
Under review as a conference paper at ICLR 2023

ON THE GEOMETRY OF REINFORCEMENT LEARNING
IN CONTINUOUS STATE AND ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Advances in reinforcement learning have led to its successful application in complex
tasks with continuous state and action spaces. Despite these advances in practice,
most theoretical work pertains to finite state and action spaces. We propose building
a theoretical understanding of continuous state and action spaces by employing a
geometric lens. Central to our work is the idea that the transition dynamics induce
a low dimensional manifold of reachable states embedded in the high-dimensional
nominal state space. We prove that, under certain conditions, the dimensionality of
this manifold is at most the dimensionality of the action space plus one. This is the
first result of its kind, linking the geometry of the state space to the dimensionality
of the action space. We empirically corroborate this upper bound for four MuJoCo
environments. We further demonstrate the applicability of our result by learning a
policy in this low dimensional representation. To do so we introduce an algorithm
that learns a mapping to a low dimensional representation, as a narrow hidden layer
of a deep neural network, in tandem with the policy using DDPG. Our experiments
show that a policy learnt this way perform on par or better for four MuJoCo control
suite tasks.

1 INTRODUCTION

The goal of a reinforcement learning (RL) agent is to learn an optimal policy that maximises the
return which is the time discounted cumulative reward (Sutton & Barto, 1998). Recent advances in
RL research have lead to agents successfully learning in environments with enormous state spaces,
such as games (Mnih et al., 2015; Silver et al., 2016), and robotic control in simulation (Lillicrap
et al., 2016; Schulman et al., 2015; 2017a) and real environments (Levine et al., 2016; Zhu et al.,
2020; Deisenroth & Rasmussen, 2011). However, we do not have an understanding of the intrinsic
complexity of these seemingly large problems. For example, in most popular deep RL algorithms for
continuous control, the agent’s policy is parameterised by a a deep neural network (DNN) (Lillicrap
et al., 2016; Schulman et al., 2015; 2017a) but we do not have theoretical models to guide the design
of DNN architecture required to efficiently learn an optimal policy for various environments. There
have been approaches to measure the difficulty of an RL environment from a sample complexity
perspective (Antos et al., 2007; Munos & Szepesvari, 2008; Bastani, 2020) but these models fall
short of providing recommendations for the policy and value function complexity required to learn
an optimal policy.

We view the complexity of RL environments through a geometric lens. We build on the intuition
behind the manifold hypothesis, which states that most high-dimensional real-world datasets actually
lie on low-dimensional manifolds (Tenenbaum, 1997; Carlsson et al., 2007; Fefferman et al., 2013;
Bronstein et al., 2021); for example, the set of natural images are a very small, smoothly-varying
subset of all possible value assignments for the pixels. A promising geometric approach is to model
the data as a low-dimensional structure—a manifold—embedded in a high-dimensional ambient
space. In supervised learning, especially deep learning theory, researchers have shown that the
approximation error depends strongly on the dimensionality of the manifold (Shaham et al., 2015;
Pai et al., 2019; Chen et al., 2019; Cloninger & Klock, 2020), thereby connecting the complexity of
the underlying structure of the dataset to the complexity of the DNN.

As in supervised learning, researchers have applied the manifold hypothesis in RL—i.e. hypothesized
that the effective state space lies on a low dimensional manifold (Mahadevan, 2005; Machado et al.,

1

Under review as a conference paper at ICLR 2023

2017; 2018; Banijamali et al., 2018; Wu et al., 2019; Liu et al., 2021). Despite its fruitful applications,
this assumption—of a low-dimensional underlying structure—has never been theoretically and
empirically validated in any RL setting.

Our main result provides a general proof of this hypothesis for all continuous state and action RL
environments by proving that the effective state space is a manifold and upper bound its dimensionality
by, simply, the dimensionality of the action space plus one. Although our theoretical results are for
deterministic environments with continuous states and actions, we empirically corroborate this upper
bound on four MuJoCo environments (Todorov et al., 2012), with sensor inputs, by applying the
dimensionality estimation algorithm by Facco et al. (2017). Our empirical results suggest that in
many instances the bound on the dimensionality of the effective state manifold is tight. To show the
applicability and relevance of our theoretical result we empirically demonstrate that a policy can be
learned using this low-dimensional representation that performs as well as or better than a policy
learnt using the higher dimensional representation. We present an algorithm that does two things
simultaneously: 1) learns a mapping to a low dimensional representation, called the co-ordinate
chart, parameterised by a DNN, and 2) uses this low-dimensional mapping to learn the policy. Our
algorithm extends DDPG (Lillicrap et al., 2016) and uses it as a baseline with a higher-dimensional
representation as the input. We empirically show a surprising new DNN architecture with a bottleneck
hidden layer of width equal to dimensionality of action space plus one performs on par or better than
the wide architecture used by Lillicrap et al. (2016). These results demonstrate that our theoretical
results, which speaks to the underlying geometry of the problem, can be applied to learn a low
dimensional or compressed representation for learning in a data efficient manner. Moreover, we
connect DNN architectures to effectively learning a policy based on the underlying geometry of the
environment.

2 BACKGROUND AND MATHEMATICAL PRELIMINARIES

We first describe the continuous time RL model and Markov decision process (MDP). This forms the
foundation upon which our theoretical result is based. Then we provide mathematical background on
various ideas from the theory of manifolds that we employ in our proofs and empirical results.

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

We analyze the setting of continuous-time reinforcement learning in a deterministic Markov decision
process (MDP) which is defined by the tupleM = (S,A, f, fr, s0, λ) over time t ∈ [0, T). S ⊂ Rds
is the set of all possible states of the environment. A ⊂ Rda is the rectangular set of actions available
to the agent. f : S × A × R+ → S and f ∈ C∞ is a smooth function that determines the state
transitions: s′ = f(s, a, τ) is the state the agent transitions to when it takes the action a at state s
for the time period τ . Note that f(s, a, 0) = s, meaning that the agent’s state remains unchanged
if an action is applied for a duration of τ = 0. The reward obtained for reaching state s is fr(s),
determined by the reward function fr : S → R. st denotes the state the agent is at time t and at is
the action it takes at time t. s0 is the fixed initial state of the agent at t = 0, and the MDP terminates
at t = T . The agent does not have access to the functions f and fr, and can only observe states and
rewards at a given time t ∈ [0, T).

The agent is equipped with a policy, π : S → A, that determines its decision making process. We
denote the set of all the possible policies by Π. Simply put, the agent takes action π(s) at state
s. The goal of the agent is to maximise the discounted return J(π) =

∫ T
0
e−

l
λ fr(sl)dl, where

st+ϵ = f(st, π(st), ϵ) for infinitesimally small ϵ and all t ∈ [0, T). We define the action tangent
mapping, g : S ×A → Rds , for an MDP as

g(s, a) = lim
ϵ→0+

f(s, a, ϵ)− s
ϵ

=
∂f(s, a, ϵ)

∂ϵ
.

Intuitively, this captures the direction in which the agents state changes at state s upon taking an action
a. For notational convenience we will denote g(s, π(s)) as gπ : S → Rds and name it the action flow
of the environment defined for a policy π. Note that gπ is a well defined function. Intuitively, gπ is
the direction of change in the agent’s state upon following a policy π at state s for an infinitesimally
small time. The curve in the set of possible states, or the state-trajectory of the agent, is a differential

2

Under review as a conference paper at ICLR 2023

equation whose integral form is as follows,

sπt = s0 +

∫ t

0

gπ(s
π
l)dl. (1)

This solution is also unique (Wiggins, 1989) for a fixed start state, s0, and policy, π. The above curve is
a smooth curve if the policy is also smooth. Therefore, given an MDP,M, and a smooth deterministic
policy, π ∈ Π, the agent traverses a continuous time state-trajectory or curve HM,π : [0, T)→ S.

The value function at time t for a policy π is the cumulative future reward starting at time t:

vπ(st) =

∫ T

t

e−
l−t
λ fr(s

π
l)dl. (2)

Note that the objective function, J(π), is the same as vπ(s0). Our specification is very similar to
classical control and continuous time RL (Cybenko, 1989; Doya, 2000) with the key difference being
how we define the transition function, f .

2.2 MANIFOLDS

MDPs, in practice, have a low-dimensional underlying structure resulting in them having fewer
degrees of freedom than their nominal dimensionality. In the Cheetah MujoCo environment, with
image observations, the goal of the RL agent is to learn a policy to make the Cheetah move forward
as fast as possible, where the Cheetah is constrained to a plane. The actions available to the agent are
providing torques at each one of the 6 joints. In the case of learning from visual input in a MuJoCo
environment like 2D cheetah, one can describe the cheetah’s state by its “pose” and position instead
of the 128× 128 pixels of the image. The idea of a low dimensional manifold embedded in a high
dimensional state space formalises this.

A function h : X → Y , from one open subset X ⊂ Rl1 , to another open subset Y ⊂ Rl2 , is a
diffeomorphism if h is bijective, and both h and h−1 are differentiable. Intuitively, a low dimensional
surface embedded in a high dimensional Euclidean space can be parameterised by a differentiable
mapping, and if this mapping is bijective we term it a diffeomorphism. Here X is said to be
diffeomorphic to Y . A manifold is defined as follows.
Definition 2.1. A subset M ⊂ Rk is called a smooth m-dimensional submanifold of Rk (or m-
manifold in Rk) iff every point p ∈ M has an open neighborhood U ⊂ Rk such that U ∩M is
diffeomorphic to an open subset O ⊂ Rm. A diffeomorphism, ϕ : U ∩M → O is called a coordinate
chart of M and the inverse, ψ := ϕ−1 : O → U ∩M is called a smooth parameterisation of U ∩M .

Figure 1: The surface of an open cylinder of unit radius, denoted by S2, in R3 is a 2D manifold
embedded in a 3D space. More formally, S2 = {(x, y, z)|x2 + y2 = 1, z ∈ (−h, h)} where
the cylinder’s height is 2h. One can smoothly parameterise S2 as ψ(θ, b) = (sin θ, cos θ, b). The
coordinate chart is ϕ(x, y, z) = (sin−1 x, z).

We illustrate this with an example in Figure 1. If M ⊂ Rk is a non-empty smooth m-manifold then
m ≤ k, reflecting the idea that a manifold is of lower or equal dimension than its ambient space. A
smooth curve γ : I →M is defined from an interval I ⊂ R to the manifold M as a function that is
infinitely differentiable for all t. The derivative of γ at t is denoted as γ̇(t). The length of a curve
γ : I →M is defined as L(γ) =

∫
I
||γ̇(t)||dt, where || · || denotes the vector norm. In the Euclidean

3

Under review as a conference paper at ICLR 2023

space the distance between two points is the length of the unique straight line connecting them.
Similarly, the geodesic distance between two points a, b ∈M is defined as the length of the shortest
such curve, γ : [0, 1] → M , such that γ(0) = a and γ(1) = b. We denote the geodesic distance
between a, b ∈M on the manifold M is denoted by the function dM (a, b). The set of derivatives of
the curve at time t, γ̇(t), for all possible smooth γ, form a set that is called the tangent space. The
tangent space characterises the geometry of the manifold and it is defined as follows.
Definition 2.2. LetM be anm-manifold in Rk and p ∈M be a fixed point. A vector v ∈ Rk is called
a tangent vector of M at p if there exists a smooth curve γ : I →M such that γ(0) = p, γ̇(0) = v.
The set TpM := {γ̇(0)|γ : R→M is smooth, γ(0) = p} of tangent vectors of M at p is called the
tangent space of M at p.

Continuing our example, the tangent space of a point p in S2 is the vertical plane tangent to the
cylinder at that point. For a small enough ϵ and a vector v ∈ TpS

2 there exists a unique curve
γ : [−ϵ, ϵ]→ S2 such that γ(0) = p and γ̇(0) = v.

3 STATE SPACE GEOMETRY

The state space is typically thought of as a dense Euclidean space in which all states lie, but it is not
necessarily the case that all such states are reachable by the agent. Two main factors constrain the
states available to an agent: 1) the transition function and the actions that are available to an agent,
and 2) the start state s0. We therefore define Se as the effective set of states. Under the assumptions
that Π is the set of all smooth policies, π : S → A, for a continuous time MDP,M, and those made
in section 2.1 we define the effective set of states as follows.
Definition 3.1. For an MDP,M, the effective set of states, Se, is defined as the union of the sets
of states of all possible continuous curves traversed by the agent for the set of all smooth policies.
Formally, Se = ∪π∈Π{s|s = HM,π(t) for some t ∈ (0, T)}, where Π is the set of everywhere
smooth policies with domain S , and HM,π : [0, t)→ S is the curve defined by the policy π given the
MDPM.

We make three additional assumptions:

1. Full rank Jacobian: f has a full rank Jacobian, in variables [a, t], for all s ∈ S, a ∈ A
and t ∈ (0, T), and for a fixed policy π the solution for the equation sπt = s, if it exists, is
unique in t.

2. No small orbits: there exists an τ > 0 such that for all t < τ and a fixed policy π the
solution for the equation sπt = s, if it exists, is unique in t.

3. Action space restriction: there exists an r > 0 and an open restriction A′
s of A, for every

state s ∈ Se, such that A′
s ⊂ A and for all 0 < ϵ < r, if we have f(s, a1, ϵ) = f(s, a2, ϵ)

for some fixed a1, a2 ∈ A′ then a1 = a2.

We provide further explanations for these assumptions and how they restrict our study in Appendix A.
Under these two assumptions for the setting of continuous RL as in Section 2.1 we have the result
stated below.
Theorem 3.2. The set of effective states, Se, is a smooth manifold of dimensionality at most da + 1.

We provide the proof in Appendix B. Intuitively, the action set limits the directions in which the agent
can go. For example, a single action executed for a finite time interval makes the agent traverse a 1D
curve. The union of all such curves is the only subset of the state space the agent can reach. The key
technical idea is to construct a coordinate chart, and therefore a diffeomorphism, from a subset of low
dimensional euclidean space to a subset of the state space. We fix a state s and consider the function
ϕ : A× (0, r)→ S such that ϕ(a, ϵ) = f(s, a, ϵ). This result pertains to the global geometry of the
state manifold, meaning the state manifold everywhere has this low dimensional structure.

Our result formalises the long-held idea that there is in fact a lower dimensional structure to the
state manifold; in particular, this is true when da + 1 < ds, which is almost always the case for RL
environments. It also formalises the idea that the agent can only observe data for states reachable by
interacting with the environment using the set of actions at its disposal. Henceforth, we refer to Se as
the state manifold. We also present an immediate corollary of Theorem 3.2.

4

Under review as a conference paper at ICLR 2023

Figure 2: Consider a hypothetical scenario as in the image above where upon taking an action even
though the agent moves locally at state s in the direction of the red arrow (along gπ(s)) as time
progresses it ends up travelling along the green arrow which is on the manifold Se. There is some
constraint that restricts the state space “available” to an agent. Thus, the agent can only reach the
states that have a valid solution for the Equation 1 for any smooth policy.

Corollary 3.3. For every a ∈ A and fixed s ∈ Se, the action tangent mapping, g(s, a), maps from
the set of actions A to TsSe and therefore there exists a vector va ∈ TsSe such that va = g(s, a) for
all a ∈ A.

This implies that locally an agent is moving along a tangent in the tangent space of a state in the
state manifold as it acts upon the environment. The corollary follows from Definition 2.2, and its
proof is in Appendix B. Intuitively, Corollary 3.3 implies that locally the agent’s state changes in a
constrained manner dictated by the actions available to it and the local geometry of the manifold, i.e.,
the tangent space and its projection onto the state manifold. We illustrate this in Figure 2. We note
that the idea of actions mapping to the tangent space was assumed earlier by Liu et al. (2021) for
constrained RL but Corollary 3.3 both proves this assumption and shows that it holds in general for
continuous RL environments.

4 CONNECTIONS BETWEEN CONTINUOUS TIME DETERMINISTIC RL AND
EMPIRICAL RL

We have presented our results in the continuous time RL setting, which is an underutilized theoretical
tool in the study of RL. Here, and in the experimental section, we argue that it is in fact a useful
model for theoretical analysis in the continuous state and action, discrete time, setting. The primary
intuition is that, in the context of simulated robotic control problems, our work approximates the
agents behavior during the transition period (t, t+ 1) as the action at changes to at+1 in a smooth
manner and similarly for st to st+1. In this context, the discrete-time observations can be viewed
as time-uniform samples from an underlying continuous time process. This is in keeping with with
robotic control, in a robot with various joints we can only measure the joints over intervals which are
then attributed to discrete time measurements. Similarly, we can actuate the motors up to a frequency
and those can be considered as discrete control signals, even though the underlying physical process
is continuous time.

More formally, consider a discrete time MDP with continuous state and action spaces, a discrete state
trajectory is the sequence of states {st}Tt=1 and similarly for actions, {at}Tt=1. Let ϑ : A×[0, 1]×A →
A be a function that acts as a smooth transformation between two successive actions at, at+1 such
that the agent transition from st to st+1 in the continuous time model, as described in Section 2.1. In
other words, ϑ(at, l, at+1) = at+l is the discrete to continuous time transformation of actions. We
postulate that there exists an operator Hϑ, dependent on the MDPM, such that a discrete trajectory
can be transformed into a continuous time trajectory. Proving such an augmentation exists, given that
the underlying physical process as described in Section 2.1 and the discrete trajectory is sampled at
discrete time intervals as described above, is beyond the scope of our current work. Intuitively, since
the discrete time trajectories are temporally spaced out measurements of continuous trajectories the
existence of such an operator can be considered an “inversion” of the sampling process.

5

Under review as a conference paper at ICLR 2023

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 3: State manifold dimensionality, in blue, is close to da + 1 (horizontal red line) and far below
ds (horizontal green line) for various environments, estimated using the algorithm by Facco et al.
(2017).

Finally, we address the assumption of deterministic transitions. For our empirical analysis we use
the popular MuJoCo environments for robotic control with sensor inputs (Todorov et al., 2012) and
these environments are deterministic for all practical intents and purposes (see Appendix C). We
argue further that our theoretical model has broader applicability. One way to model transitions is to
assume that the underlying state transitions are deterministic but the observations the agent receives
have additive noise. More formally, a simplistic way to model stochastic transition F (s, a, ϵ) =
f(s, a, ϵ) + N (0, σ) is the stochastic transition function such that there is additive noise to this
deterministic transition. We postulate that the effective set of states can be modeled as a manifold
with each observation the agent makes lying at a certain distance to the state manifold and the distance
is normally distributed. This is also the idea behind many manifold learning paradigms: the data
lies at a distance to a low-dimensional manifold and this distance is distributed according to some
probability law (Fefferman et al., 2013; Pai et al., 2019).

5 EMPIRICAL VALIDATION

Our empirical validation is two fold. First, we show that the bound on the manifold dimensionality as
in Theorem 3.2 holds in practice. Second, we demonstrate the practical relevance of our result by
learning a “bottleneck” representation using which an RL agent can learn effectively.

5.1 EMPIRICAL DIMENSIONALITY ESTIMATION

To empirically corroborate our main result (Theorem 3.2) we perform experiments in the MuJoCo
domains provided in the OpenAI Gym (Brockman et al., 2016). These are all continuous state and
action spaces with da < ds for simulated robotic control tasks. The states are typically sensor
measurements such as angles, velocities or orientation, and the actions are torques provided at various
joints. We estimate the dimensionality of the state manifold Se. To sample data from the manifold,
we record the trajectories from multiple evaluation runs of DDPG across different seeds (Lillicrap
et al., 2016), with two changes: we use GELU activation (Hendrycks & Gimpel, 2016) instead of
ReLU, in both policy and value networks, and also use a single hidden layer network of width 400
instead of 2 hidden layers for both the networks. This is inline with the assumptions for Theorem 3.2
in Section 3, that the policy is smooth. Performance is comparable to the original DDPG setting (see
the Appendix G). For background on DDPG refer to Appendix F. We then randomly sample states
from the evaluation trajectories to obtain a subsample of states, D = {si}ni=1 ⊂ Se. We estimate
the dimensionality with 10 different subsamples of the same size to provide an error region for the
estimates.

We employ the dimensionality estimation algorithm introduced by Facco et al. (2017), which estimates
the intrinsic dimension of datasets characterized by non-uniform density and curvature, to empirically
corroborate Theorem 3.2. Further details about the dimensionality estimation procedure are presented
in Appendix E. The estimates for four MuJoCo environments are shown in Figure 3. For all
environments the estimate remains in the neighbourhood of da + 1 in keeping with Theorem 3.2.

5.2 LEARNING VIA THE LOW-DIMENSIONAL MANIFOLD REPRESENTATION

We now validate the relevance of Theorem 3.2 using a popular policy gradient method, deep deter-
ministic policy gradient (DDPG) Lillicrap et al. (2016), which is discrete time. DDPG is a framework

6

Under review as a conference paper at ICLR 2023

for learning in environments with continuous action spaces, and the policy and value function are
parameterised by DNNs. Let θπ be the parameters of the policy DNN. The agent learns by updating
the policy parameters with respect to the discrete time discounted return, J(θπ):

θπ ← θπ + απ∇θπJ(θπ),
where απ is the learning rate for the policy and J(θπ) is the discounted return objective. For further
details and background on DDPG please see Appendix F. We do so by learning mapping to a low
dimensional manifold of size da + 1 from the control input space that feeds into the policy. The
central idea is to show that this compressed representation can be used to learn a control policy with
RL without any loss—and possibly even a gain— of performance.

Our goal in validating the applicability of this low dimensional representation is to learn an isometric
coordinate chart from the high dimensional representation for states in Se to a low dimensional
Euclidean space Rm, where m ≤ da+1 as noted in Theorem 3.2, and then compare learning a policy
using this compression of the state to learning from the full state. We denote the coordinate chart
by ψ : Se → Rda+1 parameterised by θψ. For a coordinate chart to be isometric it must preserve
the geodesic distance on the manifold Se, meaning for s1, s2 ∈ Se we have that dSe(s1, s2) =
||ψ(s1; θψ) − ψ(s2θ

ψ)||2, where dSe(s1, s2) is the geodesic distance between s1 and s2 on the
manifold Se and || · ||2 denotes the Euclidean norm. Note that imposing isometry on a coordinate
chart is a stronger condition than it being a diffeomorphism because it is distance preserving, in
addition to being a bijection and differentiable. Such isometric mappings have been used in the past
to learn the underlying manifold for high-dimensional data (Tenenbaum et al., 2000; Basri & Jacobs,
2017; Pai et al., 2019). This is done to ensure tractability of the objective that we introduce below.
Given a dataset of states D = {si}Ni=1 ⊂ Se we minimize the loss

Lψ(θ
ψ) =

1

N

∑
si,sj∈D

(
dSe(s1, s2)− ||ψ(s1; θψ)− ψ(s2θψ)||2

)2
, (3)

which is similar to the loss for learning low-dimensional manifold embeddings introduced by Tenen-
baum et al. (2000). The computation and estimation of the geodesic distance, dSe , is particularly
challenging. One approach is to use a graph, as a discrete approximation of a manifold, to calculate
this geodesic distance (Yan et al., 2007; Dong et al., 2011). The graph is constructed with each
datapoint as a node and an edge in between two datapoint if one of them is knn-nearest neighbor of
the other in the dataset. In addition to that there is a distance attribute associated with every edge
that is the Euclidean distance between the two points. Therefore, the geodesic distance between two
datapoints can be approximated the sum of these edge-wise attributes for the edges constituting the
shortest path between the two points. Another practical challenge in the empirical estimation of the
loss Lψ is sampling pairs of states for which we can obtain approximate geodesic distances with
reasonable compute time. In summary, we calculate dSe in three steps: 1) sample data from replay
buffer and therefore the manifold Se, 2) construct a knn-nearest neighbor graph with edge attributes,
and 3) estimate the distance between two states using the sum of edge attributes of the shortest path
between these edges. The exact procedure employed by us is detailed in Appendix H and illustrated
with a simple example in Figure 10, further algorithmic details are also provided in Appendix I.

Although there has been significant work in learning isometric mappings (Pai et al., 2019; Basri &
Jacobs, 2017) and embeddings (Tenenbaum et al., 2000; Zha & Zhang, 2003), for data sampled from
a manifold, these prior works assume that the data distribution remains static throughout the training
process. However, the state distribution changes with the policy in RL and this mapping feeds into
the policy itself, effecting the agents performance. We learn this isometric mapping, ψ, in tandem
with the policy to account for the distribution shift. To do so we introduce an intermediate hidden
layer of size da+1 in the policy DNN. The output of this layer is then trained by performing gradient
descent on the loss Lψ . In this architecture θψ ⊂ θπ and the gradient is as follows:

θπ ← θπ + απ∇θπJ(θπ)− αψ∇θπLψθψ, (4)

where απ and αψ are the learning rates for the policy and the coordinate chart respectively. Note that
update for parameters θψ is then θψ ← θψ − αψ∇θψLψθψ, in addition to the update with respect
to the objective for increasing the discounted return (See Appendix I and Algorithm 1 for further
details). This is because for all θi ∈ θπ \ θψ we have∇θiL(θψ) = 0. We illustrate the architecture
and how the representation feeds into the loss, for the policy network, in Figure 4. Note that the
architecture and gradient updates for the DNN parameterising the Q function remains the same as

7

Under review as a conference paper at ICLR 2023

Figure 4: We introduce a bottleneck hidden layer of width da+1 which is the output of the coordinate
chart, ψ, i.e. the green colored base of the DNN. The output of this coordinate chart is fed into the
manifold loss (Equation 3).

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 5: For all the environments we use αψ = 10−5, in comparison to απ = 10−4, and the rest of
the hyper-parameters are the same as reported by Lillicrap et al. (2016), over 6 random seeds.

used by Lillicrap et al. (2016), for control inputs, which is a two hidden layer DNN with 400 neurons
in the first hidden layer, 300 in the second one and a one dimensional output.

We present results for 4 different MuJoCo environments: Cheetah, Walker2D, Swimmer and Reacher
in Figure 5 and for three out of four of these environments the performance is either the same or better
than the DDPG baseline. Our results strongly suggest that a compressed isometric representation
of dimesionality da + 1, learned using gradient updates can be used for learning a policy. This
furthers our argument: there is a low dimensional structure to RL problems and it can be employed to
learn more efficiently. Algorithmic details are given in Appendix I. Ablation studies for the newly
introduced hyper-parameter αψ in Appendix J and comparison to training in absence of manifold
loss is provided in Appendix M, due to space limitations. In addition to this, we observe that the
manifold loss (Equation 3) also drops steadily as training progresses, meaning that the representation
being learnt, ψ(s; θψ), is a low-dimensional isometric representation which retains the manifold
geometry. The graphs for how the manifold loss, Lψ , evolves in each case is given in Figure 6 along
with the interpretation. We explain the reasons for Reachers’ failure for our algorithm in Appendix
K. In summary, to learn an isometric mapping to the Euclidean space the agent might require more
than dim(Se) dimensions, for the case of Reacher. The additional constraint that we place, that the
learnt coordinate chart has to be isometric, is detrimental in this case. As has been done in manifold
learning literature, we need methods for learning the low-dimensional mapping that do not rely on
learning an isometry (Roweis & Saul, 2000; Zhang & Zha, 2004). We demonstrate the effects of
changing the width of the bottleneck layer on the Cheetah domain in Figure 12, in the Appendix.
We also need better methods to approximate the geodesic distance between data points in the very
high-dimensional setting. We also report additional results for learning with soft actor critic algorithm
(Haarnoja et al., 2018) in conjunction with manifold representation learning in Appendix L.

6 RELATED WORK

There has been significant empirical work that assumes the set of states to be a manifold in RL.
The primary approach has been to study discrete state spaces as data lying on a graph which has an
underlying manifold structure. Mahadevan & Maggioni (2007) provided the first such framework
to utilise the manifold structure of the state space in order to learn value functions. Machado et al.
(2017) and Jinnai et al. (2020) showed that PVFs can be used to implicitly define options and applied

8

Under review as a conference paper at ICLR 2023

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 6: We observe that the the loss Lψ gradually decreases in all instances except Reacher where
the performance is sub-par. For the Walker2D environment we see an increase in manifold error that
matches the downward spike in performance in Figure 5 but the return for our method still surpasses
the baseline in this case.

them to high dimensional discrete action MDPs (Atari games). Wu et al. (2019) provided an overview
of varying geometric perspectives of the state space in RL and also show how the graph Laplacian is
applied to learning in RL. Another line of work, that assumes the state space is a manifold, is focused
on learning manifold embeddings or mappings. Several other methods apply manifold learning to
learn a compressed representation in RL (Bush & Pineau, 2009; Antonova et al., 2020; Liu et al.,
2021). Jenkins & Mataric (2004) extend the popular ISOMAP framework (Tenenbaum, 1997) to
spatio-temporal data and they apply this extended framework to embed human motion data which has
applications in robotic control. Bowling et al. (2005) demonstrate the efficacy of manifold learning for
dimensionality reduction for a robot’s position vectors given additional neighbourhood information
between data points sampled from robot trajectories. At the same time, continuous RL has been
applied to continuous robotic control (Doya, 2000; Deisenroth & Rasmussen, 2011; Duan et al.,
2016). We apply continuous state, action and time RL as a theoretical model to study the geometry of
popular continuous RL environments for the first time.

More recently, in various papers that take a theoretical approach to deep learning the intrinsic
dimension of the data manifold and its geometry play an important role in determining the complexity
of the learning problem (Shaham et al., 2015; Cloninger & Klock, 2020; Goldt et al., 2020; Paccolat
et al., 2020; Buchanan et al., 2021). Schmidt-Hieber (2019) shows that, under assumptions over the
function being approximated, the statistical risk deep ReLU networks approximating a function can be
bounded by an exponential function of the manifold dimension. Basri & Jacobs (2017) theoretically
and empirically show that SGD can learn isometric maps from high-dimensional ambient space down
to m-dimensional representation, for data lying on an m-dimensional manifold, using a two-hidden
layer neural network with ReLU activation where the second layer is only of width m. Similarly,
Ji et al. (2022) show that the sample complexity of off-policy evaluation depends strongly on the
intrinsic dimensionality of the manifold and weakly on the embedding dimension. Coupled with our
result, these suggest that the complexity of RL problems and data efficiency would be influenced
more by the dimensionality of the state manifold, which is upper bounded by da + 1, as opposed
to the ambient dimension. Finally, our work could be applied in conjunction with recent work that
studies RL algorithms in light of the underlying structure of deep Q-functions (Kumar et al., 2021).

7 DISCUSSION AND CONCLUSION

We have shown that that the dimensionality of the manifold is upper bounded by da + 1 and have
empirically verified it (Figure 3). This proves that the popular manifold assumption (Mahadevan,
2005; Machado et al., 2017; 2018; Banijamali et al., 2018; Wu et al., 2019; Liu et al., 2021) holds
under certain conditions in continuous-time reinforcement learning. It also shows that there is an
underlying lower dimensional structure to the MDPs. Additionally, we demonstrate the applicability
of this result in a practical setting by showing that a DDPG agent can learn efficiently in this
highly compressed, low-dimensional space. Our newly introduced architecture and simultaneous
low-dimensional representation learning along with policy learning performs on par or better than
the baseline DDPG approach, for MuJoCo environments with sensor inputs. Overall, we show a
theoretical bound on intrinsic dimensionality of continous RL problem and also show the efficacy
of this low-dimensional representation in learning a policy. This opens up room for new theoretical
and empirical advances paving way for better DNN architecture design and representation learning
algorithms.

9

Under review as a conference paper at ICLR 2023

8 REPRODUCIBILITY STATEMENT

We offer the following details for all the experiments we have performed, in the main body or appendix:
hyperparameters, sample sizes, GPU-hours, CPU-hours, code, neural network architectures, Python
libraries used, input sizes, and external code bases. We also provide the code with instructions
on running it in the supplementary material. All the details to run the code and its location are in
Appendix O. All the hyperparameters, for our experiments in Section 5.2, can be found in appendices
I, J and K.

REFERENCES

Alessio Ansuini, Alessandro Laio, Jakob H. Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. In NeurIPS, 2019.

Rika Antonova, Maksim Maydanskiy, Danica Kragic, Sam Devlin, and Katja Hofmann. Ana-
lytic manifold learning: Unifying and evaluating representations for continuous control. ArXiv,
abs/2006.08718, 2020.

András Antos, Csaba Szepesvari, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71:89–129, 2007.

Francis R. Bach and David M. Blei (eds.). Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, 2015. JMLR.org. URL http://proceedings.mlr.press/
v37/.

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Hai Bui, and Ali Ghodsi. Robust
locally-linear controllable embedding. In AISTATS, 2018.

Ronen Basri and David W. Jacobs. Efficient representation of low-dimensional manifolds using deep
networks. ArXiv, abs/1602.04723, 2017.

Osbert Bastani. Sample complexity of estimating the policy gradient for nearly deterministic
dynamical systems. ArXiv, abs/1901.08562, 2020.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents (extended abstract). In IJCAI, 2013.

Michael Bowling, Ali Ghodsi, and Dana F. Wilkinson. Action respecting embedding. Proceedings of
the 22nd international conference on Machine learning, 2005.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. ArXiv, abs/1606.01540, 2016.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velivckovi’c. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. ArXiv, abs/2104.13478, 2021.

Sam Buchanan, Dar Gilboa, and John Wright. Deep networks and the multiple manifold problem.
ArXiv, abs/2008.11245, 2021.

Keith Bush and Joelle Pineau. Manifold embeddings for model-based reinforcement learning under
partial observability. In NIPS, 2009.

G. Carlsson, T. Ishkhanov, V. D. Silva, and A. Zomorodian. On the local behavior of spaces of natural
images. International Journal of Computer Vision, 76:1–12, 2007.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Efficient approximation of deep relu
networks for functions on low dimensional manifolds. ArXiv, abs/1908.01842, 2019.

Alexander Cloninger and Timo Klock. Relu nets adapt to intrinsic dimensionality beyond the target
domain. ArXiv, abs/2008.02545, 2020.

10

http://proceedings.mlr.press/v37/
http://proceedings.mlr.press/v37/

Under review as a conference paper at ICLR 2023

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2:303–314, 1989.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In ICML, 2011.

Wei Dong, Moses Charikar, and K. Li. Efficient k-nearest neighbor graph construction for generic
similarity measures. In WWW, 2011.

Kenji Doya. Reinforcement learning in continuous time and space. Neural Computation, 12:219–245,
2000.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and P. Abbeel. Benchmarking deep reinforce-
ment learning for continuous control. In ICML, 2016.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimen-
sion of datasets by a minimal neighborhood information. Scientific Reports, 7, 2017.

C. Fefferman, S. Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. arXiv: Statistics
Theory, 2013.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modelling the influence of
data structure on learning in neural networks. ArXiv, abs/1909.11500, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016.

Tuomas Haarnoja, Haoran Tang, P. Abbeel, and Sergey Levine. Reinforcement learning with deep
energy-based policies. In ICML, 2017.

Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Matthew J. Hausknecht and Peter Stone. The impact of determinism on learning atari 2600 games.
In AAAI Workshop: Learning for General Competency in Video Games, 2015.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv: Learning, 2016.

Odest Chadwicke Jenkins and Maja J. Mataric. A spatio-temporal extension to isomap nonlinear
dimension reduction. In ICML ’04, 2004.

Xiang Ji, Minshuo Chen, Mengdi Wang, and Tuo Zhao. Sample complexity of nonparametric
off-policy evaluation on low-dimensional manifolds using deep networks. ArXiv, abs/2206.02887,
2022.

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George Dimitri Konidaris. Exploration in
reinforcement learning with deep covering options. In ICLR, 2020.

Steven G. Krantz and Harold R. Parks. The implicit function theorem. 2002.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60:84 – 90, 2012.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. ArXiv, abs/2010.14498, 2021.

Sergey Levine, Chelsea Finn, Trevor Darrell, and P. Abbeel. End-to-end training of deep visuomotor
policies. ArXiv, abs/1504.00702, 2016.

11

Under review as a conference paper at ICLR 2023

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. CoRR, abs/1509.02971, 2016.

Puze Liu, Davide Tateo, Haitham Bou-Ammar, and Jan Peters. Robot reinforcement learning on the
constraint manifold. In CoRL, 2021.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. ArXiv, abs/1703.00956, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Mur-
ray Campbell. Eigenoption discovery through the deep successor representation. ArXiv,
abs/1710.11089, 2018.

Sridhar Mahadevan. Proto-value functions: developmental reinforcement learning. Proceedings of
the 22nd international conference on Machine learning, 2005.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. J. Mach. Learn. Res., 8:2169–2231, 2007.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In ICLR, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv,
abs/1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

Rémi Munos and Csaba Szepesvari. Finite-time bounds for fitted value iteration. J. Mach. Learn.
Res., 9:815–857, 2008.

John Nash. C1 isometric imbeddings. Annals of Mathematics, 60(3):383–396, 1954. ISSN 0003486X.
URL http://www.jstor.org/stable/1969840.

Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. Geometric
compression of invariant manifolds in neural networks. Journal of Statistical Mechanics: Theory
and Experiment, 2021, 2020.

Gautam Pai, Ronen Talmon, Alexander M. Bronstein, and Ron Kimmel. Dimal: Deep isometric
manifold learning using sparse geodesic sampling. 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 819–828, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2014.

12

https://doi.org/10.1038/nature14236
http://www.jstor.org/stable/1969840

Under review as a conference paper at ICLR 2023

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290 5500:2323–6, 2000.

Johannes Schmidt-Hieber. Deep relu network approximation of functions on a manifold. ArXiv,
abs/1908.00695, 2019.

John Schulman, S. Levine, P. Abbeel, Michael I. Jordan, and P. Moritz. Trust region policy optimiza-
tion. ArXiv, abs/1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017b. URL http://arxiv.org/abs/
1707.06347.

Uri Shaham, Alexander Cloninger, and Ronald R. Coifman. Provable approximation properties for
deep neural networks. ArXiv, abs/1509.07385, 2015.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2015.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimension-
ality reduction. Science, 290 5500:2319–23, 2000.

Joshua B. Tenenbaum. Mapping a manifold of perceptual observations. In NIPS, 1997.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

George E. Uhlenbeck and Leonard Salomon Ornstein. On the theory of the brownian motion. Physical
Review, 36:823–841, 1930.

Stephen Wiggins. Introduction to applied nonlinear dynamical systems and chaos. 1989.

Yifan Wu, G. Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with efficient
approximations. ArXiv, abs/1810.04586, 2019.

Shuicheng Yan, Dong Xu, Benyu Zhang, HongJiang Zhang, Qiang Yang, and Stephen Lin. Graph
embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29:40–51, 2007.

Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks. ArXiv,
abs/2011.14522, 2020.

Hongyuan Zha and Zhenyue Zhang. Isometric embedding and continuum isomap. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), pp. 864–871, 2003.

Zhenyue Zhang and Hongyuan Zha. Principal manifolds and nonlinear dimensionality reduction via
tangent space alignment. SIAM J. Scientific Computing, 26:313–338, 2004.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash
Kumar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. ArXiv,
abs/2004.12570, 2020.

13

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2023

A ASSUMPTIONS

We list all the assumptions by section and consequently by theorems. We also provide some intuition
on what these assumptions mean and how they limit our study.

Assumption made in Section 2.1 about continuous-time RL:

1. We assume that the transition function, f , is infinitely differentiable or smooth. This is
done to ensure that the manifold it forms is also smooth. This might not always hold in
practice but the transitions can be Ck smooth, meaning k−times differentiable. We use this
assumption in the construction of a diffeomorphism in the definition of a manifold.

2. The set of actions, A, is rectangular and open. This is pretty standard in practice for
continuous environments. This much less an assumption but done so to simplify the
analysis and avoid any confusion. The only reason we need the open part is to construct a
diffeomorphism.

We do not state the entirety of the assumptions made in Section 3 but we provide further intuition for
them:

1. We also use assumption that the Jacobian of f is full rank, in [a, t]. This assumption is
needed for applying the implicit function theorem in the proof of Proposition B.2.

2. The no small orbits assumption is a strong one but it is essential to proving Theorem 3.2.
This might not hold strictly in practice but it can be argued that it holds almost always
with probability 1, essentially the probability of an agent making an orbit is almost surely
0. Moreover, as long as there is a positive τ such that there are no orbits for time t < τ
this condition is satisfied. In other words, this condition is akin to saying there is no
reversibility, of state transitions, in infinitesimally small time intervals. It is naturally true in
environments with physical dynamics, e.g., acceleration, velocity or displacement cannot be
instantaneously reversed.

3. The action space restriction condition helps us construct a bijection for the proof of Theorem
3.2. Intuitively, the idea is that if two actions have the same local effect on how the agents
state changes in some state then they can be collapsed into a single action for a fixed state s.

B PROOF OF THEOREM 3.2

We first state the implicit function theorem (for more details see theorem 3.3.1 in Chapter 3 by Krantz
& Parks (2002) and its proof using the inverse function theorem). In the statement of the implicit
function theorem we use F to denote a general function, that satisfy the conditions stated in the
theorem.
Theorem B.1. (Implicit Function Theorem) Let F : Rd1+d2 → Rd2 be a continuously differentiable
function. Let Rd1+d2 have coordinates (x, y) and fix a point (x0, y0) = (x0,1, ..., x0,d1 , y0,1, ..., y0,d2)
with F (x0, y0) = 0, where 0 ∈ Rd2 . The appropriate Jacobian is defined as:

JF,y(x, y) =

∂F1

∂y1
(x0, y0) . . . ∂F1

∂yd2
(x0, y0)

...
. . .

...
∂Fd2
∂y1

(x0, y0) . . .
∂Fd2
∂yd2

(x0, y0)

 .
If this Jacobian matrix is invertible then there exists an open set V ⊂ Rd1 containing x0 such that
there exists a uniquely continuous differentiable function h : V → Rd2 such that h(x0) = y0, and
F (x, h(x)) = 0 for all x ∈ V . Additionally, h−1 is continuously differentiable in the h-image of V .

Using the implicit function theorem we first prove our main result for the exact case where the
dimensionality of the effective state space, Se, is da + 1. We do so under additional assumptions in
the following proposition.
Proposition B.2. Under the assumptions of Section 2.1 and 3 with the added assumption that the
transition function, f , is injective in A× (0, L), for some L, for fixed s ∈ S the effective state space,
Se ⊂ Rds , is a manifold of is da + 1.

14

Under review as a conference paper at ICLR 2023

Proof. Given any state s ∈ Se we can construct an open neighbourhood that maps to an open subset
of Rda+1. Since we know that s ∈ Se there exists a state s′ ∈ Se such that f(s′, a, ϵ) = s for some
a ∈ A and ϵ ∈ (0, L). Now, for a fixed s′ consider the map ψs′ : A× (ϵ− η, ϵ+ η)→ Se such that
ψs′(a, t) = f(s′, a, t) where 0 < η < ϵ, such that ϵ+ η < L, and a ∈ A.

We need to show that this map, ψs′ , is a diffeomorphism and maps to an open subset of Se. Since
the transition function, f , is smooth we have that ψs′ is also smooth in its range. Also note that f is
injectiveA×(0, L) for fixed s′ and therefore it mapsA×(ϵ−η, ϵ+η) uniquely to a set U . This set U
is a subset of Se by definition. Note thatU is open becauseA×(ϵ−η, ϵ+η) is open because a bijection
maps open sets to open sets. This leads to the conclusion that ψs′ : A× (ϵ− η, ϵ+ η)→ U ⊂ Se is
a smooth bijection. Thereby providing us a smooth parameterisation from Rda+1 to U . This means
that its inverse, ψ−1

s′ exists. Now to show that this inverse is differentiable we apply the implicit
function theorem.

Let F (x, y, t) = x− ψs′(y, t), note that s′ is fixed, and as in above the variables are x, y and t. The
function F is restricted to the domain such that x ∈ Se, y ∈ A and t ∈ (ϵ − η, ϵ + η). Since the
Jacobian of f is full rank, by assumption, the appropriate Jacobian, JF,[y,t] as defined in Theorem B.1,
is invertible and F is also continuously differentiable. Similarly, the condition F (x, y, t) = 0 holds
for x = s, y = a and t = ϵ. Therefore, by the implicit function theorem there exists a unique function
h and an open neighbourhood V containing [a, ϵ] ∈ Rda+1 such that F (h(y, t), y, t) = 0 and h is
differentiable. Since h is unique we need to show that h = ψs′ for the domain V ∩(A×(ϵ−η, ϵ+η)).
The proof follows from uniqueness of h. We have, for the domain V ∩ (A × (ϵ − η, ϵ + η)),
F (ψs′(y, t), y, t) = f(s′, y, t)−ψs′(y, t) = 0. Therefore since h is unique and f is an injection for a
fixed s′ we have h = ψs′ , which means ψ−1

s′ is continuously differentiable in its domain By Theorem
B.1.

We can similarly construct these diffeomorphisms from Rda+1 to U ⊂ Se for all s ∈ Se. Finally, by
Definition 2.1 we have that Se is a da + 1 dimensional manifold.

Now we prove the general case without the assumption of injectivity on f . To do so we construct
an surjection f ′ : S × A′ × R+ → S where A′ ⊂ Rd′ is an open set such that d′ ≤ da. We state
the two additional assumptions made in Section 3. The first one being that for any policy π ∈ Π we
do not have any critical points or loops in the differential field defined by gπ . Formally, we have the
following conditions gπ(s) ̸= 0 for all s ∈ S and for a fixed policy π the solution for the equation
sπt = s, if it exists, is unique in t. The second one is that if two actions have the same outcome at one
state then they have the same outcome at all states. More formally, there exists an r > 0 such that for
all 0 < ϵ < r, if we have f(s, a1, ϵ) = f(s, a2, ϵ) for some fixed a1, a2 ∈ A and any one s ∈ S then
it holds for all S.

Under the assumptions of Section 2.1 and the ones stated above we restate the main theorem below
before presenting the proof.

Theorem 3.2. The set of effective states, Se, is a smooth manifold of dimensionality at most da + 1.

Proof. With assumption 3 for every state we have a restriction A′
s that essentially turns f(s, a, t)

into a bijection for every a ∈ A′
s. Now consider a function f ′ : Se × A′

s′ × (ϵ − η, ϵ + η)
which is a restriction of f ’s domain to A′

s′ × (0, T) for a fixed s′. Now for a fixed s, we can
construct an open neighbourhood using ψs′ : A′

s′ × (ϵ− η, ϵ+ η) constructed as in Proposition B.2,
ψs′(a, t) = f ′(s′, a, t) such that ψs′(a, ϵ) = s for some a ∈ A′

s′ and ϵ > η > 0 and also ϵ+ η < τ ,
where τ is as in assumption 2. Now we know that this is a bijection from assumptions 1, 2 and 3 in
Section 3.1 as long as we choose ϵ and η small enough to satisfy the requirements for Proposition
B.2. The restricted set A′

s′ ensures that each action, for a fixed time t and s, maps to a unique state.
Further, the assumption on no orbits ensures that for a fixed action a ∈ A′

s′ there is a unique solution
to f(s′, a, t) = s′′ for a fixed a, s′ and s′′ in t. Therefore, we constructed a full rank smooth bijection
ψs′ which maps an open set A′ × (ϵ− η, ϵ+ η) to an open subset of Se for every s ∈ Se. We can
now apply the same arguments of Proposition B.2 to argue that there exists a diffeomorphism ψs′
form an open set in A′

s′ × (ϵ− η, ϵ+ η) to an open set in Se. This holds true for all s.

15

Under review as a conference paper at ICLR 2023

Table 1: Transition Variances for MuJoCo Environments
Environment std(Se)

Cheetah 9.4× 10−16

Walker2D 2.7× 10−15

Reacher 7.8× 10−16

Swimmer 1.04× 10−15

Finally, we conclude by stating that the dimensionality of the manifold is equal to the of dim(A′
s′ ×

(ϵ− η, ϵ+ η)) + 1 which is less than or equal to da + 1.

Finally, we prove Corollary 3.3. The proof is fairly straightforward following Definition 2.2 and
Definition 3.1. Since the manifold Se is defined as the union of all continuous curves from all possible
smooth policies we can find a curve such that for any s ∈ Se and a ∈ A for some policy π(s) = a in
the neighborhood of s Se ∩B(s, ϵ) where B(s, ϵ) is a Euclidean ball of radius ϵ > 0 centered at s.
This would mean that for this policy, starting at s0, there is a curve γ such that for some time t and
some interval η > 0 we have γ(t) = s and therefore γ̇(t) = v where v ∈ TsSe. This vector v can
now be uniquely mapped to the action and therefore can be labeled va as in Corollary 3.3. We also
note that this vector is unique independent of the choice of ϵ or η.

C EMPIRICAL VALIDATION OF OUR ASSUMPTIONS

We validate two of our assumptions. We first demonstrate that the MuJoCo environments, for which
we present results in Section 5, are deterministic for all practical intents and purposes. Second, we
show that the Jacobian of the tranistion function with respect to the action for a fixed time and state is
full rank for all of these environments, thereby suggesting that assumption 1 in Section 3 is “partially
satisfied”.

C.1 DETERMINISTIC TRANSITIONS IN MUJOCO ENVIRONMENTS

To estimate the stochasticity of the transitions in the environments we estimate the transition standard
deviation:

std(Se) = Es∼U [Se],a∼U [A]

[
(s′ − E[s′])2|St = s, St+1 = s′, At = a

]
,

where U [·] represents the uniform distribution over a set. This captures how much variance is in the
transition dynamics. We estimate this value by randomly and uniformly sampling states, s, from
an agents trajectories over the learning process. We then obtain randomly and uniformly sample
actions, a, from the set of actions A. Then for a fixed (s, a) we take observe the one step transition
that the environment returns: s′, a 100 times. For a fixed s we sample 30 such actions a. Therefore,
we estimate the quantity std(Se) using approximately 6 million samples, for each environment. The
results, divided by the standard deviation of states, are presented in Table 1 suggest that for all
practical intents and purposes these environments are deterministic.

C.2 FULL RANK JACOBIAN ASSUMPTION

To validate assumption 1 from Section 3, we empirically estimate the Jacobian. Our assumption
states that the function f(s, a, t) is full rank in [a, t] for all s ∈ S . Since we are working in practical
framework the value of t is fixed to be 1, meaning the environment simulates the application of action
a for a single unit of time and returns the next state s′. Therefore, we are only able to estimate the
Jacobian of f(s, a, 1) for the variable a, see that t is fixed to 1. To do so, we sample s ∼ U [Se], as
described in the previous section. We then sample a ∼ U [A], as described in the previous section.
Finally we estimate the Jacobian for the variable a and the function f(s, a, 1), see Theorem B.1
for definition of the Jacobian. We do so using the scipy function approx_fprime. Finally, once
we have the da × ds Jacobian matrix we estimate the rank of this matrix using the scipy function
estimate_rank. We tabulate all the results in Table 2. This procedure comes as close as we can
to validating assumption 1 in Section 3.

16

Under review as a conference paper at ICLR 2023

Table 2: Transition Variances for MuJoCo Environments
Environment da Rank

Cheetah 6 6
Walker2D 6 6
Reacher 2 2
Swimmer 2 2

(a) (b) (c) (d)

Figure 7: Frames from the Atari game Seaquest. We present 4 frames that are temporally successive
from left to right.

D CONNECTION TO DISCRETE ACTION ENVIRONMENTS

One of the most popular RL environments with discrete states and actions are the Atari games from
the arcade learning environment (Bellemare et al., 2013). Mnih et al. (2013) provided the first result
in learning policies with only high-dimensional images as the input to a DNN. Atari games are
deterministic given a fixed policy (Hausknecht & Stone, 2015). In case of images, there are two
considerations when it comes to the underlying structure of data:

1. Underlying structure of images: the states, which are frames from a video game, in Atari
games have a low dimensional underlying structure. Even though the frames are 210× 160
pixel images there is a low dimensional underlying structure to them. For example, consider
the frames from the Atari game Seaquest in Figure 7. These frames can be identified
uniquely with far fewer variables such as: position and heading of the submarine, position
and heading of the sharks, oxygen capacity, the scores, the number of lives, position of the
bullet and the score.

2. Underlying structure from the transitions: Since we know that the agent can only
change its state and observation by taking actions it limits the states available to it. In the
Seaquest example, we know that the agent can only access some subset of all the possible
configurations of the low-dimensional manifold of Seaquest images. Meaning only a subset
of configurations of shark positions, submarine positions etc. are realizable.

We further illustrate these ideas in Figure 8. These two factors combined together impose a low-
dimensional structure on the state manifold. Development of such a theoretical model, which
accurately captures these restrictions or dual structures, is beyond the scope of our current work
where we primarily deal with the structure imposed by the transitions.

E DIMENSIONALITY ESTIMATION BY FACCO ET AL. (2017)

We describe the algorithm for dimensionality estimation in context of sampled data from the state
manifold Se. Let the dataset be randomly sampled points from a manifold Se embedded in Rds
denoted by D = {si}Ni=1. For a point si from the dataset D let {ri,1, ri,2, ri,3, ...} be a sorted list of
distances of other points in the dataset from si and they set r0 = 0. Then the ratio of the two nearest
neighbors is µi = ri,2/ri,1 where ri,1 is the distance to the nearest neighbor in D of si and ri,2 is the
distance to the second nearest neighbor. Facco et al. (2017) show that the logarithm of the probability
distribution function of the ratio of the distances to two nearest neighbors is distributed inversely
proportional to the degree of the intrinsic dimension of the data and we follow their algorithm
for estimating the intrinsic dimensionality. We describe the methodology provided by Facco et al.

17

Under review as a conference paper at ICLR 2023

(a)

Figure 8: The structure imposed by transitions is illustrated above. Suppose the agent starts at the
red state. If the agent were to execute the down action it gets to the blue state. There are three
"directions" in which the agent (and the submarine) can transition. If the agent chooses to execute
the action left it gets to the yellow state, similarly green state on right and white state on down. The
agent traverses along this surface of admissible images, which are constrained by the underlying
structure of the images, given that they are from the Atari game Seaquest and from the set of possible
transitions along this manifold. Here discrete actions are represented by continuous curves, in black,
on a manifold.

(2017) in context of data sampled by an RL agent from a manifold. Without loss of generality, we
assume that {si}Ni=1 are in the ascending order of ri. We then fit a line going through the origin for
{(log(µi),− log(1− i/N)}Ni=1. The slope of this line is then the empirical estimate of dim(Se). We
refer the reader to the supplementary material provided by Facco et al. (2017) for the theoretical
justification of this estimation technique. The step by step algorithm is restated below.

1. Compute ri,1 and ri,2 for all data points i.

2. Compute the ratio of the two nearest neighbors µi = ri,2/ri,1.

3. Without loss of generality, given that all the points in the dataset are sorted in ascending
order of µi the empirical measure of cdf is i/N .

4. We then get the dataset Ddensity = {(log(µi),− log(1− i/N)} through which a straight line
passing through the origin is fit.

The slope of the line fitted as above is then the estimate of the dimensionality of the manifold.

F DDPG BACKGROUND

An agent trained with the DDPG algorithm learns in the discrete time but with continuous states
and actions. With abuse of notation, a discrete time and continuous state and action MDP is defined
by the tuple M = (S,A, P, fr, s0, λ), where S,A, s0 and fr are the state space, action space,
start state and reward function as above. The transition function P : S × A × S is the transition
probability function, such that P (s, a, s′) = Pr(St+1 = s′|St = s,At = a), is the probability of
the agent transitioning from s to s′ upon the application of action a for unit time. The policy, in
this setting, is stochastic, meaning it defines a probility distribution over the set of actions such
that π(s, a) = Pr(At = a|St = s). The discount factor is also discrete in this setting such that an

18

Under review as a conference paper at ICLR 2023

analogous state value function is defined as

vπ(st) = Esl,al∼π,P

[
T∑
l=t

λl−tfr(sl, al)|st

]
,

which is the expected discounted return given that the agent takes action according to the policy
π, transitions according to the discrete dynamics P and st is the state the agent is at time t. Note
that this is a discrete version of the value function defined in Equation 2. The objective then is to
maximise J(π) = vπ(s0). One abstraction central to learning in this setting is that of the state-action
value function Qπ : S ×A → R, for a policy π, is defined by:

Qπ = Esl,al∼π,P

[
T∑
l=t

λl−tfr(sl, al)|st, at

]
,

which is the expected discounted return given that the agent takes action at at state st and then follows
policy π for its decision making. An agent, trained using the DDPG algorithm, parametrises the policy
and value functions with two deep neural networks. The policy, π : S → A, is parameterised by a
DNN with parameters θπ and the action value function, q : S ×A → R,is also parameterised by a
DNN with ReLU activation with parameters θQ. Although, the policy has an additive noise, modeled
by an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930), for exploration thereby making it
stochastic. Lillicrap et al. (2016) optimise the parameters of the Q function, θQ, by optimizing for
the loss

LQ =
1

N

N∑
i=1

(yi −Q(si, ai; θ
Q))2, (5)

where yi is the target value set as yi = ri + λQ(s′i+1, π(si+1; θ
π); θQ). The algorithm updates the

parameters θQ by θQ ← θQ + αQ∇θQLQ, where LQ is defined as in Equation 5. The gradient of
the policy parameters is defined as

∇θπJ(θπ) =
1

N

∑
i

∇aQ(s, a; θQ)|s=si,a=π(si)∇θQπ(s; θ
π)|s=si , (6)

and the parameters θπ are updated in the direction of increasing this objective.

G DDPG MODIFIED ARCHITECTURE COMPARISON

We provide the comparison between single hidden layer network and multiple hidden layer network
because our results in section 4 are for single hidden layer. The same architecture is used by Lillicrap
et al. (2016) for the policy and value function DNNs which is two hidden layers of width 300
and 400 with ReLU activation. Here we provide the comparison to single hidden layer width 400
and MUP (Yang & Hu, 2020) with GELU activation for the architecture used by Lillicrap et al.
(2016). We provide this comparison in Figure 9 and note that the performance remains comparable
for both the architectures. All results are averaged over 6 different seeds. We use a PyTorch
based implementation for DDPG with modifications for MUP parametrisation and the use of GELU
units. The base implementation of the DDPG algorithm can be found here: https://github.com/rail-
berkeley/rlkit/blob/master/examples/ddpg.py. The hyperparameters are as in the base implementation.

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 9: Comparison of single hidden layer (blue) and multiple hidden layer (red) architectures for
DNNs.

19

https://github.com/rail-berkeley/rlkit/blob/master/examples/ddpg.py
https://github.com/rail-berkeley/rlkit/blob/master/examples/ddpg.py

Under review as a conference paper at ICLR 2023

H SAMPLING STRATEGY AND GEODESIC DISTANCE ESTIMATION

We use graphs as a discrete abstraction of manifolds to sample efficiently whilst preserving local
properties of the sampled nodes. In many representation learning aprroaches the main objective is
to learn to map individual data points to dense vectors in a low dimensional space via stochastic
gradient descent (Mikolov et al., 2013; Perozzi et al., 2014; Grover & Leskovec, 2016). One of the
primary objectives is to preserve relationships between data points. Graphs, with individual data
points mapping to nodes and the relationships between them ecnoded as the edges, are used as an
abstraction to represent the whole dataset with all the charecteristic relationships. In our case we seek
to preserve local isometry in the learnt mapping, ψ. Meaning, given a point s ∈ D ⊂ Se we would
like to preserve the geodesic distance between s and the points in its “neighbourhood” upon being
mapped to a lower dimensional representation.

We first define the graph that is a discrete representation the state manifold, Se, and state the above
objective more formally. An undirected graph G = (V,E) consists of nodes and edges, where V =

{vi}NVi=1 are the individual nodes and an edge e = (vi, vj) ∈ E implies that there is a an edge between
the nodes vi and vj for some i, j. Since the graph, G, is undirected (vi, vj) ∈ E =⇒ (vj , vi) ∈ E.
Given a node, vi, the one-hop neighborhood of this node is defined as all the nodes vj ∈ V such that
(vi, vj) ∈ E. Now we define a graph, deonted by GD = (D, ED) that forms a discrete abstraction
over the manifold Se using the datasetD. We first set all the ndoes to be the states in our dataset,D. A
datapoint’s one hop neighbourhood as the knn points nearest by the Euclidean distance in the dataset
D. This means that for every state si ∈ D we have knn edges to knn distinct nearest points in D. This
is a knn-nearest neighbors construction of the graph from a dataset D, sampled from a manifold (Yan
et al., 2007; Dong et al., 2011). We augment the edges of this graph GD with an additional set of edge
attributes, the Euclidean distance between two points (si, sj) ∈ ED i.e. ||si − sj ||2. Therefore, the
augmented graph now becomes GD = (D, ED, AD) where AD is an ordered set with the Euclidean
distances between the two nodes in ED.

For most practical applications, the number nodes of this graph GD is in thousands and consequently
the number of edges are knn times the number of nodes. Since we learn the mapping ψ using
SGD we can sample batches of state pairs and the distances between them. To do so we randomly
sample a subset of states from D. We then construct a subgraph which consists of nodes kh hops
away from these randomly subsampled points. We then use this randomly sampled subgraph to
compute the pairwise distance between them using breadth first search. We denote this procedure by
the function Random-K-Hop-Subgraph(GD, kh). Since this randomly sub-sampled graph is much
smaller in size whilst preserving the distances we postulate that the distance thus obtained between
pairs of states, as the sum of the distance attributes of the shortest paths, is a good approximation
of the geodesic distance dSe . We remind the reader that this geodesic distance is needed for the
manifold loss introduced in Equation 3. This three step procedure: 1) sampling data on the manifold,
2) constructing a knn-nearest neighbors graph from this data, and 3) randomly sampling kh-hop
subgraphs, is illustrated with an example of the Swiss roll manifold in Figure 10.

I ALGORITHMIC DETAILS

An RL agent, trained using the DDPG algorihm, collects data from trajectories as tuples: (s, a, s′, r)
where s is the state at which the agent takes an action a and transitions to state s′ and obtains the
reward r. The algorithm stores a buffer of these tuples and therefore we have access to the set of
available states s, sampled from the state manifold Se. As described in the previous section, our
algorithms requires a dataset sampled from the manifold to estimate the manifold loss in Equation
3. Therefore our algorithm subsamples the states from this buffer to obtain the aforementioned
dataset, D, at every episode. Then our algorithm (Algorithm 1) uses this dataset to obtain a sample
of pairs of states and geodesic distances between these states, as described in the previous section,
to perform SGD on the parameters of the mapping to the low-dimensional space, θψ, on the loss
Lψ. All the results have the same values for knn = 6, kh = 4 and we use a batch size of 128 for
the subsampling the graphs as described in Appendix H for the function Random-K-Hop-Subgraph.
These were obtained after manual tuning. The other parameters, are set to the defualt ones for DDPG
τ = 0.01, λ = 0.99, αQ = 0.001 and the replay buffer size is 106. We provide details for running
the code in Appendix O.

20

Under review as a conference paper at ICLR 2023

(a) First we obtain a set of points sampled from
a manifold.

(b) In the second step, edges are drawn between
the knn = 4 nearest points.

(c) Finally, nodes and edges (in red) are subsam-
pled based on the kh = 2 hop neighbourhood of
randomly sampled nodes.

Figure 10: The three step sub-sampling for estimating geodesic distances and batched learning
in SGD is illustrated with the example of the Swiss-roll manifold. We use the scikit-learn
package (Pedregosa et al., 2011) for sampling the data, torch-geometric package for generating
knn-nearest neighbors graph and also for obtaining the kh-hop subgraphs (Fey & Lenssen, 2019).

21

Under review as a conference paper at ICLR 2023

Algorithm 1 DDPG with Manifold Representaion Learning
π,Q parameterised by θπ, θQ respectively.
θπ, θQ ∼ Pr(θ)

Initialize the parameters of the target θπ
′
, θQ

′ ← θπ, θQ.
Initialise replay buffer B
for Episode 1 to Max Episodes do

Initialise the Ornstein-Uhlenbeck process for exploration noise: X
for Time step t, 0 to T do
Set action at = π(st; θ

π) +Xt.
Execute action at and observe rt, st+1 storing it in B
Sample a minibatch of N transitions (si, ai, ri, si+1) from B
Compute the loss LQ and update the parameters θQ
Construct the dataset D from all the states si from the sampled N tuples
Construct the graph GD using knn-nearest neighbors
Subsample graph G′D′(D′, ED′ ,A′

D′) = Random-K-Hop-Subgraph(GD, kh)
Obtain the set of state pairs and geodesic distances, from G′D′ , to calculate Lψ
Update the policy as in Equation 3:

θπ ← θπ + απ∇θπJ(θπ)− αψ∇θπLψ
Update the target networks:

θQ
′
←τθQ + (1− τ)θQ

′

θπ
′
←τθπ + (1− τ)θπ

′

end for
end for

Figure 11: We observe the effect of increasing the hyperparameter αψ on the discounted return in the
Walker2D environment.

J ADDITIONAL EXPERIMENTS AND ABLATION STUDIES

All results reported here that are reported are an average over 6 different seeds. For all but the Reacher
environment we see the manifold loss decrease as training progresses, as expected. Meaning the
agent is able to learn a low-dimensional isometric representation, ψ, as well as a policy that operates
on this low-dimensional input. We observe that for the Reacher environment our Algorithm is unable

22

Under review as a conference paper at ICLR 2023

Figure 12: The discounted return for varying the width of the bottleneck layer for the Cheetah domain
with da + 1 = 7. We see the performance peaks at width 8.

(a) Mean Evaluation Returns (b) Manifold Loss

Figure 13: We observe that the manifold loss decreases as we increase the width of the bottleneck
layer and the performance improves. All the hyper-parmaeters are the same as in Appendix I.

to simulataneously learn a low dimensional mapping and a policy. This is a true despite searching
across all the hyperparameters.

We present the ablation study over the hyperparameter αψ in Figure 11. This suggests that further
increasing the learning rate, αψ , improves performance of the agent, in case of walker but it begins to
detireorate after a certain point, αψ = 1.5 .

Finally, we demonstrate the effects of changing the width of the bottleneck layer on the Cheetah
domain in Figure 12. Most importantly, we observe that the performance peaks at width equal to 8,
with both 7 and 8 have similar returns. From the results for dimensionality estimation, in Figure 3, we
know that the estimate lies between 7 and 8. This suggests that in case of Cheetah there is an optimal
isometric “compression” that allows the agent to perform optimally and better than the baseline. This
furthers our argument that an RL agent can learn efficiently on this low dimensional manifold by
utilising the underlying structure. The error margins are omitted for the clarity of exposition since
there are multiple curves on the same graph.

23

Under review as a conference paper at ICLR 2023

K EXPLAINING FAILURE IN REACHER ENVIRONMENT

Here we explain the failure case of the Reacher environment. As noted in Section 5.2 isometry is
a stronger condition that mere diffeomorphism. The Nash embedding theorem states that the an
m-dimensional C1 manifold can be embedded isometrically into a Euclidean space of dimensionality
at most m(m+ 1) or (3m+ 11)/2 (Nash, 1954), therefore the embedding dimension required for
learning an isometric embedding for Se might be greater than da + 1. For example, a circle which
is a 1D manifold in 2D Euclidean space cannot be isometrically embedded into 1D. Therefore,
the objective we train on is stronger than learning a coordinate chart. We hypothesize that for the
reacher environment the agent is unable to learn this isometry. As reported in Figure 13, as we
increase the width, and therefore the embedding dimension, the manifold loss decreases and the
agents performance as measured by mean discounted return improves. As we increase the width to 7
the performance is on par with the baseline approach. The error margins are omitted for the clarity of
exposition since there are multiple curves on the same graph.

L LEARNING VIA LOW-DIMENSIONAL REPRESENTATION FOR SOFT ACTOR
CRITIC

The soft actor critic (SAC) algorithm (Haarnoja et al., 2018) provides a method for learning policy in
a more stable manner compared to previous algorithms like DDPG (Lillicrap et al., 2016), TRPO
(Bach & Blei, 2015), and PPO (Schulman et al., 2017b).

L.1 BACKGROUND ON SOFT ACTOR CRITIC

The goal of the SAC algorithm is to train an RL agent acting in the MDPM = (S,A, P, fr, s0, λ),
which is as described in Appendix F. The SAC agent optimises for maximising the modified objective:

J(θπ) =

T∑
t=0

Est,at∼π,P [fr(st, at) +H(π(·, st; θπ))] ,

where H term is the entropy of the policy π. This additional entropy term improves exploration
(Schulman et al., 2017a; Haarnoja et al., 2017). Haarnoja et al. (2018) optimise this objective by
learning 4 DNNs: the (soft) state value function V (s; θV), two instances of the (soft) state-action
value function: Q(s1, at; θ

Q
i) where i ∈ {1, 2}, and a tractable policy π(st, at; θπ). To do so they

maintain a dataset D os state-action-reward-state tuples: D = {(si, ai, ri, s′i)}. The soft value
function is trained to minimize the following squared residual error,

JV (θ
V) = Es∼D

[
1

2

(
V (s; θV)− Ea∼π

[
Q(s, a; θQ)− log π(s, a; θπ)

])2]
, (7)

where the minimum of the values from the two value functions Qi is taken to empirically estimate
this expectation. The soft Q-function parameters can be trained to minimize the soft Bellman residual

JQ(θ
Q) = Es,a,r,s′∼D

[
1

2

(
Q(s, a; θQ)− r − λV (s′; θ̄V)

)2]
, (8)

where θ̄V are the parameters of the target value function, which are updated at a slower rate compared
to the parameters θV , as is also done in Algorithm 1. The policy parameters are learned by minimizing
the expected KL-divergence,

J(θπ) = Es∼D

[
DKL

(
π(s, ·; θπ), exp(Q(s, ·; θQ))

ZθQ(s)

)]
, (9)

where ZθQ(s) normalizes the distribution. In addition to this we add the manifold loss as described
in Equation 3 to the policy objective. In keeping with the notation above, the learning rates for the
functions V,Q, π and ψ are αV , αQ, απ and αψ respectively. Algorithm 2 details how the agent
performs this modified learning.

24

Under review as a conference paper at ICLR 2023

Algorithm 2 SAC with Manifold Representation Learning

π,Qi, V parameterised by θπ, θQi , θ
V respectively.

θπ, θQi , θ
V ∼ Pr(θ)

Initialize the parameters of the target θ̄V ← θV .
Initialise empty dataset D
for Episode 1 to Max Episodes do

for Time step t, 0 to T do Sample action at ∼ π(st; θπ).
Observe successive state st+1 ∼ P (st+1|st, at).
Append to dataset D ← D ∪ {(st, at, rt, st+1)}.

end for
Construct the graph GD using knn-nearest neighbors
Subsample graph G′D′(D′, ED′ ,A′

D′) = Random-K-Hop-Subgraph(GD, kh)
Obtain the set of state pairs and geodesic distances, from G′D′ , to calculate Lψ
for Gradient steps do

Update the value function parameters:

θV ← θV − αV∇θV JV (θV),
where JV is as in Equation 7.
Update the Q-function parameters:

θQi ← θQi − αQ∇JQ(θ
Q), i ∈ {1, 2},

where JQ is as in Equation 8.
Update the policy following the objective in Equation 9:

θπ ← θπ + απ∇θπJ(θπ)− αψ∇θπLψ.
Update the value function target network:

θ̄V ← τθV + (1− τ)θ̄V .

end for
end for

25

Under review as a conference paper at ICLR 2023

Figure 14: Our architecture for SAC, which similar to the architecture in Figure 4.

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 15: For all the environments we use αψ = 7.5× 10−5, in comparison to απ = 3× 10−4, and
the rest of the hyper-parameters are the same as reported by Haarnoja et al. (2018), over 6 random
seeds.

L.2 HYPER-PARAMETER DETAILS

The discount factor, λ, is set to 0.99. The learning rates for the Q-functions, αQ, the V -function,
αV , and the policy, αpi are set to 3× 10−4. The update parameter of the value function, τ , is set to
5× 10−3. The batch size is 256. The learning rate for the manifold loss, αψ , is set to 7.5× 10−5. All
the parameters and for learning the manifold representation are the same as described in Appendix I.

L.3 EXPERIMENTAL RESULTS

We provide the results for our architecture (as described in Figure 14), with manifold learning, in
comparison to “vanilla” SAC for the four algorithms. These results are for an architecture and
algorithm similar to described Section 5.2 except with SAC algorithm as opposed to DDPG. All the
mean discounted rewards are reported in Figure 15 and the corresponding manifold loss is reported in
Figure 16. we observe that our agent performs at par with the baseline in case of Walker2D, Cheetah
and Reacher and slightly worse in the Swimmer environment. This result was obtained without an
extensive hyperparameter tuning by varying the value of αψ over a very small range.

M COMPARISON WITHOUT MANIFOLD LOSS

We provide another comparison where we compare the same bottleneck architecture for the policy
network with and without the manifold loss. This demonstrates the efficacy of the manifold loss

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 16: We report the manifold loss as above. Except Cheetah every other domain behaves as
expected.

26

Under review as a conference paper at ICLR 2023

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 17: We compare the scenario where we use the same architecture for DDPG as illustrated on
the left side of Figure 4, with a bottleneck layer of width da + 1, with, labeled “DDPG”, and without,
labeled “Ours”, the manifold learning loss. All the results are averaged over 6 random seeds.

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 18: We compare using the same architecture, as in Figure 14, for the two implentations of the
SAC algorithm with (labeled "Ours") and without manifold loss (labeled "SAC").

described in Equation 3. In Figure 17 we observe that for all the environments our algorithm performs
better except for the Reacher environment where both the algorithms perform sub-optimally to the
wide network baseline. We attribute the higher variance to changing representation of ψ. Ansuini et al.
(2019) showed that DNNs implicitly learn low-dimensional manifold structure at varying depths when
trained with SGD in a supervised manner. Their results are for various popular image classification
models like ResNet (He et al., 2016), AlexNet (Krizhevsky et al., 2012) and VGG-16 (Simonyan &
Zisserman, 2015). This speaks to the efficacy of our manifold loss Lψ, that the addition of this loss
improves performance over the implicit low-dimensional manifold representation learnt by a Deep
ReLu network with a bottleneck layer. We report a similar comparison between SAC algorithms with
the same DNN architecture, as in Figure 14, with and without the manifold loss. We observe that
with the manifold loss the performance is better for Walker2D, Swimmer and Cheetah environments.
For the Reacher environment we observe that SAC algorithm ends up finding the optimal policy with
low variance and with far fewer episodes in both cases.

N COMPUTE REQUIREMENTS

For each one of our experiments we perform 6 different runs with varying seeds to obtain the results.
Since experiments in Section 5.1 only require trajectories we reuse the trajectories sampled form the
ReLU and GELU comparison experiments in Appendix E. For all the experiments in Appendix E we
required approximately 180 hours of processing time on NVIDIA GeForce RTX 3090 GPUs which
have 24 GB of RAM. We also run two runs of the DDPG algorithm simultaneously on each GPU,
owing to the 24 GB RAM availability per GPU, which cuts our run time into half.

O STEPS FOR RUNNING THE CODE AND GPU HOURS

All code is in python and was tested for python 3.6. We use the pytorch library for the ease of defining
and training DNNs (Paszke et al., 2019) and pytorch_geometric (Fey & Lenssen, 2019) for all graph
operations.

We provide the implementation of DDPG using GELU units in the code/rlkit/ folder of
our supplementary material To install the environment we recommend installation using the
setupy.py file present in the folder. For running the experiment, there are multiple files in
the code/rlkit/examples/smooth_ddpg/ddpg*.py, each one uses a different architec-

27

Under review as a conference paper at ICLR 2023

ture and environment details of which can be found within the file. To execute the code, e.g. for
ddpg_arch_2.py, run the following command from the rlkit folder:

python examples/smooth_ddpg/ddpg_arch_2.py 115 gelu

where "115" is the seed and "gelu" argument means the DNN thus instantiated uses gelu activa-
tions. Our code samples trajectories and the location of the folder can be specified in the file
path_collector.py

The code for dimensionality estimation using neighborhood data is fairly simple and only requires
version 1.1.1 of the python package scikit-learn (Pedregosa et al., 2011). It is provided in
code/data-processing/dim-estimate. The main file is dim-estimate.py. It expects
a pickle file which is an array of all states sampled for an agent. The code for cleaning the samples,
from runs of the DDPG code as described above, and acquiring them in the required format can be
found in the file run_data_processing.py.

The code for the simultaneous dimensionality reduction and policy learning can be found
in the folder code/rlkit/examples/manifold_learning/ddpg*.py. The
implementation for graph creation and sampling procedure using pytorch_geometric
is in the file code/rlkit/rlkit/torch/manifold/mrl_ddpg.py. The
various architectures used for the policy network can be found in the folder
code/rlkit/rlkit/archs_dir/manfiold_arch.

Finally, the code for obtaining the illustrations in Figure 10 are in the folder
code/rlkit/illustration_scripts.

For the results and all its ablations in Section 5.2, we ran multiple instances of the modified DDPG
algorithm and the baseline DDPG algorithms for 6 seeds each for 1000 epochs on cloud instances
with Nvidia 3090 Ti GPUs with 24 GB memory, and CPUs with 8 cores and 16 GB RAM. Each run
takes about 3 hours each. This means we utilised about 700 GPU hours, including hyperparameter
tuning and auxiliary experiments presented in the Appendix. The results in Section 5.1 were obtained
from the trajectories sampled from various DDPG runs and took about 20 CPU hours on an 8 core
machine.

28

	Introduction
	Background and Mathematical Preliminaries
	Continuous-Time Reinforcement Learning
	Manifolds

	State Space Geometry
	Connections Between Continuous Time Deterministic RL and Empirical RL
	Empirical Validation
	Empirical Dimensionality Estimation
	Learning via the Low-dimensional Manifold Representation

	Related Work
	Discussion and Conclusion
	Reproducibility Statement
	Assumptions
	Proof of Theorem 3.2
	Empirical Validation of our Assumptions
	Deterministic Transitions in MuJoCo Environments
	Full Rank Jacobian Assumption

	Connection to Discrete Action Environments
	Dimensionality Estimation by Facco2017EstimatingTI
	DDPG Background
	DDPG modified architecture comparison
	Sampling Strategy and Geodesic Distance Estimation
	Algorithmic Details
	Additional Experiments and Ablation Studies
	Explaining Failure in Reacher Environment
	Learning via Low-Dimensional Representation for Soft Actor Critic
	Background on Soft Actor Critic
	Hyper-Parameter Details
	Experimental Results

	Comparison without Manifold Loss
	Compute Requirements
	Steps for Running the Code and GPU Hours

