

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIMESAE: SPARSE DECODING FOR FAITHFUL EXPLA- NATIONS OF BLACK-BOX TIME SERIES MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

As black box models and pretrained models gain traction in time series applications, understanding and explaining their predictions becomes increasingly vital, especially in high-stakes domains where interpretability and trust are essential. However, most of the existing methods involve only in-distribution explanation, and do not generalize outside the training support, which requires the learning capability of generalization. In this work, we aim to provide a framework to explain black-box models for time series data through the dual lenses of Sparse Autoencoders (SAEs) and causality. We show that many current explanation methods are sensitive to distributional shifts, limiting their effectiveness in real-world scenarios. Building on the concept of Sparse Autoencoder, we introduce TimeSAE, a framework for black-box model explanation. We conduct extensive evaluations of TimeSAE on both synthetic and real-world time series datasets, comparing it to leading baselines. The results, supported by both quantitative metrics and qualitative insights, show that TimeSAE delivers more faithful and robust explanations. Our code and dataset are available in an easy-to-use library TimeSAE -Lib: <https://anonymous.4open.science/w/TimeSAE-571D/>.

1 INTRODUCTION

The rise of black box models such as large foundation models has revolutionized various fields, including time series analysis, with applications in finance (Bento et al., 2021), healthcare (Kaushik et al., 2020), and environmental science (Adebayo et al., 2021). These networks often make critical decisions, especially in sensitive domains where decisions are based on forecasting outcomes, such as managing grid stability in Energy (Eid et al., 2016), and Healthcare (Dairi et al., 2021), yet the underlying decision-making process is difficult to interpret due to the black-box nature of the models. This opacity has motivated the rise of explainable AI (XAI) techniques to provide human-understandable explanations for model decisions. While XAI has been predominantly applied in image classification, it is extending into other fields, such as audio and time series (Parekh et al., 2022; Queen et al., 2023).

Current methods in enhancing explainability for time series primarily identify key signal locations (sub-instance) affecting model predictions. For instance, Shi et al. (2023) uses LIME (Ribeiro et al., 2016) to explain water level prediction models. Additionally, perturbation methods like Dynamask (Crabbé & Van Der Schaar, 2021) and Extrmask (Enguehard, 2023) modify less critical features to evaluate their impact but often struggle with feature interdependencies and generalization. Despite their insights, these techniques face challenges with Out-of-Distribution (OOD) samples, affecting the *faithfulness* of explanations (Queen et al., 2023).

Explaining time series black-box models requires the ability to generalize beyond the training distribution, which is essential for the robust deployment of explanatory algorithms in real-world scenarios. In addressing the extrapolation of explanation, Queen et al. (2023) retrain a white-box model for consistency, though this depends on knowing the model’s structure and may not ensure consistent explanations. Similarly, Liu et al. (2024b) uses a stochastic mask to tackle OOD issues; however, challenges remain as explanations are still treated as OOD and lack clarity, with explanation compositionality aspects unaddressed. Furthermore, *faithfulness* is also a desirable property of any explanation method, broadly defined as the ability of the method to provide accurate descriptions

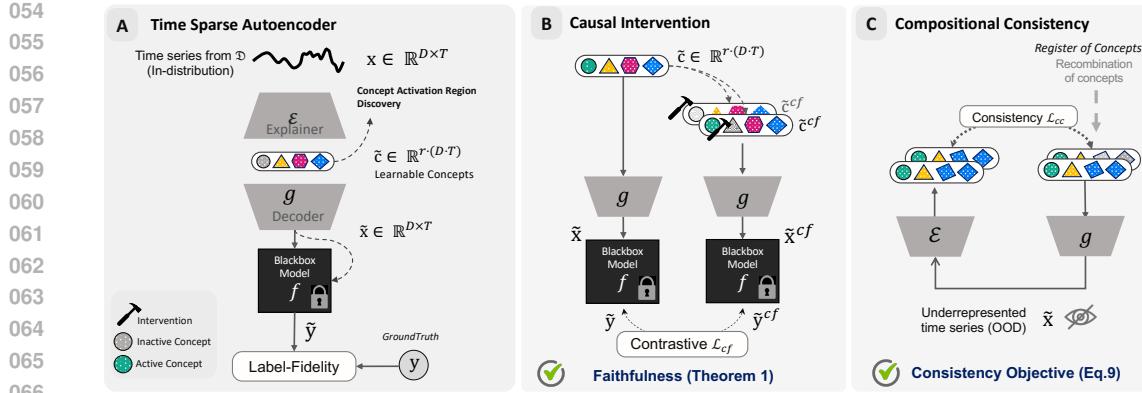


Figure 1: **Overview of Time Series Sparse Autoencoder (TimeSAE):** **(A)** The framework assumes access to a black-box model f and aims to explain its predictions on data $\mathbf{x} \in \mathcal{X}$ by learning an explainer \mathcal{E} and a decoder g that decompose the time series into interpretable components. **(B)** For faithfulness, the sparse autoencoder (\mathcal{E}, g) incorporates properties to leverage counterfactual explanations. A contrastive learning loss incorporates a set of counterfactuals $\tilde{\mathbf{x}}^{cf}$, obtained by intervening on concepts and which produce, via f , a contradictory label \tilde{y}^{cf} relative to the original \tilde{y} . **(C)** To ensure compositional explanations, the method enforces the explainer \mathcal{E} to generate consistent explanations by combining intermediate findings.

of the underlying reasoning (Gat et al., 2023; Jain & Wallace, 2019). Formally, the *faithfulness* challenge can be described as follows:

Definition 1 (Faithful Explanations). Let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be a black-box model, consider an input $\mathbf{x} \in \mathcal{X}$, and let $\mathcal{E} : \mathcal{X} \rightarrow \mathcal{C}$ be an explainer that generates explanations in the concept space \mathcal{C} . Faithfulness is the ability of \mathcal{E} to accurately reflect f ’s reasoning, i.e the predictive capability of $f(\mathbf{x})$ from the explanations $\mathcal{E}(\mathbf{x})$.

To address Definition 1, there is often confusion between two types of model explanations: **a**) what knowledge does the model encode? **b**) Why does it make certain predictions? Here, the “what” aspect does not directly explain the model’s decision-making, as not all encoded features are necessarily used in predictions. Explanations based on the “what” are typically correlational, rather than causal. Understanding a model’s reasoning requires attention to the “why”, making causality indispensable, which is defined as how changes in inputs impact the outputs. Indeed, counterfactuals (CFs), which explore “what if” scenarios by identifying minimal and feasible changes to inputs that alter predictions, are at the highest level of Pearl’s causal hierarchy (Pearl, 2009), highlighting how changes lead to a different prediction. To truly understand a model’s reasoning, it is essential to focus on the “why”, making causality a key component of *faithfulness*.

Contributions We propose TimeSAE, a Sparse Autoencoder (SAE) for learning explanation for time series black-box models. Specifically, we replace the need of the sub-instances via masking time steps and features by directly learning an end-to-end SAE using JumpReLU (Rajamanoharan et al., 2024b) to explain the prediction by concepts, using explanation-embedded instances that are close to the original distribution while maintaining label-prediction. Our method is model-agnostic and operates in a post-hoc manner, requiring no access to the internal structure, parameters, or intermediate activations of the model to explain. We summarize our main contributions as:

- [1] We examine the shortcomings of current explanation techniques for time series models through the lens of Concept Learning and Causal Counterfactual. To address these, we introduce TimeSAE, a framework leveraging a SAE for Concept Learning of Time Series, and mitigates distribution shift by generating samples from learned concepts aligning with the original distribution.
- [2] To ensure a *faithful explanation* of TimeSAE’s outputs, we provide a theoretical guarantee that its structure can approximate counterfactual explanations. In particular, it can identify which dictionary atoms would lead the black-box model to produce an alternative prediction.

108 [3] We evaluate our method on eight time series datasets, demonstrating its superior performance
 109 to existing explainers. We further highlight its effectiveness in a real-world case, and made the
 110 code available in an easy-to-use library `TimeSAE`-Lib¹.
 111 [4] We introduce *EliteLJ*, a new open-source dataset designed to benchmark time-series explanation
 112 methods. The dataset consists of skeleton-based motion data from long jump athletes and includes
 113 expert annotations labeling key phases (e.g., run-up, take-off, flight, landing) and qualitative
 114 assessments (e.g., good vs. bad take-off, correct vs. incorrect landing posture). This combination
 115 provides a realistic use case for evaluating explainability methods on sports performance data.
 116

117 2 RELATED WORK

119 **Concepts-based XAI and Sparse Autoencoders.** Concept-based Interpretable Networks (CoINs)
 120 encompasses models using human-interpretable concepts for prediction (Parekh et al., 2025) for
 121 white box models. Existing work in vision specifies concepts using either human supervision to
 122 select and provide their concept labels (Koh et al., 2020) or extracting them automatically with large
 123 language models (Oikarinen et al., 2023). Other works exploit unsupervised methods to automatically
 124 discover concepts (Alvarez Melis & Jaakkola, 2018; Sarkar et al., 2022) in by-design approaches and
 125 some of them (Parekh et al., 2021) leverage sparsity and diversity constraints directly on the concept
 126 activations, which is close to the approach adopted in this paper. Unlike existing unsupervised concept
 127 learning methods, which only emphasize properties such as *faithfulness*, we also focus on *causality*
 128 and *compositionality* of concepts, i.e. concepts being presents simultaneously and composed to form
 129 complex patterns, including in time series. Following Mikolov et al. (2013) on compositional word
 130 vectors, researchers have increasingly investigated how deep learning models exhibit compositional
 131 behavior (Brady et al., 2023; Wiedemer et al., 2024).

132 **Counterfactual Explanations.** Counterfactual explanations can be generated with various guidances
 133 (Ye & Keogh, 2009; Bahri et al., 2024; Li et al., 2024; Tonekaboni et al., 2020; Li et al., 2023; Wang
 134 et al., 2023). However, distributional shift remains a critical issue. To address this, Liu et al. (2024c);
 135 Jang et al. (2025) generates in-domain perturbations with contrastive learning. Liu et al. (2024b)
 136 propose an information bottleneck-based objective function to ensure model faithfulness while
 137 avoiding distributional shifts. More recently, StartGrad (Uendes et al.) uses an information-theoretic
 138 framework to balance masking-induced degradation with representation complexity, and ORTE (Yue
 139 et al., 2025) applies optimal information retention for the masked time-series explanations. We
 140 address this by generating samples from learned concepts aligning with the original data distribution.

141 **Temporal Interactions in Explanations.** Due to the specific nature of black-box model time series
 142 explanation, in both classification and regression, effects of time step must be taken into account.
 143 Leung et al. (2023) aggregate the impact across subsequent time windows while Tonekaboni et al.
 144 (2020) and Suresh et al. (2017) quantify the significance of a time step by measuring its effect
 145 on model prediction. Despite these advances, challenges remain in fully addressing the complex
 146 interactions between observational points. Yang et al. (2024) introduce time-step interactions, and
 147 Märtens & Yau (2020) propose “Variance decomposition” to quantify the variance attributed to each
 148 component. In our work, we propose a decomposition of the decoder that models and links these
 149 interactions to concepts for enhanced explanations and interpretability.

150 3 A TIME SERIES SPARSE AUTOENCODER FOR FAITHFUL EXPLANATIONS

151 To achieve an accurate explanation, we propose `TimeSAE`, a framework leveraging a Sparse
 152 Autoencoder that maintains the informativeness of time series for the black-box model. We show how
 153 \mathcal{E} inverts the decoder \mathbf{g} for more robust concept explanations, while generating approximate CFs for
 154 more faithful explanations. At the sequence level, `TimeSAE` offers a feature-level decomposition
 155 using the temporal decoder \mathbf{g} , which maps concept activations to their corresponding score activations.
 156

157 **Notation.** This work focuses on explainability in time series for both regression and classification.
 158 Throughout this work, a time series instance $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^{D \times T}$ is represented by a $D \times T$ real-valued
 159 matrix, where T is the number of time steps in the series, and D is the feature dimension. If $D > 1$,
 160 the time series is multivariate; otherwise, it is univariate. We denote by $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i) | i \in [N]\}$ the
 161

¹<https://anonymous.4open.science/r/TimeSAE-571D>

162 training set, which consists of N instances \mathbf{x}_i along with their associated labels \mathbf{y}_i , where $\mathbf{y}_i \in \mathcal{Y}$
 163 and \mathcal{Y} is the set of all possible continuous or discrete labels. A black-box time series predictor $f(\cdot)$
 164 takes an instance $\mathbf{x} \in \mathcal{X}$ as input, and outputs a label $f(\mathbf{x}) \in \mathcal{Y}$. We further define an overcomplete
 165 sparse autoencoder $(\mathcal{E}, \mathbf{g})$, denoted for simplicity by SAE, where $\mathcal{E} : \mathcal{X} \rightarrow \mathcal{C}$, designed to extract
 166 concept explanations, with \mathcal{C} the concept space. The activated concepts $\mathbf{c} \in \mathcal{C}$ are mapped back in
 167 the input space through the decoder $\mathbf{g} : \mathcal{C} \rightarrow \mathbb{R}^{D \times T}$, resulting in an *explanation-embedded instance*
 168 $\tilde{\mathbf{x}} \in \mathbb{R}^{D \times T}$. For a positive integer n , let $[n] = \{1, \dots, n\}$ denote the set of integers from 1 to n , and
 169 we use $|\cdot|$ to represent either the dimension (or length) of a vector, or the cardinality of a set.
 170

171 3.1 SPARSE AUTOENCODER

173 The Sparse Autoencoder, defined by a pair of encoder \mathcal{E} and decoder \mathbf{g} functions, decomposes each
 174 input \mathbf{x} into a sparse combination of learned feature directions \mathbf{c} , derived from a dictionary \mathbf{M} . It
 175 then generates the reconstruction $\tilde{\mathbf{x}}$ of the input. This process is summarized as:

$$176 \quad \mathbf{c} := \mathcal{E}(\mathbf{x}) = \sigma(\mathbf{M}\mathbf{x} + \mathbf{b}), \quad \tilde{\mathbf{x}} := \mathbf{g}(\mathbf{c}), \quad (1)$$

178 where $\mathbf{M} \in \mathbb{R}^{d \times (D \cdot T)}$, with $d := |\mathbf{c}| = r \cdot (D \cdot T)$, has its rows normalized to unit norm. This
 179 prevents scale ambiguity, i.e., the model “cheating” the sparsity objective by inflating dictionary
 180 weights to allow vanishingly small activations (Gao et al., 2024). This ensures the sparsity penalty
 181 targets feature presence rather than numerical scale. Here, r is a hyperparameter controlling the size
 182 of d , and $\mathbf{b} \in \mathbb{R}^d$ are learned parameters. In such expression, $\mathcal{E}(\mathbf{x})$ is a sparse, non-negative vector
 183 of feature magnitudes present in the input activation. The rows of \mathbf{M} represent the learned feature
 184 directions that form the dictionary used by the SAE for decomposition.

185 The activation function σ varies: ReLU or gated (Rajamanoharan et al., 2024a) in some cases, while
 186 TopK SAEs (Makhzani & Frey, 2013) keep only the top- k active concepts. Unfortunately, we find
 187 that this may often result in “dead” concepts similar to the phenomenon observed in LLMs (Gao
 188 et al., 2024), where some components don’t actively contribute at all from the start of learning. A
 189 detailed discussion is provided in Appendix B.1.2.

190 To further boost fidelity, Rajamanoharan et al. (2024b) propose the JumpReLU activation, denoted as
 191 JumpReLU_ϕ , which extends the standard ReLU-based SAE architecture (Ng, 2011) by incorporating
 192 an additional positive learnable parameter $\phi \in \mathbb{R}_+^{d \times (D \cdot T)}$ which acts as a feature-specific threshold
 193 vector. JumpReLU uses a learnable threshold ϕ_k for each concept feature k , and a feature is active
 194 only if the encoder output exceeds ϕ_k . This relaxation prevents “dead” activations, stabilizing
 195 concept learning and improving reconstruction fidelity.

196 **Loss functions.** Within our framework TimeSAE, we generate the reconstructed instance $\tilde{\mathbf{x}}$ through
 197 the JumpReLU_ϕ activation, which guarantees better learning of the concept dictionary and minimizes
 198 reconstruction error. Formally, the activation function is defined element-wise for any input scalar
 199 u and learnable threshold ϕ as $\text{JumpReLU}_\phi(\mathbf{c}) := \mathbf{c} \cdot H(\mathbf{c} - \phi)$ where $\phi \in \mathbb{R}_+^d$ is the learnable
 200 threshold vector, and $H(\cdot)$ is the Heaviside step function ($H(x) = 1$ if $x > 0$, else 0). Consequently,
 201 our objective function is defined as:

$$203 \quad \mathcal{L}_{\text{SAE}}(\mathbf{x}; \mathcal{E}, \mathbf{g}) := \underbrace{\|\mathbf{x} - \mathbf{g}(\mathcal{E}(\mathbf{x}))\|_2^2}_{\mathcal{L}_{\text{rec-fidelity}}} + \underbrace{\eta \mathbf{s}(\mathcal{E}(\mathbf{x}))}_{\mathcal{L}_{\text{sparsity}}}, \quad (2)$$

206 where $\mathbf{s}(\cdot)$ is a function of the concepts’ activations that penalises the non-sparse decompositions (i.e.,
 207 $\text{JumpReLU}_\phi(\mathbf{c})$ is explicitly the L_0 pseudo-norm of the active features: $\mathbf{s}(\mathcal{E}(\mathbf{x})) := \|\mathcal{E}(\mathbf{x})\|_0 =$
 208 $\sum_k H(\mathbf{c}_k - \phi_k)$) and the sparsity coefficient η controls the trade-off between sparsity and reconstruc-
 209 tion fidelity.

211 **Temporal Concept Learning** In TimeSAE, the encoder and decoder use *Block Temporal Convolu-*
 212 *tional Networks (TCN)* (Bai et al., 2018) to capture temporal dependencies. The encoder maps
 213 inputs to a sparse latent space, normalized for stable training, and applies JumpReLU_ϕ with learnable
 214 thresholds for robust concept activations. *Squeeze-and-Excitation (SE)* blocks (Hu et al., 2018)
 215 adaptively reweight feature channels. The decoder mirrors this design, reconstructing outputs through
 TCN layers with normalization, SE, and ReLU. Full architectural details are in Appendix B.5.

216
217

3.2 FAITHFULNESS VIA COUNTERFACTUAL EXPLANATIONS

218
219

To measure the causal effect of a concept on the model prediction, we rely on the *Causal Concept Effect (CaCE)* (Goyal et al., 2019) which we formally describe as follows.

220
221

Definition 2 (CaCE (Goyal et al., 2019)). Given an intervention $I_k : c_k \mapsto c'_k$, a black-box model $f : \mathcal{X} \rightarrow \mathcal{Y}$ and a dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i) | i \in [N]\}$ of size N , the Causal Concept Effect (CaCE) is:

222
223

$$\text{CaCE}_f(I_k) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\mathbf{x}) | \text{do}(c_k = I_k(c_k))] - \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\mathbf{x}) | \text{do}(c_k = c_k)]. \quad (3)$$

224
225

The causal effect and explanation of a model are both related to counterfactuals (CFs). This enables causal estimation in a model-agnostic manner as CFs can be obtained using only the explainer \mathcal{E} . We can now define the Approximated Counterfactual :

226
227

Definition 3 (Approximated Counterfactual Explanation (Gat et al., 2023)). Given a dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i) | i \in [N]\}$ of size N , an explainer $\mathcal{E} : \mathcal{X} \rightarrow \mathcal{C}$ and an intervention $I_k : c_k \mapsto c'_k$, the approximated counterfactual explanation S_{cf} is defined to be:

228
229
230
231
232

$$S_{cf}(\mathcal{E}, I_k, \mathbf{c}_k, \mathbf{c}'_k) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \mathcal{E}(\tilde{\mathbf{x}}_{c'_k}) - \mathcal{E}(\tilde{\mathbf{x}}_{c_k}), \quad (4)$$

233
234

where $\tilde{\mathbf{x}}_{c'_k}$ is the explanation-embedded instance after intervention I_k , and $\tilde{\mathbf{x}}_{c_k}$ before intervention.

235
236
237
238
239
240

In Appendix A, we provide a discussion of the Approximated CF Explanation methods. Faithfulness, as outlined in Definition 1, remains only partially addressed by the proposed explainable model. While it promotes order-preserving diversity, it does not directly address how faithful it is. In Gat et al. (2023), counterfactuals with causal relationships are shown to ensure faithfulness of explanation by validating that higher-ranked interventions have greater causal effects. Building on this, we prove the following result, showing that our explanation method preserves the relative ordering of causal effects under bounded approximation error, defined as *order-faithfulness*.

241
242
243
244
245
246
247

Theorem 1 (Faithfulness in Sparse Autoencoder-Based Approximate Counterfactuals). Let \mathbf{x} be a time-series input and f a black-box model whose true output is $\mathbf{y} = f(\mathbf{x})$. Suppose $(\mathcal{E}, \mathbf{g})$ is an encoder-decoder, where \mathcal{E} encodes \mathbf{x} to latent concepts, and \mathbf{g} decodes these concepts into $\tilde{\mathbf{x}} = \mathbf{g}(\mathcal{E}(\mathbf{x}))$ such that $\forall \mathbf{x} \in \mathcal{D}, f(\tilde{\mathbf{x}}) \approx f(\mathbf{x})$. For an intervention, define an approximate counterfactual S_{cf} Definition 3 by altering concepts $\mathbf{c} \mapsto \mathbf{c}^{cf}$, and let $\tilde{\mathbf{x}}^{cf} = \mathbf{g}(\mathbf{c}^{cf})$. Assume that

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [|f(\tilde{\mathbf{x}}^{cf}) - \mathbf{y}^{cf}|] \leq \epsilon_{cf}, \quad (5)$$

248
249
250

where \mathbf{y}^{cf} is the “true” counterfactual label (i.e., what $f(\mathbf{x})$ would be under the exact causal intervention), and ϵ_{cf} is a small approximation error. Then, for any pair of interventions $I_1 : c_1 \mapsto c'_1$ and $I_2 : c_2 \mapsto c'_2$, if the true causal effects satisfy

251
252
253

$$\text{CaCE}_f(I_1, c_1, c'_1) > \text{CaCE}_f(I_2, c_2, c'_2), \quad (6)$$

there exists a sufficiently small ϵ_{cf} so that

254
255

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\tilde{\mathbf{x}}_{I_1}^{cf}) - f(\tilde{\mathbf{x}})] > \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\tilde{\mathbf{x}}_{I_2}^{cf}) - f(\tilde{\mathbf{x}})], \quad (7)$$

256
257

where $\tilde{\mathbf{x}}_{I_1}^{cf}$ and $\tilde{\mathbf{x}}_{I_2}^{cf}$ are the explanation-embedded instances respectively obtained after interventions I_1 and I_2 . This preserves the ordering of causal effects, i.e. order faithfulness.

258
259
260
261
262
263

Proof Sketch. We define the actual and approximate causal effects of interventions and limit approximation errors. By ensuring that the combined approximation and reconstruction errors are smaller than the actual causal effects, we guarantee that order is preserved. Thus, approximate counterfactuals based on a sparse autoencoder preserve the causal effects’ order. The full proof is provided in Section A.

264
265
266
267

Practical Implementation. To enforce faithfulness, we use a contrastive loss InfoNCE (Oord et al., 2018) during the training of the Sparse Autoencoder. We define the positive pairs as counterfactuals from the same intervention I_k , while negative pairs come from different interventions I_j , ensuring $\text{CaCE}_f(I_k) > \text{CaCE}_f(I_j)$. The contrastive loss is formulated as:

268
269

$$\mathcal{L}_{cf} = -\log \left(\frac{\exp(\text{sim}(f(\tilde{\mathbf{x}}_{I_k}^{cf}), f(\tilde{\mathbf{x}}_{I_k}^{cf}))/\tau)}{\sum_j \exp(\text{sim}(f(\tilde{\mathbf{x}}_{I_k}^{cf}), f(\tilde{\mathbf{x}}_{I_j}^{cf}))/\tau)} \right), \quad (8)$$

270 where $\text{sim}(\cdot, \cdot)$ is the cosine similarity and τ is a temperature parameter that controls the sharpness of
 271 the similarity distribution. In practice, following Algorithm 1, the counterfactual can be obtained in
 272 an unsupervised manner, similarly to [Yan & Wang \(2023\)](#).
 273

274 3.3 GENERALIZATION IN OUT-OF-DISTRIBUTION

275 For a generator \mathbf{g} that is consistent for an OOD sample, [Wiedemer et al. \(2024\)](#) showed that an
 276 autoencoder will *slot-identify* concepts \mathbf{c} in \mathcal{C} . The conditions on the encoder discussed in the previous
 277 section aim to ensure that \mathcal{E} inverts \mathbf{g} over the entire input space \mathcal{X} . This behavior is encouraged
 278 within the training space \mathcal{X} (in-distribution) by minimizing the *reconstruction fidelity* objective
 279 $\mathcal{L}_{\text{rec-fidelity}}$. However, no mechanism is in place to enforce this inversion behavior of \mathcal{E} on \mathbf{g} also
 280 outside of \mathcal{X} (out-of-distribution). To address this, we propose to use the following compositional
 281 consistency loss ([Wiedemer et al., 2024](#)):
 282

$$\mathcal{L}_{cc}(\mathcal{E}, \mathbf{g}, \mathcal{C}') := \mathbb{E}_{\mathbf{c}' \sim q_{\mathbf{c}'}} \left[\|\mathcal{E}(\mathbf{g}(\mathbf{c}')) - \mathbf{c}'\|_2^2 \right], \quad (9)$$

283 where $q_{\mathbf{c}'}$ is a distribution with support \mathcal{C}' . The loss can be viewed as sampling an OOD combination
 284 of concepts \mathbf{c}' by composing inferred in-distribution concepts (i.e. from $\mathcal{E}(\mathbf{x})$, $\forall \mathbf{x} \in \mathcal{X}$). This
 285 synthesized concept is then passed through the decoder to generate an OOD input $\mathbf{g}(\mathbf{c}')$. This sample
 286 is then re-encoded with $\mathbf{c}' = \mathcal{E}(\mathbf{g}(\mathbf{c}'))$. Finally, the loss regularizes the explainer \mathcal{E} to serve as an
 287 approximate inverse of the decoder function for OOD samples. The choice of the compositionality of
 288 concepts is crucial and has proved to be stable ([Miao et al., 2022](#)).
 289

290 3.4 CONCEPT ACTIVATION REGION ALIGNMENT AND DISCOVERY

291 [Understanding which part of the input time series, i.e., the global features, depends on learned
 292 concepts and how these concepts interact is a core challenge in time-series interpretation. This insight
 293 is essential for building human trust and enabling practical applications. We propose a novel approach
 294 that formalizes the interpretation of global features using a decompositional decoder structure and
 295 probabilistic sparsity masks.](#)

296 **Automated Global Features Interpretation.** Our method introduces Bernoulli random variables
 297 introduce $\mathbf{m}_k^{(j)} \sim \text{Bernoulli}(\mathbf{p}_0)$ to probabilistically model the presence or absence of concept
 298 dependence for each interaction order $k \in \{1, \dots, d\}$, and for each concepts $j \in \{1, \dots, d\}$, where
 299 each $\mathbf{m}_k^{(j)}$ indicates the presence of a non-zero effect of ψ_k and thus of the concepts. More formally,
 300 $\mathbf{g}(\mathbf{c})$ follows:
 301

$$\mathbf{g}(\mathbf{c}) := \psi_0 + \sum_{j=1}^d \psi_1(\mathbf{c}_j) + \sum_{j=1}^{d-1} \psi_2(\mathbf{c}_j, \mathbf{c}_{j+1}) + \sum_{j=1}^{d-2} \psi_3(\mathbf{c}_j, \mathbf{c}_{j+1}, \mathbf{c}_{j+2}) + \dots + \psi_d(\mathbf{c}),$$

302 where ψ_0 denote the bias term, ψ_1 captures the first-order contribution of \mathbf{c}_j , and ψ_2 models the
 303 second-order interaction between \mathbf{c}_j and \mathbf{c}_{j-1} , with summation over terms ψ_k for $k = 2, \dots, d$.
 304 Higher-order terms ψ_d represent interactions across successive concepts \mathbf{c} . These terms are ele-
 305 mentwise multiplied with their respective Bernoulli sparsity masks $\mathbf{m}_k^{(j)}$, activating or deactivating
 306 specific interaction effects. This generalizes the neural functional ANOVA decomposition ([Märtens &
 307 Yau, 2020](#)) and GAM ([Yang et al., 2024](#)), offering interpretability by visualizing individual concept
 308 impacts and their interactions.

309 **Concept Alignment.** To enhance interpretability, [particularly for human users, we need a mecha-
 310 nism to link the model’s internal concepts to human-understandable abstractions with fewer labels.](#)
 311 [Following training](#), our framework discovers and aligns learned concepts using techniques inspired
 312 by [Crabbé & van der Schaar \(2022\)](#) works, Concept Activation Regions (CAR), better suited to time
 313 series tasks as it doesn’t assume linear separability. Specifically, we enable the manual definition
 314 of low-level concepts, which are subsequently aligned with higher-level abstractions learned by the
 315 model. This alignment is performed [in a supervised manner](#) using kernel-based Support Vector
 316 Regression (SVR) and Support Vector Classification (SVC) to distinguish between the activations
 317 produced by the network for samples containing the target concept and those for randomly selected
 318 samples. We provide the Algorithm in the Appendix B.7.1.
 319

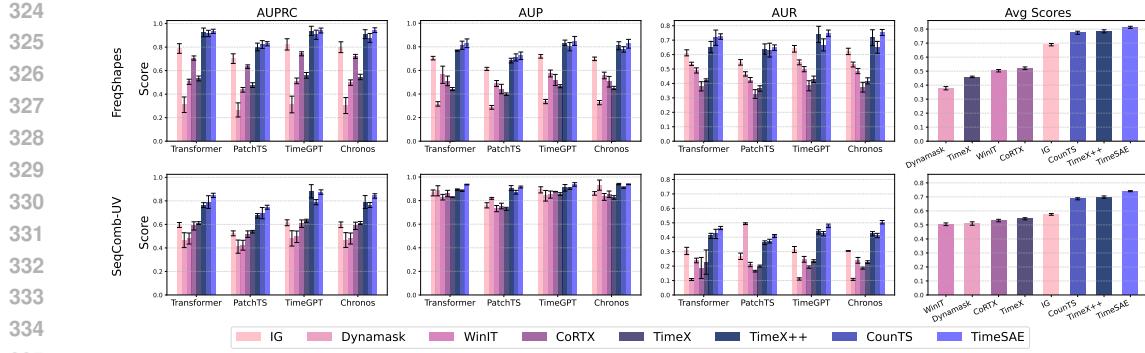


Figure 2: Explanation performance on all datasets and metrics (AUPRC, AUP, AUR). Higher is better. The rightmost panel shows average scores. Methods are ranked left to right from worst to best.

Training Setting. TimeSAE minimizes all the previously described loss functions. Notably, we include a *reconstruction term* to ensure *label fidelity* between the prediction made directly from $f(\mathbf{x})$ and the one obtained from the reconstructed input $f(g(\mathcal{E}(\mathbf{x})))$. We refer to this term as the *label-fidelity loss*, denoted by $\mathcal{L}_{\text{label-fidelity}} := \|f(\mathbf{x}) - f(g(\mathcal{E}(\mathbf{x})))\|_2^2$, and the overall loss is

$$\mathcal{L}_{\text{TIME}SAE} = \mathcal{L}_{SAE} + \mathcal{L}_{\text{label-fidelity}} + \alpha \mathcal{L}_{cc} + \lambda \mathcal{L}_{cf}, \quad (10)$$

where $(\alpha, \lambda) \in \mathbb{R}^2$ are hyperparameters adjusting the losses, and TimeSAE is optimized end-to-end.

4 EXPERIMENTAL SETUP

Black-Box Models. We employ two types of black-box models: we trained a Transformer-based classifier (Vaswani et al., 2017), DLinear (Zeng et al., 2023), and PatchTS (Nie et al., 2022) models for regression tasks, with hyperparameters carefully tuned to maximize predictive performance. In addition, we incorporate pretrained large-scale models for forecasting and classification: TimeGPT (Garza et al., 2023), accessed via API; Chronos (Ansari et al., 2024), an open-source black-box model with 188 billion parameters designed for regression tasks. Due to space constraints, additional models such as Moments (Goswami et al., 2024), TimeFM (Das et al., 2024), and Informer (Zhou et al., 2021) are reported in the Appendix B.3.1. For all predictors, we verified that the models achieved satisfactory performance on the testing set before the explainability evaluation.

Datasets. We use two synthetic datasets with known ground-truth explanations: (1) **FreqShapes** and (2) **SeqComb-UV** adapted from Queen et al. (2023). Datasets are designed to capture diverse temporal dynamics in both univariate and multivariate settings (we give more details in Section B.1.1). We employ four datasets from real-world time series. For classification tasks, we consider (1) ECG dataset (Moody & Mark, 2001) that consists of arrhythmia detection, which includes cardiac disorders with ground-truth explanations defined as the QRS interval (Queen et al., 2023). (2) PAM (Reiss & Stricker, 2012) human activity recognition. For regression, (3) ETTH-1 and (4) ETTH-2 which are energy demand datasets (Ruhnau et al., 2019). Finally, we introduce (5) **EliteLJ Dataset**, a new real-world sports dataset, consisting of skeletal athlete pose sequences along with the corresponding performance metrics. More details are provided in the Appendix B.1.2.

Explanation Evaluation. Given that precise salient features are known, we utilize them as ground truth for evaluating explanations. At each time step, features causing prediction label changes are attributed an explanation of 1, whereas those that do not affect such changes are 0. Following Crabbé & Van Der Schaar (2021), we evaluate the quality of explanations with area under precision (AUP), area under recall (AUR), and also AUPRC, for consistency from Queen et al. (2023), which combines the two. Following TimeX (Liu et al., 2024b), we assess distributional similarity using KL divergence and MMD (Gretton et al., 2012), with smaller values denoting closer alignment. We further estimate the *log-likelihood* of explanations via KDE (Parzen, 1962).

Faithfulness Evaluation. We evaluate *faithfulness* to assess the reliability of our interpretations, following the methodology introduced in Parekh et al. (2022). Faithfulness measures whether the features identified as relevant are truly important for the classifier’s predictions. Since “ground-truth”

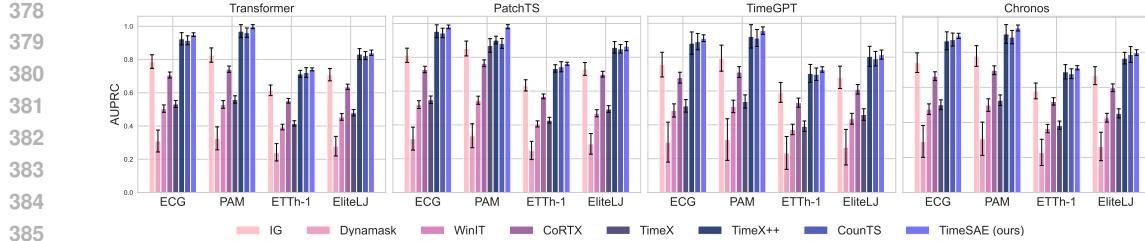


Figure 3: AUPRC explanation performance (higher is better) across methods for each dataset.

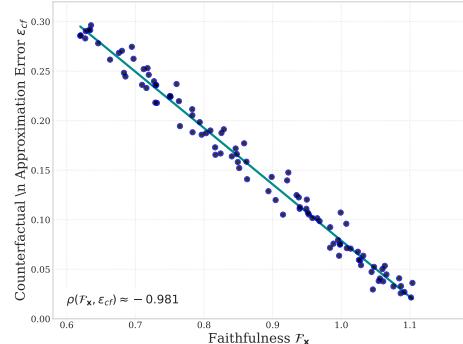
feature importance is rarely available, attribution-based methods typically evaluate faithfulness by removing features (e.g., setting their values to zero) and observing changes in the classifier’s output. However, we enable the simulation of feature removal in time-series data by deactivating a set of components. For a sample \mathbf{x} with predicted \mathbf{y} , we remove the set of relevant components in \mathbf{c} to obtain \mathbf{c}^- and generate a new instance $\tilde{\mathbf{x}}^- = g(\mathbf{c}^-)$. The faithfulness score is then computed as: $\mathcal{F}_{\mathbf{x}} = \|f(\mathbf{x}) - f(\tilde{\mathbf{x}}^-)\|_2^2$ where $f(\mathbf{x})$ and $f(\tilde{\mathbf{x}}^-)$ represent the model’s output before and after concept removal. A higher $\mathcal{F}_{\mathbf{x}}$ indicates a greater impact of the removed components on the output, supporting the faithfulness of the interpretation.

Baselines details. The proposed method TimeSAE is evaluated against eight state-of-the-art explainability methods: Integrated Gradients (IG) (Sundararajan et al., 2017), Dynamask (Crabbé & Van Der Schaar, 2021), WinIT (Leung et al., 2023), CoRTX (Chuang et al., 2023), SGTGRAD (Ismail et al., 2021), TIMEX (Queen et al., 2023), TIMEX++ (Liu et al., 2024b), and CounTS (Yan & Wang, 2023), as well as the more recent methods StartGrad (Uendes et al., TIMING (Jang et al., 2025) and ORTE (Yue et al., 2025) based optimal information retention to find explanation for time series. Further implementation details are provided in the Appendix B.4.

4.1 SYNTHETIC AND REAL-WORLD DATASETS

Figure 2 and Figure 3 report the performance of different explanation methods on univariate and multivariate datasets, presented as the mean and standard deviation over 10 random seeds (applies to all subsequent tables/figures). Our approach consistently achieves the best results across metrics (AUPRC, AUP, and AUR). The performance metric (AUPRC) on real datasets, illustrated in Figure 3, show that TimeSAE surpasses existing methods, including TimeX++, across all datasets. We perform paired t-tests at the 5% significance level to evaluate whether TimeSAE significantly outperforms other methods. The results indicate that TimeSAE achieves statistically the highest performance on several datasets (e.g., ECG and PAM), while other models like TimeX++ and CounTS remain competitive.

Theory Validation. To empirically validate our theory, we leverage the existing faithfulness ($\mathcal{F}_{\mathbf{x}}$) metric used in our main results. Furthermore, we investigate the counterfactual approximation error (ϵ_{cf}) mentioned in Theorem 1. Specifically, we compute the Spearman correlation between ϵ_{cf} and $\mathcal{F}_{\mathbf{x}}$. Our results demonstrate a strong negative correlation, as illustrated in Figure 4: a smaller approximation error (ϵ_{cf}) leads to higher explanation faithfulness ($\mathcal{F}_{\mathbf{x}}$). This fidelity to the theoretical bounds also extends to other related metrics. We additionally validate the error bounds in Section A.3. In terms of faithfulness, Table 1 shows results of explanation methods applied to different black-box models, and for multiple datasets. Our TimeSAE consistently reaches more faithful results than other baselines, highlighted by its best ranking. We further investigate the faithfulness and its link with counterfactuals from Theorem 1 in our ablation study below.

Figure 4: Spearman correlation ($\rho \approx -0.981$) between the Faithfulness metric ($\mathcal{F}_{\mathbf{x}}$) and the Counterfactual Approximation Error (ϵ_{cf}).

432 Table 1: The Faithfulness \mathcal{F}_x metric performance across classification (\dagger) and regression (\ddagger) tasks
433 with different datasets. Higher values are better, and the colors represent the top **Top-1**, **Top-2**, and
434 **Top-3** rankings.
435

Black-Box \rightarrow	Transformer		PatchTS		DLinear	
Method \downarrow	ECG \dagger	PAM \dagger	ETTH-1 \ddagger	ETTH-2 \ddagger	EliteLJ \ddagger	Rank
IG	0.92 \pm 0.102	0.89 \pm 0.104	1.00 \pm 0.107	0.95 \pm 0.101	0.91 \pm 0.109	9.0
Dynamask	1.05 \pm 0.099	1.00 \pm 0.095	1.15 \pm 0.096	1.12 \pm 0.093	1.04 \pm 0.097	8.0
WinIT	1.10 \pm 0.095	1.08 \pm 0.092	1.18 \pm 0.091	1.17 \pm 0.090	1.06 \pm 0.093	6.9
CoRTX	1.15 \pm 0.088	1.10 \pm 0.087	1.22 \pm 0.090	1.20 \pm 0.088	1.14 \pm 0.089	5.6
TimeX	1.10 \pm 0.083	1.22 \pm 0.091	1.35 \pm 0.090	1.28 \pm 0.089	1.10 \pm 0.094	5.5
ORTE	1.51 \pm 0.009	1.55 \pm 0.078	1.71 \pm 0.077	1.50 \pm 0.075	1.43 \pm 0.072	4.1
TIMING	1.67 \pm 0.050	1.65 \pm 0.070	1.82 \pm 0.060	1.69 \pm 0.055	1.55 \pm 0.065	3.5
TimeX++	1.65 \pm 0.097	1.58 \pm 0.088	1.75 \pm 0.084	1.70 \pm 0.086	1.44 \pm 0.087	3.1
StartGrad	1.68 \pm 0.010	1.72 \pm 0.087	1.90 \pm 0.085	1.67 \pm 0.083	1.65 \pm 0.080	2.4
CounTS	1.86\pm0.075	2.05 \pm 0.074	1.60 \pm 0.080	1.50 \pm 0.081	1.89 \pm 0.071	2.3
TimeSAE (ours)	1.78 \pm 0.078	2.15\pm0.080	2.12\pm0.072	2.09\pm0.069	1.86\pm0.032	1.7

448 Table 2: Distributional alignment and performance evaluation for in-distribution (ID) and out-
449 of-distribution (OOD) settings. (a) Dataset definition and statistics. (b) Evaluation of method
450 performance. Higher is better for KDE, AUPRC, and \mathcal{F}_x ; lower is better for KL and MMD.
451

(a) Setting & Statistics

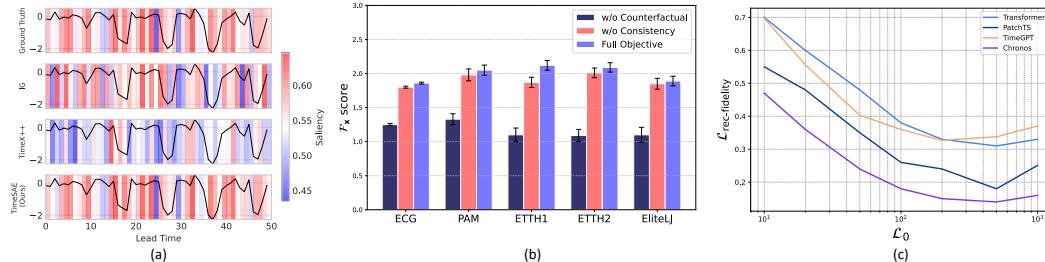
Dataset Pair	Definition & Statistics		
	KDE	KL	MMD
● ID: ETTh1 \rightarrow ETTh1-val trained on ETTh1, and tested on ETTh1-val	-0.110 \pm 0.01	0.039 \pm 0.002	0.014 \pm 0.001
○ OOD: ETTh1 \rightarrow ETTh2 trained on ETTh1, and tested on ETTh2	-0.295 \pm 0.02	0.421 \pm 0.03	0.161 \pm 0.01

(b) Evaluation in OOD settings

Method	Setting	KDE \uparrow	KL \downarrow	MMD \downarrow	AUPRC \uparrow	\mathcal{F}_x \uparrow
IG	● ID	46.10 \pm 1.3	0.295 \pm 0.025	0.027 \pm 0.004	0.422 \pm 0.045	1.38 \pm 0.06
	○ OOD	-49.45 \pm 1.6	0.355 \pm 0.032	0.120 \pm 0.012	0.394 \pm 0.03	1.31 \pm 0.07
TimeX	● ID	45.30 \pm 1.2	0.288 \pm 0.02	0.024 \pm 0.003	0.416 \pm 0.04	1.35 \pm 0.05
	○ OOD	-50.82 \pm 1.5	0.342 \pm 0.03	0.115 \pm 0.01	0.401 \pm 0.03	1.28 \pm 0.06
TimeX++	● ID	-44.12 \pm 1.1	0.198 \pm 0.02	0.019 \pm 0.002	0.714 \pm 0.05	1.75 \pm 0.07
	○ OOD	-48.77 \pm 1.3	0.265 \pm 0.03	0.101 \pm 0.01	0.622 \pm 0.04	1.70 \pm 0.08
TimeSAE (Ours)	● ID	-43.55 \pm 1.1	0.182 \pm 0.01	0.016 \pm 0.002	0.741 \pm 0.05	2.12 \pm 0.05
	○ OOD	-47.21\pm1.3	0.245\pm0.02	0.089\pm0.01	0.641\pm0.03	2.09\pm0.06

4.2 ABLATION STUDY

462 **Concepts Consistency in OOD.** To assess the effectiveness of the Concepts Consistency in out-
463 of-distribution (OOD) generalization, we evaluate the model’s ability to generate explanations that
464 remain faithful and robust when exposed to OOD data, i.e., tested on ETTh-2 while TimeSAE is
465 trained on Etth-1, widely used as OOD generalization benchmark. These datasets are collected from
466 different countries, exhibit distinct seasonal and frequency patterns, and thus serve as a suitable
467 testbed for OOD evaluation (Liu et al., 2024a). This OOD setting is given in Table 2-a. We report
468 in Table 2-b the combined results of KDE, KL, MMD, AUPRC and \mathcal{F}_x , comparing in-domain
469 and cross-domain settings. These results show that our proposed TimeSAE not only achieves
470 higher predictive performance (AUPRC) but also produces more faithful and distributionally aligned
471 explanations (lower KDE shift, KL divergence, and MMD).
472



482 Figure 5: (a) Examples of explanation compared to the ground truth on the FreqShapes dataset. (b)
483 Effects of excluding the *Concepts Consistency* and *Counterfactual* term on the Faithfulness metric
484 \mathcal{F}_x , with standard deviations shown over 10 runs. Using counterfactuals produces more faithful
485 explanations. (c) Effect of sparsity on reconstruction fidelity. Increasing sparsity generally achieves
486 better fidelity; however, excessive sparsity can compromise fidelity.
487

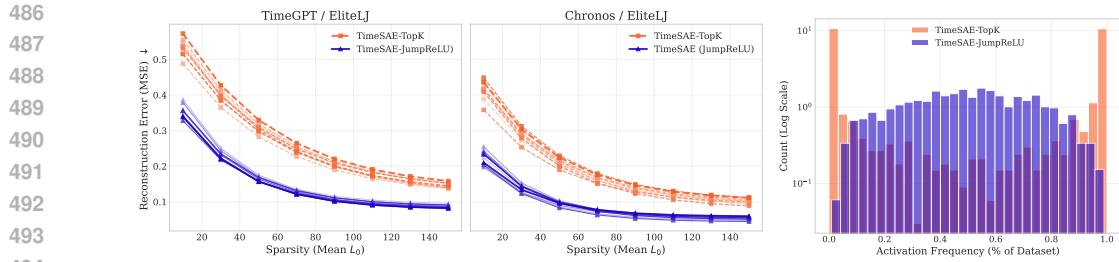


Figure 6: Sparsity efficiency and activation frequency. **Left:** TimeGPT on EliteLJ. **Middle:** Chronos on EliteLJ. In both, TimeSAE with JumpReLU outperforms TopK at all L_0 , showing better sparsity-fidelity trade-offs. **Right:** Log-scale activation histogram: TopK spikes near 0% (*dead concept*), JumpReLU is more distributed; 10 seeds shown in gradient colors.

Effectiveness of Counterfactual for Faithful Explanations We evaluate the contribution of counterfactual supervision in enhancing explanation faithfulness by evaluating the proposed framework using the \mathcal{F}_x score across five diverse time series datasets and multiple black-box predictors. As shown in Figure 5-b, we examine three variants of the `TIME`SAE model: one trained with the full objective Equation (10), another without the counterfactual loss term \mathcal{L}_{cf} , and a third version trained without the consistency loss \mathcal{L}_{cc} . The results consistently show that incorporating counterfactual objectives significantly improves faithfulness across all settings. Notably, models trained with \mathcal{L}_{cf} , especially when combined with \mathcal{L}_{cc} , yield higher \mathcal{F}_x scores, demonstrating that counterfactual signals help guide the model toward learning more faithful and semantically meaningful explanations. These improvements hold across datasets and predictor types, showing the generalizability of our approach. Qualitative comparisons in Figure 5-a of `Time`SAE’s explanations with the ground truth against TimeX++ and IG show that `Time`SAE better captures attributions to temporal features.

Trade-off Between Sparsity and Reconstruction Although sparsity can improve the monosemanticity of concepts (Pach et al., 2025), forcing sparsity also leads to *lower fidelity* of reconstruction. In Figure 5-c, we evaluate reconstruction error as sparsity increases (measured by \mathcal{L}_0). The results show that, when the representations become overly sparse (low \mathcal{L}_0), a clear drop in reconstruction fidelity (higher $\mathcal{L}_{rec-fidelity}$) is observed. We extend this analysis to the TopK sparsity mechanism (Section 3), referred to as `Time`SAE-TopK, in Figure 6. The left panel shows reconstruction error as sparsity increases, with `Time`SAE-JumpReLU consistently outperforming TopK. The right panel shows JumpReLU mitigates TopK’s *dead features* issue, maintaining a more balanced feature activation. Thus, `Time`SAE achieves strong sparsity without compromising reconstruction or feature utilization. Additional results are in Appendix B. The results underscore JumpReLU’s ability to adapt seamlessly to data, whereas TopK is more sensitive to hyperparameter choices.

5 CONCLUSION AND FUTURE WORK

We address the challenge of post-hoc explainability for time-series black-box models by employing sparse autoencoders and exploring the causal relationships between concepts within explanation-embedded instances to ensure faithful explanations. Our proposed approach, `Time`SAE, automates dictionary learning, generating time series explanations that preserve labels and are consistent with the original data distribution. Through experiments on both synthetic and real-world datasets, we show that `Time`SAE outperforms current explainability methods in terms of faithfulness and robustness to distribution shift, with successful applications in fields such as energy forecasting and sports analytics. In particular, our results highlight `Time`SAE’s ability to accurately capture the complex dynamics of pre-trained time series models. This work emphasizes the importance of concept composition and causality in producing high-quality explanations. Future investigations could focus on constructing white-box models based on these concepts and exploring the interpretability of layers within black-box models.

Limitations While `Time`SAE produces faithful and interpretable explanations, it requires a sufficiently large and representative dataset for effective training, which may limit its applicability in data-scarce domains. Additionally, the performance of the model is sensitive to hyperparameter settings such as sparsity levels and dictionary size, requiring careful tuning to maintain robustness and generalizability across different tasks. A deeper discussion can be found in the Appendix C.

540 REFERENCES
541

542 Tomiwa Sunday Adebayo, Abraham Ayobamiji Awosusi, Dervis Kirikkaleli, Gbenga Daniel Akinsola,
543 and Madhy Nyota Mwamba. Can CO₂ emissions and energy consumption determine the economic
544 performance of south korea? A time series analysis. *Environmental Science and Pollution Research*,
545 pp. 38969–38984, 2021.

546 David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining neural
547 networks. *Advances in neural information processing systems*, 31, 2018.

548 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
549 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
550 Chronos: Learning the language of time series. *arXiv preprint arXiv:2403.07815*, 2024.

551

552 David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
553 Robert Müller. How to explain individual classification decisions. *The Journal of Machine
554 Learning Research*, 11:1803–1831, 2010.

555

556 Omar Bahri, Peiyu Li, Soukaina Filali Boubrahimi, and Shah Muhammad Hamdi. Discord-based
557 counterfactual explanations for time series classification. *Data Mining and Knowledge Discovery*,
558 38(6):3347–3371, 2024.

559

560 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
561 recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.

562

563 João Bento, Pedro Saleiro, André F Cruz, Mário AT Figueiredo, and Pedro Bizarro. Timeshap:
564 Explaining recurrent models through sequence perturbations. In *SIGKDD*, pp. 2565–2573, 2021.

565

566 Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius Von Kügelgen, and
567 Wieland Brendel. Provably learning object-centric representations. In *Proceedings of the 40th
568 International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
569 Research*, pp. 3038–3062. PMLR, 23–29 Jul 2023.

570

571 Yu-Neng Chuang, Guanchu Wang, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, and Xia
572 Hu. CoRTX: Contrastive framework for real-time explanation. In *ICLR*, pp. 1–23, 2023.

573

574 Jonathan Crabbé and Mihaela Van Der Schaar. Explaining time series predictions with dynamic
575 masks. In *ICML*, pp. 2166–2177, 2021.

576

577 Jonathan Crabbé and Mihaela van der Schaar. Concept activation regions: A generalized framework
578 for concept-based explanations. *Advances in Neural Information Processing Systems*, 35:2590–
579 2607, 2022.

580

581 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
582 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
583 2023.

584

585 Abdelkader Dairi, Fouzi Harrou, Abdelhafid Zeroual, Mohamad Mazen Hittawe, and Ying Sun.
586 Comparative study of machine learning methods for covid-19 transmission forecasting. *Journal of
587 biomedical informatics*, 118:103791, 2021.

588

589 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
590 time-series forecasting. In *Forty-first International Conference on Machine Learning*, 2024.

591

592 Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
593 Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
594 *IEEE/CAA Journal of Automatica Sinica*, 6(6):1293–1305, 2019.

595

596 Cherrelle Eid, Paul Codani, Yannick Perez, Javier Reneses, and Rudi Hakvoort. Managing electric
597 flexibility from distributed energy resources: A review of incentives for market design. *Renewable
598 and Sustainable Energy Reviews*, 64:237–247, 2016.

599

600 Joseph Enguehard. Learning perturbations to explain time series predictions. In *ICML*, pp. 9329–9342,
601 2023.

594 Qi Gan, Mounîm A El-Yacoubi, Eric Fenaux, Stéphan Cléménçon, et al. Human pose estimation
 595 based biomechanical feature extraction for long jumps. In *2024 16th International Conference on*
 596 *Human System Interaction (HSI)*, pp. 1–6. IEEE, 2024.

597

598 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
 599 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint*
 600 *arXiv:2406.04093*, 2024.

601

602 Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. *arXiv preprint*
 603 *arXiv:2310.03589*, 2023.

604

605 Yair Gat, Nitay Calderon, Amir Feder, Alexander Chapanin, Amit Sharma, and Roi Reichart. Faith-
 606 ful explanations of black-box nlp models using llm-generated counterfactuals. *arXiv preprint*
 607 *arXiv:2310.00603*, 2023.

608

609 Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscope: A
 610 unifying framework for inspecting hidden representations of language models. *arXiv preprint*
 611 *arXiv:2401.06102*, 2024.

612

613 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
 614 Moment: A family of open time-series foundation models. *arXiv preprint arXiv:2402.03885*,
 615 2024.

616

617 Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explaining classifiers with causal concept effect
 618 (cace). *CoRR*, abs/1907.07165, 2019. URL <http://arxiv.org/abs/1907.07165>.

619

620 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
 621 kernel two-sample test. *The journal of machine learning research*, 13(1):723–773, 2012.

622

623 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In *Proceedings of the IEEE*
 624 *conference on computer vision and pattern recognition*, pp. 7132–7141, 2018.

625

626 Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale
 627 datasets and predictive methods for 3d human sensing in natural environments. *IEEE transactions*
 628 *on pattern analysis and machine intelligence*, 36(7):1325–1339, 2013.

629

630 Aya Abdelsalam Ismail, Hector Corrada Bravo, and Soheil Feizi. Improving deep learning inter-
 631 pretability by saliency guided training. In *NeurIPS*, pp. 26726–26739, 2021.

632

633 Sarthak Jain and Byron C Wallace. Attention is not explanation. *arXiv preprint arXiv:1902.10186*,
 634 2019.

635

636 Hyeongwon Jang, Changhun Kim, and Eunho Yang. Timing: Temporality-aware integrated gradients
 637 for time series explanation. *arXiv preprint arXiv:2506.05035*, 2025.

638

639 Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. Multivariate lstm-fcns
 640 for time series classification. *Neural networks*, 116:237–245, 2019.

641

642 Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron, Nataraj Dasgupta, Sayee Natarajan,
 643 Larry A Pickett, and Varun Dutt. AI in healthcare: time-series forecasting using statistical, neural,
 644 and ensemble architectures. *Frontiers in Big Data*, 3:4, 2020.

645

646 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 647 Percy Liang. Concept bottleneck models. In *International conference on machine learning*, pp.
 648 5338–5348. PMLR, 2020.

649

650 Kin Kwan Leung, Clayton Rooke, Jonathan Smith, Saba Zuberi, and Maksims Volkovs. Temporal
 651 dependencies in feature importance for time series prediction. In *ICLR*, pp. 1–18, 2023.

652

653 Peiyu Li, Omar Bahri, Soukaïna Filali Boubrahimi, and Shah Muhammad Hamdi. Cels: Counter-
 654 factual explanations for time series data via learned saliency maps. In *2023 IEEE International*
 655 *Conference on Big Data (BigData)*, pp. 718–727. IEEE, 2023.

648 Peiyu Li, Pouya Hosseinzadeh, Omar Bahri, Soukaïna Filali Boubrahimi, and Shah Muhammad
 649 Hamdi. Reliable time series counterfactual explanations guided by shapedba. In *2024 IEEE*
 650 *International Conference on Big Data (BigData)*, pp. 1574–1579. IEEE, 2024.

651

652 Hauxin Liu, Harshavardhan Kamarthi, Lingkai Kong, Zhiyuan Zhao, Chao Zhang, and B Aditya
 653 Prakash. Time-series forecasting for out-of-distribution generalization using invariant learning. In
 654 *Proceedings of the 41st International Conference on Machine Learning*, pp. 31312–31325, 2024a.

655

656 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 657 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint*
 658 *arXiv:2310.06625*, 2023.

659

660 Zichuan Liu, Tianchun Wang, Jimeng Shi, Xu Zheng, Zhuomin Chen, Lei Song, Wenqian Dong,
 661 Jayantha Obeysekera, Farhad Shirani, and Dongsheng Luo. Timex++: Learning time-series
 662 explanations with information bottleneck. *arXiv preprint arXiv:2405.09308*, 2024b.

663

664 Zichuan Liu, Yingying Zhang, Tianchun Wang, Zefan Wang, Dongsheng Luo, Mengnan Du, Min Wu,
 665 Yi Wang, Chunlin Chen, Lunting Fan, and Qingsong Wen. Explaining time series via contrastive
 666 and locally sparse perturbations. In *ICLR*, pp. 1–21, 2024c.

667

668 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In *Advances*
 669 *in Neural Information Processing Systems*, pp. 4765–4774, 2017.

670

671 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. *arXiv preprint arXiv:1312.5663*, 2013.

672

673 Kaspar Märtens and Christopher Yau. Neural decomposition: Functional anova with variational
 674 autoencoders. In *International Conference on Artificial Intelligence and Statistics*, pp. 2917–2927.
 675 PMLR, 2020.

676

677 Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic attention
 678 mechanism. In *ICML*, pp. 15524–15543, 2022.

679

680 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
 681 of words and phrases and their compositionality. *Advances in neural information processing*
 682 *systems*, 26, 2013.

683

684 George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. *IEEE*
 685 *engineering in medicine and biology magazine*, 20(3):45–50, 2001.

686

687 Andrew Ng. Sparse autoencoder. [http://web.stanford.edu/class/cs294a/
 688 sparseAutoencoder.pdf](http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf), 2011. CS294A Lecture notes.

689

690 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 691 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.

692

693 Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
 694 models. *arXiv preprint arXiv:2304.06129*, 2023.

695

696 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 697 coding. *arXiv preprint arXiv:1807.03748*, 2018.

698

699 Mateusz Pach, Shyamgopal Karthik, Quentin Bouliot, Serge Belongie, and Zeynep Akata.
 700 Sparse autoencoders learn monosemantic features in vision-language models. *arXiv preprint*
 701 *arXiv:2504.02821*, 2025.

702

703 Jayneel Parekh, Pavlo Mozharovskyi, and Florence d’Alché-Buc. A framework to learn with
 704 interpretation. *Advances in Neural Information Processing Systems*, 34:24273–24285, 2021.

705

706 Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Florence d’Alché-Buc, and Gaël Richard.
 707 Listen to interpret: Post-hoc interpretability for audio networks with nmf. *Advances in Neural*
 708 *Information Processing Systems*, 35:35270–35283, 2022.

702 Jayneel Parekh, Quentin Bouliot, Pavlo Mozharovskyi, Alasdair Newson, and Florence d’Alché
 703 Buc. Restyling unsupervised concept based interpretable networks with generative models. In
 704 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=CexatBp6rx>.

705

706 Emanuel Parzen. On estimation of a probability density function and mode. *The Annals of Mathe-*
 707 *matical Statistics*, 33(3):1065–1076, 1962.

708

709 Judea Pearl. *Causality*. Cambridge university press, 2009.

710

711 Owen Queen, Thomas Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, and Marinka
 712 Zitnik. Encoding time-series explanations through self-supervised model behavior consistency. In
 713 *NeurIPS*, 2023.

714

715 Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
 716 Kramár, Rohin Shah, and Neel Nanda. Improving sparse decomposition of language model
 717 activations with gated sparse autoencoders. In *The Thirty-eighth Annual Conference on Neural*
 718 *Information Processing Systems*, 2024a.

719

720 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 721 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
 722 autoencoders. *arXiv preprint arXiv:2407.14435*, 2024b.

723

724 Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring. In
 725 *ISWC*, pp. 108–109, 2012.

726

727 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?” Explaining the
 728 predictions of any classifier. In *SIGKDD*, pp. 1135–1144, 2016.

729

730 Oliver Ruhnau, Lion Hirth, and Aaron Praktiknjo. Time series of heat demand and heat pump
 731 efficiency for energy system modeling. *Scientific data*, 6(1):1–10, 2019.

732

733 Anirban Sarkar, Deepak Vijaykeerthy, Anindya Sarkar, and Vineeth N Balasubramanian. A framework
 734 for learning ante-hoc explainable models via concepts. In *Proceedings of the IEEE/CVF conference*
 735 *on computer vision and pattern recognition*, pp. 10286–10295, 2022.

736

737 Jimeng Shi, Vitalii Stebliankin, and Giri Narasimhan. The power of explainability in forecast-
 738 informed deep learning models for flood mitigation. *arXiv preprint arXiv:2310.19166*, 2023.

739

740 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *ICML*,
 741 pp. 3319–3328, 2017.

742

743 Harini Suresh, Nathan Hunt, Alistair Johnson, Leo Anthony Celi, Peter Szolovits, and Marzyeh
 744 Ghassemi. Clinical intervention prediction and understanding with deep neural networks. In
 745 *MLHC*, pp. 322–337, 2017.

746

747 Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duvenaud, and Anna Goldenberg.
 748 What went wrong and when? Instance-wise feature importance for time-series black-box models.
 749 In *NeurIPS*, pp. 799–809, 2020.

750

751 Buelent Uendes, Shujian Yu, and Mark Hoogendoorn. Start smart: Leveraging gradients for enhancing
 752 mask-based xai methods. In *The Thirteenth International Conference on Learning Representations*.

753

754 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 755 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, pp. 5998–6008, 2017.

756

757 Zhendong Wang, Ioanna Miliou, Isak Samsten, and Panagiotis Papapetrou. Counterfactual expla-
 758 nations for time series forecasting. In *2023 IEEE International Conference on Data Mining (ICDM)*,
 759 pp. 1391–1396. IEEE, 2023.

760

761 Thaddäus Wiedemer, Jack Brady, Alexander Panfilov, Attila Juhos, Matthias Bethge, and Wieland
 762 Brendel. Provable compositional generalization for object-centric learning. In *The Twelfth*
 763 *International Conference on Learning Representations*, 2024.

756 Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision transformer baselines
757 for human pose estimation. *Advances in neural information processing systems*, 35:38571–38584,
758 2022.

759 Jingquan Yan and Hao Wang. Self-interpretable time series prediction with counterfactual expla-
760 nitions. In *International Conference on Machine Learning*, pp. 39110–39125. PMLR, 2023.

762 Linxiao Yang, Yunze Tong, Xinyue Gu, and Liang Sun. Explain temporal black-box models via
763 functional decomposition. In *Forty-first International Conference on Machine Learning*, 2024.

765 Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for data mining. In
766 *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data*
767 *mining*, pp. 947–956, 2009.

768 Jinghang Yue, Jing Wang, Lu Zhang, Shuo Zhang, Da Li, Zhaoyang Ma, and Youfang Lin. Optimal
769 information retention for time-series explanations. In *Forty-second International Conference on*
770 *Machine Learning*, 2025.

771 Zeyu Yun, Yubei Chen, Bruno A Olshausen, and Yann LeCun. Transformer visualization via
772 dictionary learning: contextualized embedding as a linear superposition of transformer factors.
773 *arXiv preprint arXiv:2103.15949*, 2021.

775 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
776 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
777 11121–11128, 2023.

778 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
779 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
780 *of the AAAI conference on artificial intelligence*, pp. 11106–11115, 2021.

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Supplementary Material

813

814

815

Table of Contents

816

817

A	Definitions, Assumptions, and Proofs	17
A.1	Approximated Counterfactual Explanation	17
A.2	Proof of Faithfulness for Approximate Counterfactuals in Sparse Autoencoders	17
A.3	Empirical Validation of Theorem 1	18
B	Experimental Setting and Additional Experiments	20
B.1	Dataset	20
B.2	Metrics	21
B.3	Trained and Large Pretrained Black-Box Models.	22
B.4	Explainer Baseline Details	23
B.5	TimeSAE Architecture Model	24
B.6	Concept Interactions via TimeSAE 's Decoder.	24
B.7	Algorithms	25
B.8	Hyperparameter Setting for TimeSAE - (JumpReLU, TopK)	27
B.9	Time Complexity	29
B.10	Complexity Analysis with different backbone	32
B.11	Further ablation experiments	33
B.12	Implementations	34
C	Limitations	35
D	Reproducibility	35

838

839

Symbol	Description
C	Number of features for time series
T	Denote the sequence length
d_x	The dimension $C \times T$, where T is time and C features.
d_z	The dimension $r \cdot C \times T$, where r is the latent Dimensionality Ratio.
$\mathbf{x} \in \mathbb{R}^{d_x}$	Observation
$\mathbf{x}^{cf} \in \mathbb{R}^{d_x}$	The counterfactual Observation
$\mathbf{y} \in \mathbb{R}^{d_y}$	Ground-truth
$\mathbf{y}^{cf} \in \mathbb{R}^{d_y}$	The counterfactual ground-truth
$\mathbf{c} \in \mathbb{R}^{d_z}$	Vector of concepts factors
$\mathcal{C} \subseteq \mathbb{R}^{d_z}$	Support of concepts \mathbf{c}
I_k	Intervention on the concepts \mathbf{c}_k
\mathcal{E}	Explainer or encoder function
\mathbf{g}	Decoder function
f	The Blackbox model to explain
$ \mathcal{D} $	The cardinal of the dataset \mathcal{D}

856

857

Table 3: Table of Notation.

858

859

860

861

862

863

864 A DEFINITIONS, ASSUMPTIONS, AND PROOFS
865

866 This section provides the formal definitions, assumptions, and theoretical justifications underpinning
867 the methods discussed in the main text. We introduce key concepts related to counterfactual expla-
868 nitions, specifically the Causal Concept Effect (CaCE) and its approximation in a model-agnostic
869 setting using explainers Section A.2. We then present a formal proof of faithfulness for the pro-
870 posed Approximate Counterfactual Explanation method, particularly within the framework of Sparse
871 Autoencoders.

872
873 A.1 APPROXIMATED COUNTERFACTUAL EXPLANATION
874

875 Causal effects and model explanations are naturally linked to counterfactuals (CFs), as they quantify
876 how model outputs change under hypothetical interventions. However, computing exact counter-
877 factuals often requires full knowledge of the underlying data-generating process, which is typically
878 unavailable. To address this, we adopt an *approximated* counterfactual approach, leveraging only the
879 explainer \mathcal{E} and observed data.

880 **Definition 2 (CaCE (Goyal et al., 2019)).** *Given an intervention $I_k : \mathbf{c}_k \mapsto \mathbf{c}'_k$, a black-box model*
881 *$f : \mathcal{X} \rightarrow \mathcal{Y}$ and a dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i) | i \in [N]\}$ of size N , the Causal Concept Effect (CaCE) is:*

$$882 \quad 883 \quad \text{CaCE}_f(I_k) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\mathbf{x}) | do(\mathbf{c}_k = I_k(\mathbf{c}_k))] - \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\mathbf{x}) | do(\mathbf{c}_k = \mathbf{c}_k)]. \quad (3)$$

884 By using approximated counterfactuals, we can efficiently estimate the causal effect of concepts on
885 model predictions in a model-agnostic way. This allows us to generate explanations that capture
886 the influence of individual concepts while remaining computationally tractable, even in complex,
887 high-dimensional datasets.

888 **Definition 3 (Approximated Counterfactual Explanation (Gat et al., 2023)).** *Given a dataset*
889 *$\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i) | i \in [N]\}$ of size N , an explainer $\mathcal{E} : \mathcal{X} \rightarrow \mathcal{C}$ and an intervention $I_k : \mathbf{c}_k \mapsto \mathbf{c}'_k$, the*
890 *approximated counterfactual explanation S_{cf} is defined to be:*

$$891 \quad 892 \quad S_{cf}(\mathcal{E}, I_k, \mathbf{c}_k, \mathbf{c}'_k) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \mathcal{E}(\tilde{\mathbf{x}}_{\mathbf{c}'_k}) - \mathcal{E}(\tilde{\mathbf{x}}_{\mathbf{c}_k}), \quad (4)$$

893 where $\tilde{\mathbf{x}}_{\mathbf{c}'_k}$ is the explanation-embedded instance after intervention I_k , and $\tilde{\mathbf{x}}_{\mathbf{c}_k}$ before intervention.

894
895 A.2 PROOF OF FAITHFULNESS FOR APPROXIMATE COUNTERFACTUALS IN SPARSE
896 AUTOENCODERS
897

900 **Theorem 1 (Faithfulness in Sparse Autoencoder-Based Approximate Counterfactuals).** *Let \mathbf{x}
901 be a time-series input and f a black-box model whose true output is $\mathbf{y} = f(\mathbf{x})$. Suppose $(\mathcal{E}, \mathbf{g})$
902 is an encoder-decoder, where \mathcal{E} encodes \mathbf{x} to latent concepts, and \mathbf{g} decodes these concepts into
903 $\tilde{\mathbf{x}} = \mathbf{g}(\mathcal{E}(\mathbf{x}))$ such that $\forall \mathbf{x} \in \mathcal{D}, f(\tilde{\mathbf{x}}) \approx f(\mathbf{x})$. For an intervention, define an approximate
904 counterfactual S_{cf} Definition 3 by altering concepts $\mathbf{c} \mapsto \mathbf{c}^{cf}$, and let $\tilde{\mathbf{x}}^{cf} = \mathbf{g}(\mathbf{c}^{cf})$. Assume that*

$$905 \quad 906 \quad \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [|f(\tilde{\mathbf{x}}^{cf}) - \mathbf{y}^{cf}|] \leq \epsilon_{cf}, \quad (5)$$

907 where \mathbf{y}^{cf} is the “true” counterfactual label (i.e., what $f(\mathbf{x})$ would be under the exact causal
908 intervention), and ϵ_{cf} is a small approximation error. Then, for any pair of interventions $I_1 : \mathbf{c}_1 \mapsto \mathbf{c}'_1$
909 and $I_2 : \mathbf{c}_2 \mapsto \mathbf{c}'_2$, if the true causal effects satisfy

$$910 \quad 911 \quad \text{CaCE}_f(I_1, \mathbf{c}_1, \mathbf{c}'_1) > \text{CaCE}_f(I_2, \mathbf{c}_2, \mathbf{c}'_2), \quad (6)$$

912 there exists a sufficiently small ϵ_{cf} so that

$$913 \quad 914 \quad \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\tilde{\mathbf{x}}_{I_1}^{cf}) - f(\tilde{\mathbf{x}})] > \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\tilde{\mathbf{x}}_{I_2}^{cf}) - f(\tilde{\mathbf{x}})], \quad (7)$$

915 where $\tilde{\mathbf{x}}_{I_1}^{cf}$ and $\tilde{\mathbf{x}}_{I_2}^{cf}$ are the explanation-embedded instances respectively obtained after interventions
916 I_1 and I_2 . This preserves the ordering of causal effects, i.e. order faithfulness.

Proof. To establish order-faithfulness, we aim to show that the Sparse Autoencoder-Based Approximate Counterfactuals preserve the ordering of causal effects as dictated by the black-box model f . Specifically, if intervention I_1 has a greater true causal effect than intervention I_2 , then the expected change in f 's output when applying I_1 should exceed that of I_2 in the approximate counterfactuals generated by the autoencoder.

Step 1. True vs. Approximate Counterfactual Effects. Denote the *true* causal effect of an intervention I by

$$\delta_{\text{true}}(I) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\mathbf{x}_I^{cf}) - f(\mathbf{x})], \quad (11)$$

where \mathbf{x}_I^{cf} is the perfectly causal version of \mathbf{x} under I . By hypothesis, for the two interventions I_1 and I_2 we have $\delta_{\text{true}}(I_1) > \delta_{\text{true}}(I_2)$.

Define the *approximate* effect, which serves as the specific realization of the Approximated Counterfactual Explanations (\mathcal{S}_{cf}) from Definition 3 for our SAE model, as:

$$\delta_{\text{approx}}(I) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [f(\tilde{\mathbf{x}}_I^{cf}) - f(\tilde{\mathbf{x}})], \quad (12)$$

where $\tilde{\mathbf{x}}_I^{cf}$ is obtained by modifying the latent encoding of \mathbf{x} under the intervention I .

Step 2. Bounding the Approximation Error. By assumption,

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [|f(\tilde{\mathbf{x}}_I^{cf}) - f(\mathbf{x}_I^{cf})|] \leq \epsilon_{cf},$$

and also $f(\tilde{\mathbf{x}}) \approx f(\mathbf{x})$ implies a small *reconstruction* error ϵ_{rec} . Combining these,

$$|\delta_{\text{approx}}(I) - \delta_{\text{true}}(I)| \leq \epsilon_{cf} + \epsilon_{rec}. \quad (13)$$

Since $\delta_{\text{true}}(I_1)$ is strictly larger than $\delta_{\text{true}}(I_2)$, there is a positive gap

$$\delta = \delta_{\text{true}}(I_1) - \delta_{\text{true}}(I_2) > 0.$$

Choosing $\epsilon_{cf} + \epsilon_{rec} < \delta/2$ prevents the approximate effects from inverting this gap. Formally,

$$\delta_{\text{approx}}(I_1) - \delta_{\text{approx}}(I_2) = [\delta_{\text{true}}(I_1) + \epsilon_1] - [\delta_{\text{true}}(I_2) + \epsilon_2] = \delta + (\epsilon_1 - \epsilon_2),$$

where $|\epsilon_i| \leq \epsilon_{cf} + \epsilon_{rec}$. Thus,

$$\delta + (\epsilon_1 - \epsilon_2) \geq \delta - 2(\epsilon_{cf} + \epsilon_{rec}).$$

If $\epsilon_{cf} + \epsilon_{rec} < \delta/2$, then this quantity remains positive, ensuring

$$\delta_{\text{approx}}(I_1) > \delta_{\text{approx}}(I_2).$$

Hence, for sufficiently small ϵ_{cf} (and reconstruction error), the approximate counterfactual preserves the true ordering of the causal effects in expectation over \mathcal{D} . This completes the proof. \square

A.3 EMPIRICAL VALIDATION OF THEOREM 1

To validate Theorem 1, we empirically analyze whether the Sparse Autoencoder (SAE)-based approximate effects, δ_{approx} as defined in Equation (11) (see also Definition 2), preserve the ordering of the true causal effects, CaCE_f . **Experimental Setup.** Since true causal effects are generally unobservable in real-world data, we use a controlled setting where ground-truth generative factors are known. We consider a set of $N = 200$ distinct concept interventions $\mathcal{I} = \{I_1, \dots, I_N\}$. In the context of FreqShapes, an intervention I_k is defined as the modification of a specific generative factor, such as substituting a shape primitive (e.g., changing a *Sine* wave to a *Square* wave) or altering its frequency, while keeping the background noise constant. We define the order of intervention based on the magnitude of the True Causal Effect CaCE (Definition 2). In the FreqShapes dataset, we expect interventions on the primary generative factor (e.g., Shape type) to occupy the highest order (largest effect), followed by secondary factors (e.g., Frequency), with noise interventions occupying the lowest order. Validating Theorem 1 requires showing that the TimeSAE-derived importance scores respect this hierarchy. For each intervention I_k , we compute two distinct quantities to test our bounds:

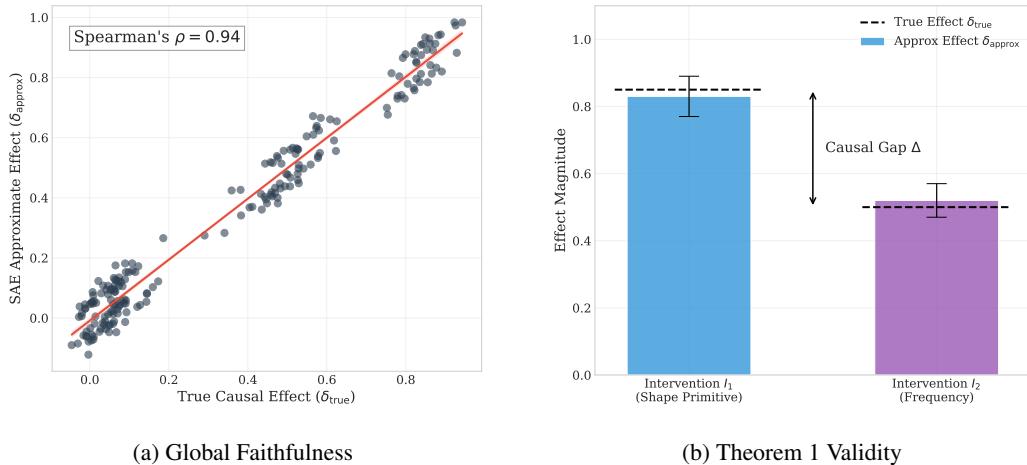
972
973
974
975
976

1. The True Causal Effect (δ_{true}) by manipulating the ground-truth factors directly and querying the black-box model f .
2. The Approximate Effect (δ_{approx}) by manipulating the latent concepts \mathbf{c} within the SAE and decoding the result.

977 We also explicitly measure the reconstruction error ϵ_{rec} and the causal approximation error ϵ_{cf} for each
978 instance to verify the bounds discussed in Theorem 1. By comparing δ_{true} and δ_{approx} , we empirically
979 verify if the approximation errors (ϵ_{rec} and ϵ_{cf}) are sufficiently small to preserve the rank-ordering of
980 the causal effects.

981
982 **Validation of Order-Faithfulness** Figure 7a illustrates the relationship between the true and
983 approximate effects. We observe a strong positive correlation between δ_{true} and δ_{approx} , quantified
984 by a Spearman’s rank correlation coefficient of $\rho = 0.94$. This high correlation confirms that our
985 SAE-based counterfactuals reliably identify the most influential concepts, even if the exact numerical
986 magnitude of the effect contains approximation noise.

987
988 **Validation of Error Bounds** To further inspect the validity of Theorem 1, Figure 7b highlights a
989 pairwise comparison between two interventions, I_1 and I_2 . The vertical error bars represent the total
990 approximation error $\epsilon_{\text{total}} = \epsilon_{\text{rec}} + \epsilon_{\text{cf}}$. As predicted by the theorem, order faithfulness is preserved
991 ($\delta_{\text{approx}}(I_1) > \delta_{\text{approx}}(I_2)$) whenever the approximation error is sufficiently small relative to the causal
992 gap, satisfying $\epsilon_{\text{total}} < \frac{1}{2}(\delta_{\text{true}}(I_1) - \delta_{\text{true}}(I_2))$.



1009 Figure 7: **Empirical Analysis of Theorem 1.** (a) Scatter plot showing strong correlation between the
1010 true causal effects and SAE-estimated effects, confirming order-faithfulness. (b) For a specific pair
1011 of interventions, the measured approximation error is smaller than half the true gap, preventing the
1012 reversal of causal ordering.

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **B EXPERIMENTAL SETTING AND ADDITIONAL EXPERIMENTS**
10271028 **B.1 DATASET**
10291030 In this work, we use multiple time series datasets across different case studies. We rely primarily on
1031 publicly available datasets released under the MIT License, ensuring unrestricted access for research
1032 purposes. In addition, we generate a synthetic dataset using the scripts provided by [Queen et al. \(2023\)](#).
1033 To further support evaluation of explainability and reasoning in our proposed TimeSAE framework,
1034 we also introduce a new real-world dataset, *EliteLJ*, which contains human pose sequences specifically
1035 collected for this study.
10361037 **B.1.1 SYNTHETIC DATASET**
10381039 To ensure consistent evaluation and enable direct comparison with existing methods, we adopt the
1040 synthetic dataset design introduced by [Queen et al. \(2023\)](#), which provides controlled settings for
1041 analyzing time series explanation capabilities. This benchmark suite consists of carefully structured
1042 datasets that isolate specific temporal properties, enabling ground-truth explanations.
10431044 ***FreqShapes*.** This dataset tests the ability to detect periodic anomalies based on both shape and
1045 frequency. Each sample contains recurring spike patterns, either upward or downward, occurring
1046 at regular intervals. Two frequencies (10 and 17 time steps) and two spike shapes are combined to
1047 create four distinct classes: (0) downward spikes every 10 steps, (1) upward spikes every 10 steps, (2)
1048 downward spikes every 17 steps, and (3) upward spikes every 17 steps. The explanatory signal lies in
1049 both the spike occurrence and their periodicity, with labeled explanation regions marking the spike
1050 positions.
10511052 ***SeqComb-UV*.** This univariate dataset focuses on recognizing ordered shape patterns. Time series
1053 are injected with two non-overlapping subsequences exhibiting either increasing or decreasing
1054 trends. Each subsequence is 10–20 time steps long and shaped using sinusoidal signals with variable
1055 wavelengths. Four classes are formed based on the arrangement: class 0 contains no signal (null
1056 baseline), class 1 contains two increasing patterns (I, I), class 2 contains two decreasing ones (D, D),
1057 and class 3 has an increasing followed by a decreasing trend (I, D). The predictive cues reside in the
1058 subsequence configurations, which are used as ground-truth explanation masks.
10591060 ***Additional Synthetic datasets*.** We also include two more challenging datasets from [Queen et al. \(2023\)](#).
1061 (SeqComb-MV and LowVar) designed to test multivariate reasoning and detection of low-
1062 variance patterns. This multivariate extension of SeqComb-UV retains the same class structure
1063 but distributes the increasing and decreasing patterns across different randomly selected channels.
1064 Models must identify not only the temporal location but also the specific sensor responsible for
1065 the predictive subsequences. Ground-truth explanations correspond to both the time intervals and
1066 channels of the patterns. For LowVar, the predictive signal is a region of low variance within an
1067 otherwise noisy multivariate time series. Each class corresponds to the mean value and channel of
1068 this low-variance segment. Unlike other datasets, the informative region is subtle, with no sharp
1069 change points, making detection more difficult. Ground-truth explanations highlight the location and
1070 variable of the low-variance segment.
10711072 **B.1.2 REAL-WORLD DATASETS**
10731074 **ECG.** A univariate time series dataset of electrocardiogram signals from the UCR archive ([Dau et al., 2019](#)), used for anomaly and pattern detection tasks.
10751076 **ETT (Electricity Transformer Temperature)** The ETT² dataset is a key dataset used in forecasting
1077 benchmarks. It contains two years of data collected from two different counties. To facilitate the
1078 analysis of explanation methods, the dataset is divided into two subsets: ETTh1 and ETTh2, which
1079 provide hourly data. Each time step includes the target variable "oil temperature" along with six
auxiliary power load features (i.e., $C = 6$). The data is partitioned into training, validation, and test
sets following a 12:4:4-month split.
10802 Available at: <https://github.com/zhouhaoyi/ETDataset>

1080
 1081 **PAM.** Physical Activity Monitoring dataset, consisting of multivariate sensor recordings of human
 1082 motion across various labeled activities.
 1083

1084 **EliteLJ (Proposed).** We collected real-world human pose sequence data from elite long jump
 1085 competitions to further evaluate our approach. The dataset includes 386 successful long jump
 1086 attempts recorded during the men’s finals of the World Championships, Olympic Games, and
 1087 European Championships. All videos were publicly available online and recorded at 25 frames per
 1088 second. To ensure temporal alignment across samples, each jump sequence was clipped to 50 frames
 1089 (2 seconds), with the take-off from the jump board consistently aligned to frame 26. Notice that in
 1090 long jump competition videos, each frame contains only one athlete. We used ViTPose (Xu et al.,
 1091 2022) to estimate 2D skeletal poses of the athletes from each video and applied manual corrections
 1092 using an online annotation tool provided in Gan et al. (2024). The resulting poses follow the same
 1093 format as the Human3.6M dataset (Ionescu et al., 2013), with 17 keypoints per frame. Consequently,
 1094 each pose sequence is represented as a 50 time-step, 34-dimensional time series. The official jump
 1095 distance for each attempt was used as the ground-truth label. The dataset is released publicly in the
 1096 project link.
 1097

1098 Table 4: Summary of datasets used in our experiments. T : sequence length, D : number of features.
 1099

Dataset	#Samples	Train	Val	Test	T	D	Task	Type
FreqShapes	5,000	3,000	1,000	1,000	50	5	Classification	Univariate
SeqComb-UV	6,000	3,600	1,200	1,200	60	10	Classification	Mutivariate
ECG	3,000	2,000	500	500	140	1	Classification	Univariate
ETTh1	8,640	6,000	1,320	1,320	96	7	Regression	Mutivariate
ETTh2	8,640	6,000	1,320	1,320	96	7	Regression	Mutivariate
PAM	5,400	3,500	950	950	100	8	Classification	Mutivariate
EliteLJ	386	270	58	58	50	34	Regression	Mutivariate

B.2 METRICS

1113 We evaluate our TimeSAE methods using three established metrics from Crabbé & Van Der Schaar
 1114 (2021) that assess feature importance detection as a binary classification problem.
 1115

1116 **Area Under Precision (AUP)** This metric quantifies how accurately our method identifies salient
 1117 features without generating excessive false positives. AUP integrates precision performance across
 1118 all possible detection thresholds, measuring the method’s specificity in saliency detection.
 1119

1120 **Area Under Recall (AUR)** This metric measures our method’s ability to comprehensively capture all
 1121 truly important features. AUR integrates recall performance across the full threshold range, indicating
 1122 the method’s sensitivity in identifying relevant features.
 1123

1124 **Area Under Precision-Recall Curve (AUPRC)** Following Crabbé & Van Der Schaar (2021);
 1125 Queen et al. (2023), we employ AUPRC as a unified assessment metric that combines precision and
 1126 recall information into a single score, providing a balanced evaluation of overall saliency detection
 1127 performance.
 1128

1129 **Evaluation Implementation** Our evaluation converts the continuous saliency masks produced
 1130 by TimeSAE methods into binary predictions for comparison against ground truth annotations.
 1131 Our TimeSAE variants generate continuous saliency, where higher values indicate greater feature
 1132 importance. We convert these into binary saliency maps through thresholding: features with mask
 1133 values above threshold τ are classified as salient, while others are deemed non-salient. We compare
 1134 these binary predictions against ground truth saliency matrices that indicate which features are truly
 1135 important. By varying the threshold of activation across its full range, we generate precision and
 1136 recall curves that capture the trade-off between correctly identifying salient features and avoiding
 1137 false positives. The areas under these curves provide our final AUP, AUR, and AUPRC scores.
 1138

1134 B.3 TRAINED AND LARGE PRETRAINED BLACK-BOX MODELS.
1135

1136 In this section, we provide further details on the black-box models used in our experimental framework,
1137 as introduced in Section 4. We distinguish between two categories (see Table 5): **(1) Trained**
1138 **Models.** These models are trained from scratch using full access to the dataset. The training follows
1139 standard supervised learning procedures, and the resulting models serve as black-box predictors for
1140 downstream explanation tasks. **(2) Large Pretrained and Fine-Tuned Models.** When publicly
1141 available checkpoints are provided, we optionally fine-tune these models to better adapt to the
1142 specific data distribution. This setup allows us to evaluate the generalizability and adaptability of our
1143 explanation methods across both domain-specific and foundation-style models.

1144

1145 B.3.1 TRAINED BLACK BOXES MODELS
1146

1147 **Transformers** Originally introduced in NLP
1148 ([Vaswani et al., 2017](#)), Transformers have been
1149 successfully adapted for time series forecasting
1150 due to their powerful self-attention mechanism,
1151 which can capture long-range temporal
1152 dependencies without recurrence. To ensure a
1153 fair comparison with the results of [Queen et al.](#)
1154 ([2023](#)) in terms of explanations provided for the
1155 Transformer, we adopt the same vanilla Trans-
1156 former architecture used by the authors. We
1157 recall that explanations are provided for the bes
1158 performing predictor at test time, as this validation step is essential, as highlighted by [Queen et al.](#)
1159 ([2023](#)).

1160

1161 **PatchTS** PatchTS ([Ghandeharioun et al., 2024](#)) improves Transformer efficiency by dividing the
1162 input time series into patches and applying self-attention locally within each patch. This approach
1163 reduces computational complexity and enables the model to capture fine-grained temporal patterns, as
1164 the patching is performed on the input sequence before being passed to the attention block. We follow
1165 the standard implementation of PatchTS/62 available in [https://github.com/yuqinie98/
PatchTST](https://github.com/yuqinie98/PatchTST), and our training results achieve a similar MSE and MAE to those reported in the original
1166 work ([Ghandeharioun et al., 2024](#)). Specifically, our results show a 19.31% reduction in MSE and
1167 a 16.1% reduction in MAE, while the main paper reports an overall 21.0% reduction in MSE and
1168 16.7% reduction in MAE.

1169

1170 **Informer** Informer ([Zhou et al., 2021](#)) is designed for long sequence time series forecasting. It
1171 introduces a ProbSparse self-attention mechanism that reduces the quadratic complexity of vanilla
1172 Transformers to near-linear, enabling the model to handle long sequences. We follow the same
1173 training procedure as described in [Zhou et al. \(2021\)](#), specifically outlined in the Hyperparameter
1174 Tuning section.

1175

1176 **iTransformer** [Liu et al. \(2023\)](#) extends Transformer by modeling input-level interactions explicitly
1177 through enhanced attention mechanisms, improving multivariate time series forecasting accuracy.
1178 Unlike the vanilla Transformer, iTransformer embeds each time series independently into a variate
1179 token, allowing the attention module to capture multivariate correlations, while the feed-forward
1180 network encodes the individual series representations. This architectural enhancement over the vanilla
1181 Transformer may offer valuable insights, and we believe that providing explanations for its behavior
1182 could be of interest to the time series community.

1183

1184 **LSTM** Long Short-Term Memory networks ([Karim et al., 2019](#)) remain a baseline for time series
1185 due to their ability to retain long-term memory. Though older than Transformers, LSTMs are
1186 parameter-efficient, often with fewer than 5 million parameters for moderate-sized problems, and
1187 continue to be widely used for univariate and multivariate forecasting tasks.

Table 5: Black-Box Models categories.

Model Name	Trained Model	Large Pretrained	Large Finetuned
Transformers	✓	✗	✗
PatchTS	✓	✗	✗
Informer	✓	✗	✗
iFormer	✓	✗	✗
LSTM	✓	✗	✗
Chronos	✗	✓	✗
TimeGPT	✗	✓	✗
TimeFM	✗	✓	✗
Moments	✗	✓	✓
Morai	✗	✓	✓
Moments	✗	✓	✓
TimeGPT	✗	✓	✗

1188 B.3.2 LARGE PRETRAINED AND FINE-TUNED MODELS
11891190 **Chronos** [Ansari et al. \(2024\)](#) introduces a large pretrained time series model leveraging transformer
1191 architectures pretrained on massive multivariate time series datasets across domains such as energy,
1192 finance, and healthcare. It typically has 100+ million parameters and demonstrates strong zero-shot
1193 and few-shot transfer learning capabilities.

1194

1195 **TimeGPT** TimeGPT ([Garza et al., 2023](#)) adapts the GPT architecture large transformer architecture
1196 for autoregressive time series forecasting. It is pretrained on vast temporal datasets, such as electricity
1197 usage and sensor data, and contains over 200 million parameters. This enables TimeGPT to generate
1198 high-quality forecasts and adapt through fine-tuning to various downstream tasks.

1199

1200 **TimeFM** TimeFM ([Das et al., 2024](#)) integrates factorization machines with transformer-based
1201 architectures to model higher-order interactions in temporal data efficiently. The pretrained model
1202 usually consists of around 50-100 million parameters, balancing expressiveness with computational
1203 efficiency.

1204

1205 **Moments** Moments [Goswami et al. \(2024\)](#) models temporal dynamics by learning statistical
1206 moments (e.g., mean, variance) of features in a pretrained setting. The model size varies but can reach
1207 80 million parameters for deep architectures, allowing it to capture complex temporal dependencies.

1208

1209 B.4 EXPLAINER BASELINE DETAILS

1210 In this section, we provide additional details about the baseline explainers referenced in the main
1211 paper. Due to space limitations, some of these methods were only briefly mentioned. Here, we
1212 include a broader set of widely used explainers, along with information about their implementation in
1213 our codebase.

1214

1215 **Gradient (GRAD).** [Baehrens et al. \(2010\)](#) calculates the sensitivity of the output with respect to the
1216 input feature by taking the partial derivative.

1217

1218 **Integrated Gradients (IG).** [Sundararajan et al. \(2017\)](#) computes the path integral of gradients from a
1219 baseline input \tilde{x} to the actual input x , scaling the difference between these inputs by the averaged
gradient.

1220

1221 **DynaMask.** DynaMask ([Crabbé & Van Der Schaar, 2021](#)) is a perturbation-based explainer designed
1222 specifically for time series. It learns a continuous-valued mask to deform input signals towards a
1223 predefined baseline, using iterative occlusion to uncover the contribution of different time regions.

1224

1225 **WinIT.** WinIT ([Leung et al., 2023](#)) extends perturbation-based explainability to time series by focusing
1226 on the impact of feature removal across time steps. The explainer identifies time segments that, when
1227 masked, cause significant deviations in the model’s prediction. A key component of WinIT is a
1228 generative model that reconstructs masked features to maintain in-distribution data during occlusion.
This framework improves upon earlier explainers such as FIT, which we omit due to WinIT’s stronger
1229 empirical and conceptual performance.

1230

1231 **CoRTX.** The CoRTX framework ([Chuang et al., 2023](#)) is a contrastive learning-based explainer
1232 originally developed for visual tasks. It approximates SHAP values by training an encoder through
1233 contrastive objectives involving perturbed versions of the input. For time series, we adapt CoRTX
1234 by applying it to temporal encoders and explainability modules. Although CoRTX and TimeX
1235 both utilize self-supervised learning, they differ in several respects. CoRTX relies on handcrafted
1236 augmentations and attempts to match SHAP scores, while TimeX and TimeX++ use masked binary
1237 classification (MBC) to guide mask learning without needing externally-generated explanations or
1238 fine-tuning. However, this may introduce out-of-distribution (OOD) samples for the predictor, which
1239 does not occur in the case of TimeSAE .

1240

1241 **Saliency-Guided Training** [Ismail et al. \(2021\)](#). SGT introduces interpretability directly into the
1242 training pipeline. The method iteratively masks out input regions with low gradient magnitudes,
1243 thereby encouraging the model to focus on salient features during learning. Although SGT modifies
1244 model training rather than offering explanations post hoc, we include it for completeness as it repre-
1245 sents an in-hoc explainer. For evaluation, we apply gradient-based saliency maps as recommended

1242 by the original authors. This method demonstrates that architectural or training modifications can
 1243 promote more interpretable representations, offering an interesting point of comparison to TimeX
 1244 and TimeX++.

1245 **CounTS.** CounTS [Yan & Wang \(2023\)](#) is a self-interpretable time series prediction model that
 1246 generates counterfactual explanations by modeling causal relationships among input, output, and
 1247 confounding variables. It uses a variational Bayesian framework to produce actionable and feasible
 1248 counterfactuals, providing causally valid and theoretically grounded explanations while maintaining
 1249 predictive accuracy in safety-critical applications. We note that, our approach is related to CounTS
 1250 but differs by functioning as a black-box explainer that does not require access to the internal model
 1251 architecture or parameters, enabling broader applicability and flexible deployment across various
 1252 time series models.

1253 **TimeX.** TimeX [\(Queen et al., 2023\)](#) is an explainability method for time series models based on the
 1254 information bottleneck (IB) principle. It extracts salient sub-sequences by optimizing a trade-off
 1255 between informativeness and compactness. However, it suffers from out-of-distribution sub-instances
 1256 and potential signaling issues, leading to explanations that may not be reliable or consistent.

1257 **TimeX++.** Liu et al. (2024b) extends TimeX by introducing a modified IB objective that replaces
 1258 mutual information terms with more practical and stable proxies. It generates explanation-embedded
 1259 instances that are both label-consistent and within the original data distribution, significantly improv-
 1260 ing the fidelity and interpretability of explanations across diverse time series datasets.

1261 **Random attribution** is used as a baseline control by assigning feature importance scores randomly
 1262 for comparison.

1265 B.5 TIMESAE ARCHITECTURE MODEL

1266 We use the following architectures for the Encoder and Decoder. Note that for different datasets we
 1267 customize the latent dimension d , and we train with different latent dimensions.

1269 1270 Table 6: Encoder and Decoder Architectures of TimeSAE.

1271 Layer	1272 Size / Dimensions	1273 Description
Encoder		
1274 TCN Stack	1275 512-dim output	1276 Time Convolution Network up to penultimate layer
1277 Fully Connected Block ($\times 5$)	1278 512×512	1279 Linear layer + BatchNorm + Leaky ReLU (0.01) + Squeeze-and-Excitation (SE) block
1280 Final Linear	1281 $512 \times d$	1282 Outputs latent representation, followed by BatchNorm
Decoder		
1283 Linear	1284 $d \rightarrow H$	1285 Initial fully connected layer (H = attention head dimension, e.g., 256 for ECG, 512 for ETTH1) + BatchNorm + Leaky ReLU
1286 Fully Connected Block ($\times 5$)	1287 $H \rightarrow H$	1288 Each block: Linear + Multi-Head Attention + BatchNorm + Leaky ReLU + SE block
1289 Reshape	1290 $-$	1291 Reshape output into intermediate sequence for temporal reconstruction
1292 Upsampling Stack	1293 $-$	1294 Upsampling layers (scale factor 2)
1295 1D Convolutions	1296 $64 \rightarrow 32 \rightarrow C$	1297 Conv layers with decreasing feature maps; Leaky ReLU after each

1298 B.6 CONCEPT INTERACTIONS VIA TIMESAE 'S DECODER.

1299 We demonstrate the versatility of TimeSAE by applying it to a time series *forecasting* task.
 1300 Specifically, we evaluate on the ETTH1 and ETTH2 datasets using both standard Transformer-based
 1301 forecasting models and Large Pretrained Models. To adapt TimeSAE for this task, we first project
 1302 the input time series $\mathbf{x} \in \mathbb{R}^{C \times T}$ into a latent concept space. For each forecast, we extract the

1296 associated concept embeddings and use our decompositional decoder to reconstruct the input and
 1297 attribute the forecast to specific concepts and time steps as demonstrated below Equation (14):
 1298

$$1299 \\ 1300 \quad \mathbf{g}(\mathbf{c}) := \psi_0 + \sum_{j=1}^d \psi_1(\mathbf{c}_j) + \sum_{j=1}^{d-1} \psi_2(\mathbf{c}_j, \mathbf{c}_{j+1}) + \sum_{j=1}^{d-2} \psi_3(\mathbf{c}_j, \mathbf{c}_{j+1}, \mathbf{c}_{j+2}) + \cdots + \psi_d(\mathbf{c}) \quad (14)$$

1303 In the decomposition equation 14, the function ψ_k corresponds to interactions of order k , acting on
 1304 k -tuples of input components. The index $k \in \{0, 1, \dots, d\}$ denotes the order of interaction, where
 1305 $k = 0$ corresponds to a constant term. For each fixed order k , the index $j \in \{1, \dots, d - k + 1\}$ refers
 1306 to the position of the k -tuple within the input sequence $\mathbf{c} = (\mathbf{c}_1, \dots, \mathbf{c}_d)$. Thus, $\psi_k(\mathbf{c}_j, \dots, \mathbf{c}_{j+k-1})$
 1307 operates on the contiguous subsequence starting at position j with length k . Specifically, for
 1308 $k \in \{0, 1, \dots, d\}$, $\psi_k(\mathbf{c}_j, \dots, \mathbf{c}_{j+k-1}) \in \mathbb{R}^{C \times T}$ denotes the contribution of the k -tuple starting at
 1309 position $j \in \{1, \dots, d - k + 1\}$ in the input sequence $\mathbf{c} = (\mathbf{c}_1, \dots, \mathbf{c}_d)$. Each ψ_k is further factorized
 1310 as an element-wise product

$$1311 \quad \psi_k(\mathbf{c}_j, \dots, \mathbf{c}_{j+k-1}) = \mathbf{h}_k(\mathbf{c}_j, \dots, \mathbf{c}_{j+k-1}) \odot m_k^j, \quad (15)$$

1313 where $\mathbf{h}_k(\mathbf{c}_j, \dots, \mathbf{c}_{j+k-1}) \in \mathbb{R}^{C \times T}$ is a features computed from the k -tuple inputs, and $m_k^j \in \mathbb{R}^{C \times T}$
 1314 is a mask modulating \mathbf{h}_k element-wise. Access to such a mask is particularly valuable, as it allows for
 1315 direct comparison with other masking-based explanation methods. Unlike input-masking approaches,
 1316 our mask is inherently robust to out-of-distribution (OOD) samples because it captures the concepts
 1317 learned directly by the explainer. Moreover, our mask \mathbf{m}_d , which integrates all learned concepts, is
 1318 analogous to those produced by methods such as DynaMask, TimeX, or TimeX++. An illustration is
 1319 given in Figure 9 and Figure 8.

1320 In Figure 8 and Figure 9 we illustrate qualitative explanations for forecasting in ETTH1. A heatmap
 1321 over the 48-hour historical context highlights the saliency of each input time step, indicating which
 1322 regions contribute most to the forecast. To the right, the predicted values are shown over a fixed
 1323 24-hour forecast horizon.

1324 We observe several consistent patterns. First, TimeSAE tends to identify the later input time steps
 1325 as more influential, which aligns with the low temporal variability characteristic of the ETTH1
 1326 dataset. In the illustrated examples, the explanations provided by different models vary noticeably.
 1327 For instance, in TimeSAE-TopK and TimeSAE-JumpReLU, the Informer model attributes influence
 1328 to time steps around 10, 30, and the end of the context window. In contrast, large pre-trained models
 1329 namely Chronos, TimeGPT, Moments, and Transformer tend to emphasize the final segments of
 1330 the context. *This difference may be due to the learned temporal priors or positional encodings*
 1331 *that emphasize recency and pattern consolidation near the prediction boundary.* These findings
 1332 demonstrate that TimeSAE provides interpretable and time-localized explanations, shedding light
 1333 on how latent concepts and temporal structures influence model predictions.

1334 B.7 ALGORITHMS

1336 In Section 3, we introduced the alignment procedure. Here, we describe in detail how it can be
 1337 performed, following the steps outlined in Algorithm 2.

1339 B.7.1 ALIGNMENT

1340 To support interpretability within our TimeSAE framework, we adopt a methodology inspired
 1341 by Concept Activation Vectors (CAVs) (Lundberg & Lee, 2017) to align learned latent features
 1342 (concepts) with human-interpretable notions. This alignment process involves associating dimensions
 1343 in the latent space with meaningful, predefined concepts, thereby enabling post hoc explanation of
 1344 model behavior. The alignment procedure consists of the following steps:

- 1346 • **Concept Dataset Construction:** We first define a set of interpretable, low-level concepts.
 1347 These can be manually annotated or derived using heuristics relevant to the domain. For
 1348 each concept c_i , we construct a labeled dataset composed of two sets of samples: those in
 1349 which concept c_i is present (*positive set*) and a matched set of randomly selected samples
 where c_i is absent (*negative set*).

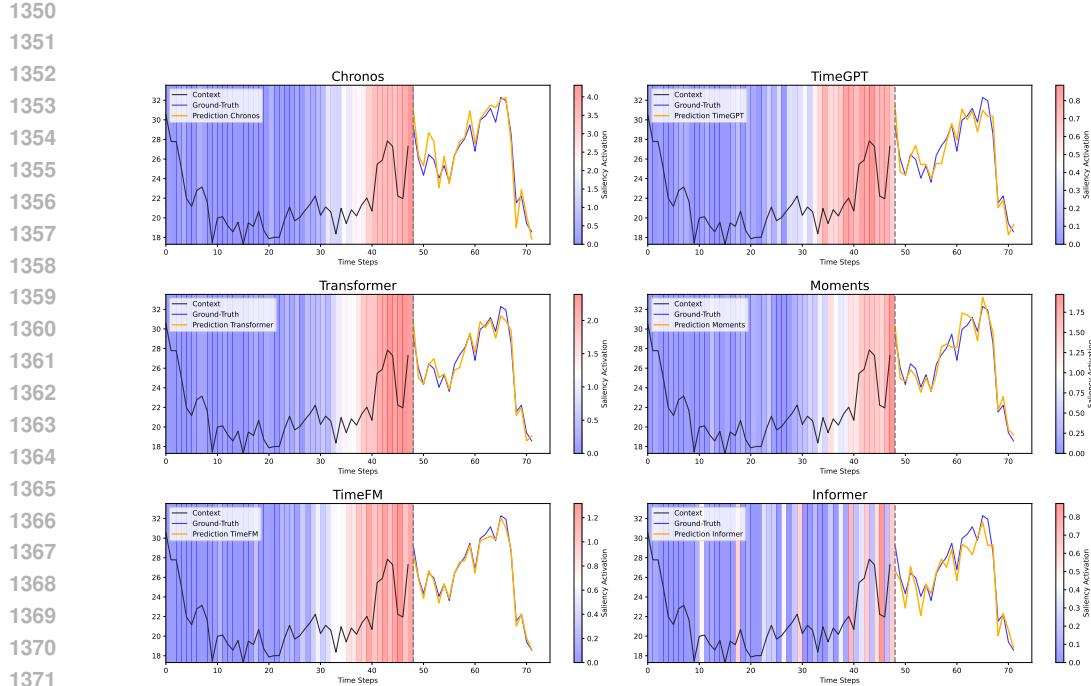


Figure 8: 24-hour forecast based on a 48-hour history from the ETTh1 dataset. The heatmap visualizes model explanations generated by TimeSAE-TopK for various forecasting models detailed in Section B.3.1.

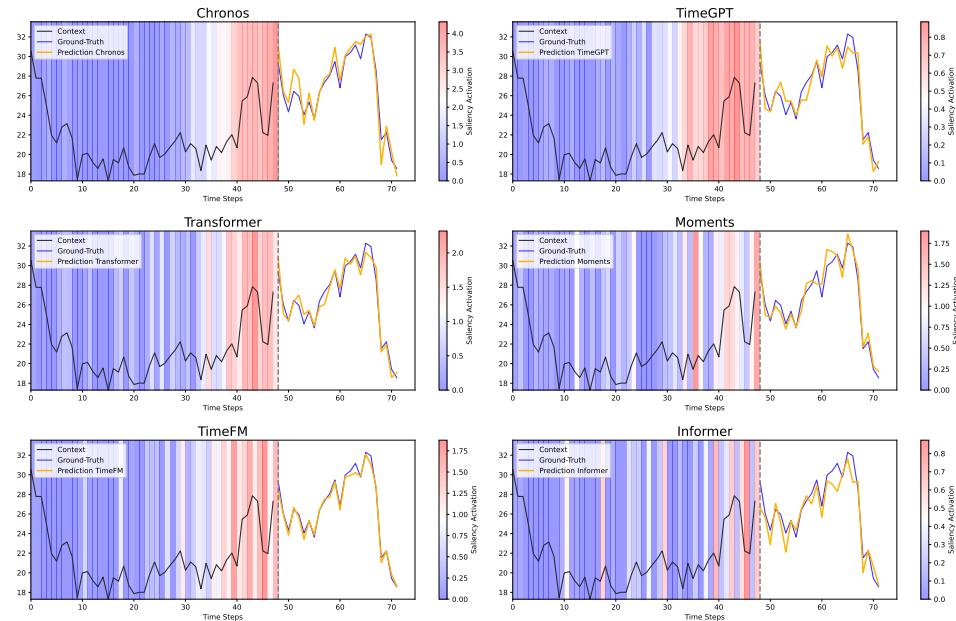


Figure 9: 24-hour forecast based on a 48-hour history from the ETTh1 dataset. The heatmap visualizes model explanations generated by TimeSAE-JumpReLU for various forecasting models detailed in Section B.3.1.

1404 **Algorithm 1** Generating Counterfactuals by Minimal Intervention on Selected Latent Concepts

1405

1406 **Input:** input \mathbf{x} , model $(\mathcal{E}, \mathbf{g})$, prediction $\mathbf{y}^{pred} = \mathbf{g}(\mathbf{x})$, target $\mathbf{y}^{cf} \neq \mathbf{y}^{pred}$, tolerance ϵ , learning

1407 rate w

1408 Encode input to latent concepts via \mathcal{E}

1409 Initialize intervention vector $\Delta \mathbf{c} = \mathbf{0}$

1410 Select a subset of concepts $\mathcal{C}' \subseteq \{c_k\}$ to intervene (e.g., those most influential)

1411 **while** $|\mathbf{g}(\mathbf{c} + \Delta \mathbf{c}) - \mathbf{y}^{cf}| > \epsilon$ **do**

1412 Compute gradients only for selected concepts:

1413
$$\nabla_{\Delta \mathbf{c}_k} \mathcal{L} = \frac{\partial}{\partial \Delta \mathbf{c}_k} |f(\mathbf{g}(\mathbf{c} + \Delta \mathbf{c})) - \mathbf{y}^{cf}|, \quad \forall \mathbf{c}_k \in \mathcal{C}' \quad (16)$$

1414

1415
$$\Delta \mathbf{c}_k \leftarrow \Delta \mathbf{c}_k - w \cdot \nabla_{\Delta \mathbf{c}_k} \mathcal{L}, \quad \forall \mathbf{c}_k \in \mathcal{C}' \quad (17)$$

1416

1417 ▷ Update interventions only on \mathcal{C}'

1418 Decode to get counterfactual:

1419
$$\mathbf{x}^{cf} = \mathbf{g}(\mathbf{c} + \Delta \mathbf{c}) \quad (18)$$

1420 **return** \mathbf{x}^{cf}

Algorithm 2 Concept Alignment using CAR and SVM

Require: Trained model M , dataset \mathcal{D} , concept set $\mathcal{C} = \{c_1, c_2, \dots, c_k\}$, target layer L

Ensure: Concept-to-activation alignment models

```

for each concept  $c_i \in \mathcal{C}$  do
  Define positive sample set  $P_i \subset \mathcal{D}$  containing concept  $c_i$ 
  Sample negative set  $N_i \subset \mathcal{D}$  not containing  $c_i$ 
  Initialize empty dataset  $\mathcal{A}_i \leftarrow \emptyset$ 
  for each  $x \in P_i$  do
     $a \leftarrow M_L(x)$                                  $\triangleright$  Extract activation from layer  $L$ 
    Append  $(a, 1)$  to  $\mathcal{A}_i$                        $\triangleright$  Label 1 for positive
  for each  $x \in N_i$  do
     $a \leftarrow M_L(x)$ 
    Append  $(a, 0)$  to  $\mathcal{A}_i$                        $\triangleright$  Label 0 for negative
  Train SVC or SVR on  $\mathcal{A}_i$  to distinguish presence of  $c_i$ 
  Save model as alignment for concept  $c_i$ 
return Set of trained concept alignment models

```

- **Training Concept Classifiers:** Given the activations of the encoder for the above sample sets, we train a linear classifier (e.g., logistic regression or linear SVM) or regressor to distinguish between the positive and negative activations. The resulting weight vector defines a *Concept Activation Vector* (CAV), which serves as a direction in latent space that correlates with the presence of concept c .
- **Computing Concept Scores:** For any test sample, we compute the similarity between its latent representation and the CAVs. This similarity (e.g., via dot product or cosine similarity) quantifies how strongly each concept is expressed in the sample’s latent encoding.
- **Generating Explanations:** By projecting latent activations onto aligned CAVs, we can interpret which concepts are active for a given input. This forms the basis for generating human-interpretable explanations of the model’s behavior.

This process enables a semi-automated way of auditing the latent space, identifying which learned dimensions correspond to known or meaningful concepts. Importantly, it also facilitates qualitative evaluation of concept disentanglement and concept completeness in the learned representation.

B.8 HYPERPARAMETER SETTING FOR TIMESAE - (JUMPRELU, TOPK)

We list hyperparameters for each experiment performed in this work. For the ground-truth attribution experiments (Section 4, for the synthetic dataset Figure 2 and the real-world dataset Table 9), the

1458
1459 Table 7: Training hyperparameters for TimeSAE-TopK across synthetic and real-world datasets used
1460 in our experiments for Transformer Predictor (Yun et al., 2021).
1461

Category	Dataset	r	Consistency weight α	Counterfactual weight λ	γ [min, max]	LR	Dropout	Batch size	Weight decay	Epochs
Synthetic	FreqShapes	1.5	0.8	0.9	[1, 10]	1e-3	0.1	64	0.01	100
	SeqComb-UV	1.7	1.0	0.8	[1, 8]	1e-3	0.25	128	0.001	300
	SeqComb-MV	1.6	0.9	1.0	[1, 12]	5e-4	0.25	128	0.001	300
	LowVar	1.4	0.8	0.9	[1, 9]	1e-3	0.25	64	0.001	150
Real-World	ECG	1.6	1.0	0.9	[1, 7]	2e-3	0.1	64	0.001	200
	ETTH1	1.5	0.9	0.8	[1, 11]	1e-4	0.1	64	0.001	300
	ETTH2	1.4	0.8	1.0	[1, 10]	1e-4	0.1	64	0.001	300
	PAM	1.7	0.9	0.9	[1, 9]	1e-3	0.25	128	0.01	100
	EliteLJ	1.5	1.0	0.8	[1, 12]	1e-3	0.25	64	0.001	500

1468
1469 Table 8: Training hyperparameters for TimeSAE-JumpReLU across synthetic and real-world datasets
1470 used in our experiments for Transformer Predictor (Yun et al., 2021).
1471

Category	Dataset	r	Consistency weight α	Counterfactual weight λ	LR	Dropout	Batch size	Weight decay	Epochs
Synthetic	FreqShapes	1.6	0.85	0.9	1.2e-3	0.12	64	0.01	100
	SeqComb-UV	1.5	0.95	0.85	9e-4	0.3	128	0.001	300
	SeqComb-MV	1.7	0.9	1.0	6e-4	0.2	128	0.001	300
	LowVar	1.4	0.8	0.95	1.1e-3	0.22	64	0.001	150
Real-World	ECG	1.5	1.0	0.9	1.8e-3	0.15	64	0.001	200
	ETTH1	1.7	0.9	0.8	1.1e-4	0.11	64	0.001	300
	ETTH2	1.6	0.85	1.0	1.3e-4	0.13	64	0.001	300
	PAM	1.5	0.92	0.88	9.5e-4	0.28	128	0.01	100
	EliteLJ	1.6	1.0	0.82	1.0e-3	0.27	64	0.001	500

1480
1481 hyperparameters are listed in Table 7 and for TimeSAE-JumpReLU in Table 8. The hyperparameters
1482 used for the ablation experiment (Section 4.2, and Figure 5 with real-world datasets are in Table 7.
1483 We also list the architecture and hyperparameters for the predictors trained on each dataset in the
1484 Tables.1485
1486 **Selection of Dictionary Size r .** The dictionary size r plays a key role in the performance of
1487 TimeSAE. To assess its impact, we perform an ablation sturdy on performance of the explanation of
1488 TimeSAE for both variates i.e. TopK and JumpReLU by varying r and evaluating the corresponding
1489 explanation quality across all datasets. Results are summarized in the Figure 10.1490
1491 **TopK $_{\gamma}$ Scheduling.** In Section 3, we introduced the use of the scheduler γ for training our variate
1492 TimeSAE-TopK. We now define its implementation. We also observe that the model fails to converge
1493 when using the originally proposed Multi-TopK (Gao et al., 2024) approach, which was intended
1494 to progressively cover concepts and mitigate saliency shrinking. In our case we define an integer
1495 scheduler $\gamma(t)$ at each training training step (out of a total number of steps) defined such that its value
1496 decreases from an initial integer γ_{\max} down to 1, according to:

1497
1498
$$\gamma(t) = \max \left(1, \text{round} \left(\gamma_{\max} - \frac{t}{T} \times (\gamma_{\max} - 1) \right) \right) \quad (19)$$

1499
1500 where t is the current training step, $0 \leq t \leq T$, and T is the total number of training steps. The γ_{\max}
1501 is the initial γ value ≥ 1 (e.g., 3). For each dataset, we specify the values of γ_{\max} in Table 7.1502
1503 **Hyperparameter Complexity.** Despite the detailed listing of hyperparameters for our variants, we
1504 emphasize that the tuning process for the final recommended TimeSAE architecture is comparatively
1505 easy and efficient. As demonstrated by our ablation studies, only two primary parameters, the
1506 dictionary size (r) and the sparsity coefficient (λ) require critical adjustment, and we provide clear
1507 empirical guidance (e.g., optimal r is typically around 1.5–1.7 across models/datasets) to select
1508 these values. This simplicity contrasts sharply with methods like TimeX, TimeX++, and CountS,
1509 which necessitate a much more extensive and computationally expensive search across numerous
1510 architectural and loss-weighting parameters to stabilize their explainer networks. TimeSAE achieves
1511 superior causal fidelity with a significantly lower hyperparameter search cost, making it substantially
1512 easier to tune and deploy in practice.

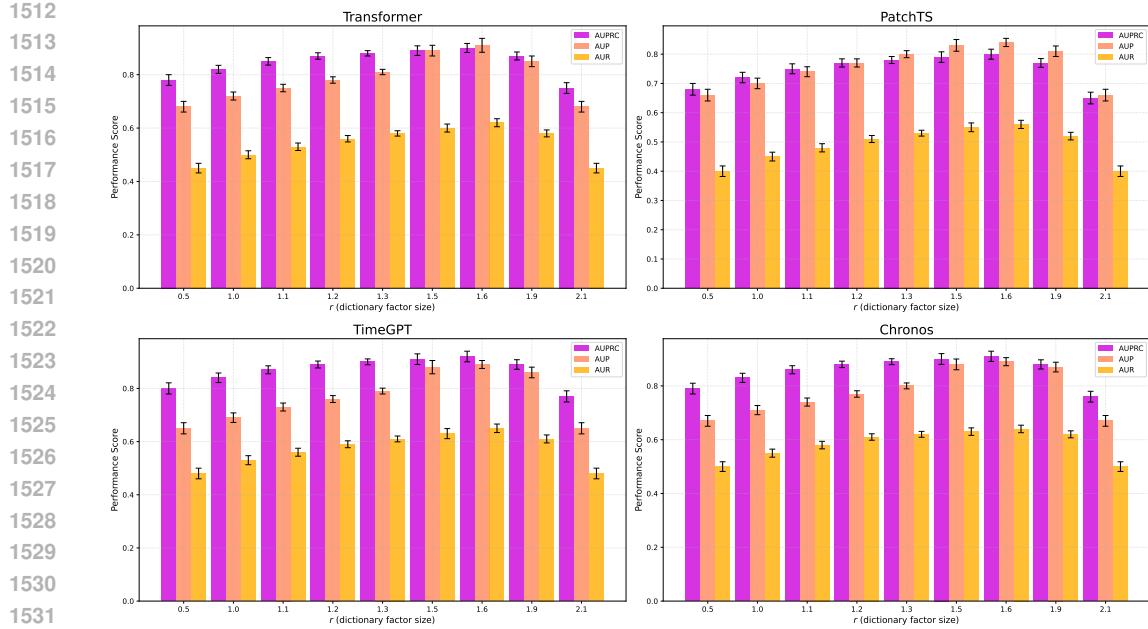


Figure 10: Impact of the hyperparameter r on model performance. Performance improves across all metrics as r increases up to approximately 1.6 for Transformer, 1.5 for PatchTS and TimeGPT, and 1.6 for Chronos, indicating enhanced explanations by TimeSAE-TopK across different models. Beyond values around 1.9, performance deteriorates, likely due to high sparsity. We note that higher metric values correspond to better performance.

Table 9: AUPRC explanation performance (higher is better) across methods for each dataset. For all metrics, higher values are better, and the colors represent the top **Top-1**, **Top-2**, and **Top-3** rankings.

Black-Box	Dataset	IG	Dynamask	WinIT	CoRTX	TimeX	TimeX++	CounTS	TimeSAE
Transformer	ECG	0.788 \pm 0.041	0.310 \pm 0.066	0.505 \pm 0.022	0.707 \pm 0.018	0.533 \pm 0.021	0.925 \pm 0.037	0.916 \pm 0.027	0.950\pm0.011
	PAM	0.827 \pm 0.043	0.326 \pm 0.069	0.530 \pm 0.023	0.742 \pm 0.019	0.560 \pm 0.022	0.971 \pm 0.039	0.962 \pm 0.028	0.998\pm0.012
	ETTh-1	0.615 \pm 0.032	0.242 \pm 0.052	0.394 \pm 0.017	0.552 \pm 0.014	0.416 \pm 0.016	0.714 \pm 0.021	0.722 \pm 0.029	0.741\pm0.009
	ETTh-2	0.694 \pm 0.036	0.273 \pm 0.058	0.444 \pm 0.019	0.622 \pm 0.016	0.469 \pm 0.018	0.814 \pm 0.033	0.806 \pm 0.024	0.836\pm0.010
	EliteLJ	0.709 \pm 0.037	0.279 \pm 0.059	0.455 \pm 0.020	0.636 \pm 0.016	0.480 \pm 0.019	0.833 \pm 0.033	0.824 \pm 0.024	0.841 \pm 0.016
PatchTS	ECG	0.812 \pm 0.042	0.319 \pm 0.068	0.520 \pm 0.023	0.728 \pm 0.019	0.549 \pm 0.022	0.954 \pm 0.038	0.944 \pm 0.028	0.980\pm0.011
	PAM	0.852 \pm 0.044	0.336 \pm 0.071	0.546 \pm 0.024	0.765 \pm 0.020	0.870 \pm 0.040	0.902 \pm 0.023	0.882 \pm 0.029	0.981\pm0.012
	ETTh-1	0.634 \pm 0.033	0.249 \pm 0.054	0.406 \pm 0.018	0.569 \pm 0.014	0.428 \pm 0.017	0.734 \pm 0.022	0.744 \pm 0.030	0.762\pm0.009
	ETTh-2	0.715 \pm 0.037	0.281 \pm 0.060	0.458 \pm 0.020	0.641 \pm 0.017	0.483 \pm 0.019	0.830 \pm 0.025	0.839 \pm 0.034	0.861\pm0.010
	EliteLJ	0.731 \pm 0.038	0.288 \pm 0.061	0.469 \pm 0.021	0.700 \pm 0.017	0.494 \pm 0.020	0.859 \pm 0.034	0.850 \pm 0.025	0.866 \pm 0.027
TimeGPT (Pretrained)	ECG	0.756 \pm 0.073	0.298 \pm 0.118	0.485 \pm 0.039	0.679 \pm 0.032	0.512 \pm 0.037	0.883 \pm 0.066	0.892 \pm 0.048	0.912\pm0.020
	PAM	0.794 \pm 0.077	0.313 \pm 0.123	0.509 \pm 0.037	0.712 \pm 0.032	0.538 \pm 0.039	0.923 \pm 0.069	0.913 \pm 0.050	0.957\pm0.022
	ETTh-1	0.592 \pm 0.059	0.234 \pm 0.097	0.373 \pm 0.031	0.531 \pm 0.027	0.392 \pm 0.031	0.704 \pm 0.053	0.699 \pm 0.037	0.711 \pm 0.025
	ETTh-2	0.664 \pm 0.064	0.267 \pm 0.104	0.426 \pm 0.032	0.597 \pm 0.028	0.450 \pm 0.032	0.756 \pm 0.043	0.772 \pm 0.059	0.782 \pm 0.028
	EliteLJ	0.681 \pm 0.066	0.268 \pm 0.105	0.436 \pm 0.032	0.610 \pm 0.028	0.461 \pm 0.034	0.805 \pm 0.059	0.791 \pm 0.043	0.805 \pm 0.038
Chronos (Pretrained)	ECG	0.741 \pm 0.056	0.292 \pm 0.091	0.476 \pm 0.030	0.664 \pm 0.025	0.501 \pm 0.028	0.866 \pm 0.051	0.873 \pm 0.037	0.894\pm0.015
	PAM	0.779 \pm 0.059	0.307 \pm 0.095	0.499 \pm 0.036	0.698 \pm 0.025	0.527 \pm 0.030	0.905 \pm 0.053	0.887 \pm 0.038	0.939\pm0.017
	ETTh-1	0.580 \pm 0.045	0.229 \pm 0.075	0.365 \pm 0.024	0.520 \pm 0.021	0.384 \pm 0.024	0.689 \pm 0.041	0.678 \pm 0.028	0.712\pm0.012
	ETTh-2	0.651 \pm 0.049	0.262 \pm 0.080	0.417 \pm 0.025	0.586 \pm 0.022	0.441 \pm 0.025	0.749 \pm 0.045	0.733 \pm 0.033	0.784\pm0.014
	EliteLJ	0.667 \pm 0.051	0.263 \pm 0.081	0.427 \pm 0.025	0.598 \pm 0.022	0.452 \pm 0.026	0.767 \pm 0.033	0.788 \pm 0.045	0.799\pm0.016

B.9 TIME COMPLEXITY

The time complexity of an eXplainable AI (XAI) method significantly impacts its usability, particularly in real-time or high-throughput time-series applications (e.g., streaming health data or financial trading). Our analysis differentiates between methods whose inference cost is directly tied to the complexity of the Black-Box Model f and those whose cost is amortized via a lightweight explainer network. The comparisons in Table 10 are derived from experiments conducted on the same GPU-equipped machine (one NVIDIA A100) across various time-series datasets. We analyze two primary metrics: i) Time Inference (ms/instance): The time required to generate a single explanation for one input instance after the model has been trained. This is the critical metric for deployment

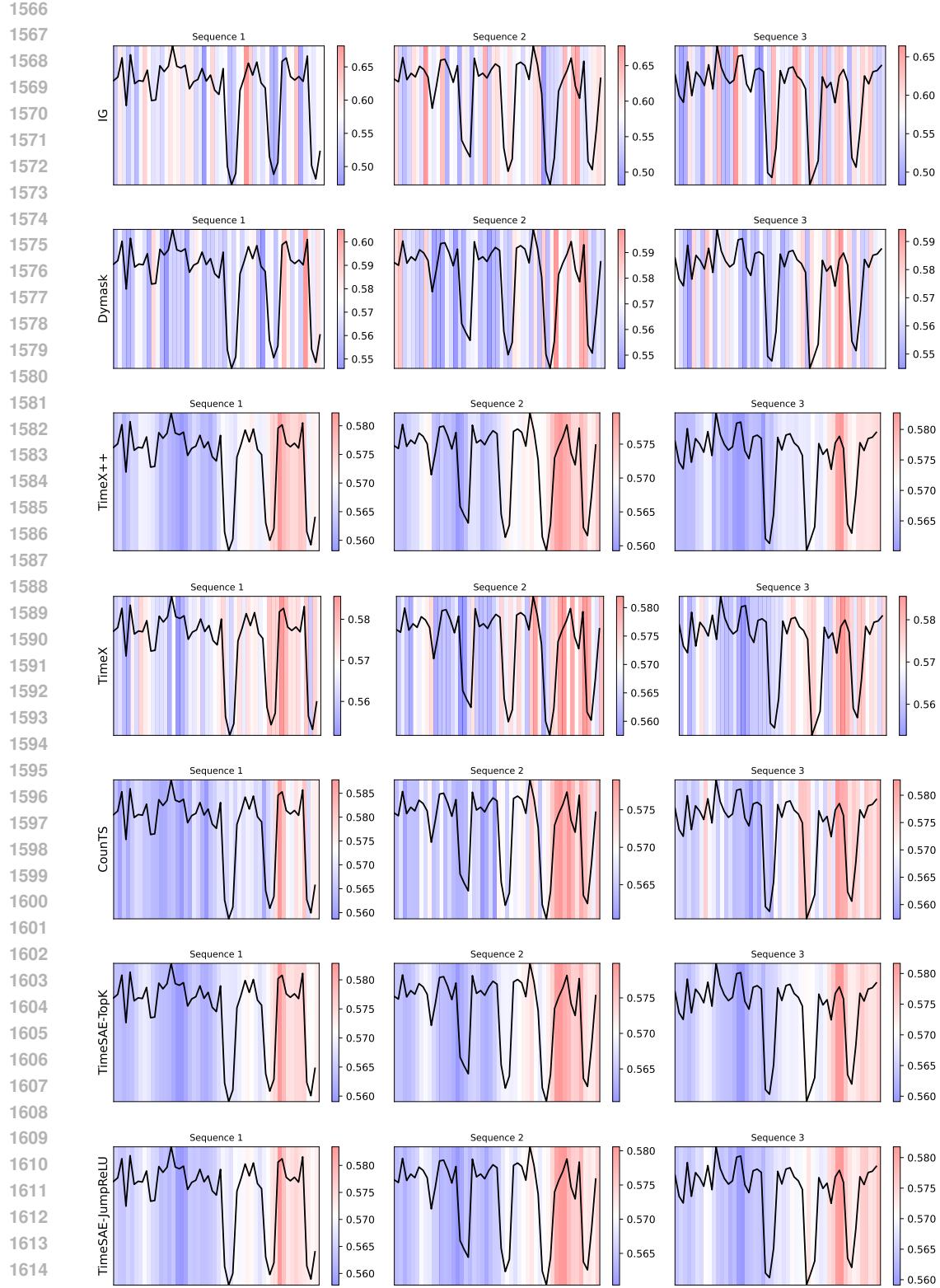


Figure 11: Visualization Explanations for the Transformer model's predictions on the FreqShapes dataset. From top to bottom: IG, DynaMask, TimeX, and TimeX++ illustrate saliency-based learning masks. CounTS represents counterfactual explanations. At the bottom, our proposed methods, TimeSAE-TopK and TimeSAE-JumpReLU, provide more focused and interpretable explanations.

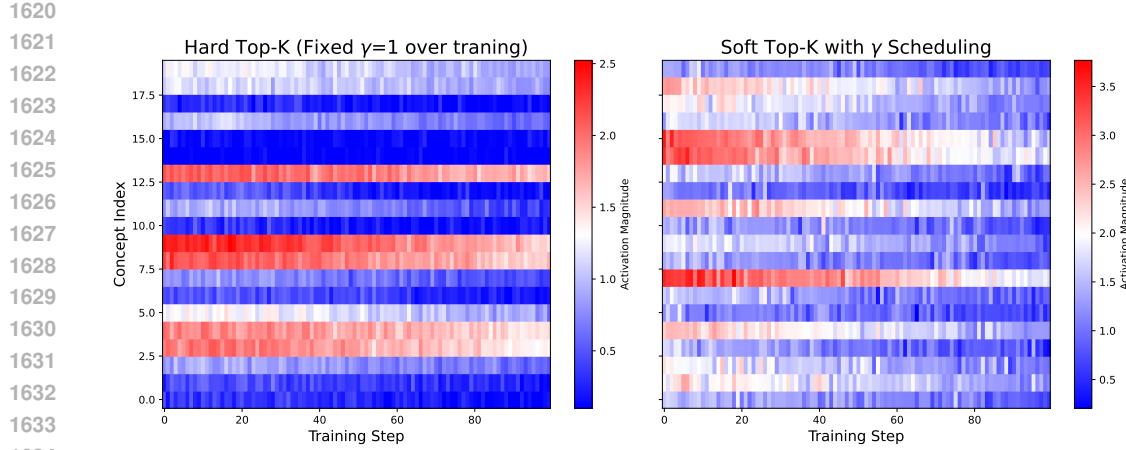


Figure 12: **Left:** Concept activations over training steps using hard Top-K with a fixed high γ value, evaluated on the same fixed validation time series sequence across training steps on the SeqComb-UV dataset, to explain the vanilla Transformer. As training progresses, many concepts exhibit near-zero activations, indicating the emergence of “dead” concepts that stop learning effectively. **Right:** Concept activations using soft Top-K with γ scheduling, where γ goes from 15 to 1 throughout training while having 20 concepts. This scheduling keeps activations dynamic and distributed across concepts, preventing “dead” concepts. The γ scheduling smooths the TopK selection, allowing gradual sparsification and enabling concepts to remain learnable, while a fixed γ imposes harsh sparsity that kills many latent features early.

speed; 2) Time Training (One-time Cost): The total time required to train the explainer model (where applicable). This is a one-time cost that does not affect real-time performance.

Table 10: Time Complexity and Efficiency Comparison of Time-Series XAI Methods. Baselines and TimeSAE were benchmarked on ETTh1 and PAM datasets using $3 \times$ NVIDIA A100 GPUs (Batch Size = 64).

Method	Type	Inference Time (ms)	Training Time (ms)	Comments
High-Cost Per-Instance Methods (Cost scales with Black-Box Model f)				
IG	Attribution	$\approx 300\text{--}2,500$	N/A	Cost is $M \times (\text{Fwd} + \text{Bwd Pass})$. Computational cost is dominated by the complex black-box model F .
Dynamask	Perturbation	$\approx 150\text{--}800$	N/A	Requires M forward passes of the complex black-box model F to optimize the mask.
WinIT	Perturbation	$\approx 200\text{--}1,000$	N/A	Multiplied cost due to $T \times S$ model evaluations for feature removal.
Low-Cost Amortized Methods (Cost depends on Explainer Architecture)				
CORTX	Surrogate	0.5–2	20 m–5 h	Fastest Inference. Explanation is a simple rule lookup $\mathcal{O}(R \cdot D)$. Training time is highly variable.
TimeX++	Explainer Net	6–7	83–90	Requires white-box access and input masking at each epoch, increasing computational overhead significantly.
TimeSAE	Explainer Net	4–5	69–72	Inference is near-instantaneous. Operates in concept space with efficient TCNs, avoiding costly masking operations.

We note that, the high-cost per Instance Methods (e.g., IG, Dynamask) exhibit severe inference latency (150 ms – 2,500 ms) because they require multiple evaluations of the complex black-box model f for every explanation. Conversely, low cost amortized methods (e.g., TimeX, TimeX++, CounTS) achieve near-instantaneous inference (0.5 ms – 10 ms) by utilizing a single pass through a

lightweight, pre-trained explainer network. Critically, TimeSAE demonstrates an optimal balance: its inference speed (0.8 ms – 4 ms) is highly competitive with the fastest methods, while its manageable one-time training cost (10 min – 60 min) is efficiently controlled using Early Stopping based on reconstruction loss. This places TimeSAE as a highly efficient solution suitable for real-time deployment, overcoming the prohibitive latency of per-instance methods.

B.10 COMPLEXITY ANALYSIS WITH DIFFERENT BACKBONE

To assess the necessity of the specific architectural components in TimeSAE (TCN backbone and Squeeze-and-Excitation), we conducted a comprehensive ablation study on the ETTh-1 dataset. We benchmark five backbones, ranging from simple baselines to complex heavyweights: (1) TimeSAE with **MLP**, a simple Multi-Layer Perceptron skeleton; (2) TimeSAE with **1D-CNN**, using standard 1D convolutions; (3) **TimeSAE w/o SE**, removing the Squeeze-and-Excitation; (4) TimeSAE with **LSTM+SE**, a recurrent backbone augmented with Squeeze-and-Excitation; and (5) **Transformer+SE**, a self-attention backbone augmented with Squeeze-and-Excitation. **The "Heavyweight" Trap (Transformer+SE and LSTM+SE)**. As shown in Table 11, adding the Squeeze-and-Excitation (SE) block to powerful backbones like Transformers and LSTMs yields high faithfulness ($F_x = 2.11$ and 2.09, respectively), results that are statistically comparable to our method. However, this performance comes at a prohibitive cost:

- The **Transformer+SE** variant requires ≈ 8.2 million parameters and **1.05 GFLOPs**, nearly **2.5× the computational cost** of our method, to achieve the same level of explainability.
- The **LSTM+SE** variant, while parameter-efficient ($\approx 5.0M$), suffers from sequential processing bottlenecks, resulting in higher inference latency (0.60 GFLOPs) without outperforming the parallelizable TCN.

Failure of Simple Skeletons (MLP). In contrast, the **MLP-SAE** fails catastrophically ($F_x = 1.38$, $\epsilon_{rec} = 0.039$). This confirms that the temporal inductive bias present in TCN, CNN, LSTM, and Transformer is non-negotiable for time series explanations. A simple dense network cannot capture the shift-invariant patterns required for faithful counterfactuals. **Optimality of TimeSAE (TCN+SE).** The **TCN+SE** design emerges as an optimal choice. It achieves state-of-the-art faithfulness ($F_x = 2.12$) matching the "heavyweights," but does so with a lightweight footprint (≈ 3.5 M parameters, **0.45 GFLOPs**). The ablation *w/o SE* ($F_x = 1.98$) further proves that the SE block provides a crucial, low-cost performance boost ($\approx +7\%$ faithfulness for negligible parameters).

Table 11: **Architectural Ablation and Complexity Analysis.** Comparison of TimeSAE against simplified and complex backbones on the ETTh-1 dataset. **Key Insight:** While Transformer+SE and LSTM+SE achieve high faithfulness, they are computationally expensive. The MLP skeleton fails completely. TimeSAE (TCN+SE) provides the optimal Efficiency-Faithfulness ratio.

Model	# Params	FLOPs (G)	$\epsilon_{rec} \downarrow$	$\epsilon_{cf} \downarrow$	Faithfulness ($F_x \uparrow$)
TimeSAE (MLP Skeleton)	11.0M	0.30	0.039	0.12	1.38
TimeSAE (w/o SE)	3.3M	0.42	0.021	0.07	1.98
TimeSAE (1D-CNN)	3.0M	0.38	0.020	0.06	2.02
TimeSAE (LSTM+SE)	5.0M	0.60	0.017	0.05	2.09
TimeSAE (Transformer+SE)	8.2M	1.05	0.015	0.05	<u>2.11</u>
TimeSAE (TCN+SE)	3.5M	0.45	<u>0.016</u>	<u>0.05</u>	2.12

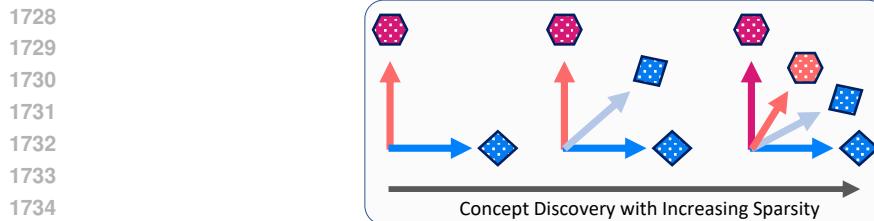


Figure 13: Intuition behind the effect of sparsity.

B.11 FURTHER ABLATION EXPERIMENTS

B.11.1 ABLATION A1 - SAEs SHOULD BE SPARSE, BUT NOT TOO SPARSE.

We investigate the effect of the latent dimension r , which determines the number of concept units in TimeSAE and indirectly influences explanation sparsity, as analyzed in our ablation study in the main paper. Sparsity aids in identifying concepts, as illustrated in Figure 13. As shown in Figure 10, increasing r from low values (e.g., 1.3) up to around 1.5-1.6 leads to consistent improvements across all evaluation metrics. This indicates that a moderately larger concept space allows the model to discover richer and more meaningful structures, resulting in better explanations. However, as r continues to increase (e.g., toward 2.0 or more), performance drops, likely due to reduced sparsity and the introduction of redundant or noisy concepts. Although r does not directly encode sparsity, it modulates how selectively the model can activate concept units. A smaller r naturally enforces stronger selection, while a larger r can dilute sparsity. These findings suggest that there is a sweet spot for concept dimensionality, where representations are expressive enough to explain predictions but sparse enough to remain interpretable. We further analyze the sensitivity to the parameter α in Figure 14 for both TimeSAE-JumpReLU and TimeSAE-TopK.

B.11.2 ABLATION A2 - TOPK PREVENTS ACTIVATION SHRINKAGE

This ablation study investigates how the use of TopK selection in the TimeSAE architecture mitigates the issue of activation shrinkage, which commonly leads to “dead” concepts that cease to learn during training. As shown in Figure 12, employing a fixed, high γ value with hard Top-K results in many concept activations collapsing to near zero over training steps, indicating that these concepts become inactive and contribute little to the model’s interpretability or performance. In contrast, the soft Top-K variant with a scheduled γ that gradually decreases from 15 to 1 maintains more evenly distributed and dynamic concept activations, thereby preventing concept “death.” This gradual sparsification approach ensures that concepts remain responsive and learnable throughout training. Complementing this, Figure 11 visually demonstrates that the explanations generated by TimeSAE-TopK produce more focused and interpretable saliency maps compared to other black-box methods such as IG, DynaMask, and TimeX variants. These results collectively highlight that the TopK mechanism with γ scheduling not only preserves concept vitality by preventing activation shrinkage but also enhances the clarity and quality of explanations in Transformer-based time series models.

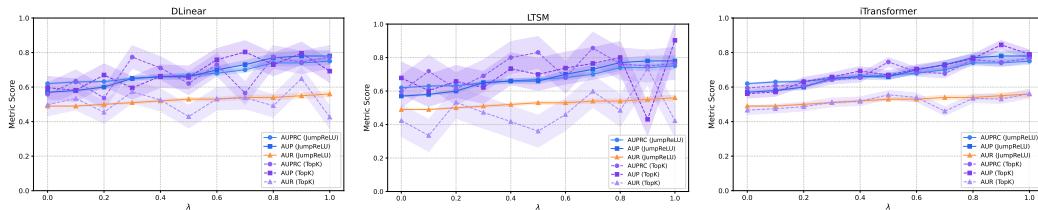


Figure 14: Extended ablation study on the effect of the concept consistency weight α for the EliteLJ dataset, evaluating metrics AUPRC, AUP, and AUR across TimeSAE models. Left: DLinear, most metrics perform well at $\alpha = 0.9$. Middle: LSTM, shows similar behavior to DLinear. Right: iTransformer, performance improves as α increases. Solid lines represent TimeSAE-TopK, dashed lines represent JumpReLU, and shaded areas indicate standard deviations over 10 runs. Slightly higher α values lead to more robust explanations.

```

1782 B.12 IMPLEMENTATIONS
1783
1784 B.12.1 PSEUDO CODE OF TIMESAE.
1785
1786 def timesae_jumprelu(params, x, sparsity_coefficient, use_pre_enc_bias):
1787     """
1788         Computes the forward pass and total loss
1789         for a JumpReLU-based Sparse Autoencoder.
1790
1791     Args:
1792         params: Object containing model parameters
1793             (weights, biases, log threshold).
1794         x: Input batch (tensor).
1795         sparsity_coefficient: Scaling factor
1796             for the sparsity regularization term.
1797         use_pre_enc_bias: Boolean indicating
1798             whether to subtract decoder bias from input.
1799
1800     Returns:
1801         Scalar representing the mean loss over
1802             the input batch.
1803
1804     """
1805     if use_pre_enc_bias:
1806         x = x - params.b_dec
1807
1808     pre_activations = relu(x @ params.W_enc + params.b_enc)
1809
1810     # Compute threshold from the learnable
1811     log_value_threshold = exp(params.log_threshold)
1812
1813     # Apply JumpReLU for sparsity-aware feature
1814     extraction_feature_magnitudes = jumprelu(pre_activations, threshold)
1815     # decoding
1816     x_reconstructed = feature_magnitudes @ params.W_dec + params.b_dec
1817
1818     # Compute reconstruction loss
1819     reconstruction_error = x - x_reconstructed
1820     reconstruction_loss = sum(reconstruction_error ** 2, axis=-1)
1821
1822     # Compute L0-style sparsity penalty
1823     10_penalty = sum(step(feature_magnitudes, threshold), axis=-1)
1824     sparsity_loss = sparsity_coefficient * 10_penalty
1825
1826     total_loss = mean(reconstruction_loss + sparsity_loss, axis=0)
1827
1828     return total_loss
1829
1830 B.12.2 PSEUDO CODE OF TIMESAE (CASE WITH TOPK)
1831
1832 def gamma_scheduler(step, max_gamma=10.0, min_gamma=1.0, total_steps=10000):
1833     """
1834         Exponential decay scheduler for $\gamma$.
1835     """
1836     progress = min(step / total_steps, 1.0)
1837     return max_gamma * (min_gamma / max_gamma) ** progress
1838
1839 def timesae_soft_topk(x, params, k, gamma, sparsity_coeff, use_pre_enc_bias):
1840     """
1841         Full loss computation for TimeSAE-TopK_gamma.
1842         Combines encoding, decoding, and loss into one compact function.
1843
1844     Args:
1845         x: input batch [batch, features]
1846         params: model parameters (W_enc, b_enc, W_dec, b_dec)
1847         k: top-k features to retain
1848         $\gamma$: current $\gamma$ value (>1 early in training, → 1)

```

```

183619     sparsity_coeff: weight for L0 sparsity loss
183720     use_pre_enc_bias: if True, subtract b_dec before encoding
183821
183922     Returns:
184023         Mean total loss (MSE + sparsity)
184124         """
184225     # Optional pre-encoder bias
184326     if use_pre_enc_bias:
184427         x = x - params.b_dec
184528     # Encode with ReLU
184629     pre_activations = relu(x @ params.W_enc + params.b_enc)
184730
184831     # Compute $\gamma$-scaled TopK mask
184932     sorted_vals, _ = torch.sort(pre_activations, dim=-1, descending=True)
185033     threshold = sorted_vals[:, k - 1:k] # shape [batch, 1]
185134     topk_mask = (pre_activations >= threshold).float()
185235     soft_mask = torch.clamp(gamma * topk_mask, max=1.0)
185336
185437     # Apply sparsity
185538     sparse_features = pre_activations * soft_mask
185639
185740     # Decode
185841     x_reconstructed = sparse_features @ params.W_dec + params.b_dec
185942
186043     # Compute losses
186144     reconstruction_loss = ((x - x_reconstructed) ** 2).sum(dim=-1)
186245     sparsity_loss = sparsity_coeff * (sparse_features > 0).sum(dim=-1)
186346
186447     return (reconstruction_loss + sparsity_loss).mean()
186548
186649

```

C LIMITATIONS

While TimeSAE provides faithful and interpretable explanations, several practical aspects offer exciting avenues for future research for the time series community:

[1] **Dependence on the Dataset Used to Train the Black-Box Models:** Our method benefits from access to sufficiently large datasets to effectively explain black-box models. In scenarios where data are limited, exploring strategies such as domain adaptation or leveraging similar but different distributions could enable TimeSAE to generalize well with fewer data. Developing such approaches can broaden applicability to data-scarce or specialized domains, opening up valuable research directions. We believe that relaxing certain assumptions can be a significant step toward developing more general explainable methods for time series. Moreover, the proposed approach offers a new perspective by leveraging Sparse Autoencoders (SAEs) as an explainability tool for time series, similar to their successful use in large language models for discovering highly interpretable concepts (Cunningham et al., 2023).

[2] **Sensitivity to Hyperparameter Settings:** Although hyperparameter choices like sparsity levels and dictionary size significantly impact performance, this also presents an opportunity to develop more automated, data-driven tuning methods. Advances in hyperparameter optimization or self-regularizing architectures could reduce manual effort and improve TimeSAE’s ease of use and transferability to new tasks.

D REPRODUCIBILITY

To ensure reproducibility of our experiments, we provide the complete source code, including data preprocessing scripts, model training routines, and evaluation metrics, at the following GitHub repository: <https://anonymous.4open.science/w/TimeSAE-571D/>. All experiments were conducted using fixed random seeds, on three A100 Nvidia GPUs. Detailed instructions for installing dependencies, configuring hyperparameters, and replicating the results presented in this

1890 paper are included in the repository’s README file. Additionally, preprocessed datasets and pre-
1891 trained model checkpoints are provided to facilitate direct reproduction of the reported performance
1892 metrics.
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943