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Abstract

Recent advances in data-centric deep generative models have led to significant
progress in solving inverse imaging problems. However, these models (e.g., diffu-
sion models) typically require large amounts of fully sampled (clean) training data,
which is often impractical in medical and scientific settings. Training-data-free
approaches like Deep Image Prior (DIP) do not require clean images but suffer from
noise overfitting and can be computationally expensive as the network parameters
need to be optimized for each measurement vector independently. Moreover, DIP-
based methods often overlook the potential of learning a prior using a small number
of sub-sampled measurements (or degraded images) available during training. In
this paper, we propose UGoDIT —an Unsupervised Group DIP via Transferable
weights—designed for the low-data regime where only a very small number, M , of
sub-sampled measurement vectors are available during training. Our method learns
a set of transferable weights by optimizing a shared encoder and M disentangled
decoders. At test time, we reconstruct the unseen degraded image using a DIP
network, where part of the parameters are fixed to the learned weights, while
the remaining are optimized to enforce measurement consistency. We evaluate
UGoDIT on both medical (multi-coil MRI) and natural (super resolution and non-
linear deblurring) image recovery tasks under various settings. Compared to recent
standalone DIP methods, UGoDIT provides accelerated convergence and notable
improvement in reconstruction quality. Furthermore, UGoDIT achieves perfor-
mance competitive with SOTA DM-based and supervised approaches, despite not
requiring large amounts of clean training data. Our code is available at: UGoDIT.

1 Introduction

Solving inverse problems is important across a wide range of practical applications, such as those
in robotics [1], forensics [2], remote sensing [3], and geophysics [4]. One class of such problems
is Inverse Imaging Problems (IIPs), including super-resolution [5], image denoising [6], image
deblurring [7], recovering missing portions of images [8] (in-painting), and magnetic resonance
imaging (MRI) reconstruction [9].

In recent years, an abundance of deep learning (DL) methods have been developed to solve IIPs
[10, 11, 12, 13, 14]. Based on the availability of training data points, DL-based IIP methods can be
categorized into (i) data-less DL approaches, such as the ones based on the Deep Image Prior (DIP)
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[15], Implicit Neural Representation (INR) [16], and zero-shot learning with self-supervision [17]; and
(ii) data-centric DL approaches, such as the ones based on supervised networks [18, 19], unsupervised
[20], or generative models such as those based on diffusion models (DMs) [13, 14].

Data-centric methods rely on pre-trained models that typically require large training sets. In the
context of scientific or medical IIPs, in addition to being large-scale, this translates to the need for
fully sampled measurements—i.e., clean images (serveing as ground truth). Unlike natural images,
acquiring large datasets of scientific or medical data such as fully sampled MRI scans is particularly
challenging [21, 22, 23]. The underlying data may be inherently undersampled or corrupted with
unknown noise. Similar issues arise in other domains such as medical computed tomography (CT)
[24]. To mitigate this, previous DM-based methods for MRI and CT often fine-tune DMs pre-trained
on natural images using a limited number of fully sampled medical images [13, 12, 14]. This
underscores the need for approaches that reduce reliance on large, clean (or fully sampled) datasets.

Training-data-free methods, such as DIP [15], which rely on untrained networks (e.g., U-Net [25]),
avoid the need for training data altogether—fully sampled or otherwise. However, they often face two
main challenges: (i) vulnerability to noise overfitting (though recent variants, such as auto-encoding
sequential DIP (aSeqDIP) [26], have shown improved robustness), and (ii) high computational cost
at inference time (as a full set of network parameters need to be optimized for each measurement
independently), especially compared to the inference time of supervised methods. Although recent
work, such as MetaDIP [27], has explored transferring learned DIP weights to speed up inference, it
still requires supervised training with fully sampled data points, and does not achieve competitive
results when compared to standalone DIP methods as was demonstrated in [28].

The scarcity of fully-sampled measurements (i.e., clean images as ground truth) in certain applications,
and the inability of most DIP methods to transfer learned weights serve as our motivation to explore
the following question: Is it possible to train a fully unsupervised model using only a few degraded
images, such that the learned weights can later be used to reconstruct unseen measurements during
inference? We term the regime when only very few training images are available as the “low-data
regime”, and towards answering the above question, we make the following contributions:

• Decoder-disentangled architecture for training: Given a few measurement vectors (or degraded
images), we propose the use of a shared encoder and multiple decoders for each measurement
vector during training such that the inputs, shared encoder, and multiple decoders are optimized
jointly using a measurement-consistent and auto-encoded objective function.

• Transferable weights at testing: Given an unseen measurement vector, we transfer the pre-trained
weights of the shared encoder to a single-encoder, single-decoder DIP network. Reconstruction is
then performed by fixing the encoder and optimizing the decoder parameters using an input-adaptive,
measurement-consistent objective function. Therefore, we term our method as Unsupervised Group
DIP with Transferable weights (UGoDIT).

• Extensive evaluation: We conduct extensive evaluations using multi-coil MRI, super resolution,
and non-linear deblurring. We show that we outperform most recent advanced DIP methods while
performing comparably with DM-based and supervised data-intensive methods all while requiring
only a very few degraded images. Furthermore, our ablation studies show the impact of each
component such as the proposed disentangled decoders.

2 Preliminaries & related work

Inverse Imaging Problems (IIPs) are defined as recovering an image x∗ ∈ Rn from measurement
vector (or degraded image) y ∈ Rm (with m ≤ n), governed by the forward operator A. For multi-
coil MRI, the forward operator is given as A = MFS, for which M denotes coil-wise undersampling,
F is the coil-by-coil Fourier transform, and S represents the sensitivity encoding with multiple coils2.
For natural image restoration tasks, the forward operator in super resolution (SR) is a down sampler.
For non-linear deblurring (NDB), the non-linear forward operator is the neural network approximated
kernel given in [7] and adopted in multiple works such as [14, 29].

Next, we provide a brief overview of closely related DL-based image reconstruction methods based
on the availability of training data.

2In MRI, the entries of x∗ and y contain both real and imaginary numbers. However, to generalize the
definition of the problem, we use real numbers.
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High-data regime methods: Training data-intensive methods—that is, methods that rely on a large
number of training data points—can be categorized into generative, supervised, and unsupervised
approaches. Among generative methods, recently, numerous IIP solvers have employed pre-trained
diffusion models (DMs) as priors (e.g., [13, 14]; see [30] for a recent survey). These methods typically
modify the reverse sampling steps to enable sampling from a measurement-conditioned distribution.
In supervised end-to-end (E2E) approaches, a variety of techniques have been explored, including
unrolled networks such as the variational network (VarNet) in [18]. A common limitation of both
generative and supervised methods is their reliance not only on large amounts of training data, but
also on clean (i.e., fully sampled) ground truth images—an assumption that may not hold in many
medical and scientific applications such as MRI reconstruction3. Moreover, DM-based generative
methods are generally slower at inference compared to supervised counterparts. Unsupervised (or
self-supervised) methods have also been explored [32, 33, 34]. While they do not require clean
images, they still depend on a large amount of training data and often fall short of the performance
achieved by supervised or generative models [35]. In this paper, we introduce a method that requires
neither large-scale training data nor clean images (or fully sampled measurements).

Training-data-free DIP-based methods: The pioneering work of [15] introduced the Deep Image
Prior (DIP), a fully training-data-free approach for solving IIPs, demonstrating that an untrained
convolutional neural network (CNN) can effectively recover low-frequency image structures using
the implicit bias of the network. However, DIP is prone to noise overfitting due to the network’s
over-parameterization. As a result, numerous techniques have been proposed to mitigate this issue,
including the use of regularization [36, 26], early stopping [37], and network re-parameterization
[28, 38]. We refer the reader to the recent tutorial in [39] for a comprehensive overview of DIP and
its variants. Most DIP methods require optimizing a full set of weights for each measurement vector
independently. In this paper, we present a DIP-based method that learns a subset of transferable
weights from only a few degraded images, addressing this gap.

Low-data regime methods: Low-data regime refers to the case where the number of training
images is extremely small for training standard supervised, generative, and/or unsupervised methods.
Here, we discuss two methods that operate in the low-data regime and are closely related to our
work. The first is MetaDIP [27], where the authors leverage meta-learning to learn transferable
weights for accelerated DIP reconstruction at test time. MetaDIP adopts a standard single-encoder,
single-decoder U-Net architecture. There are three key differences between UGoDIT and MetaDIP:
(i) MetaDIP requires clean images during training, while our method uses only degraded images
(or sub-sampled measurement vectors); (ii) MetaDIP does not include architectural changes during
training; (iii) their evaluation is limited to natural image restoration tasks, whereas our method also
considers more complex, large-scale MRI reconstruction. The second method is STRAINER [40],
which extends the Implicit Neural Representation (INR) framework [41, 42] to the low-data regime.
Specifically, the authors propose using a fully connected network (or multi-layer perceptron, MLP)
with multiple output sub-networks to learn transferable weights. At test time, a subset of these
weights is used to initialize a subset of the MLP-based INR model for image recovery. The main
differences between UGoDIT and STRAINER are: (i) STRAINER uses MLPs with spatial coordinate
input embedding, while our method is based on CNNs and DIP; (ii) STRAINER uses clean (fully
sampled) training data, whereas UGoDIT uses degraded images (or sub-sampled measurements); (iii)
the learned weights in STRAINER are used only for initializing part of the test-time INR network,
whereas in our method, we keep the parameters of the pre-trained shared encoder unchanged during
testing and only adapt the parameters of the test-time decoder.

3 Proposed method

Assume that we are given a set Y , consisting of M under-sampled measurement vectors (or degraded
images), where each yi ∈ Y , for i ∈ [M ] := {1, . . . ,M}, is an m-dimensional vector. The degraded
images in set Y are obtained using the following forward models:

yi = Aix
∗
i + ηi , (1)

3We note that there have been recent efforts to train DMs on degraded images, such as the study in [31].
However, these approaches still rely on large amounts of training data.
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where ηi represents the noise in the measurement domain, e.g., assumed sampled from a Gaussian
distribution N (0, σ2

yi
I), with σyi > 0 representing the noise level of the i-th vector. In this setting,

we assume access only to yi and the corresponding Ai for each i ∈ [M ]. We note that while we
adopt a linear forward model for notational simplicity, our approach can be applied to nonlinear IIPs,
as we will demonstrate in our experimental results.

Here, the number of available training images, M , is extremely small (e.g., M < 10), making it
infeasible to learn a data distribution to be used as a prior during inference. Under this under-sampled
(or degraded), low-data regime, we consider the following question:

Given a CNN architecture and a set of M measurement vectors, yi ∈ Y , with corresponding
forward operators Ai, can we learn a set of weights such that, for a unseen test-time measurement
vector y /∈ Y and its operator A, we can reconstruct the image both robustly and efficiently?

Here, robust reconstruction refers to achieving high-quality recovery while being resilient to noise
overfitting—an issue commonly encountered in standalone DIP methods [39, 36]4. Efficient recon-
struction refers to faster convergence compared to standalone DIP.

Among existing DIP methods, autoencoding Sequential DIP (aSeqDIP) [26] has demonstrated
superior performance in terms of robustness and reconstruction quality. Meanwhile, Early Stopping
DIP (ES-DIP) [37] and Deep Random Projector (DRP) [28] have shown improved efficiency in terms
of faster run-time.

To enable the learning of transferable weights–which is the central goal of this paper– we propose
the use of a modified network architecture: a shared encoder jointly learned across all M degraded
images, along with a separate decoder for each individual measurement vector yi, resulting in M
disentangled decoders. To mitigate noise overfitting, we adopt an input-adaptive autoencoding
objective, which we describe in the next subsection. At test time, given an unseen vector y, we use
a DIP network, consisting of the learned shared encoder and a randomly initialized decoder, and
perform image reconstruction by optimizing only the decoder parameters. In other words, given y at
test time, the pre-trained encoder is used to extract latent features and the decoder parameters are
optimized to adapt to the unseen measurement vector.

We note that using a single encoder with multiple decoders has also been explored in other areas
of machine learning, including multi-task and federated learning [43, 44]. Another example is [45],
which proposed a multi-decoder architecture to accelerate the training of diffusion models.

3.1 Proposed training optimization and network architecture

Assume we are given a CNN network (e.g., a U-Net [25]). Let h : Rn → Rl, parameterized
by ϕ, denote the encoder function of the CNN–i.e., the downsampler, consisting of a stack of
convolution and pooling layers that extracts and compresses features, with l ≪ n. Similarly, let
g : Rl → Rn, parameterized by ψ, be the decoder function–i.e., the upsampler, comprising a stack
of transposed convolution and/or interpolation layers that reconstruct the high-resolution output from
the compressed representation.

Given some input z ∈ Rn, the network output is expressed as gψ ◦hϕ(z). Using this setting with some
measurement vector y and its forward operator A, reconstruction via vanilla DIP [15] is formulated
as in (2), where x̂ denotes the reconstructed image.

ϕ̂, ψ̂ = argmin
ϕ,ψ

∥Agψ ◦ hϕ(z)− y∥22, x̂ = gψ̂ ◦ hϕ̂(z) . (2)

Given a set of M degraded measurements of images, yi ∈ Y , each associated with a forward operator
Ai for i ∈ [M ], the proposed UGoDIT method utilizes a shared encoder hϕ and a distinct decoder gψi

for each training image. This results in a total of M disentangled decoders tailored to the individual
measurement vector.

Given that we have M measurement vectors, choosing the input is not straightforward across a
training set. Hence, we develop an input-adaptive approach. To this end, during training, we propose

4Standalone DIP refers to the standard setting where a single measurement vector is used, and the network is
optimized from randomly initialized parameters.
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Algorithm 1 Training: Unsupervised Group DIP Transferable via weights (UGoDIT)

Input: Number of training images M , measurement vectors yi and forward operators Ai for i ∈ [M ], number
of input updates K, number of gradient updates N , regularization parameter λ, and learning rate β.
Output: Trained encoder weights ϕ̂.
Initialization: zi ← AH

i yi ; ϕ, ψi ∼ N (0, σiniI) for i ∈ [M ].
1: For K iterations, Do
2: For N iterations, Do (Shared encoder and M decoders parameters update)

3: ψi ← ψi − β∇ψi

[
∥Aigψi ◦ hϕ(zi)− yi∥22 + λ∥gψi ◦ hϕ(zi)− zi∥22

]
,∀i ∈ [M ]

4: ϕ← ϕ− β∇ϕ
[∑

i∈[M ] ∥Aigψi ◦ hϕ(zi)− yi∥22 + λ∥gψi ◦ hϕ(zi)− zi∥22
]
.

5: Obtain zi ← gψi ◦ hϕ(zi). (Network input update for each training image i ∈ [M ])

6: Trained weights: ϕ̂← ϕ

optimizing the weights of the shared-encoder, decoder-disentangled CNN architecture using the
following objective:

ϕ̂, ψ̂i, ẑi = argmin
ϕ,ψi,zi,i∈[M ]

{ ∑
i∈[M ]

∥Aigψi
◦ hϕ(zi)− yi∥22 s.t. gψi

◦ hϕ(zi) = zi, ∀i ∈ [M ]
}
. (3)

To solve (3), we initialize ϕ, ψi ∼ N (0, σ2
iniI) and set zi ← AH

i yi for all i ∈ [M ], where σini
corresponds to the standard deviation for initialization. We then perform the following alternating
updates for K iterations (which corresponds to the number of network inputs updates):

ϕ, ψ1, . . . , ψM ← argmin
ϕ,ψi,i∈[M ]

[ ∑
i∈[M ]

∥Aigψi
◦ hϕ(zi)− yi∥22 + λ∥gψi

◦ hϕ(zi)− zi∥22
]
, (4a)

zi ← gψi ◦ hϕ(zi),∀i ∈ [M ] , (4b)

where λ is a regularization parameter. Similar to aSeqDIP [26], we alternate between two phases: (i)
performN ≪ K gradient updates to optimize the network parameters ϕ and ψi using the optimization
in (4), and (ii) update the network inputs zi via forward passes. Specifically, each input zi is updated
by passing it through the shared encoder hϕ and the corresponding decoder gψi

.

In the training optimization of (4), the first term enforces the output of decoder i to be consistent
with the measurements vector yi governed by Ai. The second term is an autoencoding term that
implicitly enforces the equality constraints in (3). It is used to mitigate noise overfitting by enforcing
that the output of each decoder is approximately consistent with the updated input of that particular
image zi as the optimization progresses.

In what follows, we provide a justification of how we relaxed (3) into the alternating optimization
updates in (4). The general intuition stems from prior studies that highlight the impact of network
inputs in DIP-based reconstruction [46, 26, 36], where the study in [26] shows that reconstruction
quality improves when the network input is closer to the ground truth.

Assume that the iterates in (4) converge to ϕ∗, ψ∗
i , z

∗
i ,∀i ∈ [M ]. Then, according to the second

equation in (4), for continuous mappings gψi ◦ hϕ(·),∀i ∈ [M ], we have z∗i = gψ∗
i
◦ hϕ∗(z∗i ).

Substituting this into the first equation of (4), in the limit, we get

ϕ∗, ψ∗
i = argmin

ϕ,ψi,i∈[M ]

{ ∑
i∈[M ]

∥Aigψi
◦ hϕ(z∗i )− yi∥22 s.t. gψi

◦ hϕ(z∗i ) = z∗i , ∀i ∈ [M ]
}
,

which corresponds to the minimizer of (3) given a fixed z∗i . For each decoder, the limit points of (4)
correspond to the solution of a constrained version of vanilla DIP in (2). The constraint enforces
additional prior that could alleviate overfitting. While it is not straightforward to use first-order
gradient-based algorithms for solving (3) given the hard equality constraints, the limit points in the
updates of (4) nevertheless minimize (3). Furthermore, the network input is updated by a sequential
feed forward process without needing expensive gradient-based updates.

The training procedure of UGoDIT is given in Algorithm 1. In the initialization step, we assume the
encoder and decoder weights are of equal size, though this is not necessary a requirement. We note
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Figure 1: Illustrative block diagram UGoDIT. During training (left), we learn the shared encoder by optimizing
over ϕ, ψ1, . . . , ψM . At inference (right), given some unseen measurement vector y and its forward operator A,
we reconstruct the image x̂ by optimizing over ψ.

that while steps 2 to 4 describe updating the network parameters using a fixed-step gradient descent,
we use the ADAM optimizer [47], initialized with learning rate β.

The computational requirements for training UGoDIT are determined by: (i) the NK gradient-based
parameter updates, and (ii) the number of function evaluations (network forward passes) necessary
for updating zi, which is MK. See Figure 1 (left) for an illustrative block diagram of the training
phase.

3.2 Testing phase

Provided with the trained weights of the shared encoder, i.e., parameters ϕ̂ from Algorithm 1, and
unseen measurement vector y with its forward operator A, at inference, we propose to use a new
network mapping denoted by hϕ ◦gψ(·), where ϕ is set to the trained weights ϕ̂. Then, ψ is initialized
using the standard way. More specifically, we set z ← AHy, ϕ ← ϕ̂, and ψ ∼ N (0, σ2

iniI), and
perform the following updates for K iterations.

ψ ← argmin
ψ

[
∥Agψ ◦ hϕ̂(z)− y∥22 + λ∥gψ ◦ hϕ̂(z)− z∥22

]
, (5a)

z← gψ ◦ hϕ̂(z) . (5b)

In (5), we only optimize over ψ while the parameters of the pre-trained encoder are fixed (i.e., ϕ̂)5.
Similar to the training algorithm, for every input update (i.e., second equation in (5)), we use N ≪ K
gradient steps for the optimization in (5).

The intuition of using the steps in (5) is the same as in aSeqDIP [26]. However, we emphasize that our
goal here is different as in UGoDIT, the aim is to learn transferable weights for better and accelerated
reconstructions at testing time. Algorithm 2 presents the procedure for solving (5). The training and
testing phases of UGoDIT are illustrated in Figure 1.

3.3 Intuition behind using M decoders in the training of UGoDIT

In this subsection, we describe the rationale behind using M disentangled decoders in the UGoDIT
training phase and how this design choice influences the quality of the learned encoder weights.
Specifically, we aim to answer the following question: Why does learning with multiple decoders
result in a better shared encoder for test-time reconstruction?

To build this intuition, we first examine the standard architecture comprising a single encoder and
a single decoder (single ED)–denoted by hϕs ◦ gψs(·)–trained across M degraded images. The
parameters are initialized as ϕs, ψs ∼ N (0, σ2

iniI) and the inputs as zi ← AH
i yi,∀i ∈ [M ]. Then,

5In Appendix F, we conduct a study to show the difference between freezing the encoder (our method) and
only initializing it (as was done in STRAINER [40]).
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Algorithm 2 Testing: Unsupervised Group DIP Transferable via weights (UGoDIT-M )

Input: Pre-trained encoder weights ϕ̂ from Algorithm 1, measurement vector y, forward operator A, number of
input updates K, number of gradient updates N , regularization parameter λ, and learning rate β.
Output: Reconstructed image x̂.
Initialization: z← AHy ; ψ ∼ N (0, σiniI).
1: For K iterations, Do
2: For N iterations, Do (Decoder parameters update)

3: ψ ← ψ − β∇ψ
[
∥Agψ ◦ hϕ̂(z)− y∥22 + λ∥gψ ◦ hϕ̂(z)− z∥22

]
4: Obtain z← gψ ◦ hϕ̂(z). (Network input update)

5: Reconstructed Image: x̂← gψ ◦ hϕ̂(z)

we perform the following alternating optimization (which extends [26] to the M > 1 case).

ϕs, ψs ← argmin
ϕs,ψs

[ ∑
i∈[M ]

∥Aigψs ◦ hϕs(zi)− yi∥22 + λ∥gψs ◦ hϕs(zi)− zi∥22
]
, (6a)

zi ← gψs
◦ hϕs

(zi),∀i ∈ [M ] . (6b)

Here, a single decoder gψs
is shared across all training images. While the inputs zi are updated and

initialized individually, they are all later optimized using the same encoder-decoder network. The
gradient updates for this architecture are:

ψs ← ψs − β∇ψs

[ ∑
i∈[M ]

∥Aigψs
◦ hϕs

(zi)− yi∥22 + λ∥gψs
◦ hϕs

(zi)− zi∥22
]
, (7a)

ϕs ← ϕs − β∇ϕs

[ ∑
i∈[M ]

∥Aigψs
◦ hϕs

(zi)− yi∥22 + λ∥gψs
◦ hϕs

(zi)− zi∥22
]
. (7b)

From these expressions, the encoder hϕs is trained with using back-propagated updates from a single
decoder. In contrast, in UGoDIT, the encoder receives supervision from M distinct decoders, each
independently optimized to reconstruct a different training image (steps 3 and 4 in Algorithm 1). This
over-parameterization allows each decoder to specialize in reconstructing its corresponding input,
thereby improving the enforcement of measurement consistency across the training set.

Moreover, because the encoder must support multiple decoders reconstructing different training
samples, it is encouraged to extract more generalizable and robust features. This leads to the intuition:
encoders that yield more accurate reconstructions during training tend to reconstruct better during
testing. We empirically support this claim in Section 4 by comparing both training and test-time
reconstructions using a shared decoder versus disentangled decoders (our method).

Next, we offer a justification from the literature of multi-task representation learning. In our setting,
each degraded image corresponds to an image-specific inverse problem, which can be interpreted as a
separate task.

Our training setup aligns with the multi-task learning framework studied in [48], where a shared
representation (encoder hϕ) is learned jointly across multiple tasks, each with its own function
(i.e., task-specific decoder gψi

for i ∈ [M ]). Specifically, Theorem 2 in [48] demonstrates that this
structure (i) reduces generalization error across tasks and (ii) promotes robust and transferable feature
learning in the shared encoder. Importantly, these theoretical results rely on the structural assumption
of a shared encoder with task-specific decoders. In contrast, the single ED setup (as in Eq. (6))
violates this assumption, since the decoder receives gradients from multiple tasks simultaneously.
This prevents specialization and introduces gradient interference — a known challenge in multi-task
learning [49]. Consequently, the theoretical benefits shown in [48] do not extend to the single ED
setup which serves as an additional motivation of our proposed multi-decoder method.
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4 Experimental results

4.1 Settings

We consider three tasks: MRI reconstruction from undersampled measurements, super resolution
(SR), and non-linear deblurring (NDB). For MRI, we use the knee portion of the fastMRI dataset [22].
The forward model is y ≈ Ax∗. The multi-coil data is obtained using 15 coils and is cropped to a
resolution of 320× 320 pixels. To simulate undersampling of the MRI k-space, we use a Cartesian
sampling pattern with 4x and 8x acceleration factors (AF). Sensitivity maps for the coils are obtained
using the BART toolbox [50]. For the tasks of SR and NDB, we use the FFHQ dataset [51]. For all
three tasks, we test UGoDIT and baselines with 20 randomly selected degraded images6. Backbone
architectures are adopted from [25] and [52] for MRI and SR (and NDB), respectively. For evaluation
metrics, we use the Peak Signal to Noise Ratio (PSNR), the Structural SIMilarity (SSIM) index [53],
and run-time. For natural images, we also report LPIPS [54]. All the experiments are run on a single
RTX5000 GPU machine.

For training-data-free DIP-based methods, we use three regularization-based recent methods aSeqDIP
[26], Self-Guided DIP [36], and Deep Random Projector [28] (as a DIP acceleration method), and
one early stopping (ES) method, ES-DIP [37]. For data-driven MRI baselines, we use two recent
DM-based methods, SITCOM-MRI [14] and DDS [12], one self-supervised method, Test Time
Training (TTT) [55], and two supervised models, VarNet [18] and Recurrent VarNet [56]. For natural
images, we also use SITCOM [14], in addition to DPS [29] and STRAINER [40]. STRAINER is
a representative of low-data regime methods. The selection criteria of these baselines depend on
methods’ ability to achieve competitive reconstruction quality and high robustness to noise overfitting
(for the case of DIP) for which several medical and natural image recovery tasks were considered
(linear and non-linear). Further implementation details are provided in Appendix O.

For UGoDIT, we present results with three models, trained with 4, 5, and 6 degraded images (see
Appendix L for results with M ∈ {2, 3, 10, 10}). We test UGoDIT and other data-driven methods
with in-distribution test instances, i.e., images from the testing sets of fastMRI and FFHQ. Out-of-
distribution evaluation is provided in Appendix A. Ablation studies on the number of layers and the
number of training images are given in Appendix J and Appendix L, respectively. Step size is set
to β = 0.0001. The regularization parameter is set to λ = 2, following the study in Appendix G
(where we also show the robustness to noise overfitting). For (N,K), we use (2, 2000), (10, 2000),
and (10, 2000) for MRI, SR, and NDB, respectively, following the study in Appendix M.

4.2 Impact of using M decoders in UGoDIT
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Figure 2: Averaged PSNR curves (6 for train-
ing and 20 for testing) of UGoDIT vs. the
shared-decoder case (i.e., single E-D (6)) on
the task of SR. See Appendix H for an addi-
tional study that highlights the benefit of the
shared encoder at testing.

Here, we examine the effect of the multi-decoder archi-
tecture proposed in the training of UGoDIT. Specifically,
we assess how using M > 1 disentangled decoders
influences the quality of the shared encoder’s learned
weights during both training and testing for the super
resolution task. To this end, we compare our method
against a baseline where M = 6 degraded are trained
using a standard single-encoder, single-decoder architec-
ture, as described in (6). At inference, both approaches
follow the procedure in (5) using their respective trained
encoders.

Figure 2 shows the average PSNR curves during train-
ing (dashed) and testing (solid with 20 test images) of
UGoDIT and the shared-decoder case. As seen, employ-
ing multiple decoders yields approximately over a 1
dB to 1.5 dB improvement in both training and test-
ing. These findings empirically support the rationale
discussed in Section 3.3.

6In Appendix B, we show the impact of the selection of the training set on the performance of UGoDIT.

8



0 1000 2000 3000 4000
Iterations

20.0

22.5

25.0

27.5

30.0

32.5

35.0

PS
NR

 (d
B)

MRI Reconstruction

UGoDIT-4 (Ours)
UGoDIT-5 (Ours)
UGoDIT-6 (Ours)
aSeqDIP
Self-Guided DIP
ES-DIP

0 500 1000 1500 2000
Iterations

5

10

15

20

25

30

Super Resolution

UGoDIT-4 (Ours)
UGoDIT-5 (Ours)
uGoDiT-6 (Ours)
aSeqDIP
Self-Guided DIP
DRP

0 500 1000 1500 2000 2500 3000
Iterations

5

10

15

20

25

30

Non-linear Deblurring

UGoDIT-4 (Ours)
UGoDIT-5 (Ours)
UGoDIT-6 (Ours)
aSeqDIP
Self-Guided DIP
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Figure 4: Reconstructed/recovered images using UGoDIT (last column with M = 6) and baselines (columns 3
to 5). As observed, UGoDIT return comparable PSNR results with data-intensive methods all without the need of
large amount of clean images (or fully sampled measurement vectors). See Appendix P for more visualizations.

Furthermore, we observe a gap of approximately 3 to 4 dB between the training and testing curves.
We hypothesize that this arises because, during training, the network parameters are jointly optimized
to reconstruct M = 6 images, whereas the testing curve reflects the average performance over
20 separate inference-time optimizations. Appendix I provides an additional study on the learned
features of UGoDIT.

4.3 Convergence of UGoDIT compared to training-data-free DIP-based methods

Here, we aim to answer the question: Given a set of degraded test images, does using UGoDIT offer
any advantages over running a DIP-based method independently on each image?7 Figure 3 presents
the average PSNR curves, comparing UGoDIT (trained with 4, 5, and 6 degraded images) with four
recent SOTA DIP baseline methods.

In terms of PSNR improvements, UGoDIT achieves at least a 2 dB gain over aSeqDIP for MRI. For
SR, we observe a marginal improvement—around 1 dB or slightly less—compared to aSeqDIP, but
more than 2 dB over DRP and Self-Guided DIP. For NDB, UGoDIT consistently outperforms the
second-best method (aSeqDIP) by at least 1 dB. Regarding acceleration, UGoDIT demonstrates a clear
advantage in all three tasks, as measured by the number of iterations required to reach target PSNR
values. For instance, in MRI, UGoDIT reaches 32.5 dB in 500 iterations or fewer, whereas aSeqDIP
requires over 750 iterations to achieve the same PSNR. This trend also holds for SR and NDB.
For example, in SR, UGoDIT-6 requires only about 125 steps to reach 30 dB, while aSeqDIP needs

7A comparison with training-data-free measurement splitting methods is given in Appendix D.
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Method Training Type Acceleration Factor (AF): 4x Acceleration Factor (AF): 8x
images M PSNR (↑) SSIM (↑) run-time (↓) PSNR (↑) SSIM (↑) run-time (↓)

VarNet [18] 8000 Fully sampled 33.06±0.59 0.854±0.12 5.02±2.12 32.03±0.35 0.829±0.08 5.45±2.11

Recurrent VarNet [56] 8000 Fully sampled 35.88±0.46 0.958±0.08 4.82±3.34 32.33±0.15 0.879±0.12 4.55±3.21

TTT [55] 300 Fully sampled 33.81±0.45 0.881±0.12 50.81±3.14 31.83±0.24 0.879±0.15 48.25±7.31

DDS [12] 19460 Fully sampled 34.95±0.74 0.954±0.10 25.20±5.22 31.72±1.88 0.876±0.06 31.02±2.01

SITCOM-MRI [14] 19460 Fully sampled 36.33±0.37 0.962±0.08 76.24±6.25 32.78±0.64 0.892±0.02 82.45±4.20

UGoDIT (Ours) 4 Sub-sampled 35.45±0.34 0.957±0.08 45.20±4.20 32.04±0.45 0.878±0.06 47.42±5.64

UGoDIT (Ours) 5 Sub-sampled 35.74±0.41 0.959±0.09 48.12±5.42 32.36±0.51 0.881±0.06 48.12±3.24

UGoDIT (Ours) 6 Sub-sampled 36.05±0.34 0.960±0.08 48.42±5.40 32.54±0.45 0.883±0.06 49.33±7.44

Table 1: MRI reconstruction average results (with run-time in seconds) across two AFs of UGoDIT vs. data-
centric methods. In SITCOM-MRI and DDS, the DM is trained on 973 MRI volumes each with 20 images.
Column 3 corresponds to the “Type” of the training images. Values past ± represent the standard deviation.

Method Training Type Super Resolution (SR) Non-linear Deblurring (NDB)
images M PSNR (↑) SSIM (↑) LPIPS (↓) run-time (↓) PSNR (↑) SSIM (↑) LPIPS (↓) run-time (↓)

DPS [29] 49000 Clean 24.44±0.56 0.801±0.032 0.26±0.022 75.60±15.20 23.42±2.15 0.757±0.042 0.279±0.067 93.00±26.40

SITCOM [14] 49000 Clean 30.68±1.02 0.867±0.045 0.142±0.056 27.00±4.80 30.12±0.68 0.903±0.042 0.145±0.037 33.45±9.40

STRAINER [40] 4 Clean 29.03±1.30 0.841±0.12 0.189±0.045 32.12±6.20 27.20±1.30 0.812±0.21 0.201±0.055 33.40±7.24

STRAINER [40] 5 Clean 29.24±0.89 0.846±0.15 0.181±0.056 33.45±5.78 27.39±0.86 0.817±0.24 0.197±0.035 32.60±7.24

STRAINER [40] 6 Clean 29.45±0.56 0.849±0.08 0.177±0.041 31.12±6.20 27.41±0.56 0.819±0.043 0.189±0.048 30.50±4.67

UGoDIT (Ours) 4 Degraded 30.55±0.67 0.859±0.045 0.154±0.067 29.25±5.54 29.89±0.52 0.897±0.078 0.167±0.045 28.88±4.67

UGoDIT (Ours) 5 Degraded 30.62±0.38 0.863±0.067 0.149±0.035 30.15±6.74 30.09±0.37 0.899±0.057 0.156±0.035 29.29±3.78

UGoDIT (Ours) 6 Degraded 30.75±0.58 0.871±0.054 0.157±0.058 30.41±5.54 30.19±0.46 0.906±0.067 0.147±0.035 30.18±3.89

Table 2: Restoration results of UGoDIT vs. data-centric methods. Column 3 corresponds to the “Type” of the
training images. Following [29, 14], we use σyi = 0.05, ∀, i ∈ [M ] and M ∈ {4, 5, 6}. UGoDIT uses the
degraded versions of the clean training images used for STRAINER. Values past ± represent standard deviation.

more than 250, and DRP nearly 600. Another noteworthy observation is that increasing the number
of training images used by UGoDIT generally leads to better reconstruction quality. Collectively,
these results highlight that UGoDIT provides improvements in both reconstruction performance and
convergence speed. We refer the reader to Appendix E for more insights and additional results about
convergence speed and training (and testing) run-times.

4.4 Comparison with data-centric methods

Here, we compare UGoDIT with data-driven methods. Table 1 (resp. Table 2) presents the results
for MRI (resp. SR and NDB). For MRI, in terms of PSNR, all three variants of UGoDIT outperform
DDS, TTT, and VarNet. Only UGoDIT-6 outperforms Recurrent VarNet (a more advanced supervised
model). As expected, UGoDIT is slower than supervised methods (VarNet and Recurrent VarNet).
Compared to SITCOM-MRI, UGoDIT achieves slightly lower PSNR but is faster in terms of run-time.

For SR and NDB, UGoDIT achieves comparable PSNR performance to SITCOM. Compared to
STRAINER, UGoDIT provides improvements of over 1 dB for SR and 2 dB for NDB, given similar run-
times—importantly, without requiring clean images for training. Overall, these results demonstrate
that UGoDIT can, under the considered settings, achieve competitive performance with SOTA data-
driven methods, all without relying on large quantities of fully sampled (i.e., clean) training images.
See also the visualizations in Figure 4.

5 Conclusion

This paper introduced UGoDIT, a fully unsupervised framework for solving inverse imaging problems
in the low-data regime, where only a very small number of degraded images are available during
training. By learning a shared encoder with transferable weights across multiple decoders, UGoDIT
effectively bridges the gap between the recent SOTA data-intensive generative models and training-
data-free deep mage prior (DIP) methods. Unlike DIP approaches that optimize a separate network per
image, UGoDIT leverages the shared encoder to accelerate convergence and improve reconstruction
quality. Empirical evaluations across MRI, super-resolution, and non-linear deblurring tasks show
that, under the considered settings, UGoDIT achieves results comparable to SOTA supervised and
diffusion-based methods, all without requiring access to a large number of clean ground-truth images.
These results highlight the potential of UGoDIT as a data-efficient solution for inverse problems.
Limitations and future works are discussed in Appendix N.
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Appendix

In the Appendix, we first present two experiments to evaluate the out-of-distribution performance of
UGoDIT (Appendix A). Appendix B presents a study that shows the impact of the selection of the
training set. A study on training UGoDIT with clean images is shown in Appendix C. Appendix D
presents comparison results with measurement-splitting methods, followed by additional run-time
experiments provided in Appendix E. Appendix F examines the impact of freezing the encoder
weights at test time, followed by a study on robustness to noise overfitting (Appendix G). A study
on reconstructing the test image during the training UGoDIT is given in Appendix H. Appendix I
investigates the learned features in an MRI-trained UGoDIT model. This is followed by ablation
studies on the number of convolutional layers (Appendix J), the number of frozen layers in the encoder
of UGoDIT (Appendix K), the number of training imagesM (Appendix L), and the choice ofN andK
(Appendix M). Limitations and future directions are discussed in Appendix N. Appendix O provides
implementation details of the baselines, followed by a set of figures for additional visualizations
(Appendix P).

A Out-of-distribution evaluation

A.1 MRI

In this section, we investigate the out-of-distribution (OOD) capabilities of UGoDIT for the task of
MRI. Specifically, we evaluate the encoder of UGoDIT-6 (which we will refer to as UGoDIT-OOD)
trained on knee scans with 20 brain MRI test scans randomly selected from the fastMRI brain dataset.
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Figure 5: Average PSNR of 20 MRI brain test scans using a knee-trained (with M = 6) UGoDIT-OOD (blue)
vs. the case where at test-time, we use the parameters of the pre-trained encoder to only initialize the test-time
encoder (red). Then, we optimize over both the encoder and decoder. Running aSeqDIP independently is also
included (black). Iterations in the x-axis correspond to NK = 30000.

Figure 6: Brain reconstructed images for the OOD experiment. The titles of the third to fifth reconstructed
images correspond to the dashed blue (UGoDIT-OOD with λ = 0), solid blue (UGoDIT-OOD with λ = 2),
dashed red, and solid red curves, respectively, in the legend of Figure 5. PSNR values are given on the top of
each reconstructed image.

The average PSNR curves are shown in Figure 5. As observed, when compared to aSeqDIP—which
is run independently from scratch on each test scan (black curve)—the encoder trained on knee
images under-performs and converges very slowly on brain scans.

We hypothesize that the autoencoding term and the input updates in UGoDIT —which implicitly
enforce consistency between encoder-decoder input/output pairs—lead to the learning of features
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that are overly tailored to the training distribution. As a result, when the test distribution differs
significantly, these learned features make the convergence slower.

More specifically, when training and test images come from the same distribution (i.e., anatomy),
the input updates and autoencoding term help reconstruction, as they promote alignment of shared
low-frequency structures. However, under distribution shift (i.e., when the training and testing
anatomies are different), these mechanisms degrade performance, since training and test images no
longer share similar low-frequency content.

To support this hypothesis, Figure 5 includes two additional cases: (i) using the knee-trained encoder
while optimizing only the decoder and setting λ = 0 (i.e., no autoencoding regularization in the first
term of Eq. (5); shown as the dashed blue curve); and (ii) initializing the encoder with knee-trained
weights and optimizing both the encoder and decoder, with λ ∈ 0, 2 (shown in red curves).

As observed, when λ = 0 (i.e., dashed curves), the results could be better than when λ ̸= 0 as the
input will have less impact. Furthermore, when we compare UGoDIT-OOD with only initializing the
encoder (the red curves), the results are further improved which indicate that pre-trained weights on
knees have less impact when only initialization is used. This is even more evident in the case when
λ = 0 with initialization only (i.e., red dashed curve).

The visualizations in Figure 6 (which are recorded at iteration 30000) show that the all the considered
cases would converge to between 27.58 dB to 31.51 dB.

A.2 Super Resolution

In this section, we investigate the OOD capabilities of UGoDIT on natural images for the task of super
resolution (SR). To this end, we test the encoder of UGoDIT (trained with M = 6 images from the
FFHQ dataset) with 20 degraded images randomly selected from the ImageNet dataset [57].
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Figure 7: Average PSNR of 20 test images from the ImageNet dataset of UGoDIT trained with M = 6 FFHQ
degraded images. Iterations in the x-axis correspond to NK = 20000.

For SR, we observe that UGoDIT achieves slightly better PSNR than aSeqDIP and eventually converges
to similar PSNR values. However, unlike the MRI case, UGoDIT-OOD converges faster than aSeqDIP.
This can also be observed in the restored images of Figure 8 and Figure 9. We attribute UGoDIT ’s
ability to generalize well to learning multi-frequency features under OOD scenario for the natural
image.

In Table 3, we report test-time average PSNR on 20 CBSD688 images using two UGoDIT-6 models.
The first model is trained using 6 images from the FFHQ dataset, and the second is trained using 6
images from the CBSD68 dataset. The results demonstrate that UGoDIT maintains strong performance
across different datasets for the task of SR.

B Impact of the selection of the training set in UGoDIT

In this section, we provide an ablation study to demonstrate the impact of the selection of the M
training images for the task of SR.

8
https://github.com/clausmichele/CBSD68-dataset
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Ground Truth Input aSeq DIP UGoDIT

PSNR = ∞ dB PSNR = 21.12 dB PSNR = 29.78 dB PSNR = 29.95 dB

Figure 8: Ground-truth, degraded, and restored images for the OOD experiment on the task of super resolution,
where UGoDIT was trained on 6 images of faces from the FFHQ dataset and tested on the ImageNet degraded
image in the second column. As observed, the testing set is not a human face as is the case for the training
images in FFHQ.

Ground Truth Input aSeq DIP UGoDIT

PSNR = ∞ dB PSNR = 19.32 dB PSNR = 24.38 dB PSNR = 24.89 dB

Figure 9: Ground-truth, degraded, and restored images for the OOD experiment on the task of super resolution,
where UGoDIT was trained on 6 images of faces from the FFHQ dataset and tested on the ImageNet degraded
image in the second column. As observed, the testing set is not a human face as is the case for the training
images in FFHQ.

To this end, we evaluate six models of UGoDIT-6, each trained with a distinct set of randomly selected
training images Yi, i.e., for any two i and j, we have Yi ∩ Yj = ∅. In Table 4, we report average
test-time PSNR over 100 test images.

As observed, the averaged PSNR of our method ranges between 30.58 dB to 30.95 dB, i.e., the
variability using different small training sets is very small (less than 0.4 dB). This indicates that the
in-distribution results of UGoDIT are not highly sensitive to the selection of training images for the
task of SR.

C Comparison of UGoDIT-M vs. training on M clean images

Here, we attempt to answer the question: Does the test-time performance change if M clean images
are used to train the shared encoder? Put differently, would training with M clean images represent
UGoDIT’s best-case learning?

If clean images are available, we first need to modify the training objective since there would no
longer be forward operators Ai or any inverse problems during training. To this end, the optimization
reduces to a pure multi-decoder autoencoding loss, where the minimization in (4) becomes:

ϕ, ψ1, . . . , ψM ← argmin
ϕ,ψi,i∈[M ]

[ ∑
i∈[M ]

∥gψi ◦ hϕ(zi)− zi∥22
]
, (8)

where zi = xi, for i ∈ [M ], are the clean images.

To test this idea, we compare UGoDIT trained on six degraded images vs. the multi-decoder autoen-
coder trained (i.e., (8)) on clean versions of UGoDIT’s degraded images for the SR task.

In Table 5, we report average test-time PSNR over 100 test images.

As observed, test-time PSNR for the auto-encoder with clean data is slightly better than UGoDIT. This
means that training on clean images could also serve as a prior for test-time reconstructions. The
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Method Evaluation Type Average PSNR over 20 CBSD68 test images

FFHQ-trained UGoDIT-6 OOD 26.98
CBSD68-trained UGoDIT-6 In-distribution (InD) 27.13

Table 3: Average test-time PSNR on 20 CBSD68 test images using two UGoDIT-6 models. The first (top row)
model is trained using 6 images from the FFHQ dataset (which represents the OOD case), and the second
(bottom row) is trained using 6 images from the CBSD68 dataset (which represents the InD case).

Training set for UGoDIT-6 Average PSNR over 100 FFHQ test images

Y1 30.64±0.24

Y2 30.57±0.31

Y3 30.65±0.27

Y4 30.58±0.25

Y5 30.74±0.16

Y6 30.95±0.13

Table 4: Average test-time PSNR over 100 FFHQ test images for the task of SR (with 4×) using six UGoDIT-6
models, each trained with a distinct training set Yi, i ∈ [6].

decoder for clean training is initialized at random and then optimized to reconstruct the test image.
However, we emphasize that UGoDIT is designed specifically for the low-data regime without clean
images.

D Comparison with training-data-free self-supervised measurement-splitting
methods

Here, we compare UGoDIT-6 with measurement-slitting training-data-free self-supervised meth-
ods: Self-supervised learning via data under-sampling (SSDU) [58] and Zero-Shot Self-Supervised
Learning (ZS-SSL) [17], for the task of MRI reconstruction.

Table 6 reports the average test-time PSNR over 20 test images using two knee datasets: fastMRI
[22] and the Cor-PD dataset [59].

As observed, under the considered settings, our method returns the best results as compared to these
baselines.

E Additional insights and results on convergence speed and run-time

In this section, we provide two sets of results in regard to the convergence speed and run-time (training
and testing) of UGoDIT as compared to the SOTA DIP-based method, aSeqDIP [26].

First, in order to highlight the convergence speed advantage of UGoDIT (relative to aSeqDIP), in
Table 7, we report the number of optimization iterations needed to achieve 30 dB across three tasks,
obtained from Figure 3. We note that, at inference, the number of parameters to optimize in UGoDIT
is lower than aSeqDIP as the encoder in our case is fixed.

As observed, UGoDIT requires significantly lower number of iterations to achieve 30 dB in MRI,
while requiring less than half of the number of iterations for SR and NDB.

In the second part of this section, in Table 8, we report the training time, testing time, and FLOPs for
the SR task, and compare it with aSeqDIP. All methods were run for 4000 iterations.

As observed, the more training images, the higher run-time and FLOPS for UGoDIT as we have more
decoders to train when M increases. As for testing, we only require less than half the run-time as
aSeqDIP since the optimization in UGoDIT takes place w.r.t. only the decoder, whereas aSeqDIP
optimizes the entire network.

Moreover, our run-time and FLOPs are significantly lower than training diffusion models or supervised
methods (data-intensive methods). For example, as per Figure 1 of [45], diffusion models require
more than 17 GFLOPs to train.
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Method Training images Average PSNR over 100 FFHQ test images

UGoDIT 6 degraded images 30.75±0.58

Multi-decoder AE (clean training) Eq.(8) 5 clean images 31.02±0.67

Table 5: Average test-time PSNR over 100 FFHQ test images of UGoDIT-6 model vs. a multi-decoder AE
trained using (8) with the clean versions of the training images of UGoDIT.

Dataset Method Average PSNR over 20 test slices

fastMRI
SSDU 33.25

ZS-SSL 33.47
UGoDIT-6 36.07

Cor-PD ZS-SSL 39.55
UGoDIT-6 39.98

Table 6: Average test-time PSNR over 20 MRI test slices of UGoDIT-6 vs. measurement slitting methods using
the fastMRI and Cor-PD datasets (both with 1D uniform mask).

F Impact of freezing the test-time encoder in UGoDIT

Here, we show the impact of freezing the weights of the pre-trained encoder at test time. More
specifically, given a pre-trained encoder with weight ϕ̂, we compare UGoDIT at test time with an
alternative approach that initializes the test-time encoder with ϕ̂ and then optimizes both the encoder
and decoder. We note that this is a similar setting to how the pre-trained MLP weights were used in
STRAINER [40].
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Figure 10: Average PSNR of 20 MRI test scans of UGoDIT-6 vs. the case where we use the parameters of the
pre-trained encoder to only initialize the test-time encoder. Then, the optimization takes place over both the
encoder and decoder. Iterations in the x-axis correspond to NK = 10000. For both cases, we use λ = 2.

Figure 10 presents the average PSNR over 20 MRI scans. As shown, freezing the encoder weights
yields better results in terms of both PSNR (around 1dB difference) and convergence speed. Specifi-
cally, UGoDIT approaches the peak performance in approximately 2000 iterations. Moreover, UGoDIT
requires optimizing fewer test-time parameters compared to the approach that initializes the encoder
and optimizes both the encoder and decoder.

G Robustness to noise overfitting and the impact of the regularization
parameter λ

In this section, we demonstrate how UGoDIT is robust to noise overfitting, typically encountered in
DIP-based methods. To this end, for the task of MRI reconstruction, we train UGoDIT with M = 6
knee scans across different values of the regularization parameter: λ ∈ {0.1, 1, 2, 10}. During testing,
we use 20 scans.

Figure 11 presents the average PSNR during testing. As observed, even when we run our method
for 10000 iterations, the PSNR drops by approximately less than 1.5 dB. This indicates that noise
overfitting takes place but is minimal given the large number of iterations.

Additionally, the case of λ = 2 returns the highest PSNR and has the least noise overfitting (as
indicated by the drop in PSNR). We also observe that the difference in PSNR across different λ’s
is approximately 1 dB. This indicates that the performance of UGoDIT is not highly sensitive to the
choice of the regularization parameter. In other words, if different values of λ are used (between 0.1
and 10), the PSNR value does not change significantly.
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Method Number of iterations needed to achieve 30 dB
MRI SR NDB

aSeqDIP 450 325 1750
UGoDIT-6 10 120 650

Table 7: Number of iterations needed to achieve 30 dB using UGoDIT-6 and aSeqDIP across the three considered
tasks for the results in Figure 3.

Method Run-time (seconds) GFLOPs

aSeqDIP 142 0.01004

UGoDIT-4 (training) 384 0.0143
UGoDIT-5 (training) 415 0.0142
UGoDIT-6 (training) 472 0.0174

UGoDIT-4 (testing) 62 0.0062
UGoDIT-5 (testing) 64 0.0078
UGoDIT-6 (testing) 66 0.0084

Table 8: Training and testing run-time and FLOPs of different UGoDIT models.

H A study on reconstructing the test image during the training of UGoDIT

To further highlight the benefit of the fixed encoder (and decoder-only optimization) at testing, in this
section, we report the results of Table 9 (with M = 5) where, given the same M + 1 FFHQ images,
we consider:

1. The PSNR of image M + 1 using a pre-trained UGoDIT-M encoder trained on image 1
to image M (first row). In other words, the PSNR of image M + 1 using our test-time
optimization in (5) (i.e., Algorithm 2).

2. The PSNR of image M + 1 when training UGoDIT-M + 1 jointly on all M + 1 images
(second row). In other words, the PSNR at decoder M + 1 using our training optimization
in (4) (i.e., Algorithm 1).

Method PSNR for image M + 1

Pre-trained UGoDIT-M encoder with test-time decoder 29.12

UGoDIT-M + 1 training 25.41

Table 9: PSNR for image M + 1 for the two cases in Appendix H.

As observed, training on images 1 to M and then testing on image M + 1 returns a better PSNR. Our
interpretation of the result is as follows. When the encoder is trained on M + 1 images with multiple
image-specific decoders, the optimization of the decoder for the (M + 1)-th image is affected by the
encoder having to fit over all images, leading to an unfavorable convergence trade-off compared to
learning the shared encoder and fixing it for the (M + 1)-th image and optimizing the decoder freely
from random initialization. In this case, the decoder adapts more freely for the (M + 1)-th image
without having to account for other images leading to better performance.

I A study on the learned features in UGoDIT

To better understand the representations learned by our shared encoder, we examine the feature maps
from its first few convolutional layers across two different approaches - one with the proposed UGoDIT
framework and the other with the shared decoder (termed single E-D in Section 3.3) framework.

To analyze the frequency content of the learned features, for the task of MRI, we applied a 2D Fourier
transform to each channel of the encoder’s layer and visualized the corresponding magnitude spectra.
We computed a low-frequency (LF) magnitude ratio, which is the proportion of spectral energy
contained within a central region of the frequency domain. This helps us to quantify, to how much
extent, low frequency features dominate the learned representation. The LF magnitude ratio can be
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Figure 11: Average PSNR of 20 MRI test scans of UGoDIT-6 using different values of the regularization
parameter λ at training and testing. Iterations in the x-axis correspond to NK = 10000.

defined as

LF ratio =

∑
c

∑
(u,v)∈C |x̂c[u, v]|∑

c

∑
(u,v) |x̂c[u, v]|

, (9)

where x̂c[u, v] is the 2D Fourier transform of the feature map at channel c, and C is a centered square
region in frequency space corresponding to low frequencies.

Metric Slice 1 Slice 2
UGoDIT Single E-D UGoDIT Single E-D

LF magnitude ratio: First Layer 0.463 0.525 0.363 0.417
LF magnitude ratio: Second Layer 0.341 0.318 0.302 0.325
LF magnitude ratio: Third Layer 0.235 0.337 0.233 0.357
LF magnitude ratio: Fourth Layer 0.166 0.232 0.207 0.303

LF magnitude ratio: Decoder Output 0.475 0.500 0.503 0.534

PSNR (dB) 36.61 33.98 35.92 34.82

Table 10: Low-frequency (LF) magnitude ratios at the output of four encoder layers (first four rows) and the
decoder output (fifth row), and the overall PSNR for UGoDIT and the Single E-D approach (i.e., (6)). The task
is MRI reconstruction at 4× acceleration factor. For reference, the LF magnitude ratios for the ground truth
images are 0.412 (Slice 1) and 0.439 (Slice 2).

Table 10 summarizes the low-frequency (LF) magnitude ratios computed for two images across four
encoder layers and the decoder output, along with PSNR (in dB). These results are reported for both
the UGoDIT and Single E-D (one encoder, one decoder) approaches where we used an acceleration
factor of 4×.

Across both test slices, Single E-D exhibits higher LF magnitude ratios in most layers, including the
decoder output, indicating a stronger low-frequency bias. UGoDIT achieves higher PSNR values for
both slices that have only moderate low-frequency content. Its feature representations better capture
high-frequency details in the image and yield better final reconstructed images than the single E-D
case, which shows a more pronounced low-frequency bias from shared training.

J Impact of the number of convolutional layers in the architecture of UGoDIT

In this section, we analyze the impact of varying the depth of the convolutional blocks in UGoDIT.
Specifically, we evaluate five different configurations of the Skip-net architecture [52] on the super-
resolution task performance, each with a different number of upsampling and downsampling convolu-
tional layers, and report the resulting PSNR values.

As shown in Figure 12, the configuration with five convolutional layers in both the encoder and
decoder produces the highest and most stable PSNR. Increasing the number of layers beyond five
yields no further improvement, while reducing the layer count leads to a noticeable degradation in
PSNR.

K Impact of the number of frozen layers in the encoder of UGoDIT

In this subsection, we attempt to answer the question: How much of the encoder arm needs to be
trained over the M images?

To this end, in Table 11, we report the results of UGoDIT-6 (MRI task) with freezing different number
of encoder layers. As observed, the default setting (5 frozen layers) returns the best results.
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Figure 12: Ablation study in terms of PSNR as a function of the number of Convolution layers in the Skip Net
for the Super Resolution task, averaged over 20 test images. The x-axis indicates the number of convolutional
layers in each of the upsampling and downsampling parts of the network architecture.

Number of encoder frozen layers at test time Average PSNR over 20 test slices

5 (default) 35.89±0.28

4 35.70±0.43

3 35.37±0.51

2 35.23±0.44

1 34.89±0.38

Table 11: Average test-time PSNR over 20 fastMRI test slices for UGoDIT-6 with freezing different numbers of
layers in the 5-layer encoder.

L Impact of the number of training images (M ) in UGoDIT

In this section, we investigate how the size of the training set influences UGoDIT ’s performance. To
this end, we consider the non-linear deblurring task and train the shared encoder using five different
FFHQ-derived subsets [51], and evaluate each on the same deblurring benchmark. As shown in
Figure 13, performance steadily improves as we increase the number of training images, peaking at
six images—beyond which additional data yields negligible gains.
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Figure 13: Ablation study on the number of training images, M , as given in Algorithm 1 and Algorithm 2.
Results are averaged over 20 images for the task of NDB.

M Impact of the selection of N and K in UGoDIT

Here, we conduct an ablation study on the number of gradient updates, N , for each inputs updates
(i.e., K) in the training (Algorithm 1) and testing (Algorithm 2) of UGoDIT.

The results are given presented in Figure 14, where we report the average PSNR values across the
tasks of MRI (considering combinations of (N,K) as (1, 4000), (2, 2000), and (4, 1000)), SP, and
NDB (considering combinations of (N,K) as (4, 5000), (10, 2000), and (20, 1000)).

The results show that the combination we selected (for each task), on average, returns the best results.
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Figure 14: Ablation study on the number of gradient updates, N , for every inputs updates, K, as given in
Algorithm 1 and Algorithm 2. Results are given as the average of 20 images for the tasks of MRI (left), SR
(middle), and NDB (right).

N Limitations and future work

In this paper, we assume full access to the forward model and focus on 2D image recovery problems.
In future work, we aim to extend UGoDIT to 3D image reconstruction and to the blind setting, where
the goal is to jointly reconstruct the image and estimate the forward operator.

Additionally, our out-of-distribution (OOD) performance varies across tasks, as discussed in Ap-
pendix A. Specifically, for MRI, our OOD performance is lower than that of independently running
aSeqDIP. In contrast, for super-resolution (SR), we observe improved acceleration while slightly
outperforming aSeqDIP in terms of PSNR. As such, for future work, we will explore combining
our method with test-time adaptation approaches to enhance performance on OOD test cases. Fur-
thermore, we will consider cases where the training and/or testing data come from different forward
models, i.e., train-test distribution mismatch.

O Implementation details for baselines

Natural image restoration baselines: For Diffusion-based approaches, we use the authors’ official
code for each method: DPS with the DDPM solver using 1, 000 diffusion steps; SITCOM with
N = 20 diffusion steps where K = 20 optimization steps are used for each. These methods use the
pre-trained DM (trained on FFHQ) from DPS. For STRAINER, the Shared INR architecture consists
of a single shared encoder—composed of six sine-activated layers—and k decoder heads, where k is
the number of images to be learned. During training, we jointly train the encoder and all decoders
by minimizing the sum of per-decoder mean squared error (MSE) losses using ADAM [47] with
a learning rate of 0.001. At test time, we instantiate a new single-decoder INR initialized with the
pre-trained encoder weights and train only both using a data-consistency loss tailored to the relevant
forward operator.

MRI reconstruction baselines: For DM-based methods, the pre-trained model is from DDS [12].
In DDS, we set N = 100 diffusion steps, whereas SITCOM-MRI uses N = 50 diffusion steps,
K = 10 optimization steps, and λ = 0 (no regularization). For the supervised learning baselines (i.e.,
VarNet and Recurrent VarNet), we adopt the default VarNet configuration, comprising 12 cascades of
unrolled reconstruction steps. Optimization is performed with Adam (learning rate 3× 10−4) on the
FastMRI knee dataset [22], which contains 973 volumes. From each volume, we discard the first and
last five slices, then randomly sample 8,000 images from the remaining slices to form the training set.

P Visualizations

Figure 15 shows the clean versions of 6 training images (top row) and the 20 testing images sampled
from the FFHQ dataset that we used in UGoDIT. Figures 16 and 17 present additional MRI visualiza-
tions. Samples from the natural image restoration tasks are given in Figure 18 and Figure 19 super
resolution and non-linear deblurring, respectively.
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Figure 15: Top: the 6 training images. Bottom: the 20 test images.

Ground Truth Input Self-Guided DDS

PSNR = ∞ dB PSNR = 21.12 dB PSNR = 32.78 dB PSNR = 34.55 dB

SITCOM MRI aSeqDIP UGoDIT (Ours)

PSNR = 35.67 dB PSNR = 34.48 dB PSNR = 35.56 dB

Figure 16: Visualization of ground-truth and reconstructed images using different methods of a knee image
from the fastMRI dataset with 4x k-space undersampling. A region of interest is shown with a green box and its
error (magnitude) is shown in the panel on the bottom left.
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Ground Truth Input Self-Guided DDS

PSNR = ∞ dB PSNR = 16.45 dB PSNR = 31.65 dB PSNR = 32.15 dB

SITCOM MRI aSeqDIP UGoDIT (Ours)

PSNR = 32.57 dB PSNR = 32.09 dB PSNR = 32.66 dB

Figure 17: Visualization of ground-truth and reconstructed images using different methods of a knee image
from the fastMRI dataset with 8x k-space undersampling. A region of interest is shown with a green box and its
error (magnitude) is shown in the panel on the bottom left.

Ground Truth Input STRAINER DPS

PSNR = ∞ dB PSNR = 22.45 dB PSNR = 28.65 dB PSNR = 27.35 dB

SITCOM aSeqDIP UGoDIT (Ours)

PSNR = 31.78 dB PSNR = 31.24 dB PSNR = 31.96 dB

Figure 18: Super Resolution example from the FFHQ dataset.
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Ground Truth Input STRAINER DPS

PSNR = ∞ dB PSNR = 23.24 dB PSNR = 24.82 dB PSNR = 25.52 dB

SITCOM aSeqDIP UGoDIT (Ours)

PSNR = 30.82 dB PSNR = 30.17 dB PSNR = 31.06 dB

Figure 19: Non-linear deblurring example from the FFHQ dataset.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a code base with instructions on how to re-produce our results.
See Settings in Section 4.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide a code base with instructions on how to re-produce our results.
See Settings in Section 4.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a code base with instructions on how to re-produce our results.
See Settings in Section 4.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provide experimental results.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the GPU used in Section 4.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper presents a new method for unsupervised learning for image recon-
struction in the low data regime.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
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Justification: The paper does not release new assets.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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