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Abstract—Monitoring human motion through inertial metrics
is vital for healthcare, rehabilitation, and activity recognition.
Traditional approaches rely on wearable inertial measurement
units (IMUs), which, despite their accuracy, impose burdens
due to their intrusive nature, limiting long-term usability. To
mitigate this, recent advances explore device-free alternatives,
such as pose-based inertial inference from video or mmWave
sensing. However, inertial signals derived from pose tracking
are prone to error amplification during differentiation. In this
paper, we present mV-IMU, a novel mmWave-enabled Virtual
Inertial Measurement Unit framework that bypasses pose esti-
mation altogether to directly reconstruct body accelerations from
raw mmWave signals. Our approach leverages a deep inertia
reconstruction model trained on kinematics-informed features
extracted from mmWave point clouds, integrated with a physics-
guided optimization scheme for enhanced accuracy. Extensive
evaluations show that mV-IMU achieves inertial measurement
fidelity close to wearable IMUs, enabling practical, non-intrusive
motion monitoring for smart healthcare and rehabilitation con-
texts.

Index Terms—inertial measurement unit, mmWave sensing

I. INTRODUCTION

Monitoring activities of daily living (ADL) is crucial for
smart healthcare, remote rehabilitation, and assistive diag-
nostics. Among various motion metrics, inertial measurement
of body segments reflects joint loading, muscular effort, and
energy expenditure, providing actionable insights for clinical
decision-making [1]. Traditionally, such measurements rely
on wearable inertial measurement units (IMUs). While IMUs
offer high-fidelity data, their reliance on multiple body-worn
sensors, frequent charging, and maintenance makes them in-
trusive to daily life, reducing comfort and adherence, and
hindering long-term or continuous evaluation, particularly for
those with mobility impairments.

To address these issues, researchers have explored device-
free inertia measurement methods. Video-based frameworks,
such as IMUTube [2], estimate inertial signals utilizing poses
extracted from RGB videos of activities of daily living.
However, cameras raise privacy concerns and are sensitive to
lighting conditions. Sharing the same pipeline, other device-
free pose tracking technologies (e.g., WiFi [3]) are also
feasible of supporting inertial measurements. Among these

methods, millimeter wave sensors recently achieved consid-
erably high precision on human pose tracking [4] leveraging
its short wavelength and high bandwidth. Nevertheless, we
found inertial measurement based the precise poses tracked by
mmWave is still of large errors (Sec. II), which is insufficient
to bridge the existing wisdom established on wearable IMUs.

In this paper, we rethink and identify the fundamental
issue with the mmWave-based inertia measurement based on
pose-tracking (Sec. II). Specifically, inertial measurements are
derived from pose. Even minor errors and noises in estimated
poses will be magnified through differencing, resulting in un-
stable and unreliable inertia estimation. Therefore, we present
mmWave-enabled Virtual Inertia Measurement Units (mV-
IMU) that reconstructs human body accelerations directly from
mmWave signals (Sec. III). Our method skips pose tracking
and numerical differentiation to avoid error accumulation. Our
detailed contributions are listed as follows:

« We present a new mmWave-based non-contact inertial mea-
surement paradigm. The new paradigm can precisely mea-
sure inertia directly from mmWave signals, which avoid the
large error introduced by pose tracking.

o We developed mV-IMU, a virtual inertial measurement unit
system that does not require on-body sensors. mV-IMU is
built upon inertia features extracted from mmWave point
clouds, a high-fidelity deep inertia reconstruction model, and
a Kinamatics-guide optimization to measure precise inertia.

o We comprehensively evaluated mV-IMU and demonstrate
that mmWave-based virtual IMUs can achieve measurement
fidelity close to wearable sensors, enabling practical, device-
free acceleration monitoring for healthcare applications.

II. RETHINKING THE MMWAVE INERTIA MEASUREMENT

Inertia estimation from RF human pose: Recent develop-
ments in millimeter wave (mmWave) sensing have enabled
accurate tracking of human pose and recognition of activity
using radio frequency (RF) signals. Most related works focus
on reconstructing joint positions or classifying actions, with
little attention given to the direct inertia measurement such
as acceleration. Intuitively, acceleration can be derived by



applying numerical differentiation, such as the central dif-
ference method, to the sequence of estimated joint positions:
v; = (.731'+1 — .Z‘i_l)/(QAt), a; = (1‘7;_;,_1 —2x; + a:i_l)/AtQ,
where x; is the joint position in the frame ¢ and At is the
sampling interval. However, inertia estimated from RF human
poses have large errors, as we demonstrated below.
Estimation error and analysis: We evaluated this limita-
tion using synchronized mmWave radar and camera-based
pose data from the public mRI dataset [S]. Although both
radar and camera provide generally consistent joint positions,
accelerations computed by numerical differentiation diverge
significantly between the two modalities. As shown in Fig. 1,
the resulting acceleration curves not only differ in amplitude
from the camera reference but also show spurious peaks and
baseline drift. The lower frame rate of the radar further widens
the sampling interval At, increasing the finite difference error
and worsening the accuracy. These results show that pose
differentiation alone cannot deliver reliable acceleration esti-
mates. The reason is that acceleration is the second derivative
of position. Even minor errors and noises in estimated joint
positions are magnified through two rounds of differencing,
resulting in unstable and unreliable acceleration estimates.

increases the complexity of models and reduces inference
efficiency.

Therefore, our approach leverages mmWave point clouds [7]
as features, which provide a direct and physically meaningful
representation of motion. Point clouds are obtained from RDA
through Constant False Alarm Rate (CFAR) denoising and spa-
tial filtering. This process effectively removes environmental
noise and clutter, ensuring that the extracted features remain
informative for the following inertia reconstruction models.
Formally, each mmWave sampling produces a set of N points
that encode the position, movement, and reflectivity of body
segments: p; = (x4, Y, 2i, i, I;), 1,..., N, where
(z,y, z) are the spatial coordinates, v is the Doppler velocity,
and [ is the signal intensity. The effectiveness of each point
cloud attribute is evaluated in our ablation analysis (Sec. V-D).
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B. High-fidelity Deep Inertia Reconstruction Model

Our goal is to directly regress segmental accelerations from
point clouds, bypassing explicit skeleton reconstruction and
numerical differentiation. Fig 2 illustrates the design of the
inertia reconstruction model. The model first extracts spatial
features with CNN and squeeze-and-excitation (SE), then uses
LSTM to model temporal relationships across frames. The
design is detailed below.
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Fig. 1. Comparison of knee joint acceleration estimated from mmWave-

derived pose and ground truth.

Summary: These findings highlight the need for a more
reliable solution estimating the acceleration of human pose
from mmWave sensing data. To address this challenge, we
propose a Virtual-IMU framework that learns to directly
estimate body segment accelerations from raw radar point
clouds. By bypassing the error-prone differentiation step, our
approach improves robustness and accuracy, enabling unob-
trusive, device-free monitoring of biomechanical accelerations
for clinical and daily life applications.

III. METHODOLOGY

A. Inertial Feature Extraction from mmWave Signals

To enable accurate acceleration estimation from mmWave
signals, it is essential to select a data representation that
preserves key motion information in ADL. Most current
mmWave-based pose estimation methods use Range-Doppler-
Angle (RDA) heatmaps generated through FFT-based spectral
processing [6]. Although these heatmaps contain detailed
information on range, speed, and angle of arrival, they also
include a large amount of redundant and irrelevant data such
as environmental clutter and noises. These interferences and
redundancy deteriorate signal-to-noise ratio (SNR), which
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Fig. 2. Design of the high-fidelity inertia reconstruction model.
Spatial Feature Extractor. Previous research has shown that
convolutional neural networks (CNNs) are well-suited for
mmWave radar point cloud-based human pose estimation [8].
Building on this, we first adopt a CNN backbone to directly
regress segmental accelerations, leveraging its strong ability to
extract local spatial features efficiently.

Feature Reweighting. We further introduce feature atten-
tion via squeeze-and-excitation (SE) blocks, which adaptively
reweight features based on learned importance to capture the
varying importance of spatial coordinates, Doppler velocity,
and intensity for acceleration inference. SE blocks have proven
effective in point cloud processing, particularly for sparse,
heterogeneous data like our (z,y, z, v, I') features [9]. Recent
work shows that integrating SE blocks significantly improves
recognition accuracy with minimal computational overhead. In
our design, the SE block is placed after the fourth convolu-
tional layer, so that attention is applied to semantically rich,
high-level features. This placement allows the model to learn
more meaningful feature importance.

Temporal Regressor. While CNN-SE modules are effective
for learning local spatial patterns, they struggle to model the
temporal dynamics essential for human motion. To overcome
this, we introduce an LSTM module to explicitly capture



sequential context over time and reconstruct the final inertia
measurements.

This joint spatial-temporal approach allows the model to
better track motion trends and transitions, leading to smoother
and more realistic acceleration predictions, with improved
performance across different subjects and actions.

C. Kinematics-guide Model Optimization

Optimizing the above model for high-fidelity estimation
from mmWave point clouds is fundamentally challenging.
Standard regression objectives such as mean squared error
(MSE) or mean absolute error (MAE) have significant draw-
backs when they are used to optimize our model: MSE is
highly sensitive to outliers, while MAE under-penalizes large
errors, often resulting in slow convergence and suboptimal
accuracy. To address these limitations, we design a composite
loss function that combines statistical robustness with biome-
chanical plausibility, informed by domain knowledge from
human Kinematics. Our loss captures three key aspects of
physically meaningful results:

o Magnitude Consistency: We use the Huber loss for its
robustness to outliers and stable convergence, together with
an amplitude consistency term that directly matches the
vector norms of inertia estimation and ground truth. This
approach overcomes the limitations of MSE and MAE and
improves reliability under noise.

o Directional Consistency: To align estimated and true ac-
celeration vectors, we employ a Pearson correlation loss,
which promotes linear agreement in direction, a property
often overlooked by standard regression losses.

o Temporal Smoothness and Minimal Jerk: Human motion
in ADL is typically smooth, with few abrupt changes
in acceleration (jerk) [10]. We add the first and second
derivatives of the reconstructed inertia to the optimization
to ensure natural temporal smoothness and regulate jerk in
the estimated inertia measurements.

IV. IMPLEMENTATION AND BENCHMARK

System Implementation. mV-IMU is implemented in
Python 3.10 and based on PyTorch 2.0. Training and evalua-
tion were conducted on an desktop PC with Intel i7-14700K
CPU, 64 GB RAM, and an NVIDIA RTX 4070 Ti SUPER
GPU (16 GB VRAM). For optimization, We used the Adam
optimizer with a learning rate of 3 X 104, batch size 64, and
up to 300 epochs.

Data Preparation We evaluate mV-IMU using the publicly
available mRI dataset [5], which provides synchronized IMU
readings and mmWave point clouds from 20 human subjects.
We transform both mmWave point clouds and IMU acceler-
ation labels into a common coordinate system using the T-
pose calibration data. Frames corrupted by noise are identified
and removed through anomaly detection, ensuring high-quality
labels.

Evaluation Metrics System performance is comprehensively
assessed using MAE, RMSE, and Pearson correlation, across
six key body segments and a range of representative actions.

Two evaluation protocols are adopted: signal-level random
splitting (S1) and subject-level splitting (S2). For both pro-
tocols, training, validation, and test sets are splitted as 60%-
20%-20%. The S2 protocol directly measures generalization to
unseen subjects, which is crucial for real-world deployment.

V. PERFORMANCE EVALUATION
A. Overall Results

We first demonstrate qualitative results. The mV-IMU read-
ings are visualized against ground truth IMU signals in Fig. 3.
Our system captures key kinematic features such as peaks,
valleys, and zero crossings across different body parts, demon-
strating its ability to recover fine-grained temporal dynamics
from mmWave signals. We then performed quantitative evalu-
ation and observe vM-IMU readings achieve an average MAE
of 0.1186 m/sz, RMSE of 0.0121 m/sz, and a high Pearson

correlation coefficient of 0.8169.
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Fig. 3. Three-axis knee acceleration readings from vM-IMU comparing to
ground truth readings from a wearable IMU.

Per-IMU error analysis shown in Fig. 4 further reveals
that vM-IMU consistently achieve the lowest MAE on pelvis
(approximately 0.027m/s2, p = 0.83). The lower limbs also
have low MAE. This is because of their large mmWave
reflecting area. In contrast, the mV-IMU readings on wrists and
head exhibit relatively higher errors, especially along axes with
limited radar coverage or frequent occlusions. In addition, vM-
IMU generalizes well to unseen subjects. We observe slight
fidelity drop for small or rapidly moving extremities, such
as the wrists and head. We believe vM-IMU’s fidelity on
wrist and head can be further improved by cross-body analysis
utilizing readings from low-error body segments.
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Fig. 4. Mean absolute errors of vM-IMU'’s readings on different body areas.

B. How much better is the new paradigm?

As shown in Fig. 5, vM-IMU has consistently and substan-
tially higher signal fidelity compared to the pose-based inertial
measurement paradigm. Notably, the pose-based paradigm
exhibits large errors and instability at distal joints such as the
wrists, where noise amplification and signal occlusion are most
severe. These results confirm that the proposed direct inertial



measurement paradigm outperforms the traditional pose-based
differentiation.
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Fig. 5. Mean absolute error of vM-IMU readings and pose-based estimation.

C. Case Study: Gait Analysis

Gait segmentation is a critical pre-processing step used in
most IMU-based gait analysis frameworks. We conducted this
case study using gait segmentation to answer the question: to
what extent the high-fidelity vM-IMU readings can bridge the
existing wisdom on wearable IMUs? Specifically, gait segmen-
tation is conducted on ground-truth, pose-based estimation,
and vM-IMU readings. We then calculate the length error of
the segments, which are reported in Fig. 6. We observe that
91.7% of gait segments from vM-IMU have errors less than
70 ms (median = 40 ms), whereas nearly half of the segments
from pose-based method have larger errors.

S 3
=100 60 %

o
8 03
2 75 | O
] —e— VM-IMU Cum. % 409
= —— Pose-based Cum. % o
& s0 = VM-IMU % Total 302
g [ Pose-based % Total 20 g
8 25 3
= 10¢
€ —
=] 0 S
O 0-3 3-7 7-10 10-13 13-17 17-20 -

Gait Segmentation Error (10~! Second)

Fig. 6. Gait segmentation error based on vM-IMU and pose-based method.

D. System Ablation Analysis

We conducted systematic ablation studies to analyze the
importance of the proposed Feature Reweighting and Tem-
poral Regressor (FRTR). As reported in Fig. 7 (left), FRTR
effectively reduces measurement errors. Moving forward, we
studied the impact of mmWave inertial features on vM-IMU’s
fidelity, which is shown in Fig. 7 (right). Using all three feature
(i.e., spatial coordinates, Doppler velocity, and intensity) yields
the highest fidelity. Without either Doppler or intensity, the
error increases significantly. This highlights the importance of
these two channels for robust and generalizable results.
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Fig. 7. Ablation study. Left: MAE w/ and w/o Feature Reweighting and

Temporal Regressor (FRTR). Right: MAE and RMSE with various features.

VI. CONCLUSION AND FUTURE WORK

This work addresses the limitations of pose-based iner-
tial estimation in device-free sensing by introducing mV-
IMU, a novel mmWave-enabled virtual inertial measurement
framework. By directly reconstructing body accelerations from
mmWave signals, without relying on pose tracking or numer-
ical differentiation, mV-IMU avoids error amplification and
instability inherent in prior approaches. Our results demon-
strate that mmWave sensing, when coupled with deep learning
and kinematics-guided optimization, can deliver high-fidelity
inertial measurements comparable to wearable IMUs, enabling
a practical and privacy-preserving solution for continuous,
non-intrusive human activity monitoring.

To further advance the mmWave-enabled Virtual IMU
paradigm, several extensions are worth pursuing. First, com-
prehensive studies on patients who can benefit from the
proposed new paradigm can be conducted to quantify the
effectiveness of vM-IMU on helping clinical decision-making.
Second, new algorithms considering the Kinematics relation
among body areas can be introduced to better mitigate the
impact of mmWave occlusion. Lastly, real-time on-device
inertia computing can be explored to preserve more user
privacy.
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