
When is Tree Search Useful for LLM Planning?
It Depends on the Discriminator

Anonymous ACL submission

Abstract

In this paper, we examine how large language001
models (LLMs) solve multi-step problems un-002
der a language agent framework with three com-003
ponents: a generator, a discriminator, and a004
planning method. We investigate the practical005
utility of two advanced planning methods, it-006
erative correction and tree search. We present007
a comprehensive analysis of how discrimina-008
tion accuracy affects the overall performance009
of agents when using these two methods or a010
simpler method, re-ranking. Experiments on011
two tasks, text-to-SQL parsing and mathemat-012
ical reasoning, show that: (1) advanced plan-013
ning methods demand discriminators with at014
least 90% accuracy to achieve significant im-015
provements over re-ranking; (2) current LLMs’016
discrimination abilities have not met the needs017
of advanced planning methods to achieve such018
improvements; (3) with LLM-based discrimi-019
nators, advanced planning methods may not ad-020
equately balance accuracy and efficiency. For021
example, compared to the other two methods,022
tree search is at least 10–20 times slower but023
leads to negligible performance gains, which024
hinders its real-world applications.1025

1 Introduction026

Planning plays a crucial role in intelligent behav-027

iors of human and AI agents. Since the early stage028

of AI research, various methods have been pro-029

posed to build agents that can plan efficiently and030

accurately (Newell and Simon, 1956; Russell and031

Norvig, 2010). The problem-solving procedure032

in these AI agents usually involves three steps:033

searching for possible action sequences, predict-034

ing their expected outcomes with an internal world035

model, and finding an action sequence to achieve036

the best expected outcome (Russell and Norvig,037

2010; Mattar and Lengyel, 2022). This procedure038

shares common traits with how large language mod-039

1Code and data will be released online.

Figure 1: A generator-discriminator framework of lan-
guage agents, where planning methods control the inter-
action between a generator and a discriminator, both of
which are usually instantiated by some LLM.

els (LLMs) solve multi-step tasks, including math- 040

ematical reasoning (Wei et al., 2022), multi-hop 041

question answering (Yao et al., 2023b), and code 042

generation (Yang et al., 2023). At each step, an 043

LLM searches for possible next actions and gen- 044

erates their language representations (generation). 045

To evaluate the actions, the LLM utilizes itself or 046

another LLM to predict the outcomes of actions, in 047

the form of rewards or correctness (discrimination). 048

Afterwards, it incorporates the outcomes into its 049

problem-solving process with some strategy to find 050

the best action sequence (planning). 051

Motivated by the similarity, we critically ex- 052

amine how LLMs solve multi-step tasks from a 053

language-agent view. We unify different problem- 054

solving procedures of LLMs into an agent frame- 055

work (Figure 1) consisting of a generator, a discrim- 056

inator, and a planning method. Under this frame- 057

work, we investigate the practical utility of more 058

advanced planning methods, such as tree search, in 059

comparison with simpler methods (e.g. re-ranking). 060

We hypothesize that the discriminator may be a 061

deciding factor and systematically investigate two 062

research questions: (RQ1) How does discrimina- 063

tion accuracy affect the performance of language 064

agents using different planning methods? (RQ2) 065

Can LLM-based discriminators correctly assess 066

language agents’ actions in practical settings? 067

1

To this end, we analyze LLMs’ discrimination068

abilities and their impact on three categories of069

planning methods: re-ranking, iterative correction,070

and tree search. We comprehensively evaluate071

these methods on two real-world tasks, text-to-SQL072

parsing and mathematical reasoning, with open-073

source, closed-source, and fine-tuned LLM discrim-074

inators. First, we use oracle environmental informa-075

tion to simulate discriminators with different levels076

of accuracy. The simulation experiments exhibit a077

strong correlation between discrimination accuracy078

and overall task performance among all three types079

of planning methods. Then, in a non-oracle setting,080

we closely investigate the LLM-based discrimina-081

tors and show how environmental observations can082

effectively improve them. Finally, we conduct end-083

to-end evaluations of the discriminators and plan-084

ning methods to verify and strengthen our findings.085

In summary, our experiments show that:086

(1) Advanced planning methods, i.e., iterative cor-087

rection and tree search, demand highly accurate088

discriminators (≥ 90% accuracy) to achieve decent089

improvements over the simpler method, re-ranking.090

(2) Using environmental feedback, we improve the091

discrimination accuracy of LLMs by up to 30.2092

and 8.4 absolute points on text-to-SQL parsing and093

mathematical reasoning, respectively. Yet, our end-094

to-end evaluations suggest they have barely met095

the need for advanced planning methods to show096

significant improvements over re-ranking.097

(3) Meanwhile, advanced planning methods may098

not adequately balance accuracy and efficiency099

when using LLM-based discriminators. In our100

experiments, compared to the other two methods,101

tree search is at least 10–20 times slower but leads102

to negligible performance gains. This accuracy-103

efficiency trade-off can impede the deployment of104

tree search in real-world applications.105

2 Related Work106

A lot of recent research efforts have focused on ad-107

vanced planning methods for improving the multi-108

step problem-solving abilities of LLMs (Li et al.109

2023b; Madaan et al. 2023; Wang et al. 2023b; Yao110

et al. 2023a,b; Zhou et al. 2023, inter alia). Despite111

different designs, all these methods use a discrim-112

inator to evaluate the agents’ actions, or planning113

steps. In fact, instead of planning methods, an114

agent’s discriminator could be the more critical115

component. Since incorrect outcome predictions116

could lead to suboptimal plans, discriminators may117

decide the performance of an agent, regardless of118

its planning method (Mattar and Lengyel, 2022). 119

While it is commonly believed that discrimina- 120

tion is easier than generation for human and AI 121

agents (Gu et al., 2023), West et al. (2024) pose the 122

hypothesis that state-of-the-art generative AI mod- 123

els, including LLMs, may not have discrimination 124

abilities matching their generation abilities. This 125

hypothesis coincides with the findings of Huang 126

et al. (2024) and Wang et al. (2023a) that, without 127

any external feedback or with obviously absurd 128

feedback, LLMs may recognize some of their self- 129

generated correct plans as wrong. Huang et al. 130

(2024) also note that the performance gains of self- 131

correction, a kind of iterative correction method, 132

may rely on some high-quality external feedback, 133

such as checking ground-truth labels or test sets 134

for planning loop termination. However, such ex- 135

ternal feedback usually does not exist in practical 136

applications because solutions to new problems are 137

unknown, and annotating comprehensive test cases 138

can be nontrivial and costly. 139

Distinct from these existing studies, our work fo- 140

cuses on studying the relationship between discrim- 141

inators and planning methods, including but not 142

limited to self-correction, and attempts to improve 143

LLMs’ discrimination capability. Our findings can 144

provide useful guidelines for choosing planning 145

methods and implementing language agents in prac- 146

tice. In light of our findings, we encourage future 147

research to thoroughly evaluate language agents 148

with various practical, non-oracle discriminators. 149

We also advocate that improving LLM-based dis- 150

criminators is an important future direction to en- 151

hance agents’ accuracy and efficiency when using 152

advanced planning methods. 153

3 Our Framework 154

As shown in Figure 1, we systematically analyze 155

different planning methods in a unified generator- 156

discriminator framework. Our framework consists 157

of a generator that proposes (partial) action se- 158

quences, a discriminator that evaluates the out- 159

comes of these actions, and a planning method that 160

ranks the actions according to their outcomes and 161

manages the interaction between the two models. 162

In this section, we describe each of the three compo- 163

nents and how they are instantiated on text-to-SQL 164

parsing and mathematical reasoning (Section 4.1). 165

3.1 Generator 166

For each planning step, we prompt the generator to 167

sample action sequences (SQL queries or Python 168

2

(a) Re-ranking. (b) Iterative Correction. (c) Tree Search.

Figure 2: Illustration of three categories of planning methods examined in our unified generator-evaluator framework.

programs for math reasoning). For text-to-SQL169

parsing, we use 1-shot prompting, where the exam-170

ple is retrieved from the training sets using BM25171

(Robertson and Zaragoza, 2009). For math reason-172

ing, we use a fixed 2-shot prompt adapted from Ni173

et al. (2023b). See prompts in Appendix C.174

3.2 Discriminator175

Given some (partial) action sequences, we formu-176

late the discrimination task as binary question an-177

swering (Kadavath et al., 2022; Ke et al., 2023).178

The discrimination score of each tested example179

is the probability of “Yes” being generated as the180

next token. Specifically, we prompt the LLMs with181

the question “Is the SQL/python program correct182

given the utterance/problem?” to generate one sin-183

gle token with its probability as the score. With this184

formulation, we evaluate three types of LLMs in185

our experiments (Section 4.2). Similar to the gener-186

ator, we use 1-shot prompting with BM25 retrieval187

for text-to-SQL parsing and a fixed 2-shot prompt188

for math reasoning. Details are in Appendix A.189

3.3 Planning Methods190

Re-ranking. Re-ranking is a straightforward plan-191

ning method. After sampling a few complete action192

sequences from the generator, it uses the discrimi-193

nator to score them and return the highest-scoring194

plan (Figure 2a). Although simple, it is commonly195

used for code generation (Ni et al., 2023a) and196

mathematical reasoning tasks (Wang et al., 2023b;197

Li et al., 2023b). We consider re-ranking as a base-198

line planning method for more advanced ones.199

Iterative correction. Like re-ranking, iterative cor-200

rection starts with the generator proposing a com-201

plete action sequence. Then it leverages multiple202

rounds of revision to improve the initial plan based203

on the discriminator’s feedback (Figure 2b). When204

the generator and the discriminator are the same205

LLM, it becomes a prevalent planning method, self-206

correction (Madaan et al., 2023; Shinn et al., 2023;207

Yao et al., 2023b; Chen et al., 2024).208

While some work uses greedy generation, our209

implementation samples the same number of action 210

sequences as other planning methods for fair com- 211

parison. Then, it uses the discriminator to select 212

the best-scoring one for the next round’s revision. 213

We allow up to 10 rounds of corrections, with early 214

exiting when the best plan meets a threshold of 215

discrimination score (> 0.99), or the score is not 216

improved for 3 consecutive iterations. For fair com- 217

parison, we prompt the generator to revise plans 218

with 0-shot instruction following (Appendix C) in- 219

stead of few-shot, since in-context examples may 220

introduce additional information. 221

Tree Search. Tree search is another popular plan- 222

ning method for language agents, such as Monte- 223

Carlo Tree Search (Chaffin et al., 2022), Pangu 224

(Gu et al., 2023), Tree of Thoughts (Yao et al., 225

2023a), and Language Agent Tree Search (Zhou 226

et al., 2023). It uses a memory structure (e.g., a 227

heap) to store observed partial action sequences 228

and their scores. For each iteration, it prompts the 229

generator for possible next steps for the current best 230

partial plan, calls the discriminator to evaluate the 231

steps, and updates the memory with new plans and 232

scores (Figure 2c). Our tree search implementation 233

is a kind of MCTS (Zhang et al., 2023): 234

(1) Selection: Find the highest scoring partial plan 235

in the memory, implemented as a heap structure. 236

(2) Expansion: Prompt the generator for the next 237

step of this partial plan. We follow recent work to 238

define a step to be a SQL clause (Chen et al., 2023c) 239

or one line of Python code (Bui et al., 2022), which 240

is semantically more meaningful. 241

(3) Simulation: Reuse the generator to complete 242

the partial plans as Monte-Carlo simulations. 243

(4) Evaluation: Evaluate the simulations with the 244

discriminator. The score for each new step is the 245

maximum score of all simulations starting from it. 246

(5) Backpropagation: Update the partial plan with 247

the new step and score (if higher) and insert them 248

into the heap memory. After the update, if there is 249

a complete plan in the heap memory, we terminate 250

the tree search and return this plan. 251

3

4 Experimental Setup252

4.1 Tasks and Datasets253

Text-to-SQL Parsing. Text-to-SQL parsing is a254

code generation task of mapping natural language255

utterances to SQL queries. It requires agents to256

ground utterances to database environment and gen-257

erate multi-step plans as SQL queries, making it an258

appropriate testbed in our study. To evaluate lan-259

guage agents’ potential for text-to-SQL parsing, we260

adapt two widely used datasets, Spider (Yu et al.,261

2018) and Bird (Li et al., 2023a).262

We use the entire training split in each dataset263

to prompt or fine-tune LLMs.2 For evaluation, due264

to resource and budget constraints, we randomly265

select 400 and 300 development set examples in266

Spider and Bird, respectively. We also note that267

model performance may be lower on our evalua-268

tion sets because we uniformly sampled examples269

from each difficulty level, while the original de-270

velopment sets have skewed distributions towards271

easier examples (Appendix A.1).272

Mathematical Reasoning. Mathematical reason-273

ing is a common task for evaluating language274

agents’ multi-step reasoning and planning capabili-275

ties. With 500 random examples from GSM8K’s276

development set (Cobbe et al., 2021), we follow277

program of thoughts (Chen et al., 2023b) to test278

the agents’ ability to plan in Python programs and279

solve these grade school math word problems.280

4.2 Models281

In all experiments, we use CodeLlama-13B-282

Instruct as the generator in our framework. We also283

evaluate three kinds of LLMs as the discriminator:284

(1) open-source LLMs: CodeLlama-7B-Instruct285

and CodeLlama-13B-Instruct (Rozière et al., 2024),286

(2) closed-source LLMs: GPT-3.5-Turbo (OpenAI,287

2022) and GPT-4-Turbo (OpenAI, 2023), and (3)288

fine-tuned LLMs: CodeLlama-7B-Instruct-FT and289

CodeLlama-13B-Instruct-FT. Their implementa-290

tion details are in Appendix A.3. For brevity, we291

will omit “Instruct” in model names.292

4.3 Evaluation293

Intrinsic Evaluation. We measure the discrimina-294

tion abilities of LLMs with four intrinsic metrics.295

(1) Discrimination accuracy (Acc): Given a pair296

of correct and wrong programs, we calculate the297

percentage where the correct program obtains a298

2In Bird, we exclude training examples for one database,
retail_world, due to annotation errors.

higher discrimination score than the wrong one 299

(Bai et al., 2022; Touvron et al., 2023). (2) Clas- 300

sification macro F1 (F1): We treat “correct” and 301

“wrong” as two classes and compute the macro av- 302

erage of F1 scores on these two labels. (3) Hit@1 303

(H@1): Given a batch of candidate programs, we 304

calculate the percentage where the highest scor- 305

ing candidate is correct. (4) Mean reciprocal rank 306

(MRR): We compute the standard MRR score by 307

the highest-ranking correct program in the batches. 308

End-to-End Evaluation. To show the impact of 309

discriminators, we evaluate language agents’ end- 310

to-end performance using our three planning meth- 311

ods, with execution accuracy for text-to-SQL pars- 312

ing and answer accuracy for math reasoning. 313

5 Simulation Experiments with Oracle 314

5.1 Oracle-Based Discriminator 315

To investigate how discrimination accuracy affects 316

the overall performance of language agents using 317

different planning methods (RQ1), we utilize oracle 318

environmental feedback to simulate a discriminator 319

with controllable accuracy. For text-to-SQL pars- 320

ing, we compare the first five rows in the execution 321

results of predicted and gold SQL queries and cal- 322

culate their table cell overlaps (Appendix A.4). For 323

mathematical reasoning, we compare the predicted 324

Python programs’ answers with the ground truth. 325

We use a probability-based threshold τ to con- 326

trol the accuracy of each simulated discriminator 327

(Gao et al., 2022). When evaluating each plan, the 328

discriminator first computes a score s with oracle 329

information. Then, it uses a random function to 330

generate a number p ∈ [0, 1). If p < τ , the dis- 331

criminator returns the score s. Otherwise, it returns 332

an inverted score 1− s. In this way, we ensure that 333

the discriminator’s accuracy is at most τ . 334

5.2 Results and Analysis 335

As shown in Figure 3, discrimination accuracy 336

closely correlates with the performance of agents 337

on all three datasets, no matter which planning 338

method is used. For instance, the performance of 339

re-ranking agents improves linearly as we increase 340

the discrimination accuracy threshold, setting up 341

a strong baseline for agents using other planning 342

methods. We also note that it takes around 80% dis- 343

crimination accuracy for all agents to outperform 344

greedy generation on text-to-SQL parsing, demon- 345

strating the task’s difficulty. To answer RQ1, we 346

further analyze the performance of agents using 347

4

(a) Spider. (b) Bird. (c) GSM8K.

Figure 3: End-to-end evaluation results (the first row) and average inference time in log scale (the second row) of
our simulation experiments with oracle.

iterative correction and tree search as follows:348

Advanced planning methods demand highly349

accurate discriminators. For iterative correction350

agents, their performance usually cannot distin-351

guish from the re-ranking baselines until we maxi-352

mize the threshold τ = 1.0 (Figure 3). This finding353

resonates with Huang et al. (2024) that high-quality354

feedback may be the key to the success of iterative355

correction. More interestingly, tree search agents356

consistently underperform the other two when the357

discrimination accuracy threshold τ ≤ 0.8. More-358

over, when raising the threshold to 0.9, we observe359

a sharp increase of their performance, with which360

they start to beat other kinds of agents.361

Advanced planning methods may not ade-362

quately balance accuracy and efficiency. By cal-363

culating the average inference time per example364

(Figure 3), we find that our implementation of tree365

search is at least 10–20 times slower than the other366

two planning methods, mainly due to frequent gen-367

eration of Monte-Carlo simulations (Zhang et al.,368

2023). While we can remove the simulations to369

be more efficient and evaluate partial plans, in our370

preliminary study, we find LLMs would struggle371

in this setting. This accuracy-efficiency trade-off372

may hinder real-world applications of tree search373

methods. Meanwhile, the inference time for itera-374

tive correction increases as the accuracy threshold375

is raised, suggesting more iterations are required376

to derive a correct answer. This indicates that de-377

veloping efficient and accurate planning methods378

remains a key problem for AI agents. 379

Monte-Carlo tree search can be unstable, es- 380

pecially in the early stages. We observe that it- 381

erative correction outperforms tree search on Bird 382

(Figure 3b) when the accuracy threshold is 1.0. 383

This observation may be caused by the instability 384

of Monte-Carlo tree search. We first note that Mc- 385

Nemar’s test finds no difference between iterative 386

correction and tree search (p > 0.05), despite their 387

performance gap (29.3 vs 32.7). The rationales are 388

discussed in Appendix B. Furthermore, we analyze 389

all 25 examples of which iterative correction de- 390

rives the correct answer but tree search fails. In 391

12 out of the 25 examples (48%), tree search fails 392

to select the correct partial plan when the discrim- 393

ination scores are the same. Especially, this can 394

happen in the early stages of tree search, where a 395

correct program has not yet been discovered and 396

all the steps receive a score of 0 from the oracle 397

discriminator. Thus, we consider this underperfor- 398

mance a consequence of search instability. 399

6 LLM-Based Discriminators 400

While we have shown that iterative correction and 401

tree search work well with oracle discriminators, 402

it remains unclear whether LLM-based discrimina- 403

tors can correctly assess language agents’ actions 404

(RQ2). To answer this question, we leverage gen- 405

erator outputs in the simulation experiments and 406

re-label them with ground-truths to evaluate the 407

LLMs’ discrimination accuracy (Appendix A.2). 408

5

Models Spider Bird GSM8K‡

Acc F1 H@1 MRR Acc F1 H@1 MRR Acc F1 H@1 MRR

CodeLlama-7B 54.0 37.1 56.0 62.3 44.6 46.7 13.0 18.0 48.6 38.7 36.2 46.9
CodeLlama-13B 58.2 37.1 57.0 63.1 49.4 46.7 12.7 18.3 62.2 38.7 41.8 51.0
CodeLlama-7B-FT 62.4 60.3 59.5 64.6 52.4 46.7 14.3 19.1 - - - -
CodeLlama-13B-FT 69.7 67.2 61.3 65.7 62.1 46.7 16.0 20.5 - - - -

GPT-3.5-Turbo 67.0 47.3 59.0 64.3 64.3 35.7 16.0 20.5 72.1 49.1 46.6 54.0
GPT-4-Turbo 76.5 54.9 63.0 66.7 76.2 50.1 20.3 23.0 93.8 91.1 59.8 61.6

Table 1: Intrinsic evaluation results of naive LLMs’ discrimination abilities. The best performance is in bold for
open-source and closed-source LLMs. ‡Since GSM8K’s training set does not have program of thoughts annotated
for fine-tuning, we have only evaluated the models with in-context learning.

CodeLlama-13B GPT-3.5-Turbo CodeLlama-13B-FT

Spider Bird GSM8K Spider Bird GSM8K Spider Bird

Naive Discriminator 58.2 49.4 62.2 67.0 64.3 72.1 69.7 62.1

+ Executability Check 78.7 78.8 64.5 84.8 86.3 73.2 83.6 82.2
++ Execution Result 83.6 79.6 70.6 90.0 89.2 76.5 88.5 85.1

Improvement 25.4 30.2 8.4 23.0 24.9 4.4 18.8 23.0

Table 2: Discrimination accuracy of observation-enhanced LLMs. The best performance (in bold) is achieved
using both kinds of environmental observations. We also underline the largest improvement for each dataset.

6.1 Naive Discriminators409

As Table 1 shows, most open-source LLMs have410

mediocre discrimination abilities. After fine-tuning,411

CodeLlama-13B-FT could reach the same level of412

performance as GPT-3.5. In comparison, closed-413

source LLMs exhibit stronger discrimination abil-414

ities, with GPT-4 achieving the best performance415

across all three datasets. Although GPT-4 has 93.8416

discrimination accuracy on GSM8K and is also bet-417

ter than GPT-3.5 on text-to-SQL parsing, due to its418

high cost, we will use GPT-3.5 in our experiments.419

6.2 Observation-Enhanced Discriminators420

To improve LLMs’ discrimination abilities, we con-421

duct an error analysis for CodeLlama-13B on its422

worst-performing intrinsic evaluation set, Bird. We423

sample 50 pairs of SQL queries from the Bird in-424

trinsic evaluation set with incorrect predictions. In425

25 of the 50 pairs (50%), CodeLlama-13B assigns426

a higher score to non-executable SQL queries. Con-427

sequently, no matter using which planning method,428

language agents could hardly perform well with429

such discriminators.430

Motivated by our error analysis, we first propose431

to add a program executability check as a safeguard432

for LLMs. If a program is non-executable, our dis-433

criminator would discard LLMs’ score and return434

0. Otherwise, it returns the original LLM score.435

Besides executability check, we incorporate the ex-436

ecution results of predicted programs (first 5 table437

rows of SQL queries or answer of Python program)438

into the in-context examples and fine-tuning data439

(Ni et al., 2023a). If a program is non-executable, 440

we use ERROR to represent its execution result. 441

Evaluation results (Table 2) show that these 442

two non-oracle environmental observations can 443

effectively improve LLMs’ discrimination accu- 444

racy. Enhanced with environmental observations, 445

CodeLlama-13B can obtain up to 25.4, 30.2, and 446

8.4 points absolute accuracy gain on Spider, Bird, 447

and GSM8K, respectively. For the other two mod- 448

els, we also observe significant gains compared to 449

the naive discriminator baseline. Such notable im- 450

provements also highlight the importance of filter- 451

ing out non-executable programs, or invalid plans, 452

during planning. 453

7 End-to-End Evaluation 454

While we have evaluated their discrimination abili- 455

ties with a fixed test set, to answer RQ2, we wonder 456

if LLMs can correctly assess constantly changing 457

sets of programs in actual planning processes. To 458

this end, we evaluate the end-to-end performance 459

of language agents with LLM-based discriminators 460

and the three planning methods. 461

7.1 Text-to-SQL Parsing 462

As shown in Table 3, agents using naive LLM- 463

based discriminators do not perform well on text- 464

to-SQL parsing. On Spider, the re-ranking agent 465

using CodeLlama-13B-FT has the best accuracy 466

(61.5), which is still lower than greedy generation 467

(62.3) that requires no planning and is more ef- 468

ficient. On Bird, GPT-3.5-Turbo and re-ranking 469

6

Discriminators Spider (Greedy Gen = 62.3) Bird (Greedy Gen = 16.0)

Re-ranking Iter. Correct. Tree Search Re-ranking Iter. Correct. Tree Search

CodeLlama-13B 57.5 51.7 55.5 13.3 13.3 13.3
GPT-3.5-Turbo 58.3 52.7 56.2 18.0 17.3 14.0
CodeLlama-13B-FT 61.5 51.7 56.0 14.3 13.0 13.0

CodeLlama-13BE 65.5 62.0 62.5 21.0 24.3 22.7
GPT-3.5-TurboE 67.0 67.5 66.0 22.3 25.0 22.7
CodeLlama-13B-FTE 70.3 68.0 67.5 23.7 26.3 21.7

Oracle Simulation (τ = 1.0) 71.0 76.0∗ 76.2∗ 27.0 32.7∗ 29.3

Table 3: End-to-end execution accuracy on text-to-SQL parsing. The best performance for each discriminator
is in bold. The overall best performance for naive and enhanced discriminators on each dataset is underlined.
EObservation-enhanced discriminators. ∗Statistically significant (p < 0.05; McNemar’s) compared to re-ranking
with the same discriminator on each dataset. We only observe such improvement with the oracle discriminator.

show an accuracy of 18.0, which is slightly higher470

than greedy generation (16.0). In addition to the471

mediocre performance, we find that when using472

naive discriminators, iterative correction and tree473

search consistently show worse or the same perfor-474

mance as re-ranking. These results mostly agree475

with our findings in previous experiments that (1)476

advanced planning methods need strong discrim-477

inators, and (2) naive LLM-based discriminators478

are not accurate enough.479

After enhancing the discriminators with two en-480

vironmental observations (Section 6.2), we effec-481

tively improve the agents’ performance without any482

modifications to the generator or the planning meth-483

ods. In 5 of the 6 experiments, CodeLlama-13B-484

FTE results in the best execution accuracy among485

all discriminators. It also leads to the overall best486

performance on Spider with re-ranking (70.3) and487

on Bird with iterative correction (26.3), showing488

the effectiveness of fine-tuning LLMs for discrimi-489

nation and using environmental observations.490

7.2 Mathematical Reasoning491

The most interesting result in mathematical rea-492

soning evaluation (Table 4) is the failure of itera-493

tive correction with naive discriminators. When494

prompting the generator CodeLlama-13B for 0-495

shot correction, it would disregard the instruction496

to “generate a fixed python program” (Appendix497

C), copy the program to be modified, and generate498

explanations and correction steps in natural lan-499

guage. Such natural language steps, usually having500

some lexical overlap with the math problem, would501

increase the discrimination score of LLMs while502

being non-executable. As a result, our iterative503

correction agent only has 10.2 answer accuracy504

when using CodeLlama-13B to evaluate its own505

generation. While this issue also exists when us-506

Discriminators Re-ranking Iter. Correct. Tree Search‡

CodeLlama-13B 39.7 10.2 41.0
GPT-3.5-Turbo 47.0 37.0 50.0

CodeLlama-13BE 42.8 42.2 46.0
GPT-3.5-TurboE 47.6 48.4 51.0

Oracle Simulation 64.1 66.0 73.0(τ = 1.0)

Table 4: End-to-end answer accuracy on GSM8K
(Greedy Gen = 39.4). Notations have the same meaning
as in Table 3. McNemar’s does not find difference be-
tween methods on GSM8K. ‡Tree search is evaluated
on 100 randomly selected examples from the 500 evalu-
ation examples due to slow inference speed (Figure 3c).
For McNemar’s, we compare tree search results with
those of re-ranking on the same 100 examples.

ing GPT-3.5-Turbo as the discriminator, it is less 507

severe because GPT would sometimes assign a 508

high score (> 0.99) to the initial Python program. 509

These scores trigger an early exit condition in it- 510

erative correction (Section 3.3) and stop the agent 511

from calling the generator to add any natural lan- 512

guage, thus avoiding the issue. These findings echo 513

related analysis on self-correction (Stechly et al., 514

2023; Valmeekam et al., 2023; Huang et al., 2024). 515

With an executability check, enhanced discrim- 516

inators help mitigate this issue in iterative correc- 517

tion, which now achieves better performance (42.2 518

and 48.4) than greedy generation (39.4). Over- 519

all, the tree search agent using GPT-3.5-TurboE 520

achieves the best answer accuracy. Nevertheless, 521

McNemar’s test finds no difference (p > 0.05) be- 522

tween the performance of re-ranking (47.6) and that 523

of iterative correction (48.4) or tree search (51.0). 524

7.3 Analysis 525

To better understand the end-to-end evaluation re- 526

sults, we conduct an in-depth analysis of examples 527

where re-ranking returns the correct program, but 528

7

Error Type Spider Bird GSM8K

Iter. Correct. Tree Search Iter. Correct. Tree Search Iter. Correct. Tree Search

Discrimination 29 (78.4%) 17 (60.7%) 9 (52.9%) 12 (50.0%) 30 (62.5%) 6 (66.7%)
Exploration 8 (21.6%) 11 (39.3%) 8 (47.1%) 12 (50.0%) 18 (37.5%) 3 (33.3%)

Total 37 28 17 24 48 9

Table 5: Error analysis of examples where re-ranking outperforms advanced planning methods. We list the actual
number of error cases and their percentages in parenthesis for each dataset and planning method.

iterative correction or tree search does not (Table529

5). Specifically, we analyze cases of the strongest530

discriminators, CodeLlama-13B-FTE for text-to-531

SQL parsing and GPT-3.5-TurboE for mathemat-532

ical reasoning, and divide them into two kinds of533

errors. (1) Discrimination error: The discriminator534

assigns a higher score for wrong programs than535

correct ones, which is not recoverable by any plan-536

ning method. (2) Exploration error: The planning537

method has not found the correct program before538

termination. Our analysis suggests that:539

LLM-based discriminators have not yet met540

the needs of advanced planning methods. Across541

all datasets, 50% or more discrimination errors are542

observed in each planning method. On Spider, the543

number of such errors in iterative correction is as544

large as 29 out of 37 (78.4%). In fact, among the545

29 errors, iterative correction has already found546

the correct SQL queries for 15 (40.5% of the total547

37 errors) of them. However, not only does the548

discriminator fail to trigger early exits, but it also549

assigns a higher score for wrong SQL queries in550

new iterations. Consequently, these erroneous SQL551

queries override the originally correct ones, leading552

to an overall performance drop. The same issue is553

also serious in tree search. When an incorrect par-554

tial program receives a high discrimination score,555

tree search will commit to it and hardly explore556

other possibilities, including the correct partial pro-557

grams. Such discrimination errors usually cannot558

be recovered by the planning methods themselves,559

unless they find another correct program with even560

higher scores. This finding also demonstrates that561

determining early exits using oracle information in562

iterative correction may introduce a larger benefit563

than previously thought (Huang et al., 2024).564

Advanced planning methods need more thor-565

ough exploration. For the remaining cases, we566

observe that advanced planning methods have not567

found a correct program before terminating, which568

we call exploration errors. This kind of error cir-569

cles our discussion back to the accuracy-efficiency570

trade-off mentioned in our simulation experiments571

with oracle (Section 5.2). Indeed, we can extend the572

exploration of planning methods in various ways, 573

such as loosening termination conditions, increas- 574

ing the number of generation samples for each step, 575

and adjusting some hyperparameters for more di- 576

verse program samples. Yet, all these adjustments 577

can slow down the planning methods and reduce 578

the language agents’ efficiency. Additionally, we 579

note that these strategies may not always result in 580

better performance, as the discriminators may give 581

unseen wrong programs a higher score. 582

For these reasons, iterative correction and tree 583

search cannot gain decent improvement over re- 584

ranking with the same LLM-based discriminator. 585

On text-to-SQL parsing, tree search even shows 586

worse performance than re-ranking when using 587

CodeLlama-13B-FTE (Table 3: 67.5 vs 70.3 on 588

Spider; 21.7 vs 23.7 on Bird). More surprisingly, 589

on GSM8K, advanced planning methods may not 590

perform much better than re-ranking even with the 591

oracle discriminator (p > 0.05; McNemar’s). Ad- 592

mittedly, some of the performance gains appear 593

considerable, but McNemar’s tells us there are still 594

decent chances of the simpler agent outperforming 595

a more complex one (Appendix B). 596

8 Conclusions 597

This paper presents a thorough investigation into 598

the relationship between discrimination accuracy 599

and performance of planning methods in language 600

agents. Through comprehensive experiments on 601

text-to-SQL parsing and mathematical reasoning, 602

we find that: Discrimination accuracy strongly cor- 603

relates with the overall performance of language 604

agents using different planning methods and also af- 605

fects their efficiency (answer to RQ1). LLM-based 606

discriminators can correctly assess a decent num- 607

ber of language agents’ actions with their environ- 608

mental observations, but they are still not accurate 609

enough for advanced planning methods (answer to 610

RQ2). Future research should investigate the devel- 611

opment of more accurate discrimination models for 612

language agents, e.g. by improving their grounded 613

understanding of execution results beyond error 614

signals. 615

8

Limitations616

Experiments with Other Models. In this study,617

we focus on studying the generation and discrim-618

ination of instruction-tuned LLMs that have seen619

code data during pre-training. This consideration620

is because: (a) They may have better in-context621

learning performance on our two tasks, text-to-SQL622

parsing and mathematical reasoning with program-623

of-thought (Ni et al., 2023b); (b) We want to lever-624

age their 0-shot instruction following capabilities625

in iterative correction for fair comparisons with626

other planning methods; (c) For GSM8K problems,627

LLMs tend to generate natural language plans in-628

stead of programs with 2-shot prompting, and some629

instructions other than in-context examples help to630

mitigate this issue. Future research may extend our631

study to other LLMs of code and conduct an abla-632

tion study of instruction-tuning’s impact on models’633

discrimination accuracy.634

Experiments with Natural Language Plans. Our635

study focuses on the generation and discrimina-636

tion of formal language plans, i.e., programs, as637

they can directly interact with the environment. Al-638

though feasible for mathematical reasoning (Wei639

et al., 2022), natural language plans require an-640

other semantic parsing step to convert them into641

actions defined in the corresponding environment,642

which may introduce intermediate errors and add643

noise to our analysis. Therefore, we conduct the ex-644

periments with formal language plans using LLMs645

trained on code data. As a future direction, it would646

be interesting to extend our study to natural lan-647

guage plans and see how the intermediate semantic648

parsing step would affect the overall performance649

of agents for mathematical reasoning.650

Impact of Generators on Planning Methods.651

While our work focuses on studying the relation-652

ship between different discriminators and planning653

methods, we acknowledge that the generator can654

also actively affect different planning methods. For655

example, we can transform the generator’s perplex-656

ity into a probability and multiply it by the dis-657

criminator’s score. We exclude such uses of the658

generator because in our preliminary experiments,659

we find that incorporating its perplexity leads to660

mixed results. These results make it even harder to661

analyze how language agents behave when using662

different planning methods. Thus, we exclude the663

generator to have a clear picture of how discrimina-664

tors can affect planning methods. Nevertheless, it is665

worth studying the generator’s impact on planning666

methods in future work. 667

References 668

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 669
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 670
Stanislav Fort, Deep Ganguli, Tom Henighan, 671
Nicholas Joseph, Saurav Kadavath, Jackson Kernion, 672
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac 673
Hatfield-Dodds, Danny Hernandez, Tristan Hume, 674
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel 675
Nanda, Catherine Olsson, Dario Amodei, Tom 676
Brown, Jack Clark, Sam McCandlish, Chris Olah, 677
Ben Mann, and Jared Kaplan. 2022. Training a help- 678
ful and harmless assistant with reinforcement learn- 679
ing from human feedback. 680

Nghi Bui, Yue Wang, and Steven C.H. Hoi. 2022. 681
Detect-localize-repair: A unified framework for learn- 682
ing to debug with CodeT5. In Findings of the Associ- 683
ation for Computational Linguistics: EMNLP 2022, 684
pages 812–823, Abu Dhabi, United Arab Emirates. 685
Association for Computational Linguistics. 686

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. 2022. 687
PPL-MCTS: Constrained textual generation through 688
discriminator-guided MCTS decoding. In Proceed- 689
ings of the 2022 Conference of the North Ameri- 690
can Chapter of the Association for Computational 691
Linguistics: Human Language Technologies, pages 692
2953–2967, Seattle, United States. Association for 693
Computational Linguistics. 694

Shijie Chen, Ziru Chen, Huan Sun, and Yu Su. 2023a. 695
Error detection for text-to-SQL semantic parsing. In 696
Findings of the Association for Computational Lin- 697
guistics: EMNLP 2023, pages 11730–11743, Singa- 698
pore. Association for Computational Linguistics. 699

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 700
William W. Cohen. 2023b. Program of thoughts 701
prompting: Disentangling computation from reason- 702
ing for numerical reasoning tasks. Transactions on 703
Machine Learning Research. 704

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 705
Denny Zhou. 2024. Teaching large language models 706
to self-debug. In The Twelfth International Confer- 707
ence on Learning Representations. 708

Ziru Chen, Shijie Chen, Michael White, Raymond 709
Mooney, Ali Payani, Jayanth Srinivasa, Yu Su, and 710
Huan Sun. 2023c. Text-to-SQL error correction with 711
language models of code. In Proceedings of the 712
61st Annual Meeting of the Association for Compu- 713
tational Linguistics (Volume 2: Short Papers), pages 714
1359–1372, Toronto, Canada. Association for Com- 715
putational Linguistics. 716

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 717
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 718
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 719
Nakano, Christopher Hesse, and John Schulman. 720
2021. Training verifiers to solve math word prob- 721
lems. 722

9

http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
https://doi.org/10.18653/v1/2022.findings-emnlp.57
https://doi.org/10.18653/v1/2022.findings-emnlp.57
https://doi.org/10.18653/v1/2022.findings-emnlp.57
https://doi.org/10.18653/v1/2022.naacl-main.215
https://doi.org/10.18653/v1/2022.naacl-main.215
https://doi.org/10.18653/v1/2022.naacl-main.215
https://doi.org/10.18653/v1/2023.findings-emnlp.785
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.18653/v1/2023.acl-short.117
https://doi.org/10.18653/v1/2023.acl-short.117
https://doi.org/10.18653/v1/2023.acl-short.117
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168

Allen L. Edwards. 1948. Note on the “correction for723
continuity” in testing the significance of the differ-724
ence between correlated proportions. In Psychome-725
trika, volume 13, page 185–187.726

Ge Gao, Eunsol Choi, and Yoav Artzi. 2022. Simulat-727
ing bandit learning from user feedback for extractive728
question answering. In Proceedings of the 60th An-729
nual Meeting of the Association for Computational730
Linguistics (Volume 1: Long Papers), pages 5167–731
5179, Dublin, Ireland. Association for Computational732
Linguistics.733

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate,734
discriminate: A proposal for grounding language735
models to real-world environments. In Proceedings736
of the 61st Annual Meeting of the Association for737
Computational Linguistics (Volume 1: Long Papers),738
pages 4928–4949, Toronto, Canada. Association for739
Computational Linguistics.740

Jie Huang, Xinyun Chen, Swaroop Mishra,741
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-742
ing Song, and Denny Zhou. 2024. Large language743
models cannot self-correct reasoning yet. In The744
Twelfth International Conference on Learning745
Representations.746

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom747
Henighan, Dawn Drain, Ethan Perez, Nicholas748
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli749
Tran-Johnson, Scott Johnston, Sheer El-Showk,750
Andy Jones, Nelson Elhage, Tristan Hume, Anna751
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,752
Deep Ganguli, Danny Hernandez, Josh Jacobson,753
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-754
mal Ndousse, Catherine Olsson, Sam Ringer, Dario755
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,756
Ben Mann, Sam McCandlish, Chris Olah, and Jared757
Kaplan. 2022. Language models (mostly) know what758
they know.759

Pei Ke, Fei Huang, Fei Mi, Yasheng Wang, Qun Liu, Xi-760
aoyan Zhu, and Minlie Huang. 2023. DecompEval:761
Evaluating generated texts as unsupervised decom-762
posed question answering. In Proceedings of the763
61st Annual Meeting of the Association for Compu-764
tational Linguistics (Volume 1: Long Papers), pages765
9676–9691, Toronto, Canada. Association for Com-766
putational Linguistics.767

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua768
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying769
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-770
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,771
and Yongbin Li. 2023a. Can LLM already serve as772
a database interface? a BIg bench for large-scale773
database grounded text-to-SQLs. In Thirty-seventh774
Conference on Neural Information Processing Sys-775
tems Datasets and Benchmarks Track.776

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,777
Jian-Guang Lou, and Weizhu Chen. 2023b. Making778
language models better reasoners with step-aware779
verifier. In Proceedings of the 61st Annual Meet-780
ing of the Association for Computational Linguistics781

(Volume 1: Long Papers), pages 5315–5333, Toronto, 782
Canada. Association for Computational Linguistics. 783

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 784
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 785
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 786
Shashank Gupta, Bodhisattwa Prasad Majumder, 787
Katherine Hermann, Sean Welleck, Amir Yazdan- 788
bakhsh, and Peter Clark. 2023. Self-refine: Itera- 789
tive refinement with self-feedback. In Thirty-seventh 790
Conference on Neural Information Processing Sys- 791
tems. 792

Marcelo G. Mattar and Máté Lengyel. 2022. Planning 793
in the brain. Neuron, 110(6):914–934. 794

Quinn McNemar. 1947. Note on the sampling error 795
of the difference between correlated proportions or 796
percentages. In Psychometrika, volume 12, page 797
153–157. 798

A. Newell and H. Simon. 1956. The logic theory 799
machine–a complex information processing system. 800
IRE Transactions on Information Theory, 2(3):61– 801
79. 802

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy- 803
anov, Wen-Tau Yih, Sida Wang, and Xi Victoria Lin. 804
2023a. LEVER: Learning to verify language-to-code 805
generation with execution. In Proceedings of the 806
40th International Conference on Machine Learning, 807
volume 202 of Proceedings of Machine Learning 808
Research, pages 26106–26128. PMLR. 809

Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Riddell, 810
Troy Feng, Rui Shen, Stephen Yin, Ye Liu, Semih 811
Yavuz, Caiming Xiong, Shafiq Joty, Yingbo Zhou, 812
Dragomir Radev, and Arman Cohan. 2023b. L2ceval: 813
Evaluating language-to-code generation capabilities 814
of large language models. 815

OpenAI. 2022. Chatgpt. 816

OpenAI. 2023. Gpt-4 technical report. 817

Stephen Robertson and Hugo Zaragoza. 2009. The 818
probabilistic relevance framework: Bm25 and be- 819
yond. Found. Trends Inf. Retr., 3(4):333–389. 820

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 821
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 822
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 823
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 824
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 825
Grattafiori, Wenhan Xiong, Alexandre Défossez, 826
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar- 827
tin, Nicolas Usunier, Thomas Scialom, and Gabriel 828
Synnaeve. 2024. Code llama: Open foundation mod- 829
els for code. 830

Stuart Russell and Peter Norvig. 2010. Artificial Intel- 831
ligence: A Modern Approach, 3 edition. Prentice 832
Hall. 833

10

https://doi.org/10.1007/BF02289261
https://doi.org/10.1007/BF02289261
https://doi.org/10.1007/BF02289261
https://doi.org/10.1007/BF02289261
https://doi.org/10.1007/BF02289261
https://doi.org/10.18653/v1/2022.acl-long.355
https://doi.org/10.18653/v1/2022.acl-long.355
https://doi.org/10.18653/v1/2022.acl-long.355
https://doi.org/10.18653/v1/2022.acl-long.355
https://doi.org/10.18653/v1/2022.acl-long.355
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
https://doi.org/10.18653/v1/2023.acl-long.539
https://doi.org/10.18653/v1/2023.acl-long.539
https://doi.org/10.18653/v1/2023.acl-long.539
https://doi.org/10.18653/v1/2023.acl-long.539
https://doi.org/10.18653/v1/2023.acl-long.539
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/https://doi.org/10.1016/j.neuron.2021.12.018
https://doi.org/https://doi.org/10.1016/j.neuron.2021.12.018
https://doi.org/https://doi.org/10.1016/j.neuron.2021.12.018
https://doi.org/10.1007/BF02295996
https://doi.org/10.1007/BF02295996
https://doi.org/10.1007/BF02295996
https://doi.org/10.1007/BF02295996
https://doi.org/10.1007/BF02295996
https://doi.org/10.1109/TIT.1956.1056797
https://doi.org/10.1109/TIT.1956.1056797
https://doi.org/10.1109/TIT.1956.1056797
https://proceedings.mlr.press/v202/ni23b.html
https://proceedings.mlr.press/v202/ni23b.html
https://proceedings.mlr.press/v202/ni23b.html
http://arxiv.org/abs/2309.17446
http://arxiv.org/abs/2309.17446
http://arxiv.org/abs/2309.17446
http://arxiv.org/abs/2309.17446
http://arxiv.org/abs/2309.17446
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950

Noah Shinn, Federico Cassano, Ashwin Gopinath,834
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-835
flexion: language agents with verbal reinforcement836
learning. In Thirty-seventh Conference on Neural837
Information Processing Systems.838

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-839
hampati. 2023. GPT-4 doesn’t know it’s wrong: An840
analysis of iterative prompting for reasoning prob-841
lems. In NeurIPS 2023 Foundation Models for Deci-842
sion Making Workshop.843

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-844
bert, Amjad Almahairi, Yasmine Babaei, Nikolay845
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti846
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton847
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,848
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,849
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-850
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan851
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,852
Isabel Kloumann, Artem Korenev, Punit Singh Koura,853
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-854
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-855
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-856
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-857
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,858
Ruan Silva, Eric Michael Smith, Ranjan Subrama-859
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-860
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,861
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,862
Melanie Kambadur, Sharan Narang, Aurelien Ro-863
driguez, Robert Stojnic, Sergey Edunov, and Thomas864
Scialom. 2023. Llama 2: Open foundation and fine-865
tuned chat models.866

Karthik Valmeekam, Matthew Marquez, and Subbarao867
Kambhampati. 2023. Investigating the effectiveness868
of self-critiquing in LLMs solving planning tasks.869
In NeurIPS 2023 Foundation Models for Decision870
Making Workshop.871

Boshi Wang, Xiang Yue, and Huan Sun. 2023a. Can872
ChatGPT defend its belief in truth? evaluating LLM873
reasoning via debate. In Findings of the Association874
for Computational Linguistics: EMNLP 2023, pages875
11865–11881, Singapore. Association for Computa-876
tional Linguistics.877

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,878
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,879
and Denny Zhou. 2023b. Self-consistency improves880
chain of thought reasoning in language models. In881
The Eleventh International Conference on Learning882
Representations.883

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten884
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,885
and Denny Zhou. 2022. Chain-of-thought prompt-886
ing elicits reasoning in large language models. In887
Advances in Neural Information Processing Systems,888
volume 35, pages 24824–24837. Curran Associates,889
Inc.890

Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman,891
Linjie Li, Jena D. Hwang, Liwei Jiang, Jillian Fisher,892

Abhilasha Ravichander, Khyathi Chandu, Benjamin 893
Newman, Pang Wei Koh, Allyson Ettinger, and Yejin 894
Choi. 2024. The generative AI paradox: “what it can 895
create, it may not understand”. In The Twelfth Inter- 896
national Conference on Learning Representations. 897

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 898
Chaumond, Clement Delangue, Anthony Moi, Pier- 899
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 900
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 901
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 902
Teven Le Scao, Sylvain Gugger, Mariama Drame, 903
Quentin Lhoest, and Alexander Rush. 2020. Trans- 904
formers: State-of-the-art natural language processing. 905
In Proceedings of the 2020 Conference on Empirical 906
Methods in Natural Language Processing: System 907
Demonstrations, pages 38–45, Online. Association 908
for Computational Linguistics. 909

John Yang, Akshara Prabhakar, Karthik R Narasimhan, 910
and Shunyu Yao. 2023. Intercode: Standardizing 911
and benchmarking interactive coding with execution 912
feedback. In Thirty-seventh Conference on Neural 913
Information Processing Systems Datasets and Bench- 914
marks Track. 915

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 916
Thomas L. Griffiths, Yuan Cao, and Karthik R 917
Narasimhan. 2023a. Tree of thoughts: Deliberate 918
problem solving with large language models. In 919
Thirty-seventh Conference on Neural Information 920
Processing Systems. 921

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 922
Shafran, Karthik R Narasimhan, and Yuan Cao. 923
2023b. React: Synergizing reasoning and acting 924
in language models. In The Eleventh International 925
Conference on Learning Representations. 926

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 927
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 928
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 929
Radev. 2018. Spider: A large-scale human-labeled 930
dataset for complex and cross-domain semantic pars- 931
ing and text-to-SQL task. In Proceedings of the 2018 932
Conference on Empirical Methods in Natural Lan- 933
guage Processing, pages 3911–3921, Brussels, Bel- 934
gium. Association for Computational Linguistics. 935

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu 936
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023. 937
Planning with large language models for code gener- 938
ation. In The Eleventh International Conference on 939
Learning Representations. 940

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, 941
Haohan Wang, and Yu-Xiong Wang. 2023. Lan- 942
guage agent tree search unifies reasoning acting and 943
planning in language models. 944

11

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=PMtZjDYB68
https://openreview.net/forum?id=PMtZjDYB68
https://openreview.net/forum?id=PMtZjDYB68
https://openreview.net/forum?id=PMtZjDYB68
https://openreview.net/forum?id=PMtZjDYB68
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=gGQfkyb0KL
https://openreview.net/forum?id=gGQfkyb0KL
https://openreview.net/forum?id=gGQfkyb0KL
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=CF8H8MS5P8
https://openreview.net/forum?id=CF8H8MS5P8
https://openreview.net/forum?id=CF8H8MS5P8
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL
http://arxiv.org/abs/2310.04406
http://arxiv.org/abs/2310.04406
http://arxiv.org/abs/2310.04406
http://arxiv.org/abs/2310.04406
http://arxiv.org/abs/2310.04406

A Implementation Details945

A.1 Text-to-SQL Parsing Evaluation Sets946

For text-to-SQL parsing, we sub-sample the de-947

velopment splits of each dataset, Spider and Bird,948

following three steps: (1) categorize development949

set examples by difficulty levels defined in each950

dataset, (2) randomly select a database and choose951

one associated example, and (3) repeat step 2 until952

we have 100 samples for each difficulty level. In953

this way, we ensure a uniform distribution across954

different difficulty levels and database. Since there955

are four and three difficulty levels in Spider and956

Bird, respectively, our evaluation sets have 400 and957

300 examples for each dataset.958

Text-to-SQL parsing models, including LLMs,959

may show lower performance on our evaluation960

sets because of their uniformly distributed diffi-961

culty (100 examples per level). In comparison, the962

original datasets have skewed distributions towards963

easier examples. Spider’s development set has 248964

(24.0%) examples at easy level and 446 (43.1%)965

examples at medium level, while the hard and extra966

hard examples only sum up to 32.9 % of the 1,034967

examples. In Bird, 925 out of the 1,534 (60.3%)968

development set examples are at simple level, 465969

examples (30.3%) are at moderate level, and only970

144 examples (9.4%) are at challenging level. Our971

evaluation sets normalize these skewed distribu-972

tions and make the macro averages of model per-973

formance less biased (Section 4.1).974

A.2 Intrinsic Evaluation Data975

To evaluate LLMs’ discrimination performance,976

we reuse the generation results from our oracle-977

simulation experiments (Section 6). Specifically,978

we use the evaluation scripts to re-label the gener-979

ated programs in simulated re-ranking experiments980

(accuracy threshold τ = 1.0). Then, we construct981

our intrinsic evaluation sets based on the relabeled982

programs (Table A.1). Intuitively, the number of983

program batches for each dataset is the same as984

the end-to-end evaluation examples we have, and985

the the number of programs is all unique programs986

we can get from the batches. To pair the programs987

and calculate discrimination accuracy, we iterate988

through each batch and enumerate combinations of989

correct and wrong programs within the batch. We990

do not include cross-batch pairs, as those do not991

align with our end-to-end evaluation settings.992

For discrimination accuracy, we enumerate pairs993

of correct and wrong programs and ask LLMs to994

Spider Bird GSM8K

Number of Programs 1,221 1,291 2,453
Number of Program Pairs 409 269 1,238
Number of Program Batches 400 300 500

Table A.1: Statistics of our intrinsic evaluation sets.

select the better one. For classification F1, we let 995

LLMs predict the correctness of each individual 996

program. For Hit@1 and MRR, we use LLMs to 997

score the batches of programs in simulation experi- 998

ments. 999

A.3 Prompting and Training LLMs 1000

Prompting the Generator LM. We prompt our 1001

generator LM, CodeLlama-13B-Instruct, with 1002

temperature-based sampling for different program 1003

suggestions (Section 3.1). We use the model check- 1004

point and generation function implemented by Hug- 1005

ging Face (Wolf et al., 2020). We set the maximum 1006

generation length max_length = 300, tempera- 1007

ture temperature = 0.6 and number of samples 1008

num_return_sequences = 5. 1009

Data for Discriminator LMs. For text-to-SQL 1010

parsing, we perform 2-fold cross-validation on the 1011

training sets to synthesize incorrect SQL queries 1012

for each example (Chen et al., 2023a). We prompt 1013

the LM using one pair of correct and wrong SQL 1014

queries (labeled with “Yes” and “No”), also re- 1015

trieved by BM25 (Section 3.2). Alternatively, we 1016

fine-tune the LM on the entire training set with 1017

ground-truth and synthesized SQL queries to gen- 1018

erate “Yes” or “No.” For mathematical reasoning, 1019

we annotate two incorrect python programs for the 1020

two examples used in generator. Similar to text- 1021

to-SQL parsing, we use the two program pairs to 1022

prompt LMs for binary question answering. Since 1023

the training set of GSM8K is not annotated with 1024

program of thoughts, we are not able to fine-tune 1025

LMs on this dataset. 1026

Prompting Discriminator LMs. For CodeLlama- 1027

7B-Instruct and CodeLlama-13B-Instruct (Section 1028

3.2), we simply feed the input prompt to the models 1029

to get the last logit’s values, which give us the 1030

token-level probability after applying the softmax 1031

function. 1032

For GPT-3.5-Turbo and GPT-4-Turbo, we 1033

access them through the API of (OpenAI, 1034

2022, 2023). The specific model versions are 1035

gpt-3.5-turbo-1106 and gpt-4-1106-preview, 1036

respectively. We prompt the LLMs to generate one 1037

token and leverage the top_logprobs request to 1038

12

check the top-5 tokens and their probabilities3. If1039

“Yes” appears as one of the top-5 tokens, we take1040

its probability p without any modifications. If “Yes”1041

is missing and “No” appears as one of the top-51042

tokens, we inverse its probability 1−p as the score.1043

Otherwise, our implementation returns 0 if both1044

tokens are missing, though this case should be rare1045

or even does not happen in our experiments.1046

Training Discriminator LMs. To get CodeLlama-1047

7B-Instruct-FT and CodeLlama-13B-Instruct-FT1048

(Section 3.2), we again use the checkpoints and1049

trainer implemented by Hugging Face. We fine-1050

tune the models to generate the next token (“Yes” or1051

“No”) base on the input prompts using the following1052

hyperparameters:1053

• Number of epochs: 11054

• Batch size: 1281055

• Learning rate: 1e-51056

• Warmup ratio: 3%1057

• Scheduler: cosine1058

The inference procedure of fine-tuned models is1059

the same as how we prompt the original LLMs, but1060

without using any in-context example.1061

Computing Resources. All of our experiments on1062

Spider and GSM8K use up to four NVIDIA RTX1063

A6000 GPU (48GB). Experiments on Bird use up1064

to four NVIDIA A100 Tensor Core GPU (80GB).1065

A.4 Implemendation of Oracle Discriminator1066

For text-to-SQL parsing, our oracle uses the first1067

five rows in execution results of the predicted and1068

gold SQL query and calculate the table cell overlap.1069

More specifically, the calculation is similar to span1070

F1 in machine reading comprehension. Our oracle1071

function first compares each row in the execution1072

results head-to-head under a strong assumption that1073

the rows are ordered. Although strict, this assump-1074

tion is helpful for evaluating the correctness of SQL1075

queries with an ORDER BY clause. Then, the func-1076

tion count how many table cells overlap with each1077

other in an unordered manner. We divide the num-1078

ber of overlapping cells by the total number of cells1079

in execution results of the gold SQL query (preci-1080

sion) and the predicted one (recall). Finally, we1081

compute the harmonic mean of these two numbers1082

to get the oracle score (F1).1083

For instance, given “-- countryid: 1, 2, 4, 5 --1084

countryname: usa, germany, japan, italy” as the1085

gold execution result and “-- countryid: 1, 4, 6 --1086

3https://platform.openai.com/docs/
api-reference/chat/create#chat-create-top_
logprobs

countryname: usa, japan, japan” as the result of 1087

predicted SQL query. We compare (1, usa), (4, 1088

japan), and (6, japan) the first, second, and third 1089

row in the gold result, respectively. They have 2, 0, 1090

and 1 overlapping table cells, respectively. Thus, 1091

we have our precision to be 3/8 = 0.375 and recall 1092

to be 3/6 = 0.5. The oracle’s score would be: 1093

2 · 0.375 · 0.5
0.375 + 0.5

= 0.43 1094

For mathematical reasoning, our oracle directly 1095

checks if the predicted answer equals to the ground- 1096

truth. If the answer is None (non-executable pro- 1097

gram) or does not equal to the ground-truth, it re- 1098

turns 0. Otherwise, it returns 1. 1099

B McNemar’s Test for Statistical 1100

Significance 1101

We measure the statistical significance of perfor- 1102

mance gains using the exact McNemar’s Test4 (Mc- 1103

Nemar, 1947). We choose the test’s exact bino- 1104

mial version because our sample sizes are relatively 1105

small (Edwards, 1948), and the first two significant 1106

digits of p-values are the same for this binomial 1107

version and the original chi-square version in our 1108

tests. Intuitively, this test measures how likely the 1109

weaker method can still outperform the stronger 1110

one. 1111

For example, we consider the comparison be- 1112

tween tree search and iterative correction on Bird 1113

when using CodeLlama-13B-FTE as the discrimi- 1114

nator (Section 5.2). By computing a 2× 2 contin- 1115

gency table (Table B.1), McNemar’s Test focuses 1116

on the 40 examples where only one of the two 1117

method have predicted correctly. Specifically, there 1118

are 25 examples that iterative correction finds the 1119

correct answer, but tree search does not, which is 1120

the source of performance gain. Also, there are 1121

15 examples that iterative correction fails, but tree 1122

search succeeds. According to McNemar’s Test, 1123

these 15 (37.5% of the total 40) examples result in a 1124

p-value of 0.15, meaning there is still some chance 1125

for tree search to outperform iterative correction. 1126

In contrast, suppose there are only 10 examples 1127

that iterative correction finds the correct answer, 1128

but tree search does not. Meanwhile, there are 1129

no examples that iterative correction fails, but tree 1130

search succeeds. Then, we can still observe the 1131

4https://www.statsmodels.org/dev/generated/
statsmodels.stats.contingency_tables.mcnemar.
html

13

https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://www.statsmodels.org/dev/generated/statsmodels.stats.contingency_tables.mcnemar.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.contingency_tables.mcnemar.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.contingency_tables.mcnemar.html

IC Correct IC Wrong

TS Correct 73 15
TS Wrong 25 187

Table B.1: Contingency table for tree search (TS) and
iterative correction (IC) on Bird, using CodeLlama-13B-
FTE as the discriminator (Section 5.2).

same number of accuracy gain, but it is now sta-1132

tistically different because it is almost impossible1133

for tree search to outperform iterative correction (01134

out of 10). The same rationale also applies to the1135

results of other tests in Section 7.1136

14

C Prompt Examples 1137

Given database schema and a question in natural language, generate the corresponding SQL query.

-- Database climbing:
-- Table mountain: mountain_id, name, height, prominence, range, country
-- Table climber: climber_id, name, country, time, points, mountain_id
-- Question: How many distinct countries are the climbers from?
-- SQL:
SELECT COUNT(DISTINCT country) FROM climber;

-- Database concert_singer:
-- Table stadium: stadium_id, location, name, capacity, highest, lowest, average
-- Table singer: singer_id, name, country, song_name, song_release_year, age, is_male
-- Table concert: concert_id, concert_name, theme, stadium_id, year
-- Table singer_in_concert: concert_id, singer_id
-- Question: What are all distinct countries where singers above age 20 are from?
-- SQL:
SELECT

Table C.1: An example prompt for 1-shot generation (text-to-SQL parsing).

Given database schema and a question in natural language, correct the buggy SQL query and
generate a fixed SQL query.

-- Database concert_singer:
-- Table stadium: stadium_id, location, name, capacity, highest, lowest, average
-- Table singer: singer_id, name, country, song_name, song_release_year, age, is_male
-- Table concert: concert_id, concert_name, theme, stadium_id, year
-- Table singer_in_concert: concert_id, singer_id
-- Question: What are all distinct countries where singers above age 20 are from?
-- Buggy SQL:
SELECT DISTINCT country FROM singer WHERE age > 20;
-- Fixed SQL:
SELECT

Table C.2: An example prompt for 0-shot iterative correction (text-to-SQL parsing).

15

Answer the following Yes/No question: Is the SQL correct given the utterance?

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT COUNT(DISTINCT nationality) FROM swimmer;
-- Answer: Yes

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT DISTINCT country FROM swimmer;
-- Answer: No

-- Utterance: What are all distinct countries where singers above age 20 are from?
-- SQL:
SELECT DISTINCT country FROM singer WHERE age > 20;
-- Answer:

Table C.3: An example prompt for 1-shot discrimination (text-to-SQL parsing). For discrimination, each in-context
example has a pair of correct and wrong programs.

Answer the following Yes/No question: Is the SQL correct given the utterance and its result?

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT COUNT(DISTINCT nationality) FROM swimmer;
-- Result:
-- count(distinct nationality): 7
-- Answer: Yes

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT DISTINCT country FROM swimmer;
-- Result:
ERROR
-- Answer: No

-- Utterance: What are all distinct countries where singers above age 20 are from?
-- SQL:
SELECT DISTINCT country FROM singer WHERE age > 20;
-- Result:
-- country: Netherlands, United States, France
-- Answer:

Table C.4: An example prompt for 1-shot discrimination with execution results (text-to-SQL parsing). For
discrimination, each in-context example has a pair of correct and wrong programs.

16

Given questions in the comment, use python programs to produce the correct answers with
the ’answer’ variable.

James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
Python Program:
mg_tylenol_per_tablet = 375
mg_tylenol_taken_each_time = 2 * mg_tylenol_per_tablet
hours_per_day = 24
times_per_day = hours_per_day / 6
mg_each_day = mg_tylenol_taken_each_time * times_per_day
answer = mg_each_day

There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
Python Program:
n_easter_eggs = 63
unit_times = 2
total_units = unit_times + 1
n_easter_eggs_per_unit = n_easter_eggs / total_units
n_easter_eggs_helen = n_easter_eggs_per_unit * 1
n_easter_eggs_hannah = n_easter_eggs_per_unit * 2
answer = n_easter_eggs_hannah

Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
Python Program:

Table C.5: An example prompt for 2-shot generation (mathematical reasoning).

Given the question in the comment, correct the buggy python program and generate a fixed
python program to produce the correct answer with the ’answer’ variable.

Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
Buggy Python Program:
price_boots = 50
price_heels = 33
price_heels_twice = 2 * price_heels
price_heels_total = price_heels + price_heels_twice
price_boots_difference = price_boots - price_heels_total
answer = price_boots_difference
Fixed Python Program:

Table C.6: An example prompt for 0-shot iterative correction (mathematical reasoning).

17

Answer the following Yes/No question: Is the python program correct given the problem in
the comment?

James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
Python Program:
mg_tylenol_per_tablet = 375
mg_tylenol_taken_each_time = 2 * mg_tylenol_per_tablet
hours_per_day = 24
times_per_day = hours_per_day / 6
mg_each_day = mg_tylenol_taken_each_time * times_per_day
answer = mg_each_day
Answer: Yes

James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
Python Program:
mg_per_tablet = 375
n_tablets_per_day = 2
n_tablets_per_6hrs = n_tablets_per_day / 6
mg_per_6hrs = mg_per_tablet * n_tablets_per_6hrs
answer = mg_per_6hrs
Answer: No

There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
Python Program:
n_easter_eggs = 63
unit_times = 2
total_units = unit_times + 1
n_easter_eggs_per_unit = n_easter_eggs / total_units
n_easter_eggs_helen = n_easter_eggs_per_unit * 1
n_easter_eggs_hannah = n_easter_eggs_per_unit * 2
answer = n_easter_eggs_hannah
Answer: Yes

There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
Python Program:
eggs_in_yard = 63
eggs_found_by_hannah = 2 * eggs_in_yard
eggs_found_by_helen = eggs_found_by_hannah / 2
answer = eggs_found_by_hannah
Answer: No

Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
Python Program:
price_boots = 50
price_heels = 33
price_heels_twice = 2 * price_heels
price_heels_total = price_heels + price_heels_twice
price_boots_difference = price_boots - price_heels_total
answer = price_boots_difference
Answer:

Table C.7: An example prompt for 2-shot discrimination (mathematical reasoning). For discrimination, each
in-context example has a pair of correct and wrong programs.

18

Answer the following Yes/No question: Is the python program correct given its result and
the problem in the comment?

James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
Python Program:
mg_tylenol_per_tablet = 375
mg_tylenol_taken_each_time = 2 * mg_tylenol_per_tablet
hours_per_day = 24
times_per_day = hours_per_day / 6
mg_each_day = mg_tylenol_taken_each_time * times_per_day
answer = mg_each_day
Result: 3000.0
Answer: Yes

James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
Python Program:
mg_per_tablet = 375
n_tablets_per_day = 2
n_tablets_per_6hrs = n_tablets_per_day / 6
mg_per_6hrs = mg_per_tablet * n_tablets_per_6hrs
answer = mg_per_6hrs
Result: 125.0
Answer: No

There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
Python Program:
n_easter_eggs = 63
unit_times = 2
total_units = unit_times + 1
n_easter_eggs_per_unit = n_easter_eggs / total_units
n_easter_eggs_helen = n_easter_eggs_per_unit * 1
n_easter_eggs_hannah = n_easter_eggs_per_unit * 2
answer = n_easter_eggs_hannah
Result: 42
Answer: Yes

There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
Python Program:
eggs_in_yard = 63
eggs_found_by_hannah = 2 * eggs_in_yard
eggs_found_by_helen = eggs_found_by_hannah / 2
answer = eggs_found_by_hannah
Result: 126
Answer: No

Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
Python Program:
price_boots = 50
price_heels = 33
price_heels_twice = 2 * price_heels
price_heels_total = price_heels + price_heels_twice
price_boots_difference = price_boots - price_heels_total
answer = price_boots_difference
Result: -49
Answer:

Table C.8: An example prompt for 2-shot discrimination with execution results (mathematical reasoning). For
discrimination, each in-context example has a pair of correct and wrong programs.

19

	Introduction
	Related Work
	Our Framework
	Generator
	Discriminator
	Planning Methods

	Experimental Setup
	Tasks and Datasets
	Models
	Evaluation

	Simulation Experiments with Oracle
	Oracle-Based Discriminator
	Results and Analysis

	LLM-Based Discriminators
	Naive Discriminators
	Observation-Enhanced Discriminators

	End-to-End Evaluation
	Text-to-SQL Parsing
	Mathematical Reasoning
	Analysis

	Conclusions
	Implementation Details
	Text-to-SQL Parsing Evaluation Sets
	Intrinsic Evaluation Data
	Prompting and Training LLMs
	Implemendation of Oracle Discriminator

	McNemar’s Test for Statistical Significance
	Prompt Examples

