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Abstract

Modern language agents must operate over long-horizon, multi-turn interactions,1

where they retrieve external information, adapt to observations, and answer in-2

terdependent queries. Yet, most LLM systems rely on full-context prompting,3

appending all past turns regardless of their relevance. This leads to unbounded4

memory growth, increased computational costs, and degraded reasoning perfor-5

mance on out-of-distribution input lengths due to LLM forgetting the context. We6

introduce MEM1, an end-to-end reinforcement learning framework that enables7

agents to operate with constant memory across long multi-turn tasks. At each8

turn, MEM1 updates a compact shared internal state that jointly supports mem-9

ory consolidation and reasoning. Leveraging reinforcement learning (RL) and10

rollout trajectory truncation, we train a MEM1 agent to develop internal states11

that integrate prior memory with new observations from the environment while12

strategically discarding irrelevant or redundant information. Moreover, to cope13

with the lack of open-source long-reasoning datasets and support training in more14

realistic and compositional settings, we propose a simple yet effective and scalable15

approach to constructing multi-turn environments by composing existing datasets16

into arbitrarily complex task sequences. Experiments across three domains, includ-17

ing internal retrieval QA, open-domain web QA, and multi-turn web shopping,18

show that MEM1-7B improves performance by 3.5× while reducing memory19

usage by 3.7× compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop20

QA task, and generalizes beyond the training horizon. Our results demonstrate21

the promise of reasoning-driven memory consolidation as a scalable alternative to22

existing solutions for training long-horizon interactive agents, where both efficiency23

and performance are optimized.24

1 Introduction25

Large language models (LLMs) have shown remarkable performance in single-turn tasks such26

as question answering, summarization, and code generation [6, 50, 3]. However, emerging real-27

world applications increasingly operate over multiple turns—searching documents, interacting with28

environments [69], and making decisions based on evolving external information [52]. Examples29

include research agents such as OpenAI and Gemini Deep Research [36, 17] that automate complex30

tasks by iteratively gathering information, and web-navigation agents such as OpenManus [49] and31

BrowserUse [33], which must complete goals across dozens of interactive turns.32

Unlike traditional tasks where the input is static or self-contained, long-horizon settings often33

involve answering a sequence of related questions, requiring the agent to continuously retrieve new34

information, revise beliefs, and adapt to evolving contexts over time. For instance, consider a research35

assistant tasked with “What’s the evidence for X?”. Subsequent queries like “Who published it?”36
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Figure 1: Comparison of memory management between MEM1 and existing reasoning agents.
While existing agents for long-horizon tasks [23, 63, 68] continuously append thoughts, actions, and
observations, resulting in an ever-growing context, our MEM1 agent learns to keep updating an
internal state that blends thought and memory, discarding the contents from previous steps to achieve
constant memory usage during the task. On the other hand, while existing environments and datasets
focus on single-objective tasks, our task augmentation method effectively scales up these tasks to
enable long-horizon agent training.

require further information retrieval, while “Is the source credible?” calls for self-reflection and37

assessment. Each query builds on the previously collected and accumulated information. Similarly, a38

shopping assistant may be first asked “Which product is cheapest?”, then “What are its reviews?”,39

and “Is it compatible with my device?”. These interactions span multiple turns, featuring evolving40

contexts and compound reasoning.41

In long-horizon systems, a common strategy is to append all past observations, actions, and thoughts42

to the context at each step [54, 60]. This creates three challenges. (1) Growing inference cost43

and memory usage. Transformer-based LLMs scale with O(N2) compute (or O(N) with KV44

caching) and O(N) memory as context length N grows [51], forcing deployments to reserve large45

GPU memory and often wasting resources [26, 67]. (2) Generalization limits beyond the training46

horizons. Contexts longer than those seen during training push the model out-of-distribution,47

reducing its ability to reason reliably [62]. (3) Overloaded context and forgetting. Redundant or48

irrelevant content dilutes attention and makes the model prone to forgetting important details, even49

when they remain technically available in the context [2, 29, 55].50

Recent progress in long-context modeling largely targets static inputs (e.g., long documents) and51

does not address multi-turn interaction with external environments [5, 18]. Some other approaches52

introduce external memory modules (e.g., summarizers or retrievers) [62, 28, 12, 56], but these are53

typically trained separately and cannot be optimized end-to-end with the agent’s policy. This also54

introduces additional engineering overhead, as engineers must manage and integrate two separate55

models. Meanwhile, existing works on tool-using agent systems trained with reinforcement learning56

leave memory management unsolved, letting the prompt length grow unboundedly [23, 68]. A natural57

question is raised: Can a language model learn to consolidate its memory as part of its reasoning58

process so that it retains only what is essential for solving the task?59

Motivated by this question, we present MEM1: Memory-Efficient Mechanism via learning 1-step60

integrated reasoning and consolidation—a method for training LLM agents that maintain constant61

memory usage across arbitrarily long horizons. As illustrated in Fig. 1, at each turn, the model updates62

a consolidated state composed of prior memory and newly obtained information. This consolidated63

state becomes the agent’s only retained memory, allowing all observations obtained via external64

tool use to be discarded after use, which prevents prompt expansion altogether. A key insight of65

our method is that inference-time reasoning [54, 14, 32, 64] serves two purposes: while reasoning66

about the current query, the model also extracts and stores the essential information it needs for67

the future. By unifying reasoning and memory consolidation, MEM1 enables the agent to both68

reason and remember within a shared representational space, without requiring extra modules or69

architectural changes. We train this behavior end-to-end with reinforcement learning (RL) [47, 70],70
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optimizing for task success via verifiable rewards [42]. Although not explicitly optimized for memory71

efficiency through reward signals, the agent learns to manage memory as part of its policy, resulting72

in near-constant memory usage across long horizons.73

We further observe that most existing training and evaluation environments focus on single-objective74

tasks [25, 58, 37], which fail to capture the complexity of real long-horizon scenarios that naturally75

involve multiple sequential objectives. To address this limitation, we introduce a scalable task76

augmentation strategy that transforms standard single-objective QA datasets into multi-objective77

settings by composing N multi-hop questions. In our experiments, we therefore evaluate MEM178

across (i) retrieval-augmented QA and open-domain Web QA tasks both augmented into multi-79

objective form, and (ii) the WebShop environment [59]. Across these diverse settings, MEM180

consistently matches or exceeds the performance of leading baselines while achieving efficiency81

gains of up to 3.5× in memory usage. Moreover, agents trained on our 2-objective augmented tasks82

generalize robustly to much harder cases with up to 16 sequential objectives. At this extreme, MEM183

not only outperforms all baselines in accuracy but also reduces peak memory usage by 1.27× and84

accelerates inference by 1.78× relative to the strongest uncollapsed baseline.85

2 MEM186

Complex reasoning tasks often require an iterative process of information gathering and synthesis, as87

seen in applications such as “deep research” [36, 22] and web-based agents [34, 19]. We consider88

an interactive agent operating in a multi-turn environment with vocabulary space V . The generation89

process of an agent is defined as a Markov Decision Process (MDP) parameterized by (S,A, π, r),90

where A represents the action space, S represents the state space, π : S × A × S → [0, 1] is the91

transition distribution (i.e., the policy), and r : S → R is the reward function. A trajectory generated92

by a policy π is denoted with τ := {(at, st)|t ∈ {1, 2, . . . , |τ |}}. At each step t, the agent receives93

an observation Ot ∈ A+ (from external tools, APIs, or the environment), maintains an internal state94

St ∈ A+ (reasoning history and memory), and produces an action At ∈ A+ (e.g., answering a95

question or issuing a query), where A+ represents the set of sequences of a ∈ A. The agent’s goal is96

to maximize task success across long-horizon trajectories while keeping the retained context bounded.97

Formally, let r : V → R be the reward function. The learning problem is98

argmaxθ EQ∈Q,τ∼πθ,Q

[∑
(at,st)∈τ r(st)

]
,

where τ = (Si, Ai, Oi)
n−1
i=1 ∩ (Sn, An) is a trajectory sampled from policy πθ,Q with n turns and Q99

refers to the set of questions. In this work, we primarily consider tasks with verifiable rewards (i.e., r100

is a rule-based mapping). A long, multi-turn reasoning task is characterized a large n, requiring the101

agent to iteratively perform a long series of searches and reasoning to derive the answer An.102

2.1 Memory as Part of Reasoning103

To achieve a constant memory, MEM1 is particularly trained to iteratively refine its understanding104

by processing new information in conjunction with a consolidation of its prior state. At each turn105

i, the agent produces a new Si, which summarizes past information and reasons about subsequent106

actions. Following this, the agent generates an action At—a subsequent query or the answer if a direct107

response is warranted. If the agent issues a query, the corresponding feedback from the environment108

Oi is appended to the trajectory. At the next turn, i+ 1, the agent consolidates the tuple (Si, Ai, Oi)109

into a new Si+1, which serves as the basis for further interactions. After each turn, (Si, Ai, Oi)110

is pruned from the context, effectively compressing memory and preventing prompt bloat. Fig. 2111

(bottom left) illustrates the evolution of the model’s context over time. At each turn, the agent retains112

at most two S’s, two A’s, and one O, ensuring bounded and efficient memory usage. The detailed113

rollout algorithm is in Alg. 1 of App. A.6.114

RL offers a powerful mechanism for shaping agent behavior through reward signals [48]. In MEM1,115

we leverage this framework to incentivize effective state consolidation by designing environments116

in which the agent is rewarded only when it strategically retains and integrates useful information.117

Specifically, we construct tasks that require numerous interactions with the environment to arrive118

at a correct answer (see Sec. 2.3). Success depends on the agent’s ability to rely on information119

collected along the inference path. At each turn, we prune the agent’s context to retain only the most120

recent internal state S, forcing the agent to perform memory consolidation as part of its reasoning121

3



Ques

Info (t)

Info (t+1)

...

IS (t)

Query (t)

IS (t+1)

Query (t+1)

IS (t+2)

Answer

Q
ue

s

In
fo

 (t
)

In
fo

 (t
+1

)

... IS
 (t

)

Q
ue

ry
 (t

)

IS
 (t

+1
)

Q
ue

ry
 (t

+1
)

IS
 (t

+2
)

A
ns

w
er

Task

Rollout

Environment

Query 
(Action)

Internal State (IS)

Observation

(Info)

Reward Assignment Policy UpdateObjective Computation

Exact Match Token Level 
Loss

F1 Score

Consolidated into

Previous context removed

Traj. Tokens

Value FunctionKL PenaltyAdvantage

Critic ModelActor Model

QuesTurn

(t-1)

Get Info (t) from 
environment

Turn

(t)

Query (t-1) Query (t)Info (t-1)

Ques Query (t) Info (t)

Ques

: Context : Generated Tokens : External Tokens

Query (t) Query (t+1)Info (t)

Ques Query (t-1) Query (t)Info (t-1)

Actor Model

Internal State (t-1) Internal State (t)

Internal State (t+1)

Internal State (t)

Internal State (t)

Internal State (t)

Internal State (t-1)

Answer

IS (t+1)

IS (t+2)

Info (t+1)

Query (t+1)

Info (t)

Info (1→t-1)

Query (t)

Query (1→t-1)

Ques

IS (t)

IS (1→t-1)

2D Attention Mask Info Mask
For IS(t+2), only Ques, IS(t+1), Query(t+1), Info(t+1) are NOT masked

Figure 2: (Top): the RL pipeline used to train MEM1. (Bottom left): The evolution of context in
MEM1–old internal states (S), query/answer (A), and external information (O) are cleared as new
states enter the context. The mechanism is used in the rollout. (Bottom right): the 2D attention mask
used during the objective computation stage. The mask is applied during the forward pass to compute
action log-probabilities for the actor model and state value estimates for the critic model. During the
policy update stage, the information mask is then applied to the full trajectory, masking out tokens
that were not generated by the model itself.

process. Without access to full historical context, the agent must learn to preserve and update relevant122

knowledge internally in order to reap the reward. This learning procedure mirrors how humans123

cultivate memorization skills through structured tasks such as Sudoku or crosswords [1], where124

success hinges on selectively attending to key information and building upon it. Over time, such125

tasks help individuals develop cognitive strategies that jointly support efficient memorization and126

reasoning, similar to our RL method for training MEM1.127

2.2 Masked Trajectory for Policy Optimization128

Popular RL algorithms [40, 21] update the policy with policy gradient, which requires the calculation129

of ∇θπθ,Q(at, st). For LLM, πθ,Q(at, st) is viewed as the logit of the output at of the model,130

where the input is st. Existing RL frameworks typically compute the∇θπθ,Q(at, st)’s for all pairs131

(at, st) ∈ τ by passing the entire rollout trajectory τ through the LLM once (i.e., prefilling). However,132

as MEM1 dynamically consolidates its context, the tokens at do not belong to one single trajectory τ .133

A naive solution is to break each turn into a sub-trajectory τi = (Si, Ai, Oi), where i represents the134

ith interaction turn. However, this approach introduces difficulties (at least implementation-wise) in135

computing the temporal difference δt = r(st) + V (st+1)− V (st) for the last token in the current136

sub-trajectory τi, as V (st+1) is calculated in a separate sub-trajectory τj , j ̸= i. Here V : S → R is137

the value function.138

To overcome this challenge, we introduce a masked trajectory that compresses {τ1, τ2, . . . , τn}139

for a task with n turns into a consolidated full trajectory τfull = (τ1, τ2, . . . , τn) =140

(S1, A1, O1, S2, A2, O2, . . . , Sn, An). The full trajectory encodes all information needed for ac-141

curate policy learning while respecting MEM1’s memory consolidation at each turn. Note that142

τfull is a “stitched“ trajectory where the Si’s and Ai’s do not belong to the same roll-out. As143

such, to ensure that policy gradients ∇θπθ,Q(at, st) are correctly computed under this consol-144

idated memory regime, we apply a two-dimensional attention mask [39] across τfull. This145

mask restricts each token’s attention to only the tokens retained in memory at the time that146

token was generated. Specifically, let the attention mask for the tth token in the ith turn be147

Attnt = 1a∈{Si−1,Ai−1,Oi−1,Si,Ai,Oi} × 1a∈{ak|k∈{1,2,...,t}}. We can compute the policy for the148

ith turn πθ,Q,τi(at, st) = πθ,Q,τfull
(at, st×Attnt) and∇θπτi accordingly. Algorithmically, this can149

be achieved by first constructing the attention mask Mask = (Attn1, . . . ,AttnT ) and masking the150
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attention matrix during the transformer forward. Fig. 2 (bottom right) shows the masking mechanism151

that enables stable and accurate policy optimization under MEM1’s memory-constrained execution.152

2.3 Multi-Objective Task Design153

Although our proposed method is designed to address the critical challenges of agentic multi-154

turn interaction with the external world, there are limited publicly available datasets that support155

training for such long-horizon interactive processes. Existing benchmarks, such as HotpotQA [58],156

Bamboogle [37], and 2wiki [20], are often cited as multi-hop benchmarks, yet they typically involve157

only two information-seeking steps. Moreover, these datasets are not explicitly structured to support158

long-horizon interactions that necessitate the agent to manage the memory state.159

To bridge this gap, we introduce a novel task—multi-objective question answering (QA)—that160

extends the number of reasoning steps required to solve a problem. Building on existing multi-turn161

datasets such as HotpotQA and Natural Questions [58, 25], we interleave multiple questions from the162

original QA corpus and construct a single composite query that requires answering all constituent163

sub-questions, shown in Prompt 1 of App. A.4. Unlike standard multi-hop QA, this formulation164

compels the agent to (i) issue multiple search queries, each targeting a distinct sub-question, and165

(ii) organize the sub-answers into a coherent final response. The augmented dataset inherits the166

multi-turn retrieval tasks presented in the original HotpotQA. Additionally, to test the agent’s long-167

turn processing capability, our multi-objective QA combines multiple multi-hop questions into a168

grand objective and tasks the agent to answer all the questions combined. For instance, the original169

HotpotQA dataset contains the following two questions: “Which magazine was started first Arthur’s170

Magazine or First for Women?” and “The Oberoi family is part of a hotel company that has a head171

office in what city?”. An augmented task is then: “Answer each of the following questions: “Which172

magazine was started first Arthur’s Magazine or First for Women?” and “The Oberoi family is part of173

a hotel company that has a head office in what city?” Organize your final answer in <answer> and174

</answer> and separate the answer to each question with semicolon.175

3 Experiments & Results176

We empirically demonstrate the effectiveness of our approach in training the MEM1 agent to177

perform multi-turn tasks while preserving a near-constant-sized memory state. We evaluate MEM1178

against several baselines using a comprehensive set of metrics categorized into accuracy (e.g., Exact179

Match, F1 score, Environment Reward) and efficiency (e.g., Peak Token Usage, Dependency Length,180

Inference Time). All MEM1 variants are fine-tuned from the Qwen2.5-7B Base model [57]. We use181

PPO [40] as the RL algorithm as it computes token-level advantages, bringing stability to the training182

process. While we also experimented with instruction-tuned and supervised fine-tuned models using183

curated high-quality trajectories, reinforcement learning from the base model consistently yielded the184

best performance and generalization.185

Our experiments are conducted in two standard environments, each reflecting real-world scenarios186

that require multi-turn agent interactions. The first environment is question answering with retrieval-187

augmented generation (RAG) [25, 58], where the agent must answer queries by retrieving relevant188

information from an external knowledge store (either a database or an online search engine). We189

trained on RAG with a local database (i.e., Wikipedia Corpus) and evaluated on tasks involving open190

web browsing. For QA, following Sec. 2.3, we construct multi-objective tasks and tested the model191

performance on tasks with more questions than seen in the training. The second environment is192

WebShop navigation [59], where the agent assists users in online shopping by browsing a website and193

selecting items based on natural language descriptions. This task requires the agent to iteratively read194

page content and make navigation decisions, following protocols similar to those in WebGPT [34].195

3.1 Implementation Details196

Datasets and evaluation metrics. We train two versions of MEM1 agent for both long-horizon197

QA and web navigation. For long-horizon QA, we augment the multi-hop QA dataset from [23] that198

mixes data from both HotpotQA [58] and Natural Question [25] to form a multi-objective composite199

tasks. During training, we use 2-objective task only and test the agent’s performance on tasks with200

more objectives.201
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For the web agent, we use the WebShop environment [59], which also produces a reward during202

training [63]. For all datasets, the train-test split follows the original papers. During RL training, we203

employ the exact match (EM) metric for QA tasks (details in App. A.5.1) and the environment reward204

for WebShop [59, 63]. To evaluate the effectiveness of various approaches, we measure the EM and205

F1 score for QA tasks and final reward for the WebShop environment [59, 63]. To evaluate efficiency,206

we consider the peak token usage, average dependency, and average inference time. The test datasets207

are obtained from the original papers which consist of out-of-distribution data. The former two208

metrics measure the memory efficiency, while the latter measures the time efficiency. The detailed209

definitions of the metrics are in App. A.5.1. The prompt and format can be found in App. A.4.210

Baselines. To evaluate the accuracy and efficiency of MEM1, we compare it against a diverse211

set of baselines designed to either enhance task performance or manage context effectively. For212

the QA environment, we benchmark accuracy against Search-R1 [23], DeepResearcher [68], and a213

larger-scale model, Qwen2.5-14B-Instruct [57]. Details about Search-R1 and DeepResearcher can be214

found in App. A.5.2. For the WebShop environment, we compare against Agent-FLAN [10], Agent-R215

[63], and AgentLM [65]. To assess efficiency, we consider two context compression baselines using216

models of the same parameter size as MEM1. First, we apply MEM1’s agentic truncation prompt217

template and rollout to a standard instruct model, isolating the benefits of prompt and rollout design218

alone. Second, we evaluate A-MEM [56], which augments an Instruct model with a vector database219

for memory retrieval, capturing the effect of external memory modules in agentic systems. We220

additionally train a supervised fine-tuned (SFT) model using trajectories curated from GPT-4o [35]221

based on MEM1’s rollout and compare it with the RL-trained agent.222

Meta info injection. In our agentic pipeline, the agent’s context is programmatically truncated at223

each turn—immediately after it generates a search query or an answer—following the procedure224

outlined in Sec. 2. As past context is truncated, the agent may have difficulty determining when225

to terminate. To address this, we prepend a hint [HINT: YOU HAVE {turns_left} TURNS LEFT]226

at the beginning of each observation O to remind the agent of its remaining turns budget. For all227

experiments, we set the maximally allowed turns to 6 for 1-objective to 4-objective tasks and 20 for228

more difficult tasks to avoid excessively long trajectories.229

3.2 MEM1 on Multi-Objective Multi-Hop Tasks230

One key advantage of MEM1 agents lies in their efficient management of long-horizon interactions231

with the environment. To demonstrate this, we train our MEM1 agent with a 2-objective augmentation232

of the QA dataset, and subsequently test it against other models, using held-out multi-objective test233

datasets similarly augmented from the original test datasets. As elaborated in Sec. 2.3, these multi-234

objective tasks require a significantly larger number of turns of environment interactions to complete,235

hence serving as better benchmarks for memory management. As shown in Tab. 1, when evaluated on236

2-objective datasets, MEM1 achieves better performance (in terms of EM and F1 scores) than other237

7B counterparts, while incurring significantly lower peak token usage and achieving faster inference238

time.239

The advantage of MEM1 becomes even more evident in tasks requiring longer-horizon interactive240

processes. To highlight such scalability of MEM1, we further compare the models on 3, 4, 6, 8,241

and 16-objective tasks in Fig. 3 and Tab. 1. Fig. 3 illustrates the scaling trends of task performance242

(measured by EM count) and memory efficiency (measured by Peak Token Usage) for MEM1 relative243

to other models and memory management baselines. As the number of objectives increases, the Peak244

Token Usage of all other methods and models scales nearly linearly. In contrast, MEM1 maintains245

an almost constant peak token count with only a slight increase, as also shown in Tab. 1.246

Notably, while MEM1 initially underperforms Qwen2.5-14B-Instruct, its performance gradually247

catches up as the number of objectives increases, eventually surpassing the 14B model, which has248

double the parameter count. MEM1 also demonstrates remarkable efficiency. In the 16-objective249

task, it requires only 27.1% of the peak tokens and 29.3% of the total inference time compared to250

Qwen2.5-14B-Instruct. This efficiency translates to significantly reduced GPU memory requirements251

and overall computing resource demands.252
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Figure 3: Performance and efficiency scaling of MEM1 (trained on 2-objective QA) with the number
of objectives in multi-objective tasks. MEM1 outperforms the other models and baselines while
having an almost constant scaling in memory usage. Note that at 16-objective, the context of baseline
models does not increase anymore since their model performance has degraded (some collapsed).

Table 1: Comparison of models on multi-objective multi-hop QA tasks. Arrows indicate the desired
directions. Numbers in red indicate collapsed model behavior (extremely low performance). (truncate)
means using MEM1’s prompt and rollout pipeline. (A-MEM) means using MEM1’s prompt and
rollout pipeline with A-Mem’s external memory module [56]. MEM1-QA means MEM1 trained on
2-objective QA task.
Model 2-Objective 8-Objective 16-Objective

EM ↑ F1 ↑ Peak (×102) ↓ Time (s) ↓ EM ↑ F1 ↑ Peak (×102) ↓ Time (s) ↓ EM ↑ F1 ↑ Peak (×102) ↓ Time (s) ↓

Qwen2.5-14B-Inst 0.732 0.902 15.6±0.19 5.49 ± 0.16 1.55 1.87 44.7 ± 0.37 16.2 ± 0.27 0.567 0.703 38.4±0.71 29.7±0.75
Qwen2.5-7B-Inst 0.268 0.366 19.6±0.33 4.60±0.08 0.87 1.10 49.5±0.40 13.9±0.18 0.165 0.213 43.3±0.62 15.5±0.23
Qwen2.5-7B-Inst (A-MEM) 0.286 0.371 14.1±0.10 24.6±0.51 1.13 1.43 18.6±0.10 53.7±1.26 0.730 0.961 18.8±0.14 91.2±2.44
Qwen2.5-7B-Inst (truncate) 0.262 0.336 8.28±0.06 5.89±0.16 0.97 1.23 11.8±0.10 11.9±0.20 0.396 0.497 13.3±0.16 22.1±0.60
Search-R1 0.452 0.531 13.0±0.08 4.09 ± 0.23 0.064 0.08 24.7 ± 0.19 4.25±0.16 0.009 0.011 20.9±0.03 4.75±0.18
DeepResearcher 0.536 0.650 22.0±0.43 4.01±0.07 0.73 0.90 51.8±0.35 11.3±0.14 0.071 0.106 48.9±0.66 15.8±0.19
MEM1-QA 0.709 0.838 6.40±0.02 6.49 ± 0.07 1.87 2.31 8.01±0.06 8.68±0.12 1.97 2.39 10.4±0.09 8.70±0.12

3.3 MEM1 on Single-Objective Multi-Hop Tasks253

While MEM1 is designed to train agents for very long-horizon tasks, our training method also254

delivers improved capability with existing multi-hop tasks while achieving much greater efficiency at255

the same time, all without being explicitly trained on the single-objective versions of these tasks. Note256

that single-objective tasks also require multiple turns of interaction to produce the desired output.257

Long-horizon web navigation in WebShop. Beyond QA tasks, we further evaluate the effective-258

ness of MEM1 in managing long-horizon interactions in the form of web navigation. We show259

the experimental results in Tab. 2. Trained in the WebShop environment (see App. A.7), MEM1260

outperforms other agent training baselines, including Agent-Flan, Agent-R, and AgentLM when261

utilizing models of similar size. Furthermore, MEM1 achieves remarkable efficiency improvements262

compared to the best baseline method, AgentLM, featuring a 2.8× improvement in Peak Token Usage,263

a 1.9× improvement in Dependency, and a 1.5× improvement in Inference Time. MEM1 even264

surpasses AgentLM-13B, a model with twice the parameter count of our trained model. Additionally,265

our results indicate that using MEM1 is significantly better than OpenAI’s GPT-4o on the WebShop266

tasks, even when the truncation prompt templates or A-MEM techniques are applied to GPT-4o.267

Single-objective QA in Wikipedia. Tab. 3 presents the accuracy and efficiency metrics for evalua-268

tions on single-objective QA tasks on Wikipedia [23], where the agent can make retrieval requests269

from the Wikipedia datastore via RAG. The MEM1 used in this evaluation is the same as the one270

detailed in Sec. 3.2, which is trained solely on a 2-objective task. Overall, MEM1 demonstrates271

superior efficiency across all three evaluated efficiency metrics, while simultaneously achieving the272

highest EM score and an F1 score comparable to that of Qwen2.5-14B-Instruct. This improvement in273

efficiency is attributed to the MEM1 agent’s ability to consolidate memory from previous interactions274
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Table 2: The experimental results for WebShop. For a fair comparison, we do not report GPT’s
inference time. For Agent-R, scores are taken from the original paper, as the model is closed source.
MEM1-WebShop means MEM1 trained on WebShop environment.
Model Avg Final Reward ↑ Peak Token (×103) ↓ Dependency (×106) ↓ Inference Time Per Traj (s) ↓
GPT-4o 25.48 5.30± 1.23 3.99± 1.16 N/A
GPT-4o (truncate) 13.82 0.99± 0.99 0.81± 0.23 N/A
GPT-4o (A-MEM) 24.50 1.84± 0.06 0.31± 0.11 N/A

Qwen2.5-7B-Instruct 18.42 5.64± 1.34 3.38± 0.89 12.31± 1.82
Qwen2.5-14B-Instruct 12.34 5.44± 0.92 3.30± 0.61 18.17± 2.32
Agent-FLAN-7B 40.35 3.37± 1.12 2.18± 1.62 9.95± 6.19
Agent-R-8B 63.91 N/A N/A N/A
AgentLM-7B 63.60 2.24± 0.40 0.28± 0.07 3.91± 1.07
AgentLM-13B 70.80 2.36± 0.46 0.30± 0.08 5.23± 1.59

MEM1-WebShop 70.87 0.81 ± 0.10 0.15 ± 0.16 2.61 ± 0.48

Table 3: Performance comparison across environments for single-objective tasks. Arrows indicate
the desired direction. (SFT) means training with SFT and applying MEM1’s prompt and rollout.
Note that DeepResearcher is specifically trained on the single-objective Online Web-QA task with
F1 score as the optimization objective, and Search-R1 is specifically trained on the single-objective
Wiki-RAG task with EM as the objective.
Environment System EM ↑ F1 ↑ Peak Token (×102) ↓ Dependency (×105) ↓ Inference Time ↓

Wiki RAG

Qwen2.5-7B-Inst (truncate) 0.287 0.382 6.28± 0.05 1.65± 0.04 2.26± 0.04
Qwen2.5-7B-Inst (A-MEM) 0.246 0.373 8.47± 0.12 0.92± 0.03 11.2± 0.40
Qwen2.5-7B-Inst 0.269 0.390 9.32± 0.19 1.17± 0.04 2.31± 0.04
Qwen2.5-14B-Inst 0.422 0.534 8.89± 0.21 2.22± 0.10 6.73± 0.24
Search-R1 0.445 0.516 11.0± 0.25 1.50± 0.05 2.23± 0.14
DeepResearcher 0.419 0.503 13.3± 0.34 7.04± 0.33 3.86± 0.09
MEM1-QA (SFT) 0.302 0.358 6.54± 0.05 3.30± 0.13 4.84± 0.21
MEM1-QA 0.405 0.471 5.63± 0.03 0.76± 0.02 3.79± 0.07

Online Web-QA
Qwen2.5-7B-Inst 0.334 0.451 8.37± 0.18 1.39± 0.06 2.20± 0.04
DeepResearcher 0.372 0.492 10.27± 0.19 2.86± 0.14 2.87± 0.06
MEM1-QA 0.397 0.485 5.79 ± 0.06 0.44 ± 0.02 1.84 ± 0.03

into a compact internal state, which reduces the number of tokens used in the context. We also275

observe that SFT significantly underperforms RL, highlighting the necessity for RL-based training.276

Zero-shot transfer to Online Web-QA. To validate the transferability and generalizability of the277

trained MEM1 agent, we perform a zero-shot transfer to an online web-QA environment, which278

is unseen by the agent. In this environment, agents conduct web searches through an API service279

that returns results including titles, snippets, and URLs. As shown in Tab. 3, MEM1 consistently280

exhibited improved efficiency alongside comparable effectiveness in this unseen setting via zero-shot281

transfer.282

4 Analysis on Emergent Agent Behaviors283

Through analyzing MEM1’s multi-turn interaction traces trained on 2-objective QA, we observe284

a range of emergent behaviors that are critical for handling long-horizon, multi-objective tasks,285

demonstrating capabilities well beyond simple retrieval. First, MEM1 learns to manage multiple286

questions concurrently by maintaining a structured internal state. As shown in Fig. 7(a), when287

faced with two multi-hop questions, the agent is able to store and update memory for each question288

separately, guiding subsequent searches based on the identified information gaps. In (b), MEM1289

exhibits the ability to shift focus when progress on one question stalls, recognizing difficulty and290

prioritizing the more tractable objective. Meanwhile, MEM1 learns to interleave reasoning and291

memory in internal state, weaving important information into its decision-making process to support292

both information retention and action selection. As shown in (c) in Fig 7, MEM1 explicitly extracts293

important information from previous search results and leverages them to formulate the next query294

that best addresses the current information gap. In addition, (d) shows that when new, relevant295

information is retrieved, MEM1 explicitly reasons about its significance and selectively updates its296

memory. We believe that learning these interleaved behavior is the key for the success of achieving297
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Figure 4

efficiency gain in memory without degrading the performance. Beyond behaviors unique to our298

multi-objective setup and memory architecture, MEM1 also exhibits several general-purpose search299

strategies. In (e), the agent performs self-verification, correcting an earlier misconception and issuing300

a new query for confirmation. In (f), it decomposes complex queries into manageable subgoals301

before initiating search. In (g), for questions that require multi-turn information gathering, MEM1302

extracts key information from search results and uses it to inform the next search. In (h), when overly303

specific queries fail, MEM1 generalizes its search scope to improve retrieval. Notably, many of these304

behaviors, including verification, making plan, and iterative search, have also been observed and305

reported in recent studies on deep research agents [23, 68].306

5 Conclusion, Limitations, and Future Work307

We introduced MEM1, a reinforcement learning framework that enables language agents to perform308

long-horizon reasoning with consolidated memory. By integrating inference-time reasoning and309

memory consolidation into a unified internal state, MEM1 addresses the scalability challenges of310

prompt growth and achieves competitive performance across QA and web navigation benchmarks,311

with substantially reduced memory usage and inference latency. Despite these advantages, MEM1312

assumes access to environments with well-defined and verifiable rewards. While this assumption313

holds in domains such as QA, math, and web navigation, many open-ended tasks present ambiguous314

or noisy reward structures. Fully realizing the potential of MEM1 therefore requires advances in315

modeling such tasks and designing suitable reward mechanisms—challenges that lie beyond the316

scope of this work. A promising future direction is to explore methods for training MEM1 agents in317

these open-ended settings where reward signals are sparse, delayed, or implicit.318
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A Details of MEM1551

A.1 Related Work552

LLM agents in multi-turn environment. LLM-based agents have evolved from handling single-553

turn queries to serving as autonomous agents capable of multi-turn interactions such as web navi-554

gation [59, 69] and complex research [68]. To enable such capabilities, Yao et al. [60] introduced555

the ReAct (i.e., Reason + Act) framework, which enhances LLMs’ ability to interact with external556

environments by interleaving reasoning and action. Building on this reasoning-acting prompting557

paradigm, subsequent works have explored ways to improve agent performance through natural558

language feedback, enabling iterative refinement [44, 31]. Recently, inference-time scaling has559

emerged as a promising direction for enabling complex reasoning, with prior research incorporating560

evaluators (e.g., verifier, reward model) [45, 30] or world models [8]. In addition, there are two major561

lines of training approaches: (1) behavior cloning (BC), which involves imitating expert trajectories562

to guide agent behavior by supervised fine-tuning (SFT) [61, 15, 11], and (2) reinforcement learning563

(RL), which optimizes agent policies by incentivizing desirable outcomes through rewards [46, 4, 38].564

These methods aim to align the agents’ behaviors with task objectives, enabling more robust and565

generalizable performance.566

Memory management for LLM agents. A widely adopted approach to memory management567

in LLM-based agent systems involves appending all prior information, such as observations, inter-568

mediate thoughts, and actions, into the prompt at each interaction turn [60]. While this method569

is straightforward and effective when the number of interactions required is small, it results in570

unbounded context growth, leading to linearly scaled inference memory. Moreover, long contexts571

often contain irrelevant or redundant information, which impairs the model’s reasoning capabili-572

ties [2, 29, 55]. To mitigate these issues, recent studies have proposed external memory frameworks,573

including retrieval-augmented generation and summarization modules [62, 28, 12, 56]. However,574

these methods are typically trained or used independently of the agent’s policy, creating a disconnect575

between memory and the reasoning process. In addition, managing and integrating such modules576

often incurs extra computational overhead and system complexity. Despite these advancements, many577

RL approaches for training LLM agents still rely on accumulating the full interaction history as578

memory [23, 68, 38], leaving memory management during training an underexplored area. In this579

work, we seek to bridge this gap by tightly integrating memory with the agent’s reasoning process,580

thereby enabling more efficient and context-aware decision-making.581

A.2 Computing Resources and Training Details582

All trainings of MEM1 are conducted on 4 H100 or H200 GPUs. We use the veRL framework [43]583

for RL and Swift [13] for SFT. For RL, both the data batch size and mini batch size are set to 64.584

Learning rate is set to 10−6 for the actor model and 10−5 for the critic model with a linear warmup585

of 50 steps. Temperature is set to 1 during training and 0.01 during inference.586

All evaluations are conducted on a single H200 GPU, which serves the respective models as an API587

service using the vLLM framework [26] with automatic prefix caching enabled.588

A.3 RAG Configuration589

For RAG on local Wiki corpus, we use Faiss-GPU [16] serving an E5 Base model [53]. The Wiki590

corpus is taken from a Wikipedia 2018 dump [24]. The number of passages for each retrieval is set to591

3 for a fair comparison with other methods.592

For online web search queries, we use Serper API [41], which offers Google search results including593

titles, snippets, and URLs. For each search, we return the top 10 results to the agent as external594

information. We do not ask the agent to retrieve the content of specific webpages.595
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A.4 Prompts596

Prompt 1: Multi-Objective Task (QA)

You will answer multiple complex questions using iterative reasoning,
summarization, and web search.

At each step, you will see the questions, a cumulative summary of
relevant information, the current search query, and search results
(except in the first step, where only the questions are provided).
Your task is to:

1. Perform reasoning and update a cumulative, concise summary
within <think> ... </think>. This acts as persistent memory and
must include all essential information from previous <think> and
<information> tags.

2. Then choose one of the following actions:
- If any question remains unanswered, issue a single query for one
question inside <search> ... </search>. The query should consist of
keywords or a short phrase. Only search one question at a time.
- If all questions are answered, provide the final answers—separated
by semicolons—within <answer> answer1; answer2; ... </answer>. The
answers must be concise, contain only essential words, and avoid any
explanations.

Important:
- Always follow this structure after <information> or the initial
questions: <think> ... </think><search> ... </search> or <think>
... </think><answer> ... </answer>.
- Do not search multiple queries or questions simultaneously.

Answer the following questions:[QUESTIONS]
597

16



Prompt 2: Single-Objective Task (QA)

You will answer a complex question through iterative reasoning,
summarization, and web searches.

At each step, you can see the question, previous summary in <think>
... </think>, search query in <search> ... </search>, and the
returned information in <information> ... </information> (except
the first step where you will be given only the question). Then, you
should:

1. Conduct reasoning, and then update a concise, cumulative summary
with essential information inside <think> </think>. This is your
persistent memory and should include all important information from
previous <think> </think> and <information> </information> (i.e.
information and answers already found for questions).

2. Then choose one:
- Issue a query (i.e., key words / phrases for search) inside <search>
</search> (you may search repeatedly until the answer is clear).
This query will be used to conduct search and return the results in
<information> results </information>
- Provide the final concise answer (no explanations) if no additional
information is needed inside <answer> </answer>. The answer should
be concise and only contain the words necessary to answer the
question.

After <information> </information> (or question at the beginning),
you should always follow the order: <think> ... </think><search> ...
</search> or <think> ... </think><answer> ... </answer>.

Question: [QUESTION]
598
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Prompt 3: Single-Objective Task (WebShop)

You are browsing an online shop. Your goal is to find a product
that matches the given description. You will interact with the site
step-by-step. Each step gives you a <state>...</state> representing
the current webpage. You must decide what action to take next until
you identify the correct product.

Available actions (shown in the <state> tag) depend on the page:
- On the search page: search[<keywords>]
- On search result pages: click[<item url>] to view a product, or
click[next >] to go to the next results page
- On product pages: click[description], click[features],
click[color], click[size], click[buy now]
- To return to search: click[back to search]

Example goal: "Find a gingko light and 20x20 pillow cover that is
hand painted." Example first action: <answer>search[gingko light
20x20 pillow cover hand painted]</answer> Only respond with valid
actions formatted as: search[...], click[...], etc.

After you navigate and find the product that best fits the user goal,
you should click[buy now] to buy the product at the product page when
the buy now button is available.

Product Description: [PRODUCT DESCRIPTION]
599

A.5 Implementation Details of Metrics and Baselines600

A.5.1 Metrics601

Exact match. In QA tasks, we use exact match (EM) as both the verifiable reward for the RL602

pipeline and the evaluation metric for the final output. The final response is extracted from between603

<answer> and </answer>. In multi-objective settings, the response should contain answers to each604

question separated by semicolons. If the XML tags are mismatched, or if the number of provided605

answers does not correspond to the number of questions, a score of 0 is assigned. Otherwise, 1 point606

is credited for each correct answer. During RL training, we do not provide any other intermediate607

rewards or format penalties, as we find that such manual interventions can interfere with the agent’s608

learning process (see more in App. D.3).609

F1 score. The F1 score computes the harmonic mean between the precision p and recall r. In the610

case of string matching, we split both the predicted answer and the ground truth. For example, if the611

ground truth is “United States of America”, it is split into a list with lower-case words: “united”,612

“states”, “of”, “america”. The same works for the predicted answer. Then, denote the number of613

common words as c. Further denote the number of words in the predicted answer as l and the number614

of words in the ground truth as g. Then, precision is calculated as p := c/l and recall is calculated as615

r := c/g. The F1 score is finally computed as616

F1 := 2× p× r

p+ r
.

If multiple ground truths are present, the maximum of all F1 scores is chosen. For multi-objective617

tasks, the final F1 is the sum of the F1 scores for each sub-question.618

Peak token usage. Peak token usage is calculated as the maximum number of tokens (using619

GPT-4o-mini tokenizer) in any single sequence throughout the agent’s entire trajectory. For fair620

comparison in our experiments, the system prompt is excluded when computing this sequence length.621

The peak token usage serves as a proxy for the inference-time memory requirement.622
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Dependency length. Following [66], the dependency metric is defined as the total number of623

historical tokens on which each generated token effectively depends. Let T denote the total number624

of interaction steps. For each step i ∈ [T ], let n(i)
p be the number of prefix tokens and n

(i)
o be the625

number of output tokens generated. The dependency metric is then calculated as626

Dependency :=
∑
i∈[T ]

(2n
(i)
o + n

(i)
p )× n

(i)
o

2
.

At a high level, this metric quantifies the cumulative computational cost associated with the generation627

of an output trajectory. It is important to note that in MEM1, prefix tokens from previous steps are628

consolidated into a new internal state, rather than being continuously accumulated. In our experiments,629

we ignore the tokens in the system prompt when calculating the dependency metric.630

Inference time. Inference time for each trajectory is recorded as the total elapsed time required to631

generate the complete output trajectory. For all experiments, these measurements are conducted on a632

single H200 GPU, operating with 10 concurrent threads. The vLLM inference framework is utilized,633

with its automatic prefix caching feature enabled.634

A.5.2 Baselines635

Search-R1. As detailed in [23], the model is trained on the 1-objective task with the same dataset636

as MEM1. Search-R1 also uses exact match as its reward function. In comparison, MEM1 is trained637

exclusively on 2-objective tasks.638

Deep Researcher. As detailed in [68], the model is trained on 1-objective task with a curated set639

from various QA datasets including HotPotQA and Natural Questions. Deep Researcher adopts the640

F1 score as the reward function.641

A.6 Algorithm642

We provide an outline of the rollout of MEM1, which actively manages its context in Alg. 1. Parts643

of the pseudo-code follow [23]. We follow [54, 14] and annotate each component using XML-style644

tags: <IS> for internal state (reasoning St), <query> for environment queries At, t < T , <answer>645

for the agent’s responses AT , and <info> for external observations or tool outputs Ot.646
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Algorithm 1 MEM1 Rollout

Require: Task prompt x, policy model πθ, world modelW , maximum turn T
Ensure: Final response y

1: Initialize rollout sequence y ← ∅
2: Initialize turn count t← 0
3: while t < T do
4: Initialize current policy rollout sequence yt ← ∅
5: while True do
6: Generate response token yr ∼ πθ(· | x, y + yt)
7: Append yr to rollout sequence yt ← yt + yr
8: if (t = T − 1) and yr ∈ [</answer>, <eos>] then
9: break // prevent the agent from searching further

10: else if yr ∈ [</query>, </answer>, <eos>] then
11: break
12: end if
13: end while
14: y ← yt // all previous context removed.
15: if <query> </query> detected in yt then
16: Extract search query q ← Parse(yt, <query>, </query>)
17: Retrieve environment feedback d←W(q) from local storage, Search engine, HTML, · · ·
18: HINT← You have {T − t} turns left.
19: Insert d into rollout y ← y + <info>HINT+ d</info>
20: else if <answer> </answer> detected in yt then
21: return final generated response y
22: else
23: Mark the sample as invalid
24: end if
25: Increment turn count t← t+ 1
26: end while
27: return final generated response y

A.7 MEM1 on Webshop Training Details647

We use the same rollout pipeline and policy update mechanism for training MEM1 on WebShop.648

Compared to the QA tasks, we use a tailored prompt that retains the gist of memory consolidation649

with instructions specific to the WebShop environment, as shown in Prompt. 3. Another distinction650

is that the WebShop environment comes with its own reward function corresponding to each state.651

Therefore, we do not use exact match but the built-in reward function as the reward signal when652

training in WebShop environment. The training and test splits also follow the original paper [59],653

with the first 1000 samples as the test set, the 1000th to 1500th as the val set, and the remaining as654

the train set.655

A.8 Additional Discussion on the Attention Matrix Design.656

We wish to note that our modification to the attention matrix does not fully recover the attention of657

the original trajectories because of the change in position ids. Specifically, prior works [27, 9, 7] that658

utilized the attention matrix to compress multiple trajectories mainly targeted tree-exploration, i.e.,659

generating multiple sequences with the same prefix. For these works, on top of the attention matrix,660

they adjusted the position ids as well, so each trajectory follows a consecutive increasing position661

ids. However, in MEM1, the prefix does not remain the same because of memory consolidation.662

This results in each <IS> having two possible position ids, one for the previous turn and one for663

the next turn. To completely recover the original attention, we need to duplicate each <IS> and664

assign different position ids to the two copies. However, such duplication can significantly slow down665

training because the training trajectories are now much longer.666

As such, for training efficiency, we do not duplicate the <IS> and assign the position ids for667

the previous trajectory to each <IS>. While this modification slightly deviates from the “ideal”668
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implementation, effectively, it can be viewed as simply adding white spaces in the training trajectories669

and has no significant impact on the experimental results.670

B Broader Impacts671

MEM1 opens up the potential to enable more scalable, efficient, and intelligent AI agents capable of672

sustaining long, goal-directed interactions in dynamic environments. As AI systems are increasingly673

deployed in complex real-world tasks—such as scientific research, legal analysis, personalized674

education, and digital customer service—models must go beyond single-turn capabilities and manage675

evolving contexts over many steps. MEM1’s memory-consolidation mechanism allows language676

models to maintain high performance without the growing computational and environmental costs677

typically associated with long-context processing. By reducing inference-time memory and compute678

demands, MEM1 paves the way for more sustainable and scalable AI deployment, making advanced679

reasoning agents accessible to a wider range of users and institutions, including those with limited680

resources. Moreover, MEM1’s unified framework of reasoning and context consolidation sets681

a precedent for future research on intelligence that can learn to adapt, reflect, and summarize682

information autonomously, inspiring more trustworthy, interpretable, and human-aligned AI systems.683

C Training Trajectory Analysis of MEM1684

Figure 5: Metrics of training progresses for MEM1 with RL.

We present the training dynamics of the 2-objective QA-trained MEM1 in Fig. 5, where several685

distinct phases emerge during the learning process. In the initial exploration phase (first 50 steps), the686

agent demonstrates little task proficiency. The reward remains consistently low, while the entropy687

loss is high, suggesting random or undirected behavior. The ratio of valid actions hovers around 0.55,688

indicating that the agent frequently fails to follow the expected output format. During this period,689

MEM1 has not yet learned to reliably use the required structure involving <query> and <answer>690

tags.691

Shortly after, we observe the onset of format acquisition. The agent gradually improves its structural692

consistency, reflected in the rising ratio of valid actions. This improved adherence to format correlates693

with an increase in reward, suggesting that proper formatting directly contributes to the agent’s task694

success. By around step 150, a notable behavioral shift occurs. The number of valid searches begins695

to drop sharply, while the reward continues to increase. This implies that the agent has discovered a696

shortcut: by reducing the number of searches—perhaps to avoid format violations—it can maintain697

high format fidelity and improve its reward without fully solving the task. This short-horizon698
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optimization suggests the agent is exploiting the reward structure, favoring formatting compliance699

over content completeness.700

Between steps 150 and 200, the agent enters a phase of refined format mastery. The ratio of valid701

actions steadily climbs, but the number of searches remains low. During this phase, reward growth702

slows, and entropy begins to flatten. The plateau in entropy indicates that the agent is looking for703

new policies to boost the reward. At this stage, the agent has reached a local optimum: it’s producing704

valid but under-informed answers.705

After step 200, a second behavioral shift occurs. The number of valid searches begins to rise again,706

suggesting that the agent is learning to extend its interaction horizon to gather more information. The707

agent learns to balance formatting constraints with information acquisition. As a result, the reward708

increases more sharply. Finally, after step 250, the agent enters a phase of policy consolidation. The709

entropy loss drops sharply—signaling a transition from exploration to exploitation—as the agent710

settles into a more deterministic, high-reward policy. By this stage, the agent effectively combines711

format compliance, sufficient searching, and high-quality answer generation.712

D Analysis on Implementation Details713

D.1 RL Generalizes Better Than SFT714

A natural question arises: can Supervised Fine-Tuning (SFT) with high-quality trajectories match715

the performance of reinforcement learning (RL)? To investigate this, we compare MEM1-QA716

trained via RL against MEM1-QA (SFT), where both models are trained on the 2-objective QA task.717

Additionally, the SFT model is further trained on 1-objective and 3-objective QA tasks to enhance718

its generalization ability. As shown in Tab. 4, the SFT model consistently underperforms compared719

to its RL counterpart across tasks with varying numbers of questions (objectives). Notably, when720

the number of objectives exceeds six, the performance of the SFT model collapses, whereas the721

RL-trained model continues to demonstrate strong robustness and scalability.722

Table 4: Comparison of RL and SFT on increas-
ing number of multi-turn questions. Exact match
scores ↑ is better. Gap shows absolute difference.
Red numbers show collapsed SFT behavior.

#Q RL ↑ SFT ↑ Gap ↑ RL Gain (%) ↑

1 0.410 0.300 0.110 +36.7%
2 0.709 0.433 0.276 +63.7%
3 0.976 0.648 0.328 +50.6%
4 1.120 0.626 0.494 +78.9%
6 1.630 0.088 1.542 +1752%
8 1.870 0.027 1.843 +6826%

16 1.900 0.000 1.900 —
Figure 6: Training curves comparing MEM1
trained with and without format reward.

D.2 Format Reward Accelerates Convergence but Degrades Final Performance723

It is common to incorporate format reward when training reasoning models and multi-turn reasoning724

agents [14, 68, 23]. In our study, we experimented with a format reward that enforces the agent to725

produce outputs using specific structural tags: <IS>, <query>, and <answer>. If the agent fails to726

use the expected tags correctly, the turn is terminated and a penalty of -1 is applied.727

As shown in Fig. 6, using the format reward leads to faster convergence during training but results728

in worse final performance. The format-constrained agent achieves an exact match score of 0.466,729

compared to 0.709 for MEM1 trained with only outcome-based reward on the same testing set for730

the 2-objective QA task. Additionally, the format-constrained agent generates fewer tokens, with an731

average peak of 514.9 tokens, whereas the outcome-reward-trained MEM1 reaches an average peak732

of 640 tokens.733
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Figure 7: Snippets of internal states and actions showing MEM1’s Emergent Behaviors in 2-objective
QA tasks. Light Blue denotes behaviors related to multi-objective tasks. Beige denotes behaviors
related to memory in internal state. Pastel Green denotes behaviors related to general search strategies.

We hypothesize that the format reward accelerates structural learning but constrains exploration of734

effective reasoning strategies. As a result, the agent learns to produce shorter responses with valid735

syntax but develops less effective internal state representations, leading to degraded task performance.736

D.3 Analysis on Emergent Agent Behaviors737

Through analyzing MEM1’s multi-turn interaction traces trained on 2-objective QA, we observe738

a range of emergent behaviors that are critical for handling long-horizon, multi-objective tasks,739

demonstrating capabilities well beyond simple retrieval. First, MEM1 learns to manage multiple740

questions concurrently by maintaining a structured internal state. As shown in Fig. 7(a), when faced741

with two multi-hop questions, the agent stores and updates memory for each question separately,742

guiding subsequent searches based on the identified information gaps. In (b), MEM1 exhibits the743

ability to shift focus when progress on one question stalls, recognizing difficulty and prioritizing the744

more tractable objective. Meanwhile, MEM1 learns to interleave reasoning and memory in its745

internal state S’s, weaving important information into its decision-making process to support both746

information retention and action selection. In Fig. 7 (c), MEM1 explicitly extracts important infor-747

mation from previous search results and leverages it to formulate the next query that best addresses748

the current information gap. In addition, (d) shows that when new, relevant information is retrieved,749

MEM1 explicitly reasons about its significance and selectively updates its memory. We believe that750

learning these interleaved behaviors is key to achieving efficiency gains in memory without degrading751

performance. Beyond behaviors unique to our multi-objective setup and memory architecture, MEM1752

also exhibits several general-purpose search strategies. In (e), the agent performs self-verification,753

correcting an earlier misconception and issuing a new query for confirmation. In (f), complex queries754

are decomposed into manageable subgoals before initiating the search. In (g), for questions requiring755

multi-turn information gathering, MEM1 extracts key information from search results and uses it756

to inform the next search. In (h), when overly specific queries fail, MEM1 re-scopes its query to757
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improve retrieval. Notably, many of these behaviors, including verification, making a plan, and758

iterative search, are also reported in recent studies on deep research agents [23, 68].759
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