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Abstract

Vast efforts have been devoted to creating high-001
performance few-shot learners, i.e., large-scale002
pretrained language models (PLMs) that per-003
form well with little downstream task train-004
ing data. Training PLMs has incurred signif-005
icant cost, but utilizing the few-shot learners006
is still challenging due to their enormous size.007
This work focuses on a crucial question: How008
to make effective use of these few-shot learn-009
ers? We propose LMTurk, a novel approach010
that treats few-shot learners as crowdsourcing011
workers. The rationale is that crowdsourcing012
workers are in fact few-shot learners: They013
are shown a few illustrative examples to learn014
about a task and then start annotating. LMTurk015
employs few-shot learners built upon PLMs as016
workers. We show that the resulting annota-017
tions can be utilized to train models that solve018
the task well and are small enough to be deploy-019
able in practical scenarios. Altogether, LMTurk020
is an important step towards making effective021
use of current PLMs.022

1 Introduction023

Equipped with prolific linguistic features (Liu et al.,024

2019; Tenney et al., 2019; Belinkov and Glass,025

2019; Rogers et al., 2020) and rich world knowl-026

edge (Petroni et al., 2019; Poerner et al., 2020;027

Kassner et al., 2021), large-scale pretrained lan-028

guage models (PLMs) have been shown to be ver-029

satile: They are now basic building blocks (Bom-030

masani et al., 2021) of systems solving diverse NLP031

tasks in many languages (Wang et al., 2018, 2019;032

Hu et al., 2020; Xu et al., 2020; Khashabi et al.,033

2020; Park et al., 2021; Adelani et al., 2021).034

Recent work shows that PLMs are effective035

few-shot learners (Brown et al., 2020a; Schick036

and Schütze, 2021b; Gao et al., 2021; Tam et al.,037

2021) through priming (Brown et al., 2020a; Tsim-038

poukelli et al., 2021) or prompting (Li and Liang,039

2021; Liu et al., 2021b; Lester et al., 2021; Zhao040

and Schütze, 2021). Developing few-shot learn-041
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Small model S predicts unlabelled data U.
Select data D from U with active learning.
LMTurkers A annotate and aggregate labels of D.
Training a new small model S.

Converting a PLM to LMTurker with few-shot gold data G of task T.

G

Figure 1: LMTurk overview; best viewed in color. We
few-shot adapt PLMs to task T (left) and then use them
as crowdsourcing workers in active learning. We show
that these PLM workers are effective in training a small
model S through a customized active learning loop
(right). LMTurk is a novel way to take advantage of
large-scale PLMs: It creates models small enough to be
deployed in resource-limited real-world settings.

ers is crucial because current NLP systems require 042

much more data than humans (Yin et al., 2020). 043

Few-shot learners tend to perform well; however, 044

they still fall behind systems trained with abundant 045

data. Furthermore, the enormous size of PLMs hin- 046

ders their deployment in practice. For example, it 047

is challenging to fit the 11 billion T5-XXL (Raffel 048

et al., 2020) model on a single regular GPU. 049

Our goal in this paper is to devise methods that 050

make more effective use of current few-shot learn- 051

ers. This is crucial because an increasing number 052

of gigantic few-shot learners are trained; how to use 053

them effectively is thus an important question. In 054

particular, we want an alternative to hard-to-deploy 055

huge models. At the same time, we want to take 056

full advantage of the PLMs’ strengths: Their versa- 057

tility ensures wide applicability across tasks; their 058

vast store of knowledge about language and the 059

world (learned in pretraining) manifests in the data 060
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efficiency of few-shot learners, reducing labor and061

time consumption in data annotation.062

In this work, we propose LMTurk, Language063

Model as mechanical Turk. Our basic idea (see064

Figure 1) is that, for an NLP task T, we treat few-065

shot learners as non-expert workers, resembling066

crowdsourcing workers that annotate resources for067

human language technology. We are inspired by the068

fact that we can view a crowdsourcing worker as a069

type of few-shot learner: A few examples demon-070

strating T teach her enough about T to conduct ef-071

fective annotation. For example, Snow et al. (2008)072

train workers with a few examples of annotating073

emotion; He et al. (2015) conduct short training074

sessions for workers before annotation; Lee et al.075

(2021) train workers with learning curricula.076

Snow et al. (2008) pioneered crowdsourcing in077

NLP (Howe et al., 2006; Howe, 2008), motivated078

by the high cost of TreeBank annotation (Marcus079

et al., 1993; Miller et al., 1993). Crowdsourcing080

organizes human workers over the Web to annotate081

data. Workers need not be experts to be effective,082

resulting in reduced per-label cost. Active learning083

(Hachey et al., 2005; Felder and Brent, 2009) can084

be incorporated (Laws et al., 2011) to further de-085

crease annotation cost, by lowering the number of086

labels to be annotated. LMTurk treats PLM-based087

few-shot learners as non-expert workers that pro-088

duce training sets, which are then used to train a089

small machine learning model S specialized for090

T. This scenario is analogous to active learning.091

We achieve two benefits: (i) low annotation cost092

because humans only need to annotate a few shots093

of data; (ii) solving practical NLP tasks with small094

models that are more real-world deployable.095

LMTurk resonates with Laws et al. (2011)’s ear-096

lier idea of combining crowdsourcing and active097

learning. They consider human workers as “noisy098

annotators” while we explore the utilization of mod-099

ern NLP few-shot learners (built upon machine100

learning models) as workers – which have the ad-101

vantage of being free, instantly interactive, fast,102

responsive, and non-stopping.103

Our contributions: (i) We propose LMTurk, a104

method that uses few-shot learners as crowdsourc-105

ing workers. Figure 1 shows the overview of LM-106

Turk. (ii) We vary an array of important design107

choices, identifying strengths and weaknesses of108

LMTurk. (iii) Unlike much work on active learning109

in a synthetic oracle setting, we develop methods110

for handling the varying quality of annotation that111

does not come from an oracle. (iv) We extensively 112

evaluate LMTurk on five datasets, showing that 113

LMTurk can guide a small model S to progres- 114

sively improve on T. S can then be deployed in 115

practical scenarios. (v) This is the first work show- 116

ing that few-shot learners give rise to effective NLP 117

models through crowdsourcing and active learning 118

– with the benefits of low annotation cost and prac- 119

tical deployability. 120

2 Related Work 121

Few-shot learners in NLP. Significant progress 122

has been made in developing (Devlin et al., 2019; 123

Peters et al., 2018; Yang et al., 2019; Brown et al., 124

2020b), understanding (Liu et al., 2019; Tenney 125

et al., 2019; Belinkov and Glass, 2019; Hewitt and 126

Liang, 2019; Hewitt and Manning, 2019; Zhao 127

et al., 2020a; Rogers et al., 2020), and utilizing 128

(Houlsby et al., 2019; Zhao et al., 2020b; Brown 129

et al., 2020b; Li and Liang, 2021; Schick and 130

Schütze, 2021a; Lester et al., 2021; Mi et al., 131

2021a) PLMs. Brown et al. (2020b), Schick and 132

Schütze (2021a), and Liu et al. (2021b) show that 133

PLMs can serve as data-efficient few-shot learners, 134

through priming or prompting (Liu et al., 2021a). 135

For example, GPT3 achieves near state-of-the-art 136

performance on COPA (Roemmele et al., 2011) 137

with only 32 annotated data. 138

However, little to no work discusses or explores 139

the actual practical utility of these few-shot learn- 140

ers. We aim to develop effective methods of utiliz- 141

ing them in practical scenarios. 142

Crowdsourcing has a long history in human 143

language technology (Alonso et al., 2008; Callison- 144

Burch, 2009; Trautmann et al., 2020); specialized 145

workshops were organized (Callison-Burch and 146

Dredze, 2010; Paun and Hovy, 2019). It has numer- 147

ous applications (Yuen et al., 2011), but we focus 148

on its application as voting systems. To reduce per- 149

label cost, crowdsourcing organizes non-expert hu- 150

man workers distributed across the Web for annota- 151

tion, instead of employing linguistic experts (Jami- 152

son and Gurevych, 2015; Bhardwaj et al., 2019; 153

Nangia et al., 2021). Snow et al. (2008) show 154

that averaging ten crowdsourced labels matches 155

an expert-level label for recognizing textual entail- 156

ment (Dagan et al., 2006). Paun et al. (2018) show 157

that incorporating structure in annotation models is 158

important. Measuring label disagreements is also 159

crucial (Dumitrache et al., 2021). 160

LMTurk utilizes NLP few-shot learners as non- 161
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expert workers. The few-shot training data can be162

viewed as the examples shown to humans before163

annotating. The process is free, fast, responsive,164

and non-stopping.165

Active learning (AL; Cohn et al. (1996); Settles166

(2009)) strives to reduce the number of examples167

to be annotated via identifying informative exam-168

ples with acquisition functions. Settles and Craven169

(2008) evaluate AL algorithms for sequence label-170

ing. Zhang et al. (2017); Shen et al. (2017); Sid-171

dhant and Lipton (2018) apply AL to deep neural172

networks. Simpson and Gurevych (2018) devise173

a scalable Bayesian preference learning method174

for identifying convincing arguments. Lee et al.175

(2020) propose to consider user feedback in AL176

systems. Ein-Dor et al. (2020) explore AL for177

BERT. Schröder and Niekler (2020) review text178

classification with AL. Liang et al. (2020); Mar-179

gatina et al. (2021) integrate contrastive learning180

into AL. Zhang and Plank (2021) identify examples181

with datamap (Swayamdipta et al., 2020).182

We incorporate AL in LMTurk to reduce the183

amount of examples to be annotated by PLMs, re-184

ducing the computational cost of running several in-185

ference passes. This contributes to a more environ-186

mentally friendly (Strubell et al., 2019; Schwartz187

et al., 2020; Patterson et al., 2021) scenario.188

Perhaps closest to our work, Yoo et al. (2021)189

conduct data augmentation via priming GPT3190

and Wang et al. (2021) mix human- and GPT3-191

annotated data, focusing on cost analysis. GPT3 is192

not free.1 Also, strategies of priming GPT3 may193

not generalize well to other PLMs.2 In this work,194

we prompt publicly available free PLMs. This also195

makes the process more flexible; e.g., the PLM can196

be updated with gradient descent.197

3 LMTurk198

3.1 Training few-shot learners199

We first adapt a PLM to task T with a few-shot200

human-labeled gold dataset G = {Gtrain;Gdev} of201

T. This procedure mimics one of the initial but202

crucial steps in crowdsourcing: A few example an-203

notations are shown to the workers, demonstrating204

T; workers learn about the task and start annotating205

(Snow et al., 2008; He et al., 2015; Roit et al., 2020;206

Trautmann et al., 2020; Lee et al., 2021)207

1https://beta.openai.com/pricing
2For example, priming strategies have to adapt to GPT3’s

maximum sequence length. However, maximum sequence
length – as a hyperparameter – could vary across PLMs.

We achieve this adaptation through P-Tuning 208

(Liu et al., 2021b). Taking movie review classi- 209

fication as an example, the goal is to associate a 210

binary label y from {-1, +1} to an input sentence 211

x = (x1, ..., xn) where xi refers to a token. Un- 212

like finetuning and its variants (Devlin et al., 2019; 213

Houlsby et al., 2019; Zhao et al., 2020b) that train 214

a classifier head, P-Tuning reformulates a sentence 215

into a cloze-style query; the PLM is then requested 216

to respond to the query with an answer selected 217

from a list of candidates. Concretely, an input pair 218

(x , y) = (“watching it leaves you giddy.”, -1) 219

is reformulated to: 220

“[v] watching it leaves you giddy. It is [MASK] .” 221

in which the underlined tokens are prompting 222

words that give the model a hint about T. “[v]” – 223

whose trainable embedding vector is randomly ini- 224

tialized – is a prompting token injecting extra free 225

parameters. The PLM is then requested to pick a 226

word from {“bad”, “good”} to fill in the position of 227

“[MASK]”. A mapping {“bad”→ -1, “good”→ +1} 228

is used to transform the selected answer to a label 229

such that standard evaluation measures like accu- 230

racy can be computed. Prompting has been shown 231

to effectively adapt a PLM to T with only a few 232

annotations; see (Liu et al., 2021a) for a compre- 233

hensive review of prompting. We refer to a PLM 234

adapted to T as an LMTurker A. 235

We select prompting words and mappings based 236

on the small development set Gdev. §4.2 provides 237

details on prompting and datasets. 238

3.2 Aggregating annotations 239

Individual workers are subject to biases (Snow 240

et al., 2008); therefore, crowdsourcing often col- 241

lects labels from several workers (Yuen et al., 242

2011) for an example x and then aggregates them 243

for quality control (Alonso et al., 2008). It is 244

straightforward to obtain a group of LMTurkers 245

A = {A1, ..., Ak}, by adapting the PLM to T with 246

k different prompts. A querying sentence x is then 247

annotated by every LMTurker, resulting in a list 248

of labels y = [y1, ..., yk]. We evaluate different 249

methods aggregating y to a single label ŷ. 250

BestWorker. Among the k LMTurkers, we pick 251

the one performing best on the dev set Gdev. 252

MajorityVoting. We select the most frequent 253

label in y = [y1, ..., yk] as ŷ. 254

3

https://beta.openai.com/pricing


To estimate an LMTurker’s confidence on label255

yi, we compare the logits3 computed by the PLM:256

yi = argmax(logit(y1),..., logit(yN )),

where N refers to the label set size, e.g., N=2 for257

y from {-1, +1}. We evaluate several methods of258

aggregating annotations according to PLM logits:259

LogitVoting. We average the logits from all k260

LMTurkers {A1, ..., Ak} to compute ŷ:261

ŷ=argmax( 1
k

∑k
i=1 logit(y1i ),...,

1
k

∑k
i=1 logit(yNi )),

WeightedLogitVoting. We use LMTurkers’ per-262

formance on Gdev to weight their logits and then263

aggregate the predictions:264

ŷ=argmax(
∑k

i=1 wilogit(y1i ),...,
∑k

i=1 wilogit(yNi ))265

wi=f(Ai,Gdev)/
∑k

i=1 f(Ai,Gdev)266

where f(Ai,Gdev) is the performance of the ith267

LMTurker Ai on Gdev.268

We collect and aggregate annotations from five269

LMTurkers, i.e., we use k=5 in our experiments.270

3.3 Training a small model S271

After adapting LMTurkers to T through prompting272

with the few-shot gold dataset G, we next train273

a small model S specialized to solve T. Though274

large PLMs are versatile and strong performers,275

training and inference are faster and more efficient276

for small models: They are more deployable in277

resource-restricted scenarios, e.g., on edge devices278

(Jiao et al., 2020).279

We mimic pool-based active learning (AL; Set-280

tles (2009)) to train S. The motivation is to avoid281

frequent querying of LMTurkers A because energy282

and time consumption of PLM inference is costly283

when the number of queries and |A| are large.284

Concretely, pool-based AL assumes a large col-285

lection of unlabeled data U = {x1, ..., xM} for T.286

S is first trained with G = {Gtrain;Gdev}. After287

that, a group of examples B from U is sampled288

(c.f. §3.3.1), which LMTurkers annotate. Next, the289

annotated and aggregated examples B′ are concate-290

nated with G to train S . The procedure is repeated291

iteratively, such that the training data for S keeps292

expanding. We denote as Sj the model trained af-293

ter the jth iteration. Note that S is trained from294

scratch in each iteration (Cohn et al., 1994).295

3Calibration can be conducted to further improve the esti-
mation (Guo et al., 2017). We leave this to future work.

3.3.1 AL acquisition function 296

At the beginning of the jth iteration, a straightfor- 297

ward strategy of sampling B from U is random 298

sampling. AL promises to select a more informa- 299

tive B such that the trained Sj performs better, un- 300

der the same budget. These strategies – or acquisi- 301

tion functions – rely on Sj−1, i.e., S from the previ- 302

ous iteration: Sj−1 is employed to infer U to obtain 303

labels and logits Pj−1 = {(y1, c1), ..., (yM , cM )}; 304

each ci contains the logits of the N labels; yi = 305

argmax(ci). We explore two common AL acquisi- 306

tion functions: Entropy (Roy and McCallum, 2001) 307

and LeastConfident (Lewis and Gale, 1994). 308

Entropy selects from Pj−1 examples with the 309

largest prediction entropy, computed on c. Large 310

entropy of an example x implies that Sj−1 is unsure 311

about which label to select; x is then a query made 312

to LMTurkers to obtain its annotation ŷ. (x, ŷ) is 313

subsequently added to Gtrain for training Sj . 314

LeastConfident selects from Pj−1 examples for 315

which the maximum logit in c is the smallest. Se- 316

lected examples are then annotated and added to 317

Gtrain for training Sj . 318

Our AL setup is fairly standard, both in terms of 319

acquisition functions and iterative enlargement by 320

new sampled data B at iteration j labeled by Sj−1. 321

3.3.2 Considering annotation quality 322

As in any realistic AL scenario, annotations are not 323

perfect: LMTurkers do not score perfectly on T. So 324

annotation quality of LMTurkers needs to be taken 325

into consideration before training Sj . Denoting 326

the training data of Sj as Dj , we explore a strategy 327

of processing Dj , based on LMTurker logits l. 328

InstanceTresholding. We preserve examples 329

(x, ŷ, l) ∈ Dj for which entropy computed on l is 330

smallest. Gtrain is always preserved because it is 331

human-labeled gold data. Note that this is different 332

from the strategy of sampling B, where we select 333

from Pj−1 examples to which Sj−1 is most unsure 334

(computed with c). We evaluate4 the effectiveness 335

of processing Dj before training Sj in §5.6. 336

3.4 Summary of LMTurk 337

LMTurk can be viewed as intermediate between 338

self training (Yarowsky, 1995; Lee et al., 2013; Mi 339

et al., 2021b) and AL. Unlike self training, external 340

models provide labels to S. Different from the 341

4Motivated by Wang et al. (2017), we also investigate the
effectiveness of weighting training examples. However, we
do not observe noticeable improvements of task performance.
We list more details in §E.
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artificial setup used in many AL experiments, the342

provided labels do not have oracle quality; so S343

must use the annotations more carefully. We next344

conduct experiments investigating the effectiveness345

of LMTurk.346

4 Datasets and Setup347

4.1 Dataset348

We evaluate LMTurk on five datasets: Binary349

(SST2) and fine-grained (five classes) sentiment350

classification (SST5) with the Stanford Sentiment351

TreeBank (Socher et al., 2013); news article topic352

classification with the AG’s News Corpus (AG-353

News; Zhang et al. (2015)); recognizing textual en-354

tailment (RTE; Dagan et al. (2006)); assessing lin-355

guistic acceptability (CoLA; Warstadt et al. (2019)).356

Appendix §A reports dataset statistics. SST2/SST5357

and AGNews are widely used in crowdsourcing358

and AL (Laws et al., 2011; Ein-Dor et al., 2020;359

Margatina et al., 2021; Zhang and Plank, 2021).360

RTE and CoLA assess the models’ ability to un-361

derstand textual entailment and linguistic phenom-362

ena – as opposed to text categorization. We report363

Matthew’s correlation coefficient for CoLA and364

accuracy for the others (Wang et al., 2018).365

Few-shot datasets. Recall LMTurk uses a small366

human-annotated dataset G = {Gtrain;Gdev}. De-367

noting n as the number of shots per class, we sam-368

ple Gntrain and Gndev for each of n ∈ {8, 16, 32}.369

For SST2, RTE, and CoLA, we use the train and370

dev sets of GLUE (Wang et al., 2018); Gntrain and371

Gndev are sampled from the train set; the dev set is372

used as the test set. For SST5 and AGNews, we373

use the official datasets; Gntrain (Gndev) is sampled374

from the train (dev) set; we report performance on375

the test set. We repeat the sampling process with376

three random seeds.377

4.2 Training setup378

Brown et al. (2020b) show that large model size379

is necessary for strong few-shot performance. We380

use ALBERT-XXLarge-v2 (Lan et al., 2020) – of381

size 223M parameters – as our large PLM, which is382

adapted to be an LMTurkerA of T with G. With pa-383

rameter reuse, ALBERT-XXLarge-v2 outperforms384

larger models like the 334M BERT-large (Devlin385

et al., 2019). In contrast, S must be small to be de-386

ployable in practical scenarios. We use TinyBERT-387

General-4L-312D (Jiao et al., 2020), which has388

14.5M parameters.389

We train – with prompting – the large PLM with390

Schick and Schütze (2021a,b) Gao et al. (2021) Ours

SST2 n/a 93.0±0.6 93.08±0.62
SST5 n/a 49.5±1.7 46.70±0.93
RTE 69.8 71.1±5.3 70.88±1.70

AGN. 86.3±0.0 n/a 87.71±0.07
CoLA n/a 21.8±15.9 19.71±1.89

Table 1: LMTurkers achieve comparable few-shot per-
formance with the literature. We refer to PET results
in Schick and Schütze (2021a,b) and results of Prompt-
based FT (auto) + demonstrations in Gao et al. (2021).

Figure 2: Few-shot test set performance of LMTurkers
and S. We use the few-shot gold datasets G8 (top) and
G16 (bottom). G32 results present similar trend; they are
shown in Appendix §D.

G for 100 batch steps using batch size 16, AdamW 391

(Loshchilov and Hutter, 2019) and learning rate 392

5e-4 with linear decay. We prompt the large PLM 393

five times to obtain five LMTurkers; Appendix §C 394

shows prompting details. At each iteration, we fine- 395

tune S for 20 epochs using batch size 32, Adam 396

(Kingma and Ba, 2015) and learning rate 5e-5. 397

Each experiment is run with three different ran- 398

dom seeds. We use PyTorch (Paszke et al., 2019) 399

and HuggingFace (Wolf et al., 2020). 400

5 Experiment 401

5.1 Few-shot performance (non-iterative) 402

We compare few-shot performance of LMTurkers 403

and the small model S when only G is used. LM- 404

Turker performance is comparable to prior work as 405

shown in Table 1. 406

Figure 2 compares performance of LMTurkers 407

and S. Appendix §B Table 3 reports numeric val- 408

ues. LMTurkers perform clearly better than S on 409

CoLA, SST5, AGNews, and SST2; e.g., for SST2, 410

for train/dev size 16, LMTurker accuracy is 93.08% 411

vs. 75.83% for S. LMTurkers’ superiority over S 412
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on RTE is modest. As an inference task, RTE413

is more challenging than classification (e.g., AG-414

News). We hypothesize that current few-shot learn-415

ers require more data than G32 to process difficult416

tasks better than S . Scaling up to even larger PLMs417

is also a promising direction (Lester et al., 2021).418

Overall, LMTurkers outperform S with clear419

margins, evidencing that their annotations can420

serve as supervisions for training S. We next con-421

duct iterative training to improve performance of422

S on T with supervisions from LMTurkers.423

Figure 3: Improving S with active learning (blue), self
training (orange), and LMTurk (green). Free markers
at step zero show LMTurker performances; colors dis-
tinguish random seeds. Three acquisition functions are:
Entropy (•), LeastConfident (�), random sampling
($). At iteration j, each experiment is repeated
three times; we show mean and standard deviation.
Appendix Figure 10 visualizes more results.

5.2 Iterative training424

We investigate the effectiveness of LMTurk by sim-425

ulating scenarios analogous to active learning. Con-426

cretely, we compare three schemes of annotating427

the sampled data B at each annotation iteration j:428

• Active learning (AL). We use B’s gold labels 429

to show how S performs with expert annota- 430

tions. Gold labels are ideal, but costly. 431

• Self training (ST). Sj−1 (the model trained in 432

the previous iteration) annotates B (Yarowsky, 433

1995; Lee et al., 2013). ST trades supervi- 434

sion quality for annotation cost; no extra cost 435

is introduced. Because there is no external 436

supervision, ST is expected to be a baseline. 437

• LMTurk. We query the LMTurkers to anno- 438

tate B. LMTurkers are machine learning mod- 439

els, so there is no human labor. Based on the 440

findings in Figure 2, LMTurker supervisions 441

are expected to have better quality than those 442

of ST. Yet LMTurk could fall behind AL be- 443

cause LMTurker labels are not gold labels. 444

When sampling B from U at each iteration j, 445

we consider the strategies described in §3.3. We 446

employ Random for all three schemes and En- 447

tropy/LeastConfident for AL/LMTurk. The latter 448

two rely on Sj−1. Regarding the number of sam- 449

pled examples, we experiment with |B|=100 and 450

|B|=400 for SST2, SST5, AGNews, CoLA. Due to 451

RTE’s small size, we use |B|=20 and |B|=100. We 452

run for 15 iterations of improving S . To aggregate 453

annotations from LMTurkers, we use MajorityVot- 454

ing (§3.2), which is widely used in crowdsourcing. 455

See §5.3 for a comparison of aggregation methods. 456

Figure 3 compares AL, ST and LMTurk. ST 457

(orange) noticeably helps S to perform progres- 458

sively better on AGNews, e.g., when comparing 459

S15 to S0 shown in the first row, especially when 460

|B|=400. However, we do not identify clear im- 461

provements when looking at other tasks. Except for 462

RTE-G8, ST clearly falls behind AL and LMTurk. 463

This inferior performance meets our expectation 464

because there is no external supervision assisting 465

S to perform better on T. In what follows, we omit 466

ST for clearer visualization and discussion. 467

AL (blue) performs the best in most experiments. 468

However, this comes with extra costs that are not 469

negligible: At each iteration, human annotators 470

need to annotate 100–400 sentences. 471

LMTurk (green) holds a position between AL 472

and ST on AGNews, SST2, SST5, and CoLA. 473

Somehow surprisingly, LMTurk performs almost 474

comparably to AL on SST2. Unlike AL, LMTurk 475

requires very little human labor; the only human 476

annotation throughout the entire process is the few- 477

shot gold dataset G. In contrast, AL has high human 478

annotation cost, e.g., 1000–4000 examples by iter- 479
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Figure 4: Comparing strategies of aggregating LM-
Turker annotations. We compare LMTurk (green) with
AL (blue). Strategies: LogitVoting ($), MajorityVot-
ing (�), WeightedLogitVoting (�), BestWorker (:).
AL uses gold labels without aggregation (•).

ation ten. LMTurk also shows clear performance480

improvements over ST.481

Results on RTE are noisy; we conjecture this482

is due to its very small test set (277 examples).483

We do not observe performance improvement of484

S along the iterations in experiment RTE-G32-485

|B|=100, likely due to saturated task performance:486

TinyBERT-General-4L-312D (S) achieves 66.6%487

on RTE for the full train set (Jiao et al., 2020).488

Comparing sampling strategies. Entropy (•)489

and LeastConfident (�) outperform random sam-490

pling ($) in AGNews and SST2 with noticeable491

margins – for both AL and LMTurk, especially492

when |B|=400. They also surpass random sam-493

pling when using LMTurk for SST5 and CoLA494

with G8. In other words, Entropy and LeastCon-495

fident assist LMTurk to achieve the same perfor-496

mance as of using random sampling, but with fewer497

annotations. For example in AGNews-G8-|B|=100,498

LeastConfident at iteration six already achieves499

comparable performance as random sampling at500

iteration eleven. This is economically and environ-501

mentally beneficial because the number of queries502

made to LMTurkers, i.e., the cost of running infer-503

ence passes on the array of large PLMs, is signifi-504

cantly reduced.505

Overall, we show that LMTurk can be used to506

create datasets for training a specialized model S of507

solving T in practical scenarios. To reduce compu-508

tational cost, we use only Entropy in what follows.509

5.3 Design choice 1: Aggregation strategies510

Figure 4 compares effectiveness of different strate-511

gies of aggregating LMTurker annotations (§3.2).512

0 20 40 60 80 100
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0.78
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Figure 5: Running more iterations of improving S with
AL and LMTurk.

Looking at SST5 and AGNews results (top two 513

images), we observe that committee-style aggre- 514

gation (LogitVoting ($), MajorityVoting (�), and 515

WeightedLogitVoting (�)) generally outperforms 516

BestWorker (:), which simply relies on the LM- 517

Turker performing best on Gdev. LMTurkers per- 518

form well on these two datasets as shown by the 519

free markers at iteration zero; ensembling their pre- 520

dictions results in higher-quality datasets. 521

In contrast, BestWorker (:) has stellar per- 522

formance on RTE (bottom-left), outperforming 523

committee-style aggregation. Note that even LM- 524

Turkers do not perform really well in this experi- 525

ment, as shown by the free markers at iteration zero 526

– some LMTurkers even perform worse than S . En- 527

sembling these low-quality annotations seems a 528

worse option than simply relying on the best LM- 529

Turker. For CoLA, we observe comparable perfor- 530

mance of different aggregation strategies. 531

5.4 Design choice 2: More iterations 532

We hypothesize that AL performance is an upper 533

bound for performance when S is trained with LM- 534

Turker annotations – recall that the AL annotations 535

are gold labels. Figure 5 compares AL and LM- 536

Turk when running 100 iterations of improving S 537

on AGNews and 500 iterations on SST2 (aggre- 538

gation: WeightedLogitVoting). As expected, AL 539

outperforms LMTurk because the pool of human- 540

annotated data expands. The performance of S 541

progressively approaches that of the LMTurkers; 542

LMTurk performs comparably to AL in SST2, how- 543

ever, no human labor is required. 544

5.5 Design choice 3: Distilling logits 545

We can view LMTurk as a kind of distillation (Hin- 546

ton et al., 2015): The ability of LMTurkers to solve 547

T is progressively transferred to S. In this sec- 548

tion, we explore the utility of distillation: We train 549

S with predicted logits instead of discrete labels 550

from LMTurkers. Concretely, we train S by re- 551

ducing the KL divergence between its predicted 552
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Figure 6: Performance of AL and LMTurk with discrete
labels (•) vs. with KL divergence ($).
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Figure 7: Training S with examples for which LMTurk-
ers have low entropy. We report performance of S (left),
number and quality (measured by accuracy) of the pre-
served examples (right) at each iteration.

probability distribution (over the label set) and the553

probability distribution from LMTurkers.554

Figure 6 shows that training S with KL diver-555

gence noticeably improves over discrete labels on556

AGNews and SST5. This is expected: AGNews557

and SST5 have larger label set size (four and five)558

such that the probability distribution over the la-559

bel set is more informative than that of the binary560

classification tasks SST2 and RTE.561

5.6 Design choice 4: Quality-based filtering562

One key difference between AL and LMTurk is563

that LMTurkers are not oracles: Their labels are564

not perfect. Hence, it is reasonable to consider565

processing the training data, denoted as Dj , for Sj ,566

instead of using it indiscriminately as in AL.567

InstanceTresholding (§3.3.2) preserves annota- 568

tions in Dj for which LMTurkers have the small- 569

est entropy. Concretely, we rank all annotations 570

(x, ŷ, l) ∈ Dj by entropy(l) and then keep the τ 571

percent smallest. Note that we always preserve the 572

human-labeled few-shot data Gtrain. We experi- 573

ment with τ ∈ {10%, . . . , 90%, 100%}. 574

Figure 7 left shows the performance of S; Fig- 575

ure 7 right tracks the status of Dj . To measure 576

quality, we compute the accuracy of LMTurker an- 577

notations on Dj (compared to gold labels); see the 578

lineplots and the left y-axis. We also report the size 579

of Dj as scatter plots (right y-axis). 580

We observe that τ=10%, i.e., keeping only the 581

10% most certain examples, gives the worst perfor- 582

mance. This is most obvious at iteration three for 583

SST2: The performance drops to near the majority 584

baseline (≈50%). This is because D3 is small and 585

unbalanced: It has eight negative (from Gtrain) and 586

38 positive examples. However, using all the LM- 587

Turker annotations (τ=100%) may not be optimal 588

either. This is noticeable when looking at SST5: 589

τ=90% and τ=80% are better options. 590

We see that there is a tradeoff betweenDj’s qual- 591

ity and size from Figure 7 right. Being conservative, 592

i.e., preserving only a handful of annotations from 593

LMTurkers, results in a small, but high-quality Dj ; 594

using all the annotations indiscriminately leads to 595

a large Dj with low quality. 596

This experiment highlights a key difference be- 597

tween LMTurk and AL: LMTurker annotations are 598

not perfect and taking the annotation quality into 599

consideration when training S is crucial. 600

6 Conclusion 601

In this work, our focus is the research question: 602

How to make effective use of current few-shot learn- 603

ers? We propose LMTurk, a simple yet effective 604

method that considers PLM-based few-shot learn- 605

ers as non-expert annotators in crowdsourcing; ac- 606

tive learning is incorporated to reduce the cost of 607

annotation. We further show that processing the 608

annotations from LMTurkers can be beneficial. 609

Future work may combine LMTurker annota- 610

tions with human annotators in a human-in-the- 611

loop setup (Monarch, 2021) to increase the overall 612

utility of invested resources (Bai et al., 2021). Ap- 613

plying LMTurk to multilingual few-shot learners 614

(Zhao et al., 2021; Winata et al., 2021; Lin et al., 615

2021) is also promising. 616
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A Reproducibility Checklist1273

A.1 Computing infrastructure1274

We use four Tesla V100 GPUs to prompt each of1275

the LMTurkers, and a single Tesla V100 GPU is1276

used when finetuning the small model S.1277

A.2 Datasets1278

For SST2, CoLA, and RTE, we use the1279

official datasets available on the benchmark1280

website gluebenchmark.com. We down-1281

load SST5 dataset from nlp.stanford.edu/1282

sentiment and AGNews from the link provided1283

by Zhang et al. (2015).1284

The number of testing examples of each dataset1285

is shown in Table 2. Note that for SST2, CoLA,1286

and RTE, Gdev is sampled from the training set,1287

and the dev set is used as the test set.1288

CoLA SST5 RTE AGNews SST2
1042 2210 277 7600 872

Table 2: Number of testing examples.

B Numerical Results1289

Table 3 reports the numerical value of Figure 2.1290

C Prompting Details1291

For each task, we list the five prompts employed to1292

adapt a PLM to a LMTurker. “[v]” is a prompting1293

token whose trainable embedding vector is ran-1294

domly initialized.1295

For SST5, we use following prompts:1296

• “[v] x It is [MASK].”1297

• “[v] x Such a [MASK] movie.”1298

• “x [v] It is pretty [MASK].”1299

• “It is [MASK] because x [v]”1300

• “x So it is [MASK]. [v]”1301

and the PLM picks a word from {“crap”, “bad”,1302

“normal”, “good”, “perfect”}. to fill the position of1303

“[MASK]”. The mapping {“crap”→ 1, “bad”→ 2,1304

“normal”→ 3, “good”→ 4, “perfect”→ 5 } is used1305

to convert model predictions to numerical values.1306

For SST2, we use following prompts:1307

• “[v] x It is [MASK].”1308

• “[v] x Such a [MASK] movie.”1309

• “x [v] It is pretty [MASK].” 1310

• “It is [MASK] because x [v]” 1311

• “x So it is [MASK]. [v]” 1312

and the PLM picks a word from {“bad”, “good”} 1313

to fill the position of “[MASK]”. The mapping 1314

{“bad”→ 0, “good”→ 1} is used. 1315

For AGNews, we use following prompts: 1316

• “[v] x It is about [MASK].” 1317

• “x [v] Topic: [MASK].” 1318

• “x [v] The text is about [MASK].” 1319

• “x Topic: [MASK]. [v]” 1320

• “x [v] [MASK].” 1321

and the PLM picks a word from {“world”, 1322

“sports”, “economy”, “technology”} to fill the po- 1323

sition of “[MASK]”. The mapping {“world”→ 1, 1324

“sports”→ 2, “economy”→ 3, “technology”→ 4 } 1325

is used. 1326

For CoLA, we use following prompts: 1327

• “[v] x It sounds [MASK].” 1328

• “[v] x The sentence is [MASK].” 1329

• “[v] x It is a [MASK] sentence.” 1330

• “x [v] [MASK].” 1331

• “[v] x [MASK].” 1332

and the PLM picks a word from {“wrong”, “ok”} 1333

to fill the position of “[MASK]”. The mapping 1334

{“wrong”→ 0, “okay”→ 1} is used. 1335

For RTE, we use following prompts: 1336

• “p Question: h? [v] Answer: [MASK].” 1337

• “p [SEP] h? [MASK]. [v]” 1338

• “p [SEP] h? [v] answer: [MASK].” 1339

• “p [SEP] In short h. [MASK]. [v]” 1340

• “[v] p [SEP] In short h. [MASK].” 1341

where p and h refer to premise and hypothesis. The 1342

PLM picks a word from {“No”, “Yes”} to fill the 1343

position of “[MASK]”. The mapping {“No”→ 0, 1344

“Yes”→ 1} is used. 1345
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G8 G16 G32

Workers S Workers S Workers S
91.13±0.52 91.93±1.09 91.97±0.83
91.63±0.68 93.08±0.62 91.70±1.78

SST2 90.18±1.00 67.63±8.01 91.74±1.04 75.83±1.35 91.21±1.83 76.37±3.16
90.83±0.58 90.79±0.47 91.13±0.24
90.52±1.84 91.67±1.36 93.23±0.37
41.37±1.55 45.16±2.13 45.91±0.96
42.32±2.04 45.96±2.12 48.64±0.59

SST5 40.57±2.70 28.47±1.61 46.70±0.93 34.97±1.51 50.53±0.94 33.47±2.79
37.69±1.34 42.53±2.43 43.32±3.42
38.05±2.60 42.96±0.69 45.72±1.43
68.95±1.47 68.35±2.29 71.72±1.96
54.99±3.76 57.64±3.23 58.48±3.59

RTE 62.70±1.33 57.30±1.79 70.88±1.70 61.50±0.78 68.47±1.19 62.93±0.74
50.42±2.07 58.60±1.62 59.33±4.72
51.99±4.45 57.88±2.83 60.41±2.47
75.39±5.25 83.06±0.83 84.92±0.28
85.40±1.43 87.71±0.07 87.79±1.08

AGNews 78.83±4.77 66.37±2.95 83.59±2.96 69.40±0.93 87.39±1.29 76.53±0.41
85.07±1.09 87.69±0.04 87.17±0.67
79.95±0.86 80.15±3.38 83.32±0.59
0.14±1.43 11.81±7.82 19.88±3.30
2.42±4.84 15.23±7.07 22.51±0.96

CoLA 7.40±8.12 0.97±4.40 19.71±1.89 4.27±3.26 26.34±1.54 2.50±2.41
9.91±7.98 17.14±2.48 18.15±0.63

15.33±2.15 19.66±0.48 27.58±7.09

Table 3: Few-shot performance of the five LMTurkers and the small model S. Each experiment is repeated three
times and we report mean and standard deviation.

Figure 8: Weighting the training instances from LM-
Turkers.

D More Visualizations1346

Figure 9 compares the few-shot performance of1347

LMTurkers and S when using G32.1348

Figure 10 visualizes the performance of S when1349

different |G| and |B| are used.1350

Figure 9: Few-shot performance on test set of LMTurk-
ers and S when using the few-shot gold datasets G32.

E Instance Weighting 1351

Following Wang et al. (2017), we associate each 1352

example (x, ŷ, l) ∈ Dj with weight 1-entropy(l) 1353

when computing the loss during the course of train- 1354

ing Sj . We can interpret this weight as a measure 1355

of the certainty of the LMTurkers ensemble. 1356

Figure 8 reports the performance of S when us- 1357

ing instance weighting, however, the impacts are 1358

less noticeable. 1359
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Figure 10: Improving S with active learning (blue), self training (orange), and LMTurk (green). Free markers at
step zero show LMTurker performances; colors distinguish random seeds. Three acquisition functions are: Entropy
(•), LeastConfident (�), random sampling ($). At iteration j, each experiment is repeated three times; we
show mean and standard deviation. We evaluate different |G| and |B|.
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