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Abstract

Modern language agents must operate over long-horizon, multi-turn interactions,
where they retrieve external information, adapt to observations, and answer in-
terdependent queries. Yet, most LLM systems rely on full-context prompting,
appending all past turns regardless of their relevance. This leads to unbounded
memory growth, increased computational costs, and degraded reasoning perfor-
mance on out-of-distribution input lengths due to LLM forgetting the context. We
introduce MEM1, an end-to-end reinforcement learning framework that enables
agents to operate with constant memory across long multi-turn tasks. At each
turn, MEM 1 updates a compact shared internal state that jointly supports mem-
ory consolidation and reasoning. Leveraging reinforcement learning (RL) and
rollout trajectory truncation, we train a MEM1 agent to develop internal states
that integrate prior memory with new observations from the environment while
strategically discarding irrelevant or redundant information. Moreover, to cope
with the lack of open-source long-reasoning datasets and support training in more
realistic and compositional settings, we propose a simple yet effective and scalable
approach to constructing multi-turn environments by composing existing datasets
into arbitrarily complex task sequences. Experiments across three domains, includ-
ing internal retrieval QA, open-domain web QA, and multi-turn web shopping,
show that MEM 1-7B improves performance by 3.5x while reducing memory
usage by 3.7x compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop
QA task, and generalizes beyond the training horizon. Our results demonstrate
the promise of reasoning-driven memory consolidation as a scalable alternative to
existing solutions for training long-horizon interactive agents, where both efficiency
and performance are optimized.

1 Introduction

Large language models (LLMs) have shown remarkable performance in single-turn tasks such
as question answering, summarization, and code generation [6, 50, 3]. However, emerging real-
world applications increasingly operate over multiple turns—searching documents, interacting with
environments [69], and making decisions based on evolving external information [52]. Examples
include research agents such as OpenAl and Gemini Deep Research [36, 17] that automate complex
tasks by iteratively gathering information, and web-navigation agents such as OpenManus [49] and
BrowserUse [33], which must complete goals across dozens of interactive turns.

Unlike traditional tasks where the input is static or self-contained, long-horizon settings often
involve answering a sequence of related questions, requiring the agent to continuously retrieve new
information, revise beliefs, and adapt to evolving contexts over time. For instance, consider a research
assistant tasked with “What’s the evidence for X?”. Subsequent queries like “Who published it?”
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Figure 1: Comparison of memory management between MEM1 and existing reasoning agents.
While existing agents for long-horizon tasks [23, 63, 68] continuously append thoughts, actions, and
observations, resulting in an ever-growing context, our MEM1 agent learns to keep updating an
internal state that blends thought and memory, discarding the contents from previous steps to achieve
constant memory usage during the task. On the other hand, while existing environments and datasets
focus on single-objective tasks, our task augmentation method effectively scales up these tasks to
enable long-horizon agent training.

require further information retrieval, while “Is the source credible?” calls for self-reflection and
assessment. Each query builds on the previously collected and accumulated information. Similarly, a
shopping assistant may be first asked “Which product is cheapest?”, then “What are its reviews?”,
and “Is it compatible with my device?”. These interactions span multiple turns, featuring evolving
contexts and compound reasoning.

In long-horizon systems, a common strategy is to append all past observations, actions, and thoughts
to the context at each step [54, 60]. This creates three challenges. (1) Growing inference cost
and memory usage. Transformer-based LLMs scale with O(N?) compute (or O(N) with KV
caching) and O(N) memory as context length N grows [51], forcing deployments to reserve large
GPU memory and often wasting resources [26, 67]. (2) Generalization limits beyond the training
horizons. Contexts longer than those seen during training push the model out-of-distribution,
reducing its ability to reason reliably [62]. (3) Overloaded context and forgetting. Redundant or
irrelevant content dilutes attention and makes the model prone to forgetting important details, even
when they remain technically available in the context [2, 29, 55].

Recent progress in long-context modeling largely targets static inputs (e.g., long documents) and
does not address multi-turn interaction with external environments [5, 18]. Some other approaches
introduce external memory modules (e.g., summarizers or retrievers) [62, 28, 12, 56], but these are
typically trained separately and cannot be optimized end-to-end with the agent’s policy. This also
introduces additional engineering overhead, as engineers must manage and integrate two separate
models. Meanwhile, existing works on tool-using agent systems trained with reinforcement learning
leave memory management unsolved, letting the prompt length grow unboundedly [23, 68]. A natural
question is raised: Can a language model learn to consolidate its memory as part of its reasoning
process so that it retains only what is essential for solving the task?

Motivated by this question, we present MEM 1: Memory-Efficient Mechanism via learning 1-step
integrated reasoning and consolidation—a method for training LLM agents that maintain constant
memory usage across arbitrarily long horizons. As illustrated in Fig. 1, at each turn, the model updates
a consolidated state composed of prior memory and newly obtained information. This consolidated
state becomes the agent’s only retained memory, allowing all observations obtained via external
tool use to be discarded after use, which prevents prompt expansion altogether. A key insight of
our method is that inference-time reasoning [54, 14, 32, 64] serves two purposes: while reasoning
about the current query, the model also extracts and stores the essential information it needs for
the future. By unifying reasoning and memory consolidation, MEM 1 enables the agent to both
reason and remember within a shared representational space, without requiring extra modules or
architectural changes. We train this behavior end-to-end with reinforcement learning (RL) [47, 70],



71
72
73

74
75
76
77
78
79
80
81
82
83
84
85

86

87
88
89
90
91
92
93
94
95
96
97
98

99
100
101
102

103

104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121

optimizing for task success via verifiable rewards [42]. Although not explicitly optimized for memory
efficiency through reward signals, the agent learns to manage memory as part of its policy, resulting
in near-constant memory usage across long horizons.

We further observe that most existing training and evaluation environments focus on single-objective
tasks [25, 58, 37], which fail to capture the complexity of real long-horizon scenarios that naturally
involve multiple sequential objectives. To address this limitation, we introduce a scalable task
augmentation strategy that transforms standard single-objective QA datasets into multi-objective
settings by composing N multi-hop questions. In our experiments, we therefore evaluate MEM 1
across (i) retrieval-augmented QA and open-domain Web QA tasks both augmented into multi-
objective form, and (ii) the WebShop environment [59]. Across these diverse settings, MEM 1
consistently matches or exceeds the performance of leading baselines while achieving efficiency
gains of up to 3.5x in memory usage. Moreover, agents trained on our 2-objective augmented tasks
generalize robustly to much harder cases with up to 16 sequential objectives. At this extreme, MEM 1
not only outperforms all baselines in accuracy but also reduces peak memory usage by 1.27x and
accelerates inference by 1.78x relative to the strongest uncollapsed baseline.

2 MEM1

Complex reasoning tasks often require an iterative process of information gathering and synthesis, as
seen in applications such as “deep research” [36, 22] and web-based agents [34, 19]. We consider
an interactive agent operating in a multi-turn environment with vocabulary space V. The generation
process of an agent is defined as a Markov Decision Process (MDP) parameterized by (S, A, 7,r),
where A represents the action space, S represents the state space, 7 : S X A x § — [0, 1] is the
transition distribution (i.e., the policy), and  : S — R is the reward function. A trajectory generated
by a policy 7 is denoted with 7 := {(a¢, s¢)|t € {1,2,...,|7|}}. Ateach step t, the agent receives
an observation O; € A% (from external tools, APIs, or the environment), maintains an internal state
S; € AT (reasoning history and memory), and produces an action A; € A" (e.g., answering a
question or issuing a query), where AT represents the set of sequences of a € A. The agent’s goal is
to maximize task success across long-horizon trajectories while keeping the retained context bounded.
Formally, let r : VV — R be the reward function. The learning problem is

argmaxy EQeo romy o [Z(at’me r(st)} ,

where 7 = (S;, 4, Oi)?;ll N (Sy, A,) is a trajectory sampled from policy mg o with n turns and Q
refers to the set of questions. In this work, we primarily consider tasks with verifiable rewards (i.e., r
is a rule-based mapping). A long, multi-turn reasoning task is characterized a large n, requiring the
agent to iteratively perform a long series of searches and reasoning to derive the answer A,,.

2.1 Memory as Part of Reasoning

To achieve a constant memory, MEM 1 is particularly trained to iteratively refine its understanding
by processing new information in conjunction with a consolidation of its prior state. At each turn
1, the agent produces a new .S;, which summarizes past information and reasons about subsequent
actions. Following this, the agent generates an action A;—a subsequent query or the answer if a direct
response is warranted. If the agent issues a query, the corresponding feedback from the environment
O; is appended to the trajectory. At the next turn, ¢ + 1, the agent consolidates the tuple (S;, 4;, O;)
into a new S;11, which serves as the basis for further interactions. After each turn, (S;, A;, O;)
is pruned from the context, effectively compressing memory and preventing prompt bloat. Fig. 2
(bottom left) illustrates the evolution of the model’s context over time. At each turn, the agent retains
at most two S’s, two A’s, and one O, ensuring bounded and efficient memory usage. The detailed
rollout algorithm is in Alg. 1 of App. A.6.

RL offers a powerful mechanism for shaping agent behavior through reward signals [48]. In MEMI,
we leverage this framework to incentivize effective state consolidation by designing environments
in which the agent is rewarded only when it strategically retains and integrates useful information.
Specifically, we construct tasks that require numerous interactions with the environment to arrive
at a correct answer (see Sec. 2.3). Success depends on the agent’s ability to rely on information
collected along the inference path. At each turn, we prune the agent’s context to retain only the most
recent internal state .S, forcing the agent to perform memory consolidation as part of its reasoning
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Figure 2: (Top): the RL pipeline used to train MEM 1. (Bottom left): The evolution of context in
MEM 1-old internal states (.5), query/answer (A), and external information (O) are cleared as new
states enter the context. The mechanism is used in the rollout. (Bottom right): the 2D attention mask
used during the objective computation stage. The mask is applied during the forward pass to compute
action log-probabilities for the actor model and state value estimates for the critic model. During the
policy update stage, the information mask is then applied to the full trajectory, masking out tokens
that were not generated by the model itself.

process. Without access to full historical context, the agent must learn to preserve and update relevant
knowledge internally in order to reap the reward. This learning procedure mirrors how humans
cultivate memorization skills through structured tasks such as Sudoku or crosswords [1], where
success hinges on selectively attending to key information and building upon it. Over time, such
tasks help individuals develop cognitive strategies that jointly support efficient memorization and
reasoning, similar to our RL method for training MEM 1.

2.2 Masked Trajectory for Policy Optimization

Popular RL algorithms [40, 21] update the policy with policy gradient, which requires the calculation
of Vgmg g(at,s:). For LLM, mg q(at, s¢) is viewed as the logit of the output a; of the model,
where the input is s;. Existing RL frameworks typically compute the Vymg g (ay, s¢)’s for all pairs
(at, s¢) € T by passing the entire rollout trajectory 7 through the LLM once (i.e., prefilling). However,
as MEM1 dynamically consolidates its context, the tokens a; do not belong to one single trajectory 7.
A naive solution is to break each turn into a sub-trajectory 7; = (S;, A;, O;), where i represents the
ith interaction turn. However, this approach introduces difficulties (at least implementation-wise) in
computing the temporal difference 6; = r(s;) + V(st4+1) — V(s¢) for the last token in the current
sub-trajectory 7;, as V (s41) is calculated in a separate sub-trajectory 7;, j # . Here V : S — R is
the value function.

To overcome this challenge, we introduce a masked trajectory that compresses {71, 72, ..., T}
for a task with n turns into a consolidated full trajectory Tr,u = (71,72,...,7n)

(S1,A1,01,55,A2,04,...,5,,A,). The full trajectory encodes all information needed for ac-
curate policy learning while respecting MEM 1’s memory consolidation at each turn. Note that
Tral is a “stitched* trajectory where the S;’s and A;’s do not belong to the same roll-out. As
such, to ensure that policy gradients Vgmg ¢(at, s¢) are correctly computed under this consol-
idated memory regime, we apply a two-dimensional attention mask [39] across 7y,;;. This
mask restricts each token’s attention to only the tokens retained in memory at the time that
token was generated. Specifically, let the attention mask for the tth token in the ¢th turn be
Attng = Loc(s; 1, Ai_1,0i-1,5:,45,0:} X Lac{ax|ke{1,2,...,.t}}- We can compute the policy for the
ith turn 7, . (at, 5¢) = T0,Q, 7/ (a1, 8¢ X Attng) and V7., accordingly. Algorithmically, this can
be achieved by first constructing the attention mask Mask = (Attny, ..., Attny) and masking the



151
152

153

154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176

177
178
179
180
181
182
183
184
185

186
187
188

190
191
192
193
194
195

197
198
199
200
201

attention matrix during the transformer forward. Fig. 2 (bottom right) shows the masking mechanism
that enables stable and accurate policy optimization under MEM 1’s memory-constrained execution.

2.3 Multi-Objective Task Design

Although our proposed method is designed to address the critical challenges of agentic multi-
turn interaction with the external world, there are limited publicly available datasets that support
training for such long-horizon interactive processes. Existing benchmarks, such as HotpotQA [58],
Bamboogle [37], and 2wiki [20], are often cited as multi-hop benchmarks, yet they typically involve
only two information-seeking steps. Moreover, these datasets are not explicitly structured to support
long-horizon interactions that necessitate the agent to manage the memory state.

To bridge this gap, we introduce a novel task—multi-objective question answering (QA)—that
extends the number of reasoning steps required to solve a problem. Building on existing multi-turn
datasets such as HotpotQA and Natural Questions [58, 25], we interleave multiple questions from the
original QA corpus and construct a single composite query that requires answering all constituent
sub-questions, shown in Prompt 1 of App. A.4. Unlike standard multi-hop QA, this formulation
compels the agent to (i) issue multiple search queries, each targeting a distinct sub-question, and
(ii) organize the sub-answers into a coherent final response. The augmented dataset inherits the
multi-turn retrieval tasks presented in the original HotpotQA. Additionally, to test the agent’s long-
turn processing capability, our multi-objective QA combines multiple multi-hop questions into a
grand objective and tasks the agent to answer all the questions combined. For instance, the original
HotpotQA dataset contains the following two questions: “Which magazine was started first Arthur’s
Magazine or First for Women?” and “The Oberoi family is part of a hotel company that has a head
office in what city?”. An augmented task is then: “Answer each of the following questions: “Which
magazine was started first Arthur’s Magazine or First for Women?” and “The Oberoi family is part of
a hotel company that has a head office in what city?” Organize your final answer in <answer> and
</answer> and separate the answer to each question with semicolon.

3 Experiments & Results

We empirically demonstrate the effectiveness of our approach in training the MEM1 agent to
perform multi-turn tasks while preserving a near-constant-sized memory state. We evaluate MEM 1
against several baselines using a comprehensive set of metrics categorized into accuracy (e.g., Exact
Match, F1 score, Environment Reward) and efficiency (e.g., Peak Token Usage, Dependency Length,
Inference Time). All MEM 1 variants are fine-tuned from the Qwen2.5-7B Base model [57]. We use
PPO [40] as the RL algorithm as it computes token-level advantages, bringing stability to the training
process. While we also experimented with instruction-tuned and supervised fine-tuned models using
curated high-quality trajectories, reinforcement learning from the base model consistently yielded the
best performance and generalization.

Our experiments are conducted in two standard environments, each reflecting real-world scenarios
that require multi-turn agent interactions. The first environment is question answering with retrieval-
augmented generation (RAG) [25, 58], where the agent must answer queries by retrieving relevant
information from an external knowledge store (either a database or an online search engine). We
trained on RAG with a local database (i.e., Wikipedia Corpus) and evaluated on tasks involving open
web browsing. For QA, following Sec. 2.3, we construct multi-objective tasks and tested the model
performance on tasks with more questions than seen in the training. The second environment is
WebShop navigation [59], where the agent assists users in online shopping by browsing a website and
selecting items based on natural language descriptions. This task requires the agent to iteratively read
page content and make navigation decisions, following protocols similar to those in WebGPT [34].

3.1 Implementation Details

Datasets and evaluation metrics. We train two versions of MEM 1 agent for both long-horizon
QA and web navigation. For long-horizon QA, we augment the multi-hop QA dataset from [23] that
mixes data from both HotpotQA [58] and Natural Question [25] to form a multi-objective composite
tasks. During training, we use 2-objective task only and test the agent’s performance on tasks with
more objectives.
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For the web agent, we use the WebShop environment [59], which also produces a reward during
training [63]. For all datasets, the train-test split follows the original papers. During RL training, we
employ the exact match (EM) metric for QA tasks (details in App. A.5.1) and the environment reward
for WebShop [59, 63]. To evaluate the effectiveness of various approaches, we measure the EM and
F1 score for QA tasks and final reward for the WebShop environment [59, 63]. To evaluate efficiency,
we consider the peak token usage, average dependency, and average inference time. The test datasets
are obtained from the original papers which consist of out-of-distribution data. The former two
metrics measure the memory efficiency, while the latter measures the time efficiency. The detailed
definitions of the metrics are in App. A.5.1. The prompt and format can be found in App. A.4.

Baselines. To evaluate the accuracy and efficiency of MEM 1, we compare it against a diverse
set of baselines designed to either enhance task performance or manage context effectively. For
the QA environment, we benchmark accuracy against Search-R1 [23], DeepResearcher [68], and a
larger-scale model, Qwen2.5-14B-Instruct [57]. Details about Search-R1 and DeepResearcher can be
found in App. A.5.2. For the WebShop environment, we compare against Agent-FLAN [10], Agent-R
[63], and AgentL.M [65]. To assess efficiency, we consider two context compression baselines using
models of the same parameter size as MEM 1. First, we apply MEM 1’s agentic truncation prompt
template and rollout to a standard instruct model, isolating the benefits of prompt and rollout design
alone. Second, we evaluate A-MEM [56], which augments an Instruct model with a vector database
for memory retrieval, capturing the effect of external memory modules in agentic systems. We
additionally train a supervised fine-tuned (SFT) model using trajectories curated from GPT-40 [35]
based on MEM 1’s rollout and compare it with the RL-trained agent.

Meta info injection. In our agentic pipeline, the agent’s context is programmatically truncated at
each turn—immediately after it generates a search query or an answer—following the procedure
outlined in Sec. 2. As past context is truncated, the agent may have difficulty determining when
to terminate. To address this, we prepend a hint [HINT: YOU HAVE {turns_left} TURNS LEFT]
at the beginning of each observation O to remind the agent of its remaining turns budget. For all
experiments, we set the maximally allowed turns to 6 for 1-objective to 4-objective tasks and 20 for
more difficult tasks to avoid excessively long trajectories.

3.2 MEMI1 on Multi-Objective Multi-Hop Tasks

One key advantage of MEM 1 agents lies in their efficient management of long-horizon interactions
with the environment. To demonstrate this, we train our MEM 1 agent with a 2-objective augmentation
of the QA dataset, and subsequently test it against other models, using held-out multi-objective test
datasets similarly augmented from the original test datasets. As elaborated in Sec. 2.3, these multi-
objective tasks require a significantly larger number of turns of environment interactions to complete,
hence serving as better benchmarks for memory management. As shown in Tab. 1, when evaluated on
2-objective datasets, MEM achieves better performance (in terms of EM and F1 scores) than other
7B counterparts, while incurring significantly lower peak token usage and achieving faster inference
time.

The advantage of MEM 1 becomes even more evident in tasks requiring longer-horizon interactive
processes. To highlight such scalability of MEM 1, we further compare the models on 3,4, 6,8,
and 16-objective tasks in Fig. 3 and Tab. 1. Fig. 3 illustrates the scaling trends of task performance
(measured by EM count) and memory efficiency (measured by Peak Token Usage) for MEM 1 relative
to other models and memory management baselines. As the number of objectives increases, the Peak
Token Usage of all other methods and models scales nearly linearly. In contrast, MEM 1 maintains
an almost constant peak token count with only a slight increase, as also shown in Tab. 1.

Notably, while MEM1 initially underperforms Qwen2.5-14B-Instruct, its performance gradually
catches up as the number of objectives increases, eventually surpassing the 14B model, which has
double the parameter count. MEM 1 also demonstrates remarkable efficiency. In the 16-objective
task, it requires only 27.1% of the peak tokens and 29.3% of the total inference time compared to
Qwen?2.5-14B-Instruct. This efficiency translates to significantly reduced GPU memory requirements
and overall computing resource demands.
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Figure 3: Performance and efficiency scaling of MEM 1 (trained on 2-objective QA) with the number
of objectives in multi-objective tasks. MEM 1 outperforms the other models and baselines while
having an almost constant scaling in memory usage. Note that at 16-objective, the context of baseline
models does not increase anymore since their model performance has degraded (some collapsed).

Table 1: Comparison of models on multi-objective multi-hop QA tasks. Arrows indicate the desired
directions. Numbers in red indicate collapsed model behavior (extremely low performance). (truncate)
means using MEM 1°s prompt and rollout pipeline. (A-MEM) means using MEM 1’s prompt and
rollout pipeline with A-Mem’s external memory module [56]. MEM 1-QA means MEM 1 trained on
2-objective QA task.

Model 2-Objective 8-Objective 16-Objective

EM{T FIt Peak(x10%)| Time(s)| EM{ FI{ Peak(x10%)| Time(s)] EM?T FI1 Peak(x10%)] Time (s)]
Qwen2.5-14B-Inst 0.732 0.902 15.6+0.19 549+0.16 1.55 1.87 44.7+0.37 16.2+0.27 0.567 0.703 38.4+0.71 29.7+0.75
Qwen2.5-7B-Inst 0.268  0.366 19.640.33 4.60£0.08 087 1.10 49.540.40 13.9+0.18  0.165 0.213 43.34+0.62 15.540.23

Qwen2.5-7B-Inst (A-MEM) 0.286 0.371 14.1£0.10 24.6£0.51 .13 143 18.6+0.10 53.7£1.26  0.730 0.961 18.8+0.14 91.2+2.44
Qwen2.5-7B-Inst (truncate)  0.262  0.336 8.28+0.06 5.89+0.16 097 1.23 11.8£0.10 11.9£0.20  0.396  0.497 13.3£0.16 22.1£0.60

Search-R1 0452 0.531 13.0£0.08 4.09+0.23 0.064 0.08 24.7£0.19 4.25+0.16  0.009 0.011 20.940.03 4.75+0.18
DeepResearcher 0.536  0.650 22.0+0.43 4.01+£0.07 0.73  0.90 51.8£0.35 11.3+0.14  0.071  0.106 48.9+0.66 15.840.19
MEMI1-QA 0.709  0.838 6.40+£0.02 6.49+0.07 1.87 231 8.01+0.06 8.68+0.12 197 2.39 10.440.09 8.70+£0.12

3.3 MEM1I on Single-Objective Multi-Hop Tasks

While MEM1 is designed to train agents for very long-horizon tasks, our training method also
delivers improved capability with existing multi-hop tasks while achieving much greater efficiency at
the same time, all without being explicitly trained on the single-objective versions of these tasks. Note
that single-objective tasks also require multiple turns of interaction to produce the desired output.

Long-horizon web navigation in WebShop. Beyond QA tasks, we further evaluate the effective-
ness of MEM1 in managing long-horizon interactions in the form of web navigation. We show
the experimental results in Tab. 2. Trained in the WebShop environment (see App. A.7), MEM1
outperforms other agent training baselines, including Agent-Flan, Agent-R, and AgentLM when
utilizing models of similar size. Furthermore, MEM| achieves remarkable efficiency improvements
compared to the best baseline method, AgentLM, featuring a 2.8 x improvement in Peak Token Usage,
a 1.9x improvement in Dependency, and a 1.5x improvement in Inference Time. MEM1 even
surpasses AgentLM-13B, a model with twice the parameter count of our trained model. Additionally,
our results indicate that using MEM 1 is significantly better than OpenAI’s GPT-40 on the WebShop
tasks, even when the truncation prompt templates or A-MEM techniques are applied to GPT-4o0.

Single-objective QA in Wikipedia. Tab. 3 presents the accuracy and efficiency metrics for evalua-
tions on single-objective QA tasks on Wikipedia [23], where the agent can make retrieval requests
from the Wikipedia datastore via RAG. The MEM 1 used in this evaluation is the same as the one
detailed in Sec. 3.2, which is trained solely on a 2-objective task. Overall, MEM1 demonstrates
superior efficiency across all three evaluated efficiency metrics, while simultaneously achieving the
highest EM score and an F1 score comparable to that of Qwen2.5-14B-Instruct. This improvement in
efficiency is attributed to the MEM 1 agent’s ability to consolidate memory from previous interactions
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Table 2: The experimental results for WebShop. For a fair comparison, we do not report GPT’s
inference time. For Agent-R, scores are taken from the original paper, as the model is closed source.
MEM 1-WebShop means MEM 1 trained on WebShop environment.

Model Avg Final Reward T Peak Token (x 10%) | Dependency (x 10%) |  Inference Time Per Traj (s) |
GPT-40 25.48 5.30 +1.23 3.99 +1.16 N/A
GPT-4o0 (truncate) 13.82 0.99 +0.99 0.81+0.23 N/A
GPT-40 (A-MEM) 24.50 1.84 +0.06 0.31+£0.11 N/A
Qwen2.5-7B-Instruct 18.42 5.64 +1.34 3.38 +0.89 12.31 £1.82
Qwen2.5-14B-Instruct 12.34 5.44 4+0.92 3.30 £0.61 18.17 +£2.32
Agent-FLAN-7B 40.35 3.37+1.12 2.18 +1.62 9.95 +6.19
Agent-R-8B 63.91 N/A N/A N/A
AgentLM-7B 63.60 2.24 +0.40 0.28 £ 0.07 3.91+1.07
AgentLM-13B 70.80 2.36 + 0.46 0.30 £ 0.08 5.23 +1.59
MEM1-WebShop 70.87 0.81 + 0.10 0.15 £+ 0.16 2.61 + 0.48

Table 3: Performance comparison across environments for single-objective tasks. Arrows indicate
the desired direction. (SFT) means training with SFT and applying MEM 1’s prompt and rollout.
Note that DeepResearcher is specifically trained on the single-objective Online Web-QA task with
F1 score as the optimization objective, and Search-R1 is specifically trained on the single-objective
Wiki-RAG task with EM as the objective.

Environment System EM?T Fl1 Peak Token (x10%) | Dependency (x10°) | Inference Time |
Qwen2.5-7B-Inst (truncate)  0.287  0.382 6.28 +0.05 1.65 £ 0.04 2.26 +£0.04
Qwen2.5-7B-Inst (A-MEM)  0.246 0.373 8.47+0.12 0.92+0.03 11.24+0.40

Wiki RAG Qwen?2.5-7B-Inst 0.269  0.390 9.32+0.19 1.17£0.04 2.31+£0.04
Qwen2.5-14B-Inst 0422 0.534 8.89 £0.21 2.22+0.10 6.73£0.24
Search-R1 0.445 0.516 11.0 £0.25 1.50 £ 0.05 2.23+0.14
DeepResearcher 0.419  0.503 13.34+0.34 7.04£0.33 3.86 +0.09
MEM1-QA (SFT) 0.302 0.358 6.54 +0.05 3.30+£0.13 4.84 +0.21
MEM1-QA 0.405 0471 5.63 +0.03 0.76 £ 0.02 3.79 £0.07
Qwen?2.5-7B-Inst 0.334 0451 8.37+£0.18 1.39 &+ 0.06 2.20 +0.04

Online Web-QA  DeepResearcher 0372 0.492 10.27 £ 0.19 2.86 £0.14 2.87+0.06
MEM1-QA 0.397 0.485 5.79 £+ 0.06 0.44 £ 0.02 1.84 + 0.03

into a compact internal state, which reduces the number of tokens used in the context. We also
observe that SFT significantly underperforms RL, highlighting the necessity for RL-based training.

Zero-shot transfer to Online Web-QA. To validate the transferability and generalizability of the
trained MEM 1 agent, we perform a zero-shot transfer to an online web-QA environment, which
is unseen by the agent. In this environment, agents conduct web searches through an API service
that returns results including titles, snippets, and URLs. As shown in Tab. 3, MEM1 consistently
exhibited improved efficiency alongside comparable effectiveness in this unseen setting via zero-shot
transfer.

4 Analysis on Emergent Agent Behaviors

Through analyzing MEM 1’s multi-turn interaction traces trained on 2-objective QA, we observe
a range of emergent behaviors that are critical for handling long-horizon, multi-objective tasks,
demonstrating capabilities well beyond simple retrieval. First, MEM1 learns to manage multiple
questions concurrently by maintaining a structured internal state. As shown in Fig. 7(a), when
faced with two multi-hop questions, the agent is able to store and update memory for each question
separately, guiding subsequent searches based on the identified information gaps. In (b), MEM1
exhibits the ability to shift focus when progress on one question stalls, recognizing difficulty and
prioritizing the more tractable objective. Meanwhile, MEM 1 learns to interleave reasoning and
memory in internal state, weaving important information into its decision-making process to support
both information retention and action selection. As shown in (c) in Fig 7, MEM 1 explicitly extracts
important information from previous search results and leverages them to formulate the next query
that best addresses the current information gap. In addition, (d) shows that when new, relevant
information is retrieved, MEM 1 explicitly reasons about its significance and selectively updates its
memory. We believe that learning these interleaved behavior is the key for the success of achieving
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MEM1: Having searched and
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(incorrect assumption) (since
characters in movies do not
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More research is
necessary, but the information
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MEM1: To answer the first
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conducts search to validate it.
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Correcting

plans for complex questions
(f) Making Plan

e -\ T —————————————__

(g) Iterative Search

Figure 4

insuffici

(h) Adjusting Search Query

efficiency gain in memory without degrading the performance. Beyond behaviors unique to our
multi-objective setup and memory architecture, MEM 1 also exhibits several general-purpose search
strategies. In (e), the agent performs self-verification, correcting an earlier misconception and issuing
a new query for confirmation. In (f), it decomposes complex queries into manageable subgoals
before initiating search. In (g), for questions that require multi-turn information gathering, MEM 1
extracts key information from search results and uses it to inform the next search. In (h), when overly
specific queries fail, MEM 1 generalizes its search scope to improve retrieval. Notably, many of these
behaviors, including verification, making plan, and iterative search, have also been observed and
reported in recent studies on deep research agents [23, 68].

5 Conclusion, Limitations, and Future Work

We introduced MEM 1, a reinforcement learning framework that enables language agents to perform
long-horizon reasoning with consolidated memory. By integrating inference-time reasoning and
memory consolidation into a unified internal state, MEM 1 addresses the scalability challenges of
prompt growth and achieves competitive performance across QA and web navigation benchmarks,
with substantially reduced memory usage and inference latency. Despite these advantages, MEM 1
assumes access to environments with well-defined and verifiable rewards. While this assumption
holds in domains such as QA, math, and web navigation, many open-ended tasks present ambiguous
or noisy reward structures. Fully realizing the potential of MEM 1 therefore requires advances in
modeling such tasks and designing suitable reward mechanisms—challenges that lie beyond the
scope of this work. A promising future direction is to explore methods for training MEM 1 agents in
these open-ended settings where reward signals are sparse, delayed, or implicit.
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A Details of MEM1

A.1 Related Work

LLM agents in multi-turn environment. LLM-based agents have evolved from handling single-
turn queries to serving as autonomous agents capable of multi-turn interactions such as web navi-
gation [59, 69] and complex research [68]. To enable such capabilities, Yao et al. [60] introduced
the ReAct (i.e., Reason + Act) framework, which enhances LLMs’ ability to interact with external
environments by interleaving reasoning and action. Building on this reasoning-acting prompting
paradigm, subsequent works have explored ways to improve agent performance through natural
language feedback, enabling iterative refinement [44, 31]. Recently, inference-time scaling has
emerged as a promising direction for enabling complex reasoning, with prior research incorporating
evaluators (e.g., verifier, reward model) [45, 30] or world models [8]. In addition, there are two major
lines of training approaches: (1) behavior cloning (BC), which involves imitating expert trajectories
to guide agent behavior by supervised fine-tuning (SFT) [61, 15, 11], and (2) reinforcement learning
(RL), which optimizes agent policies by incentivizing desirable outcomes through rewards [46, 4, 38].
These methods aim to align the agents’ behaviors with task objectives, enabling more robust and
generalizable performance.

Memory management for LLM agents. A widely adopted approach to memory management
in LLM-based agent systems involves appending all prior information, such as observations, inter-
mediate thoughts, and actions, into the prompt at each interaction turn [60]. While this method
is straightforward and effective when the number of interactions required is small, it results in
unbounded context growth, leading to linearly scaled inference memory. Moreover, long contexts
often contain irrelevant or redundant information, which impairs the model’s reasoning capabili-
ties [2, 29, 55]. To mitigate these issues, recent studies have proposed external memory frameworks,
including retrieval-augmented generation and summarization modules [62, 28, 12, 56]. However,
these methods are typically trained or used independently of the agent’s policy, creating a disconnect
between memory and the reasoning process. In addition, managing and integrating such modules
often incurs extra computational overhead and system complexity. Despite these advancements, many
RL approaches for training LLM agents still rely on accumulating the full interaction history as
memory [23, 68, 38], leaving memory management during training an underexplored area. In this
work, we seek to bridge this gap by tightly integrating memory with the agent’s reasoning process,
thereby enabling more efficient and context-aware decision-making.

A.2 Computing Resources and Training Details

All trainings of MEM 1 are conducted on 4 H100 or H200 GPUs. We use the veRL framework [43]
for RL and Swift [13] for SFT. For RL, both the data batch size and mini batch size are set to 64.
Learning rate is set to 10~ for the actor model and 10~ for the critic model with a linear warmup
of 50 steps. Temperature is set to 1 during training and 0.01 during inference.

All evaluations are conducted on a single H200 GPU, which serves the respective models as an API
service using the vLLM framework [26] with automatic prefix caching enabled.

A.3 RAG Configuration

For RAG on local Wiki corpus, we use Faiss-GPU [16] serving an ES Base model [53]. The Wiki
corpus is taken from a Wikipedia 2018 dump [24]. The number of passages for each retrieval is set to
3 for a fair comparison with other methods.

For online web search queries, we use Serper API [41], which offers Google search results including
titles, snippets, and URLs. For each search, we return the top 10 results to the agent as external
information. We do not ask the agent to retrieve the content of specific webpages.
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A4 Prompts

Prompt 1: Multi-Objective Task (QA)

You will answer multiple complex questions using iterative reasoning,
summarization, and web search.

At each step, you will see the questions, a cumulative summary of

relevant information, the current search query, and search results
(except in the first step, where only the questions are provided).
Your task is to:

1. Perform reasoning and update a cumulative, concise summary
within <think> ... </think>. This acts as persistent memory and
must include all essential information from previous <think> and
<information> tags.

2. Then choose one of the following actions:

- If any question remains unanswered, issue a single query for one
question inside <search> ... </search>. The query should consist of
keywords or a short phrase. 0Only search one question at a time.

- If all questions are answered, provide the final answers-separated
by semicolons-within <answer> answerl; answer2; ... </answer>. The
answers must be concise, contain only essential words, and avoid any
explanations.

Important:

- Always follow this structure after <information> or the initial

questions: <think> ... </think><search> ... </search> or <think>
</think><answer> ... </answer>.

- Do not search multiple queries or questions simultaneously.

Answer the following questions: [QUESTIONS]
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Prompt 2: Single-Objective Task (QA)

You will answer a complex question through iterative reasoning,
summarization, and web searches.

At each step, you can see the question, previous summary in <think>
</think>, search query in <search> ... </search>, and the

returned information in <information> ... </information> (except

the first step where you will be given only the question). Then, you

should:

1. Conduct reasoning, and then update a concise, cumulative summary
with essential information inside <think> </think>. This is your
persistent memory and should include all important information from
previous <think> </think> and <information> </information> (i.e.
information and answers already found for questions).

2. Then choose one:

- Issue a query (i.e., key words / phrases for search) inside <search>
</search> (you may search repeatedly until the answer is clear).

This query will be used to conduct search and return the results in
<information> results </information>

- Provide the final concise answer (no explanations) if no additional
information is needed inside <answer> </answer>. The answer should
be concise and only contain the words necessary to answer the
question.

After <information> </information> (or question at the beginning),
you should always follow the order: <think> ... </think><search>

</search> or <think> ... </think><answer> ... </answer>.

Question: [QUESTION]
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Prompt 3: Single-Objective Task (WebShop)

You are browsing an online shop. Your goal is to find a product
that matches the given description. You will interact with the site
step-by-step. Each step gives you a <state>...</state> representing
the current webpage. You must decide what action to take next until
you identify the correct product.

Available actions (shown in the <state> tag) depend on the page:

- On the search page: search[<keywords>]

- On search result pages: click[<item url>] to view a product, or
click[next >] to go to the next results page

- On product pages: click[description], click[features],
click[color], click[size], click[buy now]

- To return to search: click[back to search]

Example goal: "Find a gingko light and 20x20 pillow cover that is
hand painted." Example first action: <answer>search[gingko light
20x20 pillow cover hand painted]</answer> Only respond with valid
actions formatted as: search[...], click[...], etc.

After you navigate and find the product that best fits the user goal,
you should click[buy now] to buy the product at the product page when

the buy now button is available.

Product Description: [PRODUCT DESCRIPTION]

A.5 Implementation Details of Metrics and Baselines
A.5.1 Metrics

Exact match. In QA tasks, we use exact match (EM) as both the verifiable reward for the RL
pipeline and the evaluation metric for the final output. The final response is extracted from between
<answer> and </answer>. In multi-objective settings, the response should contain answers to each
question separated by semicolons. If the XML tags are mismatched, or if the number of provided
answers does not correspond to the number of questions, a score of 0 is assigned. Otherwise, 1 point
is credited for each correct answer. During RL training, we do not provide any other intermediate
rewards or format penalties, as we find that such manual interventions can interfere with the agent’s
learning process (see more in App. D.3).

F1 score. The F1 score computes the harmonic mean between the precision p and recall r. In the
case of string matching, we split both the predicted answer and the ground truth. For example, if the
ground truth is “United States of America”, it is split into a list with lower-case words: “united”,
“states”, “of”’, “america”. The same works for the predicted answer. Then, denote the number of
common words as c. Further denote the number of words in the predicted answer as [ and the number
of words in the ground truth as g. Then, precision is calculated as p := ¢/l and recall is calculated as
r = ¢/g. The F1 score is finally computed as

pxXr

F1:=2Xx .
p+r

If multiple ground truths are present, the maximum of all F1 scores is chosen. For multi-objective
tasks, the final F1 is the sum of the F1 scores for each sub-question.

Peak token usage. Peak token usage is calculated as the maximum number of tokens (using
GPT-40-mini tokenizer) in any single sequence throughout the agent’s entire trajectory. For fair
comparison in our experiments, the system prompt is excluded when computing this sequence length.
The peak token usage serves as a proxy for the inference-time memory requirement.
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Dependency length. Following [66], the dependency metric is defined as the total number of
historical tokens on which each generated token effectively depends. Let 7" denote the total number
of interaction steps. For each step i € [T, let ngf) be the number of prefix tokens and n((f) be the
number of output tokens generated. The dependency metric is then calculated as

(2n¢(f) + ng)) X nt(f)
5 .

Dependency =
i€[T]

At a high level, this metric quantifies the cumulative computational cost associated with the generation
of an output trajectory. It is important to note that in MEM 1, prefix tokens from previous steps are
consolidated into a new internal state, rather than being continuously accumulated. In our experiments,
we ignore the tokens in the system prompt when calculating the dependency metric.

Inference time. Inference time for each trajectory is recorded as the total elapsed time required to
generate the complete output trajectory. For all experiments, these measurements are conducted on a
single H200 GPU, operating with 10 concurrent threads. The vLLM inference framework is utilized,
with its automatic prefix caching feature enabled.

A.5.2 Baselines

Search-R1. As detailed in [23], the model is trained on the 1-objective task with the same dataset
as MEM1. Search-R1 also uses exact match as its reward function. In comparison, MEM 1 is trained
exclusively on 2-objective tasks.

Deep Researcher. As detailed in [68], the model is trained on 1-objective task with a curated set
from various QA datasets including HotPotQA and Natural Questions. Deep Researcher adopts the
F1 score as the reward function.

A.6 Algorithm

We provide an outline of the rollout of MEM 1, which actively manages its context in Alg. 1. Parts
of the pseudo-code follow [23]. We follow [54, 14] and annotate each component using XML-style
tags: <IS> for internal state (reasoning S;), <query> for environment queries A;,t < T, <answer>
for the agent’s responses Ar, and for external observations or tool outputs O;.
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Algorithm 1 MEM1 Rollout

Require: Task prompt z, policy model 7y, world model VW, maximum turn 7'
Ensure: Final response y

1: Initialize rollout sequence y < &

2: Initialize turn count ¢ < 0

3: whilet < T do

4 Initialize current policy rollout sequence y; < &

5:  while True do

6: Generate response token y,. ~ mo (- | 2,y + yt)

7.

8

Append y, to rollout sequence y; < y; + y»
if (¢t =T — 1) and y, € [</answer>,<eos>] then

9: break /I prevent the agent from searching further
10: else if y,. € [</query>, </answer>, <eos>| then
11: break
12: end if
13:  end while
14:  y <y /I all previous context removed.
15 if <query> </query> detected in y; then
16: Extract search query ¢ < Parse(y;, <query>, </query>)
17: Retrieve environment feedback d <— W(q) from local storage, Search engine, HTML, - - -
18: HINT < You have {7 —t} turns left.
19: Insert d into rollout y < y + HINT + d
20:  elseif <answer> </answer> detected in y; then
21: return final generated response y
22:  else
23: Mark the sample as invalid
24:  endif

25:  Increment turn count ¢ <— ¢t 4 1
26: end while
27: return final generated response y

A.7 MEMI1 on Webshop Training Details

We use the same rollout pipeline and policy update mechanism for training MEM1 on WebShop.
Compared to the QA tasks, we use a tailored prompt that retains the gist of memory consolidation
with instructions specific to the WebShop environment, as shown in Prompt. 3. Another distinction
is that the WebShop environment comes with its own reward function corresponding to each state.
Therefore, we do not use exact match but the built-in reward function as the reward signal when
training in WebShop environment. The training and test splits also follow the original paper [59],
with the first 1000 samples as the test set, the 1000th to 1500th as the val set, and the remaining as
the train set.

A.8 Additional Discussion on the Attention Matrix Design.

We wish to note that our modification to the attention matrix does not fully recover the attention of
the original trajectories because of the change in position ids. Specifically, prior works [27, 9, 7] that
utilized the attention matrix to compress multiple trajectories mainly targeted tree-exploration, i.e.,
generating multiple sequences with the same prefix. For these works, on top of the attention matrix,
they adjusted the position ids as well, so each trajectory follows a consecutive increasing position
ids. However, in MEM1, the prefix does not remain the same because of memory consolidation.
This results in each <IS> having two possible position ids, one for the previous turn and one for
the next turn. To completely recover the original attention, we need to duplicate each <IS> and
assign different position ids to the two copies. However, such duplication can significantly slow down
training because the training trajectories are now much longer.

As such, for training efficiency, we do not duplicate the <IS> and assign the position ids for
the previous trajectory to each <IS>. While this modification slightly deviates from the “ideal”
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implementation, effectively, it can be viewed as simply adding white spaces in the training trajectories
and has no significant impact on the experimental results.

B Broader Impacts

MEMI1 opens up the potential to enable more scalable, efficient, and intelligent Al agents capable of
sustaining long, goal-directed interactions in dynamic environments. As Al systems are increasingly
deployed in complex real-world tasks—such as scientific research, legal analysis, personalized
education, and digital customer service—models must go beyond single-turn capabilities and manage
evolving contexts over many steps. MEM 1’s memory-consolidation mechanism allows language
models to maintain high performance without the growing computational and environmental costs
typically associated with long-context processing. By reducing inference-time memory and compute
demands, MEM 1 paves the way for more sustainable and scalable Al deployment, making advanced
reasoning agents accessible to a wider range of users and institutions, including those with limited
resources. Moreover, MEM 1’s unified framework of reasoning and context consolidation sets
a precedent for future research on intelligence that can learn to adapt, reflect, and summarize
information autonomously, inspiring more trustworthy, interpretable, and human-aligned Al systems.

C Training Trajectory Analysis of MEM1
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Figure 5: Metrics of training progresses for MEM 1 with RL.

We present the training dynamics of the 2-objective QA-trained MEM 1 in Fig. 5, where several
distinct phases emerge during the learning process. In the initial exploration phase (first 50 steps), the
agent demonstrates little task proficiency. The reward remains consistently low, while the entropy
loss is high, suggesting random or undirected behavior. The ratio of valid actions hovers around 0.55,
indicating that the agent frequently fails to follow the expected output format. During this period,
MEM1 has not yet learned to reliably use the required structure involving <query> and <answer>
tags.

Shortly after, we observe the onset of format acquisition. The agent gradually improves its structural
consistency, reflected in the rising ratio of valid actions. This improved adherence to format correlates
with an increase in reward, suggesting that proper formatting directly contributes to the agent’s task
success. By around step 150, a notable behavioral shift occurs. The number of valid searches begins
to drop sharply, while the reward continues to increase. This implies that the agent has discovered a
shortcut: by reducing the number of searches—perhaps to avoid format violations—it can maintain
high format fidelity and improve its reward without fully solving the task. This short-horizon
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optimization suggests the agent is exploiting the reward structure, favoring formatting compliance
over content completeness.

Between steps 150 and 200, the agent enters a phase of refined format mastery. The ratio of valid
actions steadily climbs, but the number of searches remains low. During this phase, reward growth
slows, and entropy begins to flatten. The plateau in entropy indicates that the agent is looking for
new policies to boost the reward. At this stage, the agent has reached a local optimum: it’s producing
valid but under-informed answers.

After step 200, a second behavioral shift occurs. The number of valid searches begins to rise again,
suggesting that the agent is learning to extend its interaction horizon to gather more information. The
agent learns to balance formatting constraints with information acquisition. As a result, the reward
increases more sharply. Finally, after step 250, the agent enters a phase of policy consolidation. The
entropy loss drops sharply—signaling a transition from exploration to exploitation—as the agent
settles into a more deterministic, high-reward policy. By this stage, the agent effectively combines
format compliance, sufficient searching, and high-quality answer generation.

D Analysis on Implementation Details

D.1 RL Generalizes Better Than SFT

A natural question arises: can Supervised Fine-Tuning (SFT) with high-quality trajectories match
the performance of reinforcement learning (RL)? To investigate this, we compare MEM1-QA
trained via RL against MEM1-QA (SFT), where both models are trained on the 2-objective QA task.
Additionally, the SFT model is further trained on 1-objective and 3-objective QA tasks to enhance
its generalization ability. As shown in Tab. 4, the SFT model consistently underperforms compared
to its RL counterpart across tasks with varying numbers of questions (objectives). Notably, when
the number of objectives exceeds six, the performance of the SFT model collapses, whereas the
RL-trained model continues to demonstrate strong robustness and scalability.

Table 4: Comparison of RL and SFT on increas-
ing number of multi-turn questions. Exact match
scores T is better. Gap shows absolute difference.
Red numbers show collapsed SFT behavior.

—— With Format Reward

08 Without Format Reward

o
o

#Q | RLT SFTT Gapt | RL Gain (%) 1

True Score Mean
°
IS

1 0.410 0.300 0.110 +36.7% 02

2 0.709 0433 0.276 +63.7% |

3 10976 0648 0328 +50.6% oo| i

4 | 1120 0626 0494 +78.9% Pow W m W m W

6 1.630 0.088 1.542 +1752%

8 | 1.870 0.027  1.843 +6826% Figure 6: Training curves comparing MEM 1
16 | 1.900  0.000  1.900 — trained with and without format reward.

D.2 Format Reward Accelerates Convergence but Degrades Final Performance

It is common to incorporate format reward when training reasoning models and multi-turn reasoning
agents [14, 68, 23]. In our study, we experimented with a format reward that enforces the agent to
produce outputs using specific structural tags: <IS>, <query>, and <answer>. If the agent fails to
use the expected tags correctly, the turn is terminated and a penalty of -1 is applied.

As shown in Fig. 6, using the format reward leads to faster convergence during training but results
in worse final performance. The format-constrained agent achieves an exact match score of 0.466,
compared to 0.709 for MEM 1 trained with only outcome-based reward on the same testing set for
the 2-objective QA task. Additionally, the format-constrained agent generates fewer tokens, with an
average peak of 514.9 tokens, whereas the outcome-reward-trained MEM 1 reaches an average peak
of 640 tokens.

22



734
735
736

737

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

756
757

(a) Storing Information

(b) Acknowledging &

(c) Integrated Reasoning

(d) Update Memory As New

Separately Moving On and Memory Information Streams In
( Memory forQ1 yd N | e : N
MEM1: : Env: [Search et Env: [Search
According to the provided " Results] MEMT: Aft .
information: - They had 9 World MEM1: From + After searching tor the

Series appearances in Brooklyn.

- They have had 11 World Series

appearances in Los Angeles.

Therefore, Now,

to answer the second question,
From the

provided information:

- The show originally ran on ABC

from 2011 to 2017 for six seasons.

¢ MEM1 stores key extracted info

\ Memoryfor Q2

MEM1: Unfortunately based on
the information provided in the
documents, | am unable to
determine the name of the hotel
designed by Veldon Simpson that
was the largest in the world upon
opening. Moving on to the second
question,

. J

Doc 3, we can see that Prabhabati
Bose was selected to be the first
president of the Mahila Rashtriya
Sangha. However, we need to
confirm if this is the same as the
Indian National Congress. Let's
perform a web search to find the
information. <search>Annie
Besant Indian National

Congress</search>

J

information, we found out that
Beniamino Di Giacomo was born
in Porto Recanati. Now we can
add this information to our
cumulative summary: Beniamino
Di Giacomo was born in Porto
Recanati. To answer the second
question, 'In what city was Tim
Alexander born?’, we need to
perform a web search

\ _/

4 MEMT1 learns to skip one question

S MEM1 integrates summary of key

4 MEM1 explicitly updates its memory

about each question separately

after several searches without

facts into IS, facilitating reasoning

before moving on to the next question

[MEM1: Having searched and
finding additional information, it
looks like Shirley MacLaine
(incorrect assumption) (since
characters in movies do not
describe themselves this way) is
wrongly identified.

More research is

MEM1: To answer the first
question, | will first need to
identify the professional
footballer who plays for Kerala
Blasters, then determine his
achievement in Bulgarian football
that makes him considered the

MEM1: To answer the first
question, "What is the capital of
the country where yoga
originated?", we need to find out
the country where yoga oﬂginated

origin of yoga country <, Step 1
Env: [Search Results]

MEM1:

<search> fourth largest city in
Germany original name </search>
Env: [Search Results]

MEM1: The provided information
only mentions the second and the
largest cities in Germany. First, we
need to identify the fourth largest

necessary, but the information
provided might have been
misleading. Hence a direct search
"alt-cabaret provocateur actress"

would help get the right match.
-

MEM1: From the provided
information, yoga originated in

India. Now, we need.t.‘.{m
capital of India
\_ !

4 MEM1 learns to decompose
question and make separate searches

city in Germany, and then
determine its original name.
<search> fourth largest city in
Germany </search>

N J

4 MEM1 learns to adjust the query
when the retrieved information is
insufficient

all-time leader. Lastly, | need to
determine the foundation used in
his name, and if one of the
scholars was Ana-Maria

|
|
|
|
|
|
|
|
!
|
!
|
!
I
!
|
|
|
|
|
|
| finding useful information.
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
and then find its capital. <sgarch> :
|
|
|
|
|
|
|
|
|

) \Yanakleva Y,

‘4 MEM1 tends to develop search
plans for complex questions

S MEM1 reasons through collected
information to correct its belief and
conducts search to validate it.

(e) Self-Verification and

Correcting (h) Adjusting Search Query

(f) Making Plan (g) Iterative Search
Figure 7: Snippets of internal states and actions showing MEM 1°s Emergent Behaviors in 2-objective
QA tasks. Light Blue denotes behaviors related to multi-objective tasks. Beige denotes behaviors

related to memory in internal state. Pastel Green denotes behaviors related to general search strategies.

We hypothesize that the format reward accelerates structural learning but constrains exploration of
effective reasoning strategies. As a result, the agent learns to produce shorter responses with valid
syntax but develops less effective internal state representations, leading to degraded task performance.

D.3 Analysis on Emergent Agent Behaviors

Through analyzing MEM 1’s multi-turn interaction traces trained on 2-objective QA, we observe
a range of emergent behaviors that are critical for handling long-horizon, multi-objective tasks,
demonstrating capabilities well beyond simple retrieval. First, MEM 1 learns to manage multiple
questions concurrently by maintaining a structured internal state. As shown in Fig. 7(a), when faced
with two multi-hop questions, the agent stores and updates memory for each question separately,
guiding subsequent searches based on the identified information gaps. In (b), MEM1 exhibits the
ability to shift focus when progress on one question stalls, recognizing difficulty and prioritizing the
more tractable objective. Meanwhile, MEM 1 learns to interleave reasoning and memory in its
internal state S’s, weaving important information into its decision-making process to support both
information retention and action selection. In Fig. 7 (¢), MEM1 explicitly extracts important infor-
mation from previous search results and leverages it to formulate the next query that best addresses
the current information gap. In addition, (d) shows that when new, relevant information is retrieved,
MEM1 explicitly reasons about its significance and selectively updates its memory. We believe that
learning these interleaved behaviors is key to achieving efficiency gains in memory without degrading
performance. Beyond behaviors unique to our multi-objective setup and memory architecture, MEM 1
also exhibits several general-purpose search strategies. In (e), the agent performs self-verification,
correcting an earlier misconception and issuing a new query for confirmation. In (f), complex queries
are decomposed into manageable subgoals before initiating the search. In (g), for questions requiring
multi-turn information gathering, MEM 1 extracts key information from search results and uses it
to inform the next search. In (h), when overly specific queries fail, MEM 1 re-scopes its query to
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758 improve retrieval. Notably, many of these behaviors, including verification, making a plan, and
759  iterative search, are also reported in recent studies on deep research agents [23, 68].
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