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ABSTRACT

Modelling physical systems when only partial knowledge of the physics is available
is a recurrent problem in science. Within this context, we consider hybrid models
that complement PDE solvers, providing incomplete physics information, with
NN components for modelling dynamical systems. A critical challenge with this
approach lies in generalising to unseen environments that share similar dynamics
but have different physical contexts. To tackle this, we use a meta-learning strategy
for learning hybrid systems, that captures context-specific variations inherent
in each system, enhancing the model’s adaptability to generalise to new PDE
parameters and initial conditions. We emphasise the advantages of adaptation
strategies compared to a pure empirical risk minimisation approach, the superiority
of the solver-neural network combination over soft physics constraints, and the
enhanced generalisation ability compared to alternative approaches.

1 INTRODUCTION

Augmenting physical principles with data-driven methodologies has emerged as a promising approach
for modelling dynamical systems and solving partial differential equations (PDEs). This can be
achieved classically by incorporating physical constraints within a loss function (Raissi et al., 2019;
Li et al., 2023). However, this often leads to ill-posed optimisation problems, and incorporating hard
constraints is usually more efficient. Hybrid systems that combine PDE solvers with NN components
do exactly that. This idea has been explored, for example, for accelerating simulations by enhancing
low-resolution solvers with neural networks (NNs) (Kochkov et al., 2021; Um et al., 2021) or for
complementing partially known dynamics (Yin et al., 2021; Tathawadekar et al., 2023). We consider
here this hybrid setting for solving parametric PDEs, i.e. modelling physical systems subject to
varying dynamics due to changes in equation coefficients, initial conditions (IC), boundary conditions
(BC), and forcing terms.

A key problem with models leveraging data-driven components is the generalisation issue: these
models fail to generalise to unseen contexts or parameters. This is currently addressed through
a classical empirical risk minimisation (ERM) practice, by sampling observations or simulations
across the parameters distribution (Brandstetter et al., 2023; Takamoto et al., 2023). However, given
the complexity and the diversity of observable dynamics in physical systems together with limited
data availability, these methods primarily interpolate in a small neighbourhood within the training
parameters distribution, lacking generalisation to unseen conditions outside the training ones. Our
claim is that empirical risk minimisation is not well-suited for modelling the complexity of physical
dynamics. Instead, we advocate for an alternative approach that emphasises systems capable of
rapidly adapting to novel environments. Our framework can be viewed as a meta-learning approach
for rapidly adapting the data-driven components of a hybrid model. Our contributions are as follows:
•We introduce an adaptation strategy for hybrid Physics-aware neural parametric PDE solvers
providing enhanced extrapolation abilities compared to alternative approaches. • This allows low-cost
adaptation to new situations with only a small number of observed data. •We evaluate the benefits of
this approach across various datasets, encompassing both-in-distribution and out-of-distribution
scenarios. •We compare this hard physical constrained approach to soft constraint incorporation.
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2 METHODOLOGY

2.1 PROBLEM DESCRIPTION AND NOTATIONS

We consider general dynamics driven by equations of the form:

du(x, t)

dt
= f(u(x, t)), (1)

with u(x, t) the PDE solution at time t ∈ I ⊂ [0,∞) at position x in space Ω, f ∈ F maps the
PDE solution u to its temporal derivatives. Our objective is to model the temporal evolution of a
deterministic spatio-temporal phenomenon. We posit the observation of similar phenomena occurring
in diverse environments e, each leading to a distinct dynamics denoted fe. Specifically, we assume
a dynamical system modelled by a parametric PDE, where the form of the PDE is shared across
environments, but the parameter values vary among them. We also assume that the physics is partially
known and provided as an explicit PDE. The dynamics equation for a given environment can thus be
rewritten as:

due(x, t)

dt
= G(fe(u(x, t)), re(u(x, t))), (2)

fe and re respectively represents the known and unknown physics of environment e and G is a simple
function combining the known and unknown components of the PDE.

For training, we assume the observation of a set of trajectories for each environment e, each defined
by an IC u0. We define Etr and Ead, respectively the set of environments used to train the model
and to adapt to during inference. In each training environment, a small amount of N trajectories is
available to train the model and composes a training set De

tr = {ui(x, t)}Ni=1. During inference, we
adapt our model using only a single trajectory per environment denoted as De

ad. We define the MSE
loss over training set De

tr (more details in Appendix C):

L(θ,De
tr) =

N∑
j=1

∫
t∈I,x∈Ω

∥(gθ(uj(x, t))−G(fe(uj(x, t)), r
e(uj(x, t))∥22dxdt (3)

with gθ an approximation function for the true dynamics. Our goal is twofold: first, to learn a function
gθ capable of generalising to new trajectories from a set of known functions fe ∈ Ftr, where e ∈ Etr;
and second, to efficiently adapt to new environments e ∈ Ead during which Etr ∩ Ead = ∅. The
dynamics in the unseen environments are defined by functions fe ∈ Fad not encountered during
training. From a meta-learning view, environments can be viewed as tasks we want to generalise to.

2.2 HYBRID FORMULATION FOR LEARNING DYNAMICS

Figure 1: Complete (up) and Incomplete (down) Physics
for Gray-Scott PDE

In equation 2, the function G is typically
unknown. We assume a simple form and
consider two instances for decomposing
the known and unknown parts of the PDE
in our approximation model gθ. The first
one is a simple additive decomposition:

gθ = gp + gc(θ) (4)

where gp ∈ Gp encodes the incomplete
physical knowledge and gc ∈ Gc is the
data-driven term complementing gp. It is
assumed here that gp is incomplete but is
an exact component of the complete PDE
and gc(θ) is then modelling a residual term.
Although simple, this decomposition can
be shown to cover a large variety of situations (Yin et al., 2021). We illustrate in figure 1 the difference
between a complete and incomplete trajectory for Gray-Scott PDE a reaction-diffusion system where
the missing part corresponds to the reaction terms.

As a second instance, we considered the frequent case where a solver operating at a low resolution
solves a simplified dynamics and has to be complemented to approximate the effects of unresolved
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small scales onto larger ones (Belbute-Peres et al., 2020; Kochkov et al., 2021; Um et al., 2021). This
framework is known as a closure model and is used for example in Large eddy simulation (LES),
illustrated in figure 2. By operating on larger scale dynamics than direct numerical simulation (DNS),
LES offer a balanced compromise between computational cost and accuracy (Kochkov et al., 2021).
Since the closure model operates on the low resolution dynamics model, a better decomposition is:

gθ = (gc ◦ gp)(θ) + gp (5)

Figure 2: Unclosed and closed LES for Burgers equation

Here the data-driven part gc will
model the closure for the in-
complete physical component gp.
Practically gc will be trained
to complement gp in order to
approximate LES with closed
terms trajectories as ground-
truth. Starting from time t0, we
use an auto-regressive formula-
tion to compute the full trajec-
tory, implemented by a Neural
ODE (Chen et al., 2018) which
predicts the state ut+τ as ut+τ =
u0 +

∫ τ

t0
gθ(u(τ))dτ .

2.3 A TWO STAGE FRAMEWORK

Algorithm 1: Training Pseudo-code
Input: {De

tr}e∈Etr with #De
tr = N ;

θ = {θa, θe}, random init for θa and θe

while no convergence do
θ ← θ−η∇θ(

∑
e∈Etr

L(θ,De
tr)+λθe∥θe∥)

end

Our objective is to train a dynamical model
gθ on a set of environments and subsequently
adapt swiftly and effectively to new environ-
ments, as in Kirchmeyer et al. (2022). To
achieve this, we introduce two types of pa-
rameters for gθ: θ ≜ {θe, θa} with θe the
environment-specific and θa the environment-
agnostic parameters. The proposed optimisa-
tion problem is formulated as follows:

min
θe,θa

∑
De

tr∈Etr

L({θe, θa},De
tr)

subject to θe = argmin
θe

∑
De

tr∈Ead

L(θe,De
tr)

(6)

Our meta-learning strategy operates in two steps: Training and Adaptation. Then, it’s applied to a
new environment, inferring and adapting based on a single trajectory from that environment.

Training stage The objective is to learn the best environment-agnostic and environment-specific pa-
rameters. Ideally, we want the environment-agnostic parameters to capture most of the dynamics and
only use the environment-specific parameters to capture information not shared across environments.
We impose a locality constraint such that θe remains small:

min
θ=θe+θa

∥θe∥ s.t. ∀ue(t) ∈ De
tr,

due(t)

dt
= G(gp, gc(θ

e + θa))(ue(t)) (7)

Adaptation stage All parameters except environment-specific parameters are fixed. We want fast
and accurate adaptation to new environments: we employ a linear hyper-network during training and
adaptation stage that operates in a low-dimensional space, facilitating low-cost adaptation:

gθ = G(gp, gc(θ
a +W ace)) (8)

here θe = W ace, with W a = (W1, ...,Wdc
) ∈ Rdθ×dc , a shared weight matrix learnt during

training across environments and ce, a context vector learnt during adaptation. Adaptation to new
environments thus only requires learning a small dimensional code ce.

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

3 EXPERIMENTS

Table 1: Generalisation results for out-domain environments for in and out range time horizon -
Test results. Metrics in MSE.

Type ↓ Dataset → Gray-Scott Pendulum Lotka-Volterra Burgers

Model ↓ In-t Out-t In-t Out-t In-t Out-t In-t Out-t

Data-driven CoDA 1.08e-3 9.07e-3 3.37e-3 1.23e-3 1.54e-3 5.14e-1 3.92e-3 2.57e-2
CAVIA 1.21e-2 1.24e-2 6.36e-3 4.06e-3 1.07e-2 4.29e-1 6.49e-3 4.81e-2

Hybrid CoDA + Phys loss 3.36e-3 8.62e-3 1.99e-1 2.03 e-1 1.42 1.7 3.67e-2 2.28e-1
Ours 3.07e-5 7.17e-4 7.95e-6 5.23e-6 1.63e-4 9.46e-3 1.96e-4 5.86e-3

Model-driven Incomplete PDE Solver 5.55e-1 6.10e-1 8.51 6.23e1 9.34 1.35e1 2.70e-2 1.50e-1

Algorithm 2: Adaptation Pseudo-code
Input: {De

ad}e∈Ead
with #De

ad = 1; fixed
W a ∈ Rdθ×dc and θa ∈ Rdθ ,
ce = 0 ∈ Rdc

while no convergence do
ce ← ce − η∇ce(

∑
e∈Ead

L(ce,De
ad))

end

Our approach is validated on representative
ODEs/PDEs for the forecasting task. We as-
sess the model performance on two key aspects.
• In-domain generalisation: the model capa-
bility to predict trajectories defined by unseen
IC on all training environments e ∈ Etr. • Out-
of-domain generalisation: the model ability to
adapt to a new environment e ∈ Ead by pre-
dicting trajectories defined by unseen IC. We
also report in-range time error (In-t) and out-of-

range time error (Out-t) to highlight the model’s ability to predict dynamics within and outside the
time horizon it has been trained on.

Setup • Datasets We used two ODEs and two PDEs to assess the performance of our method:
Lotka-Volterra (LV, Lotka (1925)) and damped pendulum for the ODEs, 1D Burgers (Basdevant
et al., 1986) and 2D Gray-Scott (GS, Pearson (1993)) equations for the PDEs. For all the datasets, we
assume that the system is only partially known (details on the known/ unknown terms are provided in
Appendix D for lack of space). • Baselines We compare our approach with data-driven, hybrid and
model-driven baselines. CoDA Yin et al. (2022) and CAVIA Zintgraf et al. (2019) are data-driven
meta-learning frameworks for fast adaptation to new environments. We also extend CoDA into a
hybrid version by adding to the original data-driven loss a physics-informed loss representing the
known physics. This represents a soft constraint approach for integrating physics into a data-driven
model, whereas our hybrid approach, which directly incorporates a PDE into the model, corresponds
to a hard constraint approach. We also compare to the incomplete physical solver’s performance
when used alone. • Implementation We used MLPs for Pendulum and LV datasets and resolution-
dependent ConvNets for Burgers and GS. We use a RK4 solver for the neural ODE and context
vectors of dimension 2 for all datasets (more details are available in appendix E).

Main results • In-Domain and Out-Domain generalisation We report out-domain and in-domain
generalisation results in table 1 and 2 (in appendix A), respectively. For both in-domain and out-
domain, we outperform the baselines across all datasets sometimes with 1 or 2 orders of magnitude,
showcasing the effectiveness of our adaptation approach. CoDA enhanced with physical loss performs
worse than the original CoDA both for in and out-domain. Using an incomplete physical loss is
not a viable alternative for building hybrid systems, while directly incorporating PDE solvers as
a hard constraint proves effective. Besides, as noted by several authors, optimising physics loss
from collocation points is an ill-posed problem. The incomplete PDE solver low performance on
all the datasets highlights the benefits of the hybrid + adaptation approach. • In-range and out-
range temporal generalisation Results for both in-range and out-range time horizons are reported
in tables 1 and 2 (in appendix A). As all models have been trained only on In-t horizon, error
accumulates over time and leads to lower performance outside the training horizon. However, our
framework consistently exhibits the best score across all datasets when extrapolating outside the
training horizon. • Ablation in Table 3 (Appendix A) presents the model performance without the
adaptation mechanism. Here, the model learns a single corrective term for all training environments
and directly infers out-domain environments without adaptation. The performance is significantly
lower than with adaptation, affirming the essential role of adaptation in modelling complex physics
and underscoring the inadequacy of the ERM approach in this context.
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4 CONCLUSION

Our framework demonstrates the importance of adaptation for generalising to new environments and
its superiority to the classical ERM setting. It also highlights the benefits of directly embedding PDE
solvers as hard constraints in data-driven models compared to soft loss constraints.
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A ADDITIONAL RESULTS

A.1 IN-DOMAIN RESULTS

We report the results for in-domain generalisation in table 2. Across all datasets, we perform better
than all baselines, often by 1 or 2 order of magnitude. Our approach achieves also better performance
outside of the temporal horizon it has been trained on, despite a decrease in performance compared
to the performance inside of training-horizon, due to the accumulation error of the auto-regressive
method.

A.2 MODEL’S PERFORMANCE WITHOUT ADAPTATION MECHANISM

In order to justify the importance of adaptation in our approach, we also evaluate the performance of
our hybrid model but without any adaptation mechanism. This comes down to an ERM approach,
where we evaluate our model on data coming different environments. We report the results of this
approach in table 3 for both in-domain and out-domain trajectories. While an ERM approach can be
used to generalise to the same dynamics it has been trained on, i.e in-domain results, it fails to predict
trajectories coming from unseen environments (i.e. out-domain results) compared to adaptation
methods. In some cases, an ERM approach achieves worse than an incomplete PDE solver alone,
highlighting the importance of adaptation.

Table 2: Generalisation results for in-domain environments for in and out range time horizon -
Test results. Metrics in MSE.

Type ↓ Dataset → GS Pendulum LV Burgers

Model ↓ In-t Out-t In-t Out-t In-t Out-t In-t Out-t

Data-driven CoDA 3.39e-4 5.58e-3 7.91e-5 1.80e-5 1.61e-5 5.52e-2 3.81e-4 6.93e-3
CAVIA 4.86e-4 6.45e-3 5.10e-5 1.11e-5 2.54e-5 3.34e-2 6.50e-3 4.81e-2

Hybrid CoDA + Phys loss 3.98e-4 6.24e-3 7.08e-3 1.10e-3 3.84e-2 4.30e-1 4.48e-2 2.27e-1
Ours 4.39e-5 3.39e-4 6.90e-8 2.17e-8 5.07e-6 6.09e-4 1.77e-4 5.82e-3

Model-driven Incomplete PDE Solver 5.35e-1 5.77e-1 4.85 4.36 4.62 4.37 1.35e-2 8.21e-2

Table 3: Generalisation results of a hybrid model without adaptation - Test results. Metrics in
MSE.

Model ↓ Dataset → GS Pendulum LV Burgers

Environment ↓ In-t Out-t In-t Out-t In-t Out-t In-t Out-t

ERM In-domain 4.91e-3 2.11e-2 9.32e-3 3.10e-3 9.32e-3 6.88e-6 4.07e-3 1.20e-2
Out-domain 3.37e-2 7.72e-2 1.40e1 1.44e2 3.79 6.48 2.27e-2 1.49e-1

Incomplete PDE Solver In-domain 5.35e-1 5.77e-1 4.85 4.36 4.62 4.37 1.35e-2 8.21e-2
Out-domain 5.55e-1 6.10e-1 8.51 6.23e1 9.34 1.35e1 2.70e-2 1.50e-1

B RELATED WORK

We review hybrid and generalisation methods for learning physical processes, notably in the context
of dynamical systems.

B.1 HYBRID LEARNING

Purely data-driven approaches have emerged as a new tool for PDE solving (Raissi et al., 2019) and
dynamics forecasting (de Bézenac et al., 2019). While flexible and proficient in capturing intricate
patterns (Li et al., 2021; Brandstetter et al., 2023; Serrano et al., 2023), they tend to fall short when
it comes to generalising to different operational conditions. This limitation arises from a lack of
fundamental understanding of the systems they model. To unlock the full potential of deep learning
in simulating physical processes, there is a growing need to incorporate physical insights into the
deep learning framework.
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Data-driven with soft constraints Hybrid methodologies have emerged as a solution, combining
machine learning techniques with physics losses (Wang et al., 2021; Li et al., 2023). These hybrid
approaches have gained traction for their ability to achieve robust generalisation. Within this
framework, neural networks often play a crucial role, modelling specific aspects of conventional PDE
solvers. However, when only incomplete knowledge is assumed, minimising an incomplete physic
loss is not desirable.

Correcting PDE discretization error Recent years have witnessed the development of deep
learning models tailored for accurate simulation of turbulent flows (Kochkov et al., 2021). These
models leverage the training of neural networks with differentiable physics, addressing numerical
errors inherent in PDE discretization. This highlights the capacity of neural networks to swiftly and
effectively correct errors in under-resolved simulations. In our approach, we propose a more general
formulation for learning incomplete physics or augmenting simplified PDEs.

Incomplete physical models In alignment with the objectives of our work, some researchers
have put forth frameworks aimed at augmenting incomplete physical dynamics with neural network
models (Yin et al., 2021; Takeishi & Kalousis, 2021; Tathawadekar et al., 2023). This trend reflects a
broader effort within the scientific community to synergy the strengths of physical principles and
deep learning for improved modelling and simulation of complex systems. However, none of those
works tackle the problem of generalisation to new PDE parameters.

B.2 GENERALISATION FOR DYNAMICAL SYSTEMS

In the context of dynamical systems, various methods have been explored to address the challenge of
out-of-distribution generalisation (Yin et al., 2022). Standard deep learning models excel at learning
features aligned with the training data distribution but often struggle when faced with test data
distributions significantly divergent from the training data.

Meta-Learning One strategy to address this challenge involves the application of meta-learning
approaches (Zintgraf et al., 2019; Wang et al., 2022). These approaches seek to imbue models with
general knowledge about the system by exposing them to a diverse set of M tasks, thereby enhancing
adaptability to varying input distributions. Recent works have proposed a meta-learning formulation
specifically for learning models capable of rapid adaptation to unseen tasks within the context of
dynamical systems. We propose a similar approach, but extends to more complex dynamical systems
where partial knowledge is assumed (Kirchmeyer et al., 2022; Wang et al., 2022; Park et al., 2023).

Incorporating PDE parameters Recent advancements in the pursuit of robust generalisation have
introduced innovative techniques designed to bolster model performance in both long-term (Lippe
et al., 2023) and out-of-distribution scenarios. Some of these techniques focus on the parameters
of partial differential equations (PDEs) (Takamoto et al., 2023), recognising them as pivotal factors
influencing data distribution. Consequently, certain methods endeavour to explicitly encode the true
parameter values into the latent space (Fotiadis et al., 2022). However, most of these work only
operate on ODEs or assume availability of larger amount of data.

Generalisation with PINNs An alternative approach involves physics-informed neural networks
(PINN) (Raissi et al., 2019), which serve as PDE solvers. However, a limitation of PINNs is their
inability to generalise to diverse scenarios. Therefore, ongoing research efforts have extended the
capabilities of PINNs to facilitate generalisation across various system parameters, ICs and boundary
conditions (Huang et al., 2022; Cho et al., 2023). Approaches based on PINNs are data-free and thus
assume complete knowledge of the PDE. In scenarios where only partial knowledge is assumed, soft
constraints are ineffective compared to our proposed approach.

C TRAJECTORY BASED FORMULATION

In practice, fe is unavailable and we can only approximate it from discretised trajectories. As done
in (Kirchmeyer et al., 2022), we use a trajectory-based formulation of Eq. (3). We consider a set of
trajectories discretised over a uniform temporal and spatial grid includes T

∆t (
s
∆s )

ds states, where ds

8
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Table 4: PDE parameters used in training and adaptation experiments

PDE training ODE/PDE parameters adaptation ODE/PDE parameters

Damped pendulum T0 ∈ {5, 6, 7} T0 ∈ {4, 9}
α ∈ {0.3, 0.4, 0.5} α ∈ {0.1, 0.6}

Lotka-Volterra β ∈ {0.5, 0.75, 1.0} β ∈ {0.3, 1.125}
δ ∈ {0.5, 0.75, 1.0} δ ∈ {0.3, 1.125}

1D Burgers ν ∈ {1e−4, 3e−4, 5e−4, 7e−4} ν ∈ {1e−5, 5e−5, 5e−3, 7e−3}

2D Gray-Scott F ∈ {0.03, 0.039} F ∈ {0.025, 0.042}
k ∈ {0.058, 0.062} k ∈ {0.050, 0.065}

is the spatial dimension. ∆t and ∆s represent respectively the temporal and spatial resolution. T and
S are the temporal horizon and spatial grid size. Our loss writes as:

L(θ,De
tr) =

N∑
j=1

(s/∆s)∑
k=1

T/∆T∑
l=1

∥ue
j(sk, tl)− ũe

j(sk, tl)∥22

where ũe(tl) = ue
0 +

∫ tk

t0

gθ(ũ
e(τ))dτ

(9)

ue
j(sk, tl) is the state value in the jth trajectory from environment e at the spatial coordinate sk and

time tl ≜ l∆t. ue(t) ≜ [u(s1, t), . . . , u(s(S/∆s)ds , t)]
T is the state vector in the jth trajectory from

environment e over the spatial domain at time t and ue
0 is the corresponding IC.

D DATASET DETAILS

We present the equations and the data generation settings used for all dynamical systems considered in
this work. In table 4, we report all ODE and PDE parameters used to generate training and adaptation
environments.

D.1 DAMPED PENDULUM

The ODE represents the motion of a simple pendulum:

d2θ

dt2
+ ω2

0 sin θ + α
dθ

dt
= 0 (10)

where θ(t) is the angle, ω0 the proper pulsation and α the damping coefficient. In our case where
we suppose we only have incomplete knowledge of the phenomenon, we consider the term αdθ

dt
unknown and want to learn it using the data-driven component.

Data generation We generate trajectories coming from different environments represented by
specific parameter values for both α and ω0 = ( 2πT0

)2 using Runge-Kutta 8 solver. For training, we
generated 9 distinct environments, each composed of 16 trajectories on the time horizon [0, 10] with
a time step ∆t = 0.5. For adaptation, we evaluate our method on 4 distinct environments defined
by parameters unseen during training and trajectories time horizon is [0, 20]. Only one trajectory
per environment is used to adapt the model to those new dynamics and we evaluate the model’s
performance on 32 trajectories per environments.

9
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D.2 LOTKA-VOLTERRA

The system describes the interaction between a prey-predator pair in an ecosystem, formalised into
the following ODE:

dx

dt
= αx− βxy (11)

dy

dt
= δxy − γy (12)

where x, y are respectively the quantity of the prey and the predator, α, β, δ, γ define how two
species interact. Across all environments, we suppose α = γ = 0.5, with only β, δ varying across
environments. For the physical model, the term γy is supposed unknown.

Data generation We generate trajectories on a temporal grid ∆t = 0.5 using Runge-Kutta 45 solver.
For training, we consider 9 different environments, each composed of 4 trajectories, each defined by
specific ICs. For adaptation, we adapt our network on 4 new environments using only 1 trajectory
per environment. We evaluate the adaptation’s performance on 32 trajectories per environment.
Trajectories for training have been generated on a time horizon [0, 10] and on [0, 20] for evaluation.

D.3 BURGERS

Burgers’ equation is a nonlinear equation which models fluid dynamics in 1D and features shock
formation. We consider the following form of the Burgers equation:

du

dt
+

du

dx
= ν

d2u

dx2
(13)

where u is the velocity field and ν is the diffusion coefficient.

Data generation For the DNS, we generate complex trajectories using a 5th order central difference
scheme using Runge-Kutta 45 solver with a time-step ∆t = 1e−5 and ∆x = 2π

16384 . Such trajectories
are particularly costly to generate, therefore, we rather use LES. To obtain the ground truth LES
trajectories, we apply a spatial filtering operator on the DNS trajectories. We also down-sample
the temporal and spatial grid. Therefore, we obtain LES trajectories with a timestep ∆t = 1e−3
and ∆x = 1

256 . Applying such filtering operator to the Burgers equation leads to the following
formulation:

dū

dt
+ u

dū

dx
= ν

d2ū

dx2
+Rclosure(ū, u) (14)

whereR represents the unresolved subgrid scales, which are smaller than the resolved scales in the
coarse grid. We try to learn these unresolved scales with the data-driven component. For training,
we generate 4 environments with 4 trajectories per environment, each corresponding to a different
viscosity coefficient. Trajectories have been generated on a temporal horizon [0, 0.05] for training
and on [0, 0.1] for evaluation.

D.4 GRAY-SCOTT

The PDE describes reaction-diffusion system with complex spatiotemporal pattern through the
following 2D PDE:

du

dt
= Du∆u− uv2 + F (1− u) (15)

dv

dt
= Dv∆v − uv2 − (F + k)v (16)

where u, v represent the concentrations of two chemical components in the spatial domain S with
periodic boundary conditions. Du, Dv denote the diffusion coefficients respectively for u, v and F, k
are the reactions parameters. Across all environments, Du = 0.2097, Dv = 0.105 are constant. We
consider the terms F (1 − u) and (F + k)v unknown and use our framework to learn the missing
terms.

10
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Data generation We generate trajectories on a temporal grid with ∆t = 10. S is a 2D space of
dimension 32×32 with a spatial resolution of ∆s = 2. For training, we generate 4 environments with
one trajectory per environment defined on a temporal horizon [0, 200]. For adaptation, we generated
also 4 environments and only use 1 trajectory per environment to adapt to the new dynamics. We
then evaluate the framework’s performance on 32 new trajectories per environments, defined on a
temporal horizon [0, 400].

E IMPLEMENTATION DETAILS

The code has been written in Pytorch (Paszke et al., 2019). All experiments were conducted on a
single GPU: NVIDIA TITAN Xp with 12 Go.

E.1 ARCHITECTURE

We implement the dynamical model gθ with the following architectures:

• LV and Pendulum: we used MLPs composed of 4 hidden layers of width 64.
• GS: 4-layer 2D ConvNet with 64-channel hidden layers, and 3× 3 convolution kernels.
• BG: 4-layer 1D ConvNet with 64-channel hidden layers, and 7× 7 convolution kernels.

For all networks, we use Swish activation layers. The hyper-network used is a single affine layer NN.
We use an RK4 solver for the Neural ODE. For the Gray-Scott equation, we use a temporal step size
∆t = 1, as missing terms are present, using larger steps diverge.

For all datasets, we used context vectors of dimension dc = 2

E.2 OPTIMISER

For all datasets, we use the Adam optimiser with a learning rate of 10−3 and (β1, β2) = (0.9, 0.999)
for both training and adaptation. For training, we used a learning rate scheduler which reduces the
learning rate when the loss has stopped improving. We set the threshold to 0.01 with a patience of
250 epochs with respect to the training loss. The minimum learning rate is 1e− 5. During training,
we also regularise context parameters and uses a weight coefficient λθe = 1e− 6.

E.3 BASELINES IMPLEMENTATION

For all baselines, we followed the recommendations given by the authors. For the CoDA with a soft
constraint baseline, we implemented the physics losses using finite difference method.

F QUALITATIVE RESULTS

In this section, we show different visualisation of the predictions made by our framework and we
compare them with the trajectories generated by baselines. We report in the figure 3 the predictions
made by baselines and our approach on a trajectory from an adaptation environment. In figure 4,
we show the prediction made by our approach on a trajectory coming from an enviroment used for
adaptation and compare it to baselines.
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CoDA

Ground 
truth

Ours

CoDA 
with

 phys. loss

CAVIA

Model t = 1 t = T t = T’In-t Out-t

Figure 3: Prediction per frame for our approach on 2D Gray-Scott on the adaptation environment
F, k,Du, Dv = (0.025, 0, 050, 0.2097, 0.105). The trajectory is predicted from t = 0 to t = T’. In our
setting, T = 19 and T’ = 39.
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Figure 4: Prediction of a trajectory on 1D Burgers on the adaption environment ν = 5e− 5

Figure 5: Ground Truth

Figure 6: Ours

Figure 7: CoDA

Figure 8: CAVIA
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