t. C̃(Q,W,µ) ≤ C(µ,A0,A1).

18
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• Proof of A.

For given Q,W,µ, we construct the assignment functions as in eq. (6). In other words, we define

A0(x0)k = P1(
{
argmink′ ∥TA(x0,X1)− µk′∥2 = k, (x0,X1) ∈ Wc

}
)

+1
(
argmink′ ∥x0 − µk′∥2 = k

)
· P1({(x0,X1) ∈ W}),

and the assignment function A1 is defined similarly. Then, we have C̃(Q,W,µ) = C(µ,A0,A1) by its definition.

Furthermore,
K∑

k=1

|E0A0(X)k − E1A1(X)k|

=

K∑
k=1

∣∣∣∣E0Q1

(
argmin

k′
∥TA(X0,X1)− µk′∥2 = k, (X0,X1) ∈ Wc

)
− E1Q0

(
argmin

k′
∥TA(X0,X1)− µk′∥2 = k, (X0,X1) ∈ Wc

)
+ E0Q1 ((X0,X1) ∈ W)1(argmin

k′
∥X0 − µk′∥2 = k)

− E1Q0 ((X0,X1) ∈ W)1(argmin
k′

∥X1 − µk′∥2 = k)

∣∣∣∣
=

K∑
k=1

∣∣∣∣E0Q1 ((X0,X1) ∈ W)1(argmin
k′

∥X0 − µk′∥2 = k)

− E1Q0 ((X0,X1) ∈ W)1(argmin
k′

∥X1 − µk′∥2 = k)

∣∣∣∣
=

K∑
k=1

∣∣∣∣EX0,X11((X0,X1) ∈ W) ·
(
1(argmin

k′
∥X0 − µk′∥2 = k)− 1(argmin

k′
∥X1 − µk′∥2 = k)

) ∣∣∣∣
≤

K∑
k=1

EX0,X1

(∣∣∣∣1(argmin
k′

∥X0 − µk′∥2 = k)− 1(argmin
k′

∥X1 − µk′∥2 = k)

∣∣∣∣ |(X0,X1) ∈ W
)

· PX0,X1

∣∣∣∣1((X0,X1) ∈ W)

∣∣∣∣
≤ε,

(19)

which implies (A0,A1) ∈ Aε.

• Proof of B.

For each k ∈ [K], let δk = min{E0(A0(X))k,E1(A1(X))k}. We decompose As(·)k = Ãs(·)k+Ac
s(·)k, where Ãs(·)k =

δkAs(·)k/Es(As(X))k. Then, E0Ã0(X)k = E1Ã1(X)k for all k ∈ [K]. Define Ãs(X)K+1 :=
∑K

k=1 Ac
s(X)k. Note that

EsÃs(X)K+1 ≤ ε.

Now, for given µ, we define a probability measure on X0 ×X1 by

Q(dx0, dx1|µ) =
K∑

k=1

Ã0(x0)kÃ1(x1)k
δk

p0(x0)p1(x1) +
Ã0(x0)K+1Ã1(x1)K+1

δK+1
p0(x0)p1(x1),

where δK+1 = 1−
∑K

k=1 δk and p0, p1 are the densities of P0,P1, respectively.

Note that δK+1 = EsÃs(X)K+1 and thus δK+1 ≤ ε. In addition, for given (x0,x1) ∈ X0×X1, we define a binary random
variable R(x0,x1) such that

Pr(R(x0,x1) = 1) =

Ã0(x0)K+1Ã1(x1)K+1

δK+1
p0(x0)p1(x1)

Q(dx0, dx1|µ)
.
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For given x ∈ Xs, let µ(x) = µk∗ , where k∗ = argmink∥x− µk∥2. For given (x0,x1) ∈ X0 × X1, let µ̃(x0,x1) = µk′ ,
where k′ = argmink ∥π0x0 + π1x1 − µk∥2. Then, it holds that C̃(Q, R,µ) ≤ C(µ,A0,A1), where

C̃(Q, R,µ) := EQ,R

[{
2π0π1∥X0 −X1∥2 + ∥π0X0 + π1X1 − µ̃(X0,X1)∥2

}
(1−R(X0,X1))

]
+ EQ,R

[{
π0∥X0 − µ(X0)∥2 + π1∥X1 − µ(X1)∥2

}
R(X0,X1)

]
.

The final mission is to find W ⊂ X0 × X1 such that R(x0,x1) = 1((x0,x1) ∈ W). For this, define η(x0,x1) =
2π0π1∥x0 − x1∥2 +mink ∥TA(x0,x1)− µk∥2. Let ηε be the εth upper quantile of η(X0,X1) and let

W̃ = {(x0,x1) : η(x0,x1) > ηε}. (20)

Then, we can find W ⊃ W̃ such that C̃(Q,W,µ) ≤ C̃(Q, R,µ) and Q(W) = ε (see Remark B.1 below), which completes
the proof.

Remark B.1 (The case when the densities do not exist). When the distribution of η(X0,X1) is strictly increasing, we have
Q(W) = ε. If not, we can find W such that W ⊃ {(x0,x1) : η(x0,x1) ≥ ε} with Q(W) = ε when Q has its density.

When Q is discrete, the situation is tricky. When n0 = n1, the measure Q minimizing C̃(Q,W,µ) has masses 1/n0 on n0

many pairs of (x0,x1) among X0 ×X1. In this case, whenever n0ε is an integer, we can find W such that Q(W) = ε.

Otherwise, we could consider a random assignment. Let Fη be the distribution of η(X0,X1). Suppose that Fη has a jump
at ηε. In that case, Q(W) < ε. Let (x∗

0,x
∗
1) be the element such that η(x∗

0,x
∗
1) = ηε. Then, we can let R(x∗

0,x
∗
1) =

1 with probability (ε − Q(W))/Q({x∗
0,x

∗
1}), R(x0,x1) = 1 for (x0,x1) ∈ W and R(x0,x1) = 0 for (x0,x1) ∈

(W ∪ {x∗
0,x

∗
1})

c
. The current FCA-C algorithm can be modified easily for this random assignment.

B.4. Proof of Proposition 4.2

Proposition 4.2. For any assignment function (A0,A1) ∈ Aε, we have

max
k∈[K]

∣∣∣∣∣
∑

xi∈X0
A0(xi)k∑

xi∈X1
A1(xi)k

− n0

n1

∣∣∣∣∣ ≤ cε (21)

where c = n0

n1
maxk∈[K]

1
E1A1(X)k

.

Proof of Proposition 4.2. On the other hand, by the definition of Aε, any (A0,A1) ∈ Aε satisfies

K∑
k=1

∣∣∣∣∣∣ 1n0

∑
xi∈X0

A0(xi)k − 1

n1

∑
xj∈X1

A1(xj)k

∣∣∣∣∣∣ ≤ ε,

which implies ∣∣∣∣∣∣ 1n0

∑
xi∈X0

A0(xi)k − 1

n1

∑
xj∈X1

A1(xj)k

∣∣∣∣∣∣ = |E0A0(X)k − E1A1(X)k| ≤ ε

for all k ∈ [K]. Then, we have∣∣∣∣∣
∑

xi∈X0
A0(xi)k∑

xi∈X1
A1(xi)k

− n0

n1

∣∣∣∣∣ = n0

n1

∣∣∣∣∣
∑

xi∈X0
A0(xi)k/n0∑

xi∈X1
A1(xi)k/n1

− 1

∣∣∣∣∣ = n0

n1

∣∣∣∣E0A0(X)k
E1A1(X)k

− 1

∣∣∣∣
=

n0

n1

1

E1A1(X)k
|E0A0(X)k − E1A1(X)k| ≤

n0

n1

1

E1A1(X)k
ε,

(22)

for all k ∈ [K]. Letting c := n0

n1
maxk∈[K]

1
E1A1(X)k

concludes the proof.
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B.5. Proof of Theorem 4.3

We establish the approximation guarantee of our proposed algorithm: The cost of the solution obtained by our FCA-C
algorithm in Section 4.2 is at most τ + 2 times of the cost of the global optimal fair clustering solution (where τ is the
approximation error of the algorithm used for finding initial cluster centers without the fairness constraint), with an additional
violation of O(ε). In other words, for a given fairness level ε, FCA-C has an approximation error of τ +2 with an additional
violation of O(ε).

First, for a given fairness level ε, we define several notations to be used as follows.

• µ△,A△
0 ,A△

1 : the solution of FCA-C algorithm for fairness level ε, given initial cluster centers obtained by a τ -
approximation algorithm for K-means clustering.

• µ̃, Ã0, Ã1: the optimal fair clustering solution of minµ,A0,A1 C(µ,A0,A1) subject to (A0,A1) ∈ Aε, for a given
fairness level ε.

• µ⋄,A⋄
0,A⋄

1: the (approximated) clustering solution, given a τ -approximation algorithm for (standard) K-means
clustering.

Then, we can prove Theorem B.2 below, which is a formal version of Theorem 4.3, showing the approximation error of
FCA-C algorithm.

Theorem B.2 (A formal version of Theorem 4.3). Suppose that supx∈X ∥x∥2 ≤ R for some R > 0. Given initial cluster
centers obtained by a τ -approximation algorithm , FCA-C returns a (τ + 2)-approximate solution with a violation 3Rε for
optimal fair clustering, i.e., C(µ△,A△

0 ,A△
1 ) ≤ (τ + 2)C(µ̃, Ã0, Ã1) + 3Rε.

Proof of Theorem B.2. Let Q′,W ′ = argminQ,W C̃(Q,W,µ⋄), and A′
0,A′

1 are the assignment functions corresponding
to Q′ and W ′.

It suffices to show the following two claims:

1. (Claim A): Given initial cluster centers obtained by a τ -approximation algorithm for K-means clustering, we have
C(µ⋄,A′

0,A′
1) ≤ (τ + 2)C(µ̃, Ã0, Ã1).

2. (Claim B): There exist Q⋆,W⋆ such that C(µ⋄,A⋆
0,A⋆

1) ≤ C(µ⋄,A′
0,A′

1) + 3Rε, where A⋆
0 and A⋆

1 are the fair
assignment functions corresponding to Q⋆ and W⋆.

Then, by combining Claim A and B, we have that C(µ⋄,A⋆
0,A⋆

1) ≤ (τ +2)C(µ̃, Ã0, Ã1) + 3Rε. Note that A⋆
0 and A⋆

1 are
the feasible solution of FCA-C, while A′

0 and A′
1 are the global optimal fair assignment function given µ⋄. Consequently,

we can clearly get the same approximation error for (µ△,A△
0 ,A△

1 ), by iterating the process (finding new cluster centers
minimizing the cost and updating the assignment functions), which completes the proof. See Remark B.3 for details.

• Proof of Claim A: Let C∗ = minµ,A0,A1
C(µ,A0,A1) represent the global optimal clustering cost without fairness

constraint. Then, we have C(µ⋄,A⋄
0,A⋄

1) ≤ τC∗.

We show that for given initial cluster centers µ⋄, there exist A+
0 and A+

1 that satisfy the following conditions: (i)
(A+

0 ,A
+
1 ) ∈ Aε, (ii) C(µ⋄,A+

0 ,A
+
1 ) ≤ (τ + 2)C(µ̃, Ã0, Ã1), and (iii) C(µ⋄,A′

0,A′
1) ≤ C(µ⋄,A+

0 ,A
+
1 ), where

A′
0,A′

1 are the fair assignment functions corresponding to Q′,W ′ = argminQ,W C̃(Q,W,µ⋄).

(i) Recall that µ̃ = {µ̃k}Kk=1 and µ⋄ = {µ⋄
k}Kk=1. For all k ∈ [K], we define the set of nearest neighbors of µ⋄

k as
N(µ⋄

k) := {µ̃k ∈ µ̃ : argminµ⋄
k′∈µ⋄ ∥µ̃k−µ⋄

k′∥2 = µ⋄
k}. For x ∈ X , we define A+

s (x)k :=
∑

k′:µ̃k′∈N(µ⋄
k)
Ãs(x)k′ .

Then, A+
s also becomes an assignment function since

∑K
k=1 A+

s (x) = 1 for all x ∈ X .

Since (Ã0, Ã1) ∈ Aε, we have the fact that
∑K

k=1

∣∣∣ 1
n0

∑n0

i=1 Ã0(xi)k − 1
n1

∑n1

j=1 Ã1(xj)k

∣∣∣ ≤ ε. Therefore, we
obtain

K∑
k=1

∣∣∣∣∣∣ 1n0

n0∑
i=1

A+
0 (xi)k − 1

n1

n1∑
j=1

A+
1 (xj)k

∣∣∣∣∣∣ =
K∑

k=1

∣∣∣∣∣∣
∑

k′:µ̃k′∈N(µ⋄
k)

 1

n0

n0∑
i=1

Ã0(xi)k′ − 1

n1

n1∑
j=1

Ã1(xj)k′

∣∣∣∣∣∣
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≤
K∑

k=1

∑
k′:µ̃k′∈N(µ⋄

k)

∣∣∣∣∣∣ 1n0

n0∑
i=1

Ã0(xi)k′ − 1

n1

n1∑
j=1

Ã1(xj)k′

∣∣∣∣∣∣ =
K∑

k′=1

∣∣∣∣∣∣ 1n0

n0∑
i=1

Ã0(xi)k′ − 1

n1

n1∑
j=1

Ã1(xj)k′

∣∣∣∣∣∣ ≤ ε,

where the last equality holds because ∪K
k=1 ∪k′:µ̃k′∈N(µ⋄

k)
{k′} = {k′}Kk′=1. Thus, the condition (i) is satisfied.

(ii) For a given x ∈ X , let µ⋄
k(x) := argminµ⋄

k∈µ⋄ ∥x− µ⋄
k∥2 be the initial cluster center closest to x. We then have:

K∑
k=1

A+
s (x)k∥x− µ⋄

k∥2 =

K∑
k=1

∑
k′:µ̃k′∈N(µ⋄

k)

Ãs(x)k′∥x− µ⋄
k∥2

≤
K∑

k=1

∑
k′:µ̃k′∈N(µ⋄

k)

Ãs(x)k′
(
∥x− µ̃k′∥2 + ∥µ̃k′ − µ⋄

k∥2
)

≤
K∑

k=1

∑
k′:µ̃k′∈N(µ⋄

k)

Ãs(x)k′
(
∥x− µ̃k′∥2 + ∥µ̃k′ − µ⋄

k(x)∥2
)

≤
K∑

k=1

∑
k′:µ̃k′∈N(µ⋄

k)

Ãs(x)k′
(
2∥x− µ̃k′∥2 + ∥x− µ⋄

k(x)∥2
)

= 2

K∑
k′=1

Ãs(x)k′∥x− µ̃k′∥2 +
K∑

k=1

∑
k′:µ̃k′∈N(µ⋄

k)

Ãs(x)k′∥x− µ⋄
k(x)∥2

= 2

K∑
k′=1

Ãs(x)k′∥x− µ̃k′∥2 + ∥x− µ⋄
k(x)∥2.

(23)

Summing over all x and dividing by n, we obtain:

C(µ⋄,A+
0 ,A

+
1 ) ≤ 2C(µ̃, Ã0, Ã1) +

1

n

∑
x∈X

min
k

∥x− µ⋄
k∥2 = 2C(µ̃, Ã0, Ã1) + C(µ⋄,A⋄

0,A⋄
1)

≤ 2C(µ̃, Ã0, Ã1) + τC∗ ≤ 2C(µ̃, Ã0, Ã1) + τC(µ̃, Ã0, Ã1) = (τ + 2)C(µ̃, Ã0, Ã1),

which concludes (ii).

(iii) It is clear that C(µ⋄,A′
0,A′

1) ≤ C(µ⋄,A+
0 ,A

+
1 ), since A′

0 and A′
1 are the minimizers of C(µ,A0,A1) subject

to (A0,A1) ∈ Aε given µ = µ⋄ (by Theorem 4.1). Thus, the condition (iii) is satisfied.

Let µ′
k :=

∑n
i=1 A′

s(xi)kxi/
∑n

i=1 A′
s(xi)k, which is the minimizer of minµ C(µ,A′

0,A′
1) given A′

0 and A′
1. Then,

it is clear that C(µ′,A′
0,A′

1) ≤ C(µ⋄,A′
0,A′

1) ≤ (τ + 2)C(µ̃, Ã0, Ã1).

• Proof of Claim B: Note that we can rewrite

C̃(Q,W,µ) = EX0,X1∼Q
(
FCA cost(X0,X1,µ)

)
− EX0,X1∼Q

(
FCA cost(X0,X1,µ)− K-means cost(X0,X1,µ)

)
1 ((X0,X1) ∈ W) ,

(24)

where FCA cost(X0,X1,µ) =
(
2π0π1∥X0−X1∥2+mink ∥TA(X0,X1)−µk∥2

)
and K-means cost(X0,X1,µ) =

mink
(
π0∥X0 − µk∥2

)
+mink

(
π1∥X1 − µk∥2

)
, which are defined in eq. (5).

(i): For given µ⋄, define Q⋆ as the solution of minQ∈Q EX0,X1∼Q(FCA cost(X0,X1,µ
⋄)), which can

be found by solving the Kantorovich problem. Then, we have EX0,X1∼Q⋆

(
FCA cost(X0,X1,µ

⋄)
)

≤
EX0,X1∼Q′

(
FCA cost(X0,X1,µ

⋄)
)
.

(ii): Let η(x0,x1) := FCA cost(x0,x1,µ
⋄) − K-means cost(x0,x1,µ

⋄) and ηε be the εth upper quantile. Define
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W⋆ = {(x0,x1) ∈ X0 ×X1 : η(x0,x1) > ηε}. Then, using (i), we have

C̃(Q⋆,W⋆,µ⋄) ≤ C̃(Q⋆, ∅,µ⋄) = EX0,X1∼Q⋆(FCA-cost(X0,X1,µ
⋄))

= EX0,X1∼Q⋆(FCA-cost(X0,X1,µ
⋄))

− sup
Q,W:Q(W)≤ε

EX0,X1∼Q
(
FCA cost(X0,X1,µ)− K-means cost(X0,X1,µ)

)
1 ((X0,X1) ∈ W)

+ sup
Q,W:Q(W)≤ε

EX0,X1∼Q
(
FCA cost(X0,X1,µ)− K-means cost(X0,X1,µ)

)
1 ((X0,X1) ∈ W)

≤ EX0,X1∼Q′(FCA-cost(X0,X1,µ
⋄))

− EX0,X1∼Q′
(
FCA cost(X0,X1,µ)− K-means cost(X0,X1,µ)

)
1 ((X0,X1) ∈ W ′)

+ sup
Q,W:Q(W)≤ε

EX0,X1∼Q
(
FCA cost(X0,X1,µ)− K-means cost(X0,X1,µ)

)
1 ((X0,X1) ∈ W)

= C̃(Q′,W ′,µ⋄)

+ sup
Q,W:Q(W)≤ε

EX0,X1∼Q
(
FCA cost(X0,X1,µ)− K-means cost(X0,X1,µ)

)
1 ((X0,X1) ∈ W) .

(25)

(iii) The last term of the right-hand-side can be bounded as follows:

First, let µ⋄(x) := argminµ⋄
k∈µ⋄ ∥x − µ⋄

k∥2 for x ∈ X and µ⋄(x0,x1) := argminµ⋄
k∈µ⋄ ∥TA(x0,x1) − µ⋄

k∥2 for
(x0,x1) ∈ X0 ×X1. Then, ∀(x0,x1) ∈ X0 ×X1, it holds that

FCA cost(x0,x1,µ
⋄)− K-means cost(x0,x1,µ

⋄)

= 2π0π1∥x0 − x1∥2 + ∥TA(x0,x1)− µ⋄(x0,x1)∥2 −
(
π0∥x0 − µ⋄(x0)∥2

)
−
(
π1∥x1 − µ⋄(x1)∥2

)
≤ 2π0π1∥x0 − x1∥2 + ∥TA(x0,x1)− µ⋄(x0)∥2 −

(
π0∥x0 − µ⋄(x0)∥2

)
−
(
π1∥x1 − µ⋄(x1)∥2

)
≤ 2π0π1∥x0 − x1∥2 + π0∥x0 − µ⋄(x0)∥2 + π1∥x1 − µ⋄(x0)∥2

−
(
π0∥x0 − µ⋄(x0)∥2

)
−
(
π1∥x1 − µ⋄(x1)∥2

)
= 2π0π1∥x0 − x1∥2 + π1(∥x1 − µ⋄(x0)∥2 − ∥x1 − µ⋄(x1)∥2)
≤ 2π0π1∥x0 − x1∥2 + π1∥x1 − µ⋄(x0)∥2

≤ 1

2
∥x0 − x1∥2 + ∥x1 − µ⋄(x0)∥2 ≤ 1

2
2R+ 2R = 3R.

(26)

Hence, we conclude that

sup
Q,W:Q(W)≤ε

EX0,X1∼Q
(
FCA cost(X0,X1,µ)− K-means cost(X0,X1,µ)

)
1 ((X0,X1) ∈ W)

≤ 3R sup
Q,W:Q(W)=ε

EX0,X1∼Q(1 ((X0,X1) ∈ W)) = 3RQ(W) = 3Rε.

Finally, combining (ii) and (iii), we have C̃(Q⋆,W⋆,µ⋄) ≤ C̃(Q′,W ′,µ⋄) + 3Rε, which implies C(µ⋄,A⋆
0,A⋆

1) ≤
C(µ⋄,A′

0,A′
1) + 3Rε, where A⋆

0 and A⋆
1 are the fair assignment functions corresponding to Q⋆ and W⋆.

Remark B.3. Finally, FCA-C algorithm iterates the above process. Using FCA-C, we find A′′
0 and A′′

1 , which minimizes
the cost given µ′, where µ′

k :=
∑n

i=1 A′
s(xi)kxi/

∑n
i=1 A′

s(xi)k, i.e., the minimizer of minµ C(µ,A′
0,A′

1) given A′
0 and

A′
1. Again, let µ′′

k :=
∑n

i=1 A′′
s (xi)kxi/

∑n
i=1 A′′

s (xi)k, which is the minimizer of minµ C(µ,A′′
0 ,A′′

1) given A′′
0 and A′′

1 .

This iteration process results in the following inequality: C(µ′′,A′′
0 ,A′′

1) ≤ C(µ′,A′′
0 ,A′′

1) ≤ C(µ′,A′
0,A′

1) ≤ (τ +
2)C(µ̃, Ã0, Ã1) + 3Rε. Hence, iterating this process until convergence guarantees the approximation error of τ + 2 with
additional violation of 3Rε, which concludes that C(µ△,A△

0 ,A△
1 ) ≤ (τ + 2)C(µ̃, Ã0, Ã1) + 3Rε.
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C. Experiments
C.1. Datasets

The three datasets used in our experiments can be found in the UCI Machine Learning Repository3.

• ADULT dataset (Becker & Kohavi, 1996) can be downloaded from https://archive.is.uci/ml/datasets/
adult. We use 5 continuous variables (age, fnlwgt, education, capital-gain, and hours-per-week).
The total sample size is 32,561. The sample size for S = 0 and S = 1 (resp. female and male) are 10,771 and 21,790,
respectively.

• BANK dataset (Moro et al., 2012) can be downloaded from https://archive.ics.uci.edu/ml/datasets/
Bank+Marketing. We use 6 continuous variables (age, duration, euribor3m, nr.employed,
cons.price.idx, and campaign). The total sample size is 41,108. The sample size for S = 0 and S = 1
(resp. not married and married) are 16,180 and 24,928, respectively.

• CENSUS dataset (Meek et al.) can be downloaded from https://archive.ics.uci.edu/ml/datasets/
US+Census+Data+(1990). We use 66 continuous variables (dAncstry1, dAncstry2, iAvail, iCitizen,
iClass, dDepart, iDisabl1, iDisabl2, iEnglish, iFeb55, iFertil, dHispanic, dHour89,
dHours, iImmigr, dIncome1, dIncome2, dIncome3, dIncome4, dIncome5, dIncome6, dIncome7,
dIncome8, dIndustry, iKorean, iLang1, iLooking, iMarital, iMay75880, iMeans, iMilitary,
iMobility, iMobillim, dOccup, iOthrserv, iPerscare, dPOB, dPoverty, dPwgt1, iRagechld,
dRearning, iRelat1, iRelat2, iRemplpar, iRiders, iRlabor, iRownchld, dRpincome, iRPOB,
iRrelchld, iRspouse, iRvetserv, iSchool, iSept80, iSubfam1, iSubfam2, iTmpabsnt,
dTravtime, iVietnam, dWeek89, iWork89, iWorklwk, iWWII, iYearsch, iYearwrk, and dYrsserv).
We subsample 20,000 instances, as done in Chierichetti et al. (2017); Bera et al. (2019); Esmaeili et al. (2021). The
sample size for S = 0 and S = 1 (not married and married, respectively) are 9,844 and 10,156 respectively.

Note that, for each dataset, we use only the continuous (numerical) variables as introduced above, consistent with previous
studies, e.g., Backurs et al. (2019); Bera et al. (2019); Esmaeili et al. (2021); Ziko et al. (2021), to name a few. Particularly,
the features we consider in this paper are the same as those selected in a baseline method VFC (Ziko et al., 2021). The
variables of all datasets are scaled with zero mean and unit variance.

C.2. Implementation details

C.2.1. COMPUTING RESOURCES

The computation is performed on several Intel Xeon Silver CPU cores and an additional RTX 4090 GPU processor.

C.2.2. PROPOSED ALGORITHMS

FCA We use the POT library (Flamary et al., 2021) to find the optimal joint distribution Q (i.e., Γ). For updating the cluster
centers, we adopt the K-means++ algorithm (Arthur & Vassilvitskii, 2007) from the implementation of scikit-learn
package Pedregosa et al. (2011). The iterative process of updating the cluster centers and the joint distribution is run for 100
iterations, with the result where Cost is minimized being selected.

FCA-C To control Bal, we vary ε, i.e., the size of W . The value of ε is sweeped in increments of 0.05, ranging from
0.1 to 0.9. We also use a similar partitioning technique in Section 4.3 for FCA-C with m = 2048. For stability, at the first
iteration step, we find W based on fixed cluster centers µ, initialized using the K-means++ algorithm.

C.2.3. BASELINE ALGORITHMS

Scalable Fair Clustering (SFC) (Backurs et al., 2019) We directly use the official source code of SFC, available on the
authors’ GitHub4. SFC provides a fast and scalable algorithm for fairlet decomposition, which builds the fairlets in nearly

3https://archive.ics.uci.edu/datasets
4https://github.com/talwagner/fair_clustering
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linear time. The given data are first embedded to a tree structure (hierarchically well-separated tree; HST) using probabilistic
metric embedding, where we seek for optimal edges (as well as their nodes) to be activated that satisfy Bal ≈ Bal⋆. Then,
the linked nodes are then aggregated as a fairlet. This process can build fairlets in nearly linear time while minimizing the
cost of building them. After building these fairlets using SFC, we apply the standard K-means algorithm on the fairlet space
(i.e., the set of representatives of the obtained fairlets).

Fair Clustering under a Bounded Cost (FCBC) (Esmaeili et al., 2021) We use the official source code of FCBC,
available on the authors’ GitHub5. FCBC maximizes Bal under a cost constraint, where the cost constraint is defined by the
Price of Fairness (PoF) = ‘cost of fair clustering (the solution) / cost of standard clustering’. However, since the authors
mentioned the constrained optimization problem is NP-hard, they reduced the problem to a post-processing approach (i.e.,
fairly assigning data under the cost constraint, with pre-specified centers opened by a standard clustering algorithm). We set
the value of PoF to 1.2 to achieve Bal ≈ Bal∗.

Fair Round-Robin Algorithm for Clustering (FRAC) (Gupta et al., 2023) We directly follow the official source code
of FRAC, available on the authors’ GitHub6. FRAC provides an in-loop post-processing approach to fairly assign data from
each protected group to given cluster centers found by a standard clustering algorithm. In other words, the fair assignment
problem is solved at each iteration of standard clustering algorithm.

Variational Fair Clustering (VFC) (Ziko et al., 2021) We use the official source code of VFC, available on the authors’
GitHub7. The overall objective of VFC is Emink ∥X − µk∥2 + λ ·

∑K
k=1 KL

(
[π0, π1]∥

[
π0E0A0(X)k
EAS(X)k

, π1E1A1(X)k
EAS(X)k

])
,

where λ is a hyper-parameter to control Bal. A higher λ results in higher Bal, with KL = 0 ⇐⇒ Bal = 1. We run the
code with multiple trials, by varying the values of λ. For Table 2, we select the best λ that achieves the highest Bal and
report the corresponding performance for the chosen hyper-parameter, as the authors have done. For Figure 3, we present all
the results obtained using the various values of λ. Table 5 below provides the values of VFC’s hyper-parameters used in our
experiments.

Table 5. The hyper-parameters used in VFC for searching a clustering with maximum achievable Bal for each dataset. The bold faces are
the recommended ones by the authors. The underlined values are the ones we use for maximum achievable Bal.

Dataset L2 normalization Hyper-parameters

ADULT
O {5000, 7000, 9000, 10000, 11000, 12000, 13000, 13600, 14200}
X {5000, 7000, 9000, 10000, 11000, 12000, 13000, 15000, 20000, 22000, 23000}

BANK
O {5000, 6000, 7000, 9000, 10000, 11000, 12000, 12300}
X {10000, 12000, 13000, 15000, 17000, 19000, 25200, 26000}

CENSUS
O {100, 200, 500, 700, 1000, 1500, 2000}
X Failed

Note that VFC’s superior performance over other two well-known FC algorithms from Bera et al. (2019); Kleindessner et al.
(2019) was already shown in Ziko et al. (2021), which is why we omit these two methods as baselines in our experiments.

5https://github.com/Seyed2357/Fair-Clustering-Under-Bounded-Cost
6https://github.com/shivi98g/Fair-k-means-Clustering-via-Algorithmic-Fairness
7https://github.com/imtiazziko/Variational-Fair-Clustering
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C.3. Omitted experimental results

C.3.1. PERFORMANCE COMPARISON RESULTS (SECTION 5.2)

Trade-off: fairness level vs. clustering utility Table 6 presents the comparison results for the trade-off between Bal and
Cost without L2 normalization, which is similar to Table 1.

Table 6. Comparison of the trade-off between Bal and Cost on ADULT, BANK, and CENSUS datasets, when data are not L2-normalized.
We underline Bal values for the cases of near-perfect fairness (i.e., Bal ≈ Bal⋆) and use bold face for the lowest Cost value among
those cases.

Dataset / Bal⋆ ADULT / 0.494 BANK / 0.649 CENSUS / 0.969

Without L2 normalization Cost (↓) Bal (↑) Cost (↓) Bal (↑) Cost (↓) Bal (↑)

Standard (fair-unaware) 1.620 0.206 1.510 0.391 28.809 0.030
FCBC (Esmaeili et al., 2021) 1.851 0.460 2.013 0.610 59.988 0.925
SFC (Backurs et al., 2019) 3.399 0.471 3.236 0.622 69.437 0.940
FRAC (Gupta et al., 2023) 2.900 0.488 2.716 0.646 38.430 0.962
FCA ✓ 1.875 0.492 1.859 0.647 33.472 0.959

On the other hand, as shown in Table 1, FCBC attains a slightly lower Cost (0.314) than FCA, whereas FCA yields a
higher fairness level. To fairly compare the two methods at equal Cost, we run FCA-C targeting Cost ≈ 0.314, i.e., the
Cost of FCBC. Under this constraint, FCA-C achieves a Balance of 0.473, compared to 0.443 of FCBC, demonstrating
that FCA offers a superior trade-off between Bal and Cost.

Table 7. Comparison of FCBC and FCA-C in terms of the trade-off between Bal and Cost on ADULT dataset, when data are L2-
normalized. Cost is fixed near 0.314 for a fair comparison.

ADULT

Bal⋆ = 0.494 Cost (↓) Bal (↑)

FCBC (Esmaeili et al., 2021) 0.314 0.443
FCA-C ✓ 0.313 0.473

For our main experiments in Section 5, we mainly compare FCA with the scalable fairlet-based method of Backurs et al.
(2019). Here, we additionally compare FCA with the original fairlet-based approach introduced by Chierichetti et al. (2017).
Table 8 shows that FCA outperforms the fairlet-based method of Chierichetti et al. (2017) as well as SFC.

Table 8. Comparison of Chierichetti et al. (2017), SFC and FCA in terms of the trade-off between Bal and Cost on ADULT, BANK, and
CENSUS datasets, when data are L2-normalized. The bold-faced results indicate the bests.

Dataset / Bal⋆ ADULT / 0.494 BANK / 0.649 CENSUS / 0.969

With L2 normalization Cost (↓) Bal (↑) Cost (↓) Bal (↑) Cost (↓) Bal (↑)

Chietichetti et al. (2017) 0.507 0.488 0.378 0.639 1.124 0.941
SFC 0.534 0.489 0.410 0.632 1.015 0.937
FCA ✓ 0.328 0.493 0.264 0.645 0.477 0.962
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Numerical stability Table 9 presents the comparison results of FCA and VFC in terms of numerical stability without L2

normalization, which is similar to Table 2. In specific, on CENSUS dataset without L2 normalization, VFC fails, i.e., it does
not achieve higher Bal than the standard clustering for any λ. We find that the failure of VFC on CENSUS dataset (without
L2 normalization) is due to explosion of an exponential term calculated in its algorithm. There exists an exponential term
with respect to the clustering cost in the calculation of the optimal assignment vector in the VFC algorithm, and thus when
the clustering cost becomes too large, VFC fails due to an overflow. Note that the input dimension of CENSUS dataset is 66,
while those of ADULT and BANK are 5 and 6, respectively. While the clustering cost with L2 normalization is bounded
regardless of the dimension, the clustering cost without L2 normalization is proportional to the input dimension. This is why
VFC fails only for CENSUS dataset without L2 normalization. In contrast, as FCA does not fail at all regardless of the L2

normalization because there is no exponential term in the algorithm, meaning that it is numerically more stable than VFC.

Table 9. Comparison of the two in-processing algorithms, VFC (Ziko et al., 2021) and FCA, in terms of numerical stability when achieving
the maximum Bal, on ADULT, BANK, and CENSUS datasets without L2 normalization. Bold-faced results are the highest values of
Bal.

Bal (Cost)

Dataset / Bal⋆ VFC (Ziko et al., 2021) FCA ✓

ADULT / 0.494 0.310 (1.688) 0.493 (1.875)
BANK / 0.649 0.505 (1.549) 0.647 (1.859)
CENSUS / 0.969 Failed 0.959 (33.472)

Control of fairness level We also provide the full results (i.e., Figures 4 and 5 where the data are L2-normalized and not
L2-normalized, respectively) showing the trade-off of VFC and FCA-C for various fairness levels, on ADULT, BANK and
CENSUS datasets. FCA and VFC show similar trade-offs, while VFC cannot achieve sufficiently high values of Bal (the
orange dashed lines are the limit values of balance that VFC can achieve).

Figure 4. Bal vs. Cost trade-offs on (left) ADULT, (center) BANK and (right) CENSUS datasets. Black square (■) is from the standard
clustering, orange circle (•) is from VFC, green star (⋆) is from FCA-C, orange dashed line (- -) is the maximum of Bal that VFC can
achieve, and blue line (–) is the maximum achievable balance Bal⋆.

Figure 5. Bal vs. Cost trade-offs on (left) ADULT, (center) BANK and (right) CENSUS datasets. Black square (■) is from the standard
clustering, orange circle (•) is from VFC, green star (⋆) is from FCA-C, orange dashed line (- -) is the maximum of Bal that VFC can
achieve, and blue line (–) is the maximum achievable balance Bal⋆. The data are not L2-normalized.
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Comparison in terms of the silhouette score As measuring Cost alone may not fully capture the clustering quality, we
additionally consider another measure, called the silhouette score. The silhouette score (we abbreviate by Silhouette)
is computed as the average of (dnear − dintra)/max(dintra, dnear) over all data points, where dintra denotes the intra-cluster
distance and dnear represents the average distance to the nearest neighboring cluster. Notably, the results in Table 10 show
that FCA is also superior or competitive to baselines in terms of the silhouette score.

Table 10. Comparison of the Silhouette and Bal on ADULT dataset, when the data are L2-normalized.

Dataset / Bal⋆ ADULT / 0.494

With L2 normalization Silhouette (↑) Bal (↑)

Standard (fair-unaware) 0.227 0.223
FCBC 0.173 0.443
SFC 0.071 0.489
FRAC 0.156 0.490
FCA ✓ 0.176 0.493

Analysis on an additional dataset We additionally conduct an analysis on CREDITCARD dataset (n = 30000) from Yeh
& Lien (2009), which was also used in Bera et al. (2019); Harb & Lam (2020). We directly follow the data preprocessing of
Bera et al. (2019). We use gender as the sensitive attribute and set K = 10. The results are provided in Table 11 below,
where we can observe that FCA outperforms the baseline methods on CREDITCARD dataset as well.

Table 11. Comparison of the Cost and Bal on CREDITCARD dataset, when the data are L2-normalized.

Dataset / Bal⋆ CREDITCARD / 0.656

With L2 normalization Cost (↓) Bal (↑)

Standard (fair-unaware) 0.392 0.506
FCBC 0.492 0.629
SFC 0.682 0.653
FRAC 0.510 0.649
FCA ✓ 0.402 0.653
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C.3.2. APPLICABILITY TO VISUAL CLUSTERING (SECTION 5.3)

Settings: datasets, baselines, and measures RMNIST is a mixture of two image digit datasets: the original MNIST and
a color-reversed version (where black and white are swapped). OFFICE-31 is a mixture of two datasets from two domains
(amazon and webcam) with 31 classes. Both datasets are used in state-of-the-art visual FC methods (Li et al., 2020; Zeng
et al., 2023).

For the baseline, we consider a state-of-the-art FC method in vision domain called FCMI from Zeng et al. (2023). FCMI
learns a fair autoencoder with two additional loss terms: (i) clustering loss on the latent space and (ii) mutual information
between latent vector and color. While FCMI is an end-to-end method that learns the fair latent vector and perform clustering
on the fair latent space simultaneously, FCA is applied to a pre-trained latent space obtained by learning an autoencoder
with the reconstruction loss only. We also report the performances of DFC (Li et al., 2020) which was the main baseline in
the FCMI paper, along with SFC (Backurs et al., 2019) and VFC (Ziko et al., 2021), even though these two methods are not
specifically designed for the vision domain.

The clustering performance for the two image datasets is evaluated by two classification measures ACC (accuracy calculated
based on assigned cluster indices and ground-truth classification labels) and NMI (normalized mutual information between
ground-truth label distribution and assigned cluster distribution), which are consistently used in Li et al. (2020); Zeng
et al. (2023), as datasets involve ground-truth classification labels (e.g., {0, 1, . . . , 9} for RMNIST and the 31 classes for
OFFICE-31). The fairness level is also evaluated by Bal.

Results Table 12 shows that FCA performs similar to FCMI, which is the state-of-the-art, while outperforming the other
baselines with large margins in terms of Bal. Note that SFC, VFC, and FCA are two-step methods, i.e., they find fair
clustering on the pre-trained (fair-unaware) latent space, and FCA is the best among those. Furthermore, on the other hand,
DFC and FCMI are end-to-end methods so it is noteworthy that FCA outperforms DFC and performs similarly to FCMI.

Table 12. Comparison of clustering utility (ACC and NMI) and fairness level (Bal) on two image datasets. ‘Standard (fair-unaware)’
indicates autoencoder + K-means (Vincent et al., 2010). First-place values are bold, and second-place values are underlined. The
performances of the baselines reflects the better results between our re-implementation and the one reported by Zeng et al. (2023).

Dataset / Bal⋆ RMNIST / 1.000 OFFICE-31 / 0.282

Performance ACC (↑) NMI (↑) Bal (↑) ACC (↑) NMI (↑) Bal (↑)

Standard (fair-unaware) 41.0 52.8 0.000 63.8 66.8 0.192
SFC (Backurs et al., 2019) 51.3 49.1 1.000 61.6 61.2 0.267
VFC (Ziko et al., 2021) 38.1 42.7 0.000 64.8 70.4 0.212
DFC (Li et al., 2020) 49.9 68.9 0.800 69.0 70.9 0.165
FCMI (Zeng et al., 2023) 88.4 86.4 0.995 70.0 71.2 0.226
FCA ✓ 89.0 79.0 1.000 67.6 70.5 0.270

Further comparison between the fairlet-based method and FCA in visual clustering We compare the fairlet-based
method and FCA using OFFICE-31 dataset, considering (i) not only the overall clustering utility, (ii) but also the similarity
of matched features. For a clear comparison, we sample a balanced subset (with respect to the label and sensitive attribute)
from the original dataset, which is imbalanced. That is, we ensure that the number of samples with the same label is equal
across the two protected groups (i.e., the two domains). As a result, we obtain 795 images from both the amazon and
webcam domains. We then find fairlets or apply FCA on this balanced dataset. Note that finding fairlets when n0 = n1 is
equivalent to finding the optimal transport map (Villani, 2008; Chierichetti et al., 2017; Peyré & Cuturi, 2020).

Table 13. Comparison of the fairlet-based method and FCA. ‘Matching cost’ is defined by the average distance between two matched
features. ‘Matching = Label’ is defined by the average ratio of images with the same label being matched. Bold-faced values indicate the
best performance.

Matching method Matching performance Clustering performance
Matching cost Matching = Label (↑) Cost (↓) ACC (↑) NMI (↑)

Fairlet-based 0.211 0.595 0.278 65.8 71.0
FCA ✓ 0.241 0.631 0.269 69.3 72.2
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Table 13 presents the comparison results using various measures, including performance measures with respect to matching
(the matching cost and how much images with the same label are matched) and clustering (Cost, ACC, and NMI). While
the fairlets tend to match more similar features (i.e., the matching cost is lower) as expected by the definition of fairlets,
FCA exhibits a better ability to collect images with same labels into clusters (i.e., lower Cost, higher ACC, and higher
NMI). Moreover, in visual clustering, matching similar features in the pre-trained latent space does not always guarantee
that images with the same label are matched (FCA achieves a higher proportion of matchings where images share the same
label compared to fairlets). These results suggest that while fairlets provide optimal matchings in terms of feature similarity,
however, they may be suboptimal in terms of label similarity and overall clustering utility.

30



Fair Clustering via Alignment

C.3.3. ABLATION STUDY: (1) SELECTION OF THE PARTITION SIZE m (SECTION 5.4)

This section provided empirical evidence for the partitioning technique introduced in Section 4.3. First, Figure 6 indicates
that using a partition size of around 1000 yields reasonable results. Specifically, using m values greater than 1000 shows
similar performance compared to those obtained with m = 1024.

Figure 6. Variations of Cost and Bal with respect to the partition size. (Left, Center, Right) = (ADULT, BANK, CENSUS). (Top, Bottom)
= (With L2 normalization, Without L2 normalization).

We further provide the elapsed computation time for various partition sizes, up to using the full dataset. Using m = 1024 as
the baseline, we calculate the relative computation time (%) for other partition sizes. The comparison, presented in Table 14
below, shows that using m = 1024 leads to a significant reduction in computation time.

Table 14. Comparison of computation time with different partition sizes, up to using the full dataset. For each partition size and dataset,
we provide the averaged relative elapsed time per iteration, when compared to computation time for m = 1024.

(Relative) elapsed time per iteration Partition size m
256 512 1024 ✓ 2048 4096 Full

ADULT (n = 32561, d = 5) 17% 58% 100% 140% 344% 3,184%
BANK (n = 41108, d = 6) 14% 43% 100% 161% 288% 3,308%
CENSUS (n = 20000, d = 66) 23% 52% 100% 176% 375% 1,064%

Additionally, we observe that computation time is linear in m2, as shown in Figure 7 below. This numerical result can
support the theoretical computational complexity O(nm2) described in Section 4.3. See Table 18 in Appendix C.3.6 for
another result showing that the computation time is also linear in n.

Figure 7. Squared partition size m2 vs. Relative computation time. (Left, Center, Right) = (ADULT, BANK, CENSUS).
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C.3.4. ABLATION STUDY: (2) OPTIMIZATION AND INITIALIZATION OF CLUSTER CENTERS (SECTION 5.4)

Optimization algorithm of cluster centers We analyze how the performance of FCA varies depending on the optimization
algorithm for finding cluster centers.

(i) For the K-means algorithm whose results are reported in the main body, we use the K-means++ initialization (Arthur &
Vassilvitskii, 2007) from the implementation of scikit-learn package (Pedregosa et al., 2011). Note that we use the
algorithm of Lloyd (1982) for the K-means algorithm.

(ii) We additionally consider random initialization of cluster centers with Lloyd’s algorithm.

(iii) For the gradient-based algorithm, we use Adam optimizer (Kingma & Ba, 2014). We set a learning rate of 0.005
for CENSUS dataset with L2 normalization, and 0.05 for all other cases. To accelerate convergence, 20 gradient steps of
updating the centers are performed per iteration.

Table 15 presents the results comparing these three approaches, showing that FCA is robust to the choice of the optimization
algorithm for finding cluster centers. Note that, while the gradient-based algorithm is also effective and accurate, it
requires additional practical considerations such as selections of the learning rate and optimizer. Furthermore, the slight
outperformance of K-means++ initialization over random initialization suggests that an efficient initialization algorithm can
enhance the final performance of FCA. This is also theoretically examined through the approximation error in Appendix B.5,
which depends on the approximation error of the standard algorithm for finding cluster centers without fairness constraints.
However, since the margins are small, FCA can be considered empirically robust to the initialization.

Table 15. Comparison of performance with respect to optimization algorithms for finding cluster centers with L2 normalization (top) and
without L2 normalization (bottom). ‘K-means++’ indicates that the initial centers are set according to the K-means++ initialization in
the first iteration, then apply the algorithm of Lloyd (1982). ‘K-means random’ indicates that the initial centers are set randomly at the
first iteration, then apply the algorithm from Lloyd (1982). ‘Gradient-based’ indicates that the initial centers are set randomly, and the
centers are subsequently updated using the Adam optimizer.

Dataset / Bal⋆ ADULT / 0.494 BANK / 0.649 CENSUS / 0.969

With L2 normalization Cost Bal Cost Bal Cost Bal

FCA (K-means++) 0.328 0.493 0.264 0.645 0.477 0.962
FCA (K-means random) 0.331 0.490 0.275 0.646 0.477 0.955
FCA (Gradient-based) 0.339 0.492 0.254 0.640 0.478 0.957

Dataset / Bal⋆ ADULT / 0.494 BANK / 0.649 CENSUS / 0.969

Without L2 normalization Cost Bal Cost Bal Cost Bal

FCA (K-means++) 1.875 0.492 1.859 0.647 33.472 0.959
FCA (K-means random) 1.882 0.489 1.864 0.644 32.913 0.960
FCA (Gradient-based) 1.943 0.490 1.967 0.646 34.121 0.962
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Initialization of cluster centers Moreover, we empirically assess the stability of FCA and FCA-C with respect to the
different initial cluster centers (while keeping the initialization algorithm fixed to K-means++), and compare them with the
standard K-means++ algorithm. For FCA and the standard K-means++ algorithm, we run each algorithm five times with
five different random initial centers. For FCA-C, we use five random initial centers for each ε ∈ {0.1, 0.15, . . . , 0.85, 0.9}
and compute the averages as well as standard deviations. Then, we divide the standard deviation by average 17 times
(corresponding to 17 εs), and take average.

Table 16 below reports the coefficient of variation (= standard deviation ÷ average) of Cost and Bal. The results show
that the variations of all the three algorithms are similar, indicating that FCA and FCA-C are as stable as the standard
K-means++ with respect to the choice of initial cluster centers. That is, aligning data (i.e., finding the optimal coupling
matrix Γ) to build fair clustering does not affect the stability of the overall algorithm.

Table 16. Standard deviations divided by averages (i.e., coefficient of variation) with respect to five random different choices of initial
centers.

FCA ADULT BANK CENSUS
Cost Bal Cost Bal Cost Bal

with L2 0.012 0.001 0.093 0.006 0.004 0.001
without L2 0.010 0.001 0.081 0.003 0.006 0.003

FCA-C ADULT BANK CENSUS
Cost Bal Cost Bal Cost Bal

with L2 0.015 0.001 0.083 0.007 0.011 0.004
without L2 0.011 0.001 0.088 0.002 0.010 0.002

K-means++ ADULT BANK CENSUS
Cost Bal Cost Bal Cost Bal

with L2 0.009 0.001 0.078 0.005 0.008 0.002
without L2 0.011 0.000 0.090 0.004 0.010 0.002

C.3.5. ABLATION STUDY: (3) CONSISTENT OUTPERFORMANCE ACROSS VARIOUS K (SECTION 5.4)

We analyze the impact of K to the performance of four FC algorithms (FCBC, SFC, FRAC, and FCA). On ADULT dataset,
we evaluate the FC algorithms with K ∈ {5, 10, 20, 40}. The results are presented in Figure 8 below, which show that FCA
outperforms existing FC algorithms across all values of K. Specifically, FCA achieves lower values of Cost than baselines
for most values of K, while maintaining the highest fairness level: Bal ≈ Bal⋆.

Figure 8. Performance comparison of FC algorithms in terms of Cost and Bal for K ∈ {5, 10, 20, 40}. (Left two, Right two) = (With
L2 normalization, Without L2 normalization).
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C.3.6. ABLATION STUDY: (4) SCALABILITY FOR LARGE-SCALE DATA (SECTION 5.4)

In this section, we evaluate the scalability of FCA for larger datasets, while the main experiments in Section 5 are conducted
on real datasets with sample sizes of around 20, 000 to 40, 000. In specific, we apply FCA on a synthetic dataset with an
extremely large sample size (around a million).

Large-scale dataset generation We generate a large (n = 106) synthetic dataset in Rd using a J-component Gaussian
mixture, as follows:

1. (Mean vectors) We sample J many d-dimensional vectors mj , j ∈ {1, . . . , J} from a uniform distribution
Unif(−20, 20). To ensure diversity, the distance between any two vectors is constrained to be at least 1. These
vectors are used as the mean vectors for the Gaussian components.

2. (Covariance matrices) Each jth Gaussian component is assigned a covariance matrix Σj = σ2
j I, where σj ∼ Unif(1, 3).

3. (Weights) Component weights, denoted as ϕj , j ∈ {1, . . . , J}, are sampled from a Dirichlet distribution
Dirichlet(α1, . . . , αJ) for given parameters α1, . . . , αJ .

4. (Completion) The Gaussian mixture model is completed as
∑J

j=1 ϕjN (mj ,Σj). We set J as an even number, and
sample data for S = 0 from J/2 components and for S = 1 from the remaining J/2 components.

Using this procedure, we construct a dataset with n = 106, d = 2, J = 20, and αj = 1,∀j ∈ {1, . . . , J}. The resulting
generated dataset contains 320,988 samples for S = 0 and 679,012 samples for S = 1. The features are then scaled to have
zero mean and unit variance. Figure 9 provides a visualization of this synthetically generated dataset.

Figure 9. The large synthetic dataset generated with n = 106, d = 2, J = 20, and αj = 1, ∀j ∈ {1, . . . , J}.
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Results We fix the number of clusters to K = 10. In this analysis, we compare only FCA and VFC, as other baselines
incur extremely high computational costs for this dataset. Table 17 presents the results, demonstrating that FCA is easily
scaled-up and remains a favorable FC algorithm for this large-scale dataset. That is, FCA successfully achieves near-perfect
fairness (i.e., Bal = 0.472 ≈ 0.473). In contrast, VFC fails to achieve near-perfect fairness, with a limit of Bal 0.114.
Meanwhile, FCA-C achieves a lower Cost than VFC (0.107 < 0.111), while attaining the maximum achievable Bal for
VFC (≈ 0.114).

Table 17. Comparison of Cost and Bal between FCA (or FCA-C) and VFC on the large synthetic dataset in Figure 9.

Bal⋆ = 0.473 Cost (↓) Bal (↑)

Standard (fair-unaware) 0.058 0.000
VFC (Ziko et al., 2021) (λ = 51000) 0.111 0.114
FCA-C (ε = 0.65) ✓ 0.107 0.115
FCA ✓ 0.669 0.472

We further analyze the computation times of FCA on four datasets with different ns, including this large-scale dataset.
Table 18 shows that the computation time scales linearly with n (i.e., Average time / n is nearly constant). This observation
aligns with our discussion on the computational complexity of O(nm2) when applying the partitioning technique with a
fixed m = 1024 (see Section 4.3). These results can further highlight the empirical efficiency of the partitioning technique.

Table 18. Comparison of total computation times (seconds) of FCA, on four different datasets with different ns. The reported results are
averages and standard deviations, based on five runs.

ADULT BANK CENSUS Large synthetic (Figure 9)

Partition size m 1024 1024 1024 1024

n 32,561 41,108 20,000 1,000,000

Average time (Standard deviation) 56.7 (3.9) 73.1 (7.8) 32.2 (5.4) 1410.1 (115.8)

Average time / n 1.7× 10−3 1.8× 10−3 1.6× 10−3 1.4× 10−3

C.3.7. ABLATION STUDY: (5) LINEAR PROGRAM VS. SINKHORN FOR OPTIMIZING Q (SECTION 5.4)

We evaluate an alternative algorithm for finding the coupling matrix Γ. Specifically, the Sinkhorn algorithm of Cuturi (2013)
optimizes C + λ ent(Γ), where C is the cost matrix defined in Phase 1 of Section 4.1, λ is a regularization parameter,
and ent(Γ) denotes the entropy of Γ. Note that, as λ increases, Γ approaches a uniform matrix. It is well-known that the
Sinkhorn algorithm generally yields a more relaxed solution with reduced runtime compared to solving the Kantorovich
problem via linear programming.

We compare (i) the original FCA (using linear programming) and (ii) FCA with the Sinkhorn algorithm for λ ∈
{0.01, 0.1, 1.0}. Table 19 shows the results, suggesting: (i) A small regularization (λ = 0.01) achieves performance
comparable to linear programming with a slight runtime reduction (≈ 2%). (ii) A large regularization (λ = 1.0) significantly
degrades performance while reducing runtime (≈ 10%). Overall, careful tuning of λ is critical when using the Sinkhorn
algorithm, while the runtime reduction may not be significant in practice. Therefore, we recommend solving the linear
program for FCA.

Table 19. Comparison of using the Sinkhorn algorithm and solving the linear program, in terms of Cost, Bal, and runtime per iteration.

ADULT

Bal⋆ = 0.494 Cost (↓) Bal (↑) Runtime / iteration (sec)

FCA (Sinkhorn, λ = 1.0) 0.350 0.271 4.98
FCA (Sinkhorn, λ = 0.1) 0.315 0.463 5.12
FCA (Sinkhorn, λ = 0.01) 0.330 0.491 5.55
FCA (Linear program) 0.328 0.493 5.67

35



Fair Clustering via Alignment

C.3.8. COMPARISONS OF COMPUTATION TIME

FCA versus FCA-C We compare the computation times of FCA and FCA-C, as FCA-C technically involves an additional
step of optimizing W. Table 20 below shows that while FCA-C requires slightly more computation time than FCA, the
increase is not substantial (a maximum of 3.7%).

Table 20. Comparison of computation times (seconds) of FCA and FCA-C per each iteration. The averages and standard deviations are
calculated based on five runs. The data are L2-normalized and the batch size is fixed as 1024.

Average (Standard deviation) ADULT BANK CENSUS

FCA 5.67 (0.39) 7.31 (0.78) 16.10 (2.70)
FCA-C 5.72 (0.47) 7.58 (0.32) 16.46 (1.23)

Increase (FCA-C / FCA) 0.5% ↑ 3.7% ↑ 2.2% ↑

FCA versus SFC We here additionally consider two more scenarios to compare FCA and SFC. In this analysis, the data
are L2-normalized and the batch size is fixed as 1024 for FCA. Note that FCA consists of an outer iteration (updating the
cluster centers and joint distribution alternately), and an inner iteration when applying the K-means algorithm in the aligned
space.

1. We compare the number of iterations until convergence. For SFC, we calculate the number of iterations in the K-means
algorithm (after finding fairlets). For FCA, we calculate the sum of the number of iterations (inner iteration) in the
K-means algorithm for each outer iteration (updating the cluster centers and joint distribution). In this analysis, note
that we report the elapsed time for FCA with 10 iterations of the outer iteration, because the performance of FCA with
10 iterations of the outer iteration is not significantly different from FCA with 100 iterations of the outer iteration.

As a result, SFC requires smaller number of iterations, compared to FCA (see Table 21), primarily because FCA
involves the outer iterations. On the other hand, in FCA, the number of total iterations is almost linear with respect to
the number of iterations in each inner loop.

Table 21. Comparison of computational costs between FCA and SFC: the total number of iterations of the standard K-means algorithm in
SFC and FCA.

Total number of iterations ADULT BANK CENSUS

SFC (Backurs et al., 2019) 15 10 32
FCA 57 110 93

2. To further analyze whether applying an early-stopping to FCA can maintain reasonable performance, we conduct an
additional experiment: we fix the number of K-means iterations to 1 per outer iteration of FCA, then perform a total
of 10 outer iterations. With this setup, the total number of iterations for FCA becomes 10, which is comparable to or
smaller than that of SFC (15 for Adult, 10 for Bank, and 32 for Census dataset, as shown in Table 21). We observe that
the performance of FCA with this early-stopping is slightly worse than the original FCA (where the K-means algorithm
runs until convergence), but it still outperforms SFC (see Table 22). However, this early-stopping approach would be
not recommended, at least for the datasets used in our experiments. This is because running the K-means algorithm
takes less than a second or a few seconds, while the computation of finding the joint distribution dominates the overall
runtime. Additionally, the original FCA slightly outperforms the early-stopped version with only 10 iterations.

Table 22. Performance comparison of SFC, FCA with a total of 10 iterations, and the original FCA (updating until convergence). The data
are not L2-normalized.

Dataset / Bal⋆ ADULT / 0.494 BANK / 0.649 CENSUS / 0.969

Performance Cost (↓) Bal (↑) Cost (↓) Bal (↑) Cost (↓) Bal (↑)

SFC (Backurs et al., 2019) 3.399 0.471 3.236 0.622 69.437 0.940
FCA (total 10 iterations) 1.923 0.489 1.992 0.644 33.967 0.955
FCA (original) 1.875 0.492 1.859 0.647 33.472 0.959
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C.3.9. COMPARISON OF FCA AND SFC BASED ON K-MEDIAN CLUSTERING COST

As SFC is originally designed for the K-median clustering objective, we compare FCA and SFC based on the K-median
clustering cost (i.e., L1 cost) for a more fair comparison. In specific, FCA for K-median clustering cost is modified as
follows: (i) The L2 norm in eq. (3) is replaced by the L1 norm. (ii) The cluster centers are found by minimizing the L1

distance, as we discuss in Appendix A.4.

The results are presented in Table 23, which shows that FCA still outperforms SFC. It implies that the fairlet-based method
still may not always find the most effective matching in view of clustering utility (cost), even when the given clustering
objective more suited to fairlet-based approaches (e.g., L1 norm) is considered.

Let Cost1 = 1
n

∑
(x,s)∈D ∥x− µk(x,s)∥1 be the K-median clustering cost.

Table 23. Comparison of Cost1 and Bal of FCA and SFC. The data are not L2-normalized.

Dataset / Bal⋆ ADULT / 0.494 BANK / 0.649 CENSUS / 0.969

Performance Cost1 (↓) Bal (↑) Cost1 (↓) Bal (↑) Cost1 (↓) Bal (↑)

Standard (fair-unaware) 1.788 0.206 1.989 0.391 21.402 0.030
SFC (Backurs et al., 2019) 2.979 0.471 3.056 0.622 29.597 0.940
FCA ✓ 2.032 0.492 2.383 0.647 22.927 0.959
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