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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across textual and visual domains but often generate outputs that violate physical
laws, revealing a gap in their understanding of the physical world. Inspired by hu-
man cognition—where perception is fundamental to reasoning—we explore aug-
menting LLMs with enhanced perception abilities using Internet of Things (IoT)
sensor data and pertinent knowledge for IoT task reasoning in the physical world.
In this work, we systematically study LLMs’ capability to address real-world IoT
tasks by augmenting their perception and knowledge base, and then propose a uni-
fied framework, IoT-LLM, to enhance such capability. In IoT-LLM, we customize
three steps for LLMs: preprocessing IoT data into formats amenable to LLMs, ac-
tivating their commonsense knowledge through chain-of-thought prompting and
specialized role definitions, and expanding their understanding via IoT-oriented
retrieval-augmented generation based on in-context learning. To evaluate the per-
formance, We design a new benchmark with five real-world IoT tasks with dif-
ferent data types and reasoning difficulties and provide the benchmarking results
on six open-source and close-source LLMs. Experimental results demonstrate the
limitations of existing LLMs with naive textual inputs that cannot perform these
tasks effectively. We show that IoT-LLM significantly enhances the performance
of IoT tasks reasoning of LLM, such as GPT-4, achieving an average improvement
of 65% across various tasks against previous methods. The results also showcase
LLMs’ ability to comprehend IoT data and the physical law behind data by pro-
viding a reasoning process. Limitations of our work are claimed to inspire future
research in this new era.

1 INTRODUCTION

Recent advancements in large generative models have showcased their exceptional performance and
versatility in handling complex tasks across textual and visual domains, as evidenced by the GPT
series (Radford et al., 2018; 2019; Brown et al., 2020; Achiam et al., 2023; OpenAI, 2023) and
visual generation models (Dosovitskiy et al., 2020; Liu et al., 2021; Ho et al., 2020; Peebles &
Xie, 2023; Blattmann et al., 2023). However, these models could occasionally generate outputs
that are physically implausible, often referred to as “hallucinations” (Alkaissi & McFarlane, 2023;
Huang et al., 2023). Even advanced video generation models, e.g., Sora (Brooks et al., 2024), are
susceptible to producing animations that contravene fundamental physical laws, such as a video
clip containing a tipping water glass that appears to defy gravity. These observations suggest that
generative models may not really comprehend and apply physical laws of the physical world as
accurately as humans when acting as world simulators. This has renewed interest in research on
the World Model that focuses on understanding and modeling the physical world in a brain-like
manner (Dawid & LeCun, 2023; Garrido et al., 2024; Mendonca et al., 2023; Liu et al., 2024).

Unlike Large Language Models (LLMs) that map descriptions of the physical world to a latent
space and perform reasoning by predicting the text sequence according to the probability, research
on human cognitive science illustrates a different mechanism. The human brain comprises multiple
mutually-functional areas, of which the important components include the temporal and occipital
lobes for perception, and the frontal cortex for reasoning (Churchland & Sejnowski, 1988; Saxe
et al., 2009; Hobeika et al., 2016; Grèzes et al., 2001). Notably, perception is the primary mecha-
nism through which information about the physical world is acquired, and then effective reasoning
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Figure 1: Inspired by human cognitive science, we augment LLMs with physical world perception
from IoT data. Furthermore, by retrieving pertinent knowledge about IoT tasks, we enhance the
reasoning capabilities of LLMs in executing real-world applications.

is inherently dependent on accurate perception. However, in LLMs, the physical world is only “per-
ceived” through natural language, i.e., concepts and words in the semantic space, which denotes
an indirect representation and abstraction of the physical world. A recent study in Nature shows
language is primarily a tool for communication rather than thought (Fedorenko et al., 2024), so
reasoning the physical-world problem with only language is limited. To enable LLMs with better
reasoning capability in the real world, perception is highly demanded. Recent research on Vison
Language Models (VLMs) builds the connection between visual perception and languages (Zhang
et al., 2024a), yet the vision is only one of the various perceptual modalities. Many aspects of the
physical world are still not perceived by existing LLMs.

We draw inspiration from how humans understand the physical world: perception to acquire in-
formation and reasoning with relevant domain knowledge. Firstly, humans perceive the world via
a multitude of sensory organs, such as eyes for sight and ears for hearing. To empower machine
perception, Internet of Things (IoT) sensors are developed. Since the first IoT sensor was designed
for Coke machines to count the number of bottles in the 1980s (Madakam et al., 2015), IoT sensors
become the “sensory organs” of machines, modeling the physical world for machine automation.
Secondly, humans understand the world via the perception data with domain knowledge gained
from experience and education. Similarly, LLMs can learn domain knowledge of both the physical
world and sensors from the context to have stronger reasoning capabilities by in-context learning.
In this manner, as shown in Fig. 1, we believe perception data with pertinent knowledge can enable
LLMs to address complex problems with IoT-enabled perception in the real world. In this work, we
aim to explore the following questions: (1) What types of real-world tasks can LLMs perform via
the IoT perception of the physical world? (2) How can we enhance the LLM capability to deal with
real-world tasks? (3) Do LLMs truly understand perception data and apply knowledge to realize
real-world tasks?

Previous studies have primarily shown the viability of using LLMs for IoT task reasoning Xu et al.
(2024b); Ji et al. (2024), but we find that these studies are not carefully scrutinized. (1) These studies
only focus on specific tasks, such as R-peak identification and action recognition. The choices of
tasks are not comprehensive, and thus they lack a benchmark to evaluate the performances of the
methods. (2) They directly input raw IoT data into LLMs for reasoning, but LLMs are not good at
dense numerical data and calculation (Zhou et al., 2024; Gruver et al., 2024). (3) They only evaluate
their effectiveness on close-source LLMs, and lack a comprehensive study of benchmarking open-
source LLMs with different parameter size.

To bridge this gap and answer the questions we proposed, we conduct an in-depth investigation of
how to utilize LLMs to perform various tasks in the physical world using IoT data. Firstly, we
explore whether LLMs can solve IoT classification and regression problems by setting a new bench-
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mark with five classic IoT tasks with different data and levels of difficulties, including human activity
recognition, industrial anomaly detection, heartbeat anomaly detection, WiFi-based human sensing,
and indoor localization. The benchmark covers scenarios of daily life, industrial applications, and
medical care, which will be detailed in the experiments. Secondly, we enhance LLMs’ reasoning
capabilities with IoT data through three novel steps and consolidate three steps into IoT-LLM, a
unified framework for IoT task reasoning. It is composed of three steps tailored for IoT reasoning:
designing an LLM-friendly data format, activating knowledge by chain-of-thought prompting, and
automatic IoT-oriented Retrieval-Augmented Generation (RAG) based on LLMs’ in-context learn-
ing capability. Thirdly, to determine whether LLMs truly understand and then solve the task, we
have LLMs generate analytical processes and analyze the reasonableness of the analytics. The anal-
ysis generated by IoT-LLM indicates that LLMs can provide a reasonable process of solving simple
tasks, but their efficacy diminishes in more specialized domains like heartbeat anomaly detection.
This performance disparity is attributable to the complexity of data and limited domain-specific
knowledge inherent in LLMs.

In summary, our contributions are as follows:

• We systematically study how Large Language Models (LLMs) can address real-world prob-
lems by perceiving the physical world via IoT sensor data.

• We propose a unified framework to address IoT-related real-world problems, which en-
hances the capability of LLMs through three steps: IoT data simplification and enrichment,
IoT-oriented knowledge retrieval, and prompt configuration. To the best of our knowledge,
this is the first unified framework for IoT-related tasks in the physical world.

• We establish the first benchmark for IoT task reasoning, including five real-world tasks with
various types of IoT data. We benchmark both open-source and close-source LLMs with
different parameter size. Empirical results show that our IoT-LLM significantly improves
the performances of all base LLMs on IoT tasks.

2 RELATED WORK

ML/DL methods in IoT tasks. The Internet of Things (IoT) sensors gather diverse data from
the real world, such as tri-axial acceleration, electrocardiogram readings, WiFi signals, and pres-
sure (Sehrawat & Gill, 2019). These data have empowered various human sensing tasks, including
Human Activity Recognition (HAR) (Lara & Labrador, 2013), health monitoring like heartbeat and
respiration anomaly detection (Mousavi & Afghah, 2018; Aytekin et al., 2022), and industrial appli-
cations such as machine operational state monitoring (Kong et al., 2023). Currently, these IoT data
are primarily processed using traditional machine learning techniques, such as Support Vector Ma-
chines (SVM) and K-Nearest Neighbors (KNN) Algorithm (Alam et al., 2016; Luo et al., 2021), or
deep learning methods (Li et al., 2021; Njima et al., 2019). These approaches build black-box pre-
dictors for specific tasks, yet each predictor only supports one task, and the task cannot be addressed
with reasoning analysis, which motivates us to explore LLM for IoT tasks.

LLMs in IoT tasks. Existing literature on Large Language Models (LLMs) in IoT mainly regards
LLM as a user interface or as coordinators in smart machines (Li et al., 2023; Cui et al., 2023;
Du et al., 2023). However, in these studies, LLMs function as intermediaries and do not directly
interpret IoT data to perform real-world tasks. Recent studies, such as Penetrative AI (Xu et al.,
2024a) and HarGPT (Ji et al., 2024), have begun integrating IoT data into LLMs for specific tasks,
leveraging their inherent knowledge bases. Despite these advancements, the exploration of LLMs
processing IoT data remains nascent. Penetrative AI converts IoT data into textual and numerical
formats for basic tasks like R-peak identification in ECG data, heavily relying on manually crafted
expert knowledge, which limits automation and scalability. Similarly, HarGPT processes raw IMU
data to recognize human activities using a chain of thought technique but is restricted to this specific
data type and task, not demonstrating the broader applicability of LLMs. While these studies provide
initial insights into using LLMs in the IoT domain, they do not offer a comprehensive framework
that fully exploits LLM capabilities or systematically explores the interaction between LLMs and
the physical world through IoT devices, which is the primary focus of our work.
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3 METHODOLOGY

Figure 2: In our framework, IoT data is initially preprocessed to create a data description. Next,
relevant IoT domain knowledge and task-specific demonstrations are retrieved. These elements are
then combined into a prompt, which is input into a LLM to generate the final output.

In this section, we define the problem for IoT task reasoning with LLM and introduce our research
methodology. The formulated research problem is how to leverage LLM and in-context learning for
task reasoning for IoT data, termed as IoT task reasoning, e.g., using accelerators data for activity
recognition or machine sensor for anomaly detection. The prompt for LLM should include two
parts: data, as a way to perceive the physical world, and the task description, such as “Is it a Normal
heartbeat (N) or Premature ventricular contraction beat (V)?”, serves as the query. To evaluate
the performance of IoT reasoning task, we build a new benchmark including 5 real-world tasks
with different IoT data types and difficulty levels, encompassing both classification and regression
problems.

At first, we employ LLMs to execute IoT tasks in a basic setting, similar to the existing ap-
proaches (Ji et al., 2024; Xu et al., 2024b), where the prompt provided to the LLMs includes only
raw IoT data and the associated query. However, the performance of LLMs remains suboptimal. As
shown by the baseline results in Table 2, even GPT-4 only achieves an accuracy of 43% for 3-way
activity recognition and 50% for machine diagnosis based on their approach. These preliminary
results akin to near-random guessing suggest a lack of comprehension of IoT data and tasks by
this naive prompting way. Upon analyzing the characteristics of IoT data and real-world tasks, we
identify that the challenges stem from the abstraction of dense numeric data and the lack of domain
knowledge within LLMs. To address these challenges, we propose a unified framework (Fig. 2) con-
sisting of three key stages: (1) IoT data simplification and enrichment, (2) IoT-oriented knowledge
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augmentation, and (3) prompt configuration. Each stage addresses specific difficulties encountered
by LLMs for IoT task reasoning, and we introduce each stage one by one.

3.1 IOT DATA SIMPLIFICATION AND ENRICHMENT

Unlike textual human tasks that have been learned by LLMs, IoT data for IoT task reasoning presents
unique challenges that hinder LLMs’ comprehension. Firstly, IoT data encompasses a diverse range
of types and forms, many of which are complex time-series data (e.g., electrocardiogram read-
ings) (Goldberger et al., 2000) or multi-variant data (e.g., WiFi CSI) (Yang et al., 2024). LLMs
often struggle with accurately interpreting dense numerical data, especially when it involves long-
sequence time-series data (Zhang et al., 2024b). Secondly, IoT data is typically composed of raw
numerical values. This data often lacks essential textual annotations, such as units of measurement
and metadata about the data collection process, which are critical for LLMs to interpret effectively
in real-world applications. In summary, raw IoT data requires (1) appropriate simplification and
(2) information enrichment. Previous studies (Xu et al., 2024b) have employed down-sampling
techniques for time-series data but they only achieve coarse-grained simplification at a length level
without enhancing the informational content of the IoT data. In contrast, we not only simplify IoT
data at the token level but also enrich the IoT data by providing additional information to facilitate
better understanding by LLMs (as illustrated in Fig. 10 in Appendix B). In this way, we transform
complex raw IoT data into an LLM-friendly format for IoT task reasoning.

IoT data simplification. To achieve effective simplification, it is crucial to understand why LLMs
struggle with dense numeric data. Firstly, according to recent research (Gruver et al., 2024; Spathis
& Kawsar, 2023), tokenization methods, such as Byte Pair Encoding (BPE) often fragment numbers
into tokens that do not align with their digits, resulting in inconsistent tokenization of floating-
point numbers and complicating arithmetic operations. Therefore, in addition to down-sampling
and keeping fixed precision (e.g., two digits of precision) to efficiently manage context length, we
propose to insert spaces between digits to ensure distinct tokenization of each digit and use a comma
(“,”) to separate each time step in a time series. Secondly, the complexity of long-sequence IoT data
poses significant challenges for LLMs in analysis. To assist LLMs in processing this data, we extract
essential statistical features, e.g., mean, variance, and FFT mean, utilizing external tools, such as
Python scripts. We find that these fundamental features are strong enough for IoT task reasoning in
classic IoT tasks. By doing so, we not only simplify IoT data at both length and token levels but also
transform it into a format that is more suitable for tokenization and processing by LLMs.

IoT data enrichment. As previously noted, IoT data alone is insufficient for LLMs to effectively
perform real-world tasks. To address this, we enrich the data by incorporating contextual information
about the physical world. Specifically, we provide a comprehensive overview of IoT data collection
and the integration of physical information. For instance, in human activity recognition (HAR) tasks
where we employ inertial measurement unit (IMU) data including triaxial acceleration and angular
velocity from accelerometers and gyroscopes, we meticulously outline the data collection process,
incorporating the metadata such as sampling frequency (e.g., 10 Hz), device placement on the body,
and units of measurement (e.g., gravitational acceleration and radians per second). This approach
enables LLMs to not only align the three-axis IMU data with the corresponding three-dimensional
spatial orientations of the human body but also to understand the physical significance of these
numerical values, thereby enhancing the comprehension of LLMs for the task in the physical world.

3.2 IOT-ORIENTED KNOWLEDGE RETRIEVAL AUGMENTATION

In IoT task reasoning, the knowledge of LLMs to perform IoT tasks is significant. For example, de-
tecting abnormal heartbeats from electrocardiogram (ECG) data requires interpreting ECG signals
and associating them with specific heartbeat states (e.g., normal, premature ventricular contraction),
necessitating specialized domain knowledge. Although previous research (Xu et al., 2024b) pro-
poses to include specific expert knowledge for specific tasks, the augmentation is task-specific and
added manually, which is time-consuming and not scalable. To address this, we enable LLMs with
IoT knowledge in an automatic fashion. Inspired by the in-context learning capability of LLMs, we
also retrieve task-specific demonstrations, such as question-answer pairs, to guide LLMs in effec-
tively utilizing IoT data for analyzing IoT tasks.
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We first construct an IoT domain knowledge base and a demonstration knowledge base, which will
be utilized for retrieving domain knowledge and task-specific demonstrations. To ensure compre-
hensive coverage of knowledge about IoT data and tasks within the IoT domain knowledge base, we
gather relevant documents (e.g., Wikipedia articles, research papers) through web searches encom-
passing the following themes: (1) IoT data domain knowledge, (2) IoT task domain knowledge, and
(3) expert insights on leveraging IoT data for task execution. For the demonstration knowledge base,
we create task-specific demonstrations (i.e., question-answer pairs) authored by human or AI models
(e.g., ChatGPT). We then employ an embedding model (e.g., text-embedding-ada-0021 by OpenAI)
to embed texts into vectors and store the text chunks and corresponding embeddings as key-value
pairs, which allows for efficient and scalable search capabilities. To improve the quality of retrieved
contents, we also store metadata (e.g., IoT data type for IoT domain knowledge base and task type
for demonstration knowledge base) alongside the vector embeddings within the vector database.
This approach allows for advanced post-processing techniques, such as metadata filtering (Poliakov
& Shvai, 2024), to refine search results and improve task-specific retrieval accuracy. Secondly, we
retrieve relevant knowledge using both IoT data description and task description as query. We adopt
a hybrid search method, which means utilizing both keyword-based retrievers and embedding-based
retrievers to harness their unique strengths, ensuring the consistent retrieval of highly relevant and
context-rich information. Finally, after applying a re-ranking technique to recalibrate the similarity
between the query and retrieved texts using ranker models (e.g. bge-reranker-base2), we filter out
the top-m most relevant pieces, thus obtaining pertinent knowledge, encompassing documents with
specific domain knowledge and task demonstrations relevant to the task at hand.

3.3 PROMPT CONFIGURATION

In addition to augmenting LLMs’ knowledge by providing external documents in the context uti-
lizing the in-context learning capability of LLMs, we further invoke LLMs’ internal knowledge by
carefully configuring the prompt. Recent studies demonstrate that LLMs possess strong role-playing
capabilities (Park et al., 2023). To leverage this, we assign specific roles to LLMs for particular
tasks. For instance, we have LLMs assume the role of a professional doctor when performing heart-
beat anomaly detection, thereby activating their internal domain knowledge. What’s more, since
LLMs’ reasoning capability can be improved a lot by decomposing the whole problem into several
parts (Wei et al., 2022), we decompose the reasoning procedure into two steps, prompting LLMs to
analyze the IoT data and task first, and then provide the final answer based on this analysis. By do-
ing so, we can also evaluate the extent to which the LLM understands IoT data and its capability to
perform IoT tasks through the generated analysis. In the end, we employ a prompt template (refer to
Fig. 8 in Appendix B) to structure the content discussed previously. The ultimate prompt is crafted
based on the template and subsequently fed into a downstream LLM. The LLM then produces the
final output, encompassing both analysis and answer to the specified task.

4 EXPERIMENTS

4.1 A BENCHMARK ON IOT TASK REASONING

4.1.1 IOT TASKS.

To comprehensively assess the capability boundaries of LLMs for IoT task reasoning, we develop
a new benchmark comprising five real-world tasks with diverse IoT data types and difficulty levels:
(1) Human Activity Recognition (HAR) using Inertial Measurement Unit (IMU) data, (2) Industrial
anomaly detection using metrics such as temperature, cooling power, and cooling efficiency, (3)
Heartbeat anomaly detection using Electrocardiogram (ECG) data, (4) Human sensing using WiFi
Channel State Information (CSI), and (5) Indoor localization based on WiFi signal strength. It is
important to note that we don’t need to construct a knowledge base for each task especially, in-
stead, we just need to construct two knowledge bases (i.e., one IoT domain knowledge base and one
demonstration knowledge base), each of which contains all the domain/demonstration knowledge
about the total five tasks. During the retrieval phase, we can easily fetch pertinent knowledge pre-
cisely corresponding to the task utilizing metadata (e.g., IoT data type and task type) stored within

1https://platform.openai.com/docs/guides/embeddings
2https://huggingface.co/BAAI/bge-reranker-base
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the bases. For demonstrations, we utilize the one-shot setting, which means we retrieve one example
for each category in classification tasks.

Table 1: Performance of LLMs on WiFi-based Indoor Localization task. Since this is a re-
gression task, we choose the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
standard deviation (STD) of the RMSE as the main performance metrics.

Method Model
Llama2-7B Mistral-7B Claude-3.5 Gemini-pro GPT-3.5 GPT-4

Base-
line

RMSE (m) 0.374 11.570 0.829 2.318 2.598 0.741
MAE (m) 0.313 9.347 0.696 1.814 1.937 0.581

STD 0.903 6.856 1.607 5.999 6.715 1.502

Ours
RMSE (m) 0.355 9.995 0.404 0.313 0.719 0.402
MAE (m) 0.295 7.980 0.341 0.265 0.592 0.341

STD 0.852 11.146 0.706 0.763 1.765 0.697

Impro-
vement

RMSE (m) +5.1% +13.6% +51.3% +86.5% +72.3% +45.7%
MAE (m) +5.8% +14.6% +51.0% +85.4% +69.4% +41.3%

Table 2: Overall performance of LLMs on IoT tasks. HAR-2cls stands for classifying walking
and standing activities. HAR-3cls stands for classifying lying, walking upstairs, and transitioning
from lying to sitting activities. Heartbeat stands for classifying normal and abnormal heartbeats.
Machine stands for determining whether the coolers work properly or not. Occupancy stands for
detecting the presence of a person in a room.

Model IoT tasks (Accuracy ↑)

HAR-2cls HAR-3cls Heartbeat Machine Occupancy

Llama2-7B
Baseline 50.0% 32.8% 50.0% 35.0% 48.4%

Ours 57.2% 38.0% 54.5% 56.4% 82.5%

Improvement +14.4% +15.9% +9.0% +61.1% +70.5%

Mistral-7B
Baseline 61.5% 26.0% 44.0% 31.5% 50.0%

Ours 84.9% 42.7% 60.5% 92.1% 61.1%

Improvement +38.0% +64.2% +37.5% +192.4% +22.2%

Claude-3.5
Baseline 98.3% 80.1% 52.4% 51.0% 50.0%

Ours 100.0% 95.3% 81.0% 86.3% 82.5%

Improvement +1.7% +19.0% +54.6% +69.2% +65.0%

Gemini-pro
Baseline 39.3% 34.0% 52.0% 49.0% 55.9%

Ours 88.4% 82.8% 51.5% 70.1% 66.2%

Improvement +124.9% +143.5% -1.0% +43.1% +18.4%

GPT-3.5
Baseline 91.5% 33.3% 35.3% 51.5% 50.0%

Ours 92.1% 45.8% 51.0% 61.5% 92.1%

Improvement +0.7% +37.5% +44.5% +19.4% +84.2%

GPT-4
Baseline 77.3% 43.3% 54.0% 49.5% 43.7%

Ours 100.0% 87.8% 69.8% 92.4% 86.6%

Improvement +29.4% +102.8% +29.3% +86.7% +98.2%
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4.1.2 IOT DATASETS.

In our benchmark, we choose public IoT datasets on the five tasks to ensure fairness. Since some
datasets are too challenging for LLMs with many classes, we simplify some datasets by only using
a subset, which is also employed in previous works (Ji et al., 2024).

Human Activity Recognition. We employ the Smartphone-Based Recognition of Human Activ-
ities and Postural Transitions Dataset (Reyes-Ortiz et al., 2015). This dataset comprises raw IMU
data, specifically 3-axial linear acceleration, and 3-axial angular velocity, captured at a sampling rate
of 50Hz by the smartphone’s accelerometer and gyroscope. The data encompasses twelve distinct
activities. To reduce both the sequence length and data complexity, we down-sample the data to
10Hz. Given the challenges associated with multi-class classification for LLM, instead of utilizing
all twelve activity categories, we conduct a binary classification task involving the WALKING and
STANDING labels, and a ternary classification task with the LYING, WALKING UPSTAIRS, and
LIE TO SIT labels.

Industrial anomaly detection. We employ the Condition Monitoring of Hydraulic Systems
Dataset (Helwig et al., 2018), which facilitates the assessment of a hydraulic test rig’s condition
using multi-sensor data, including temperature, cooling power, and efficiency factor series, all ex-
perimentally derived from the rig. The dataset categorizes cooler conditions into three severity
grades: (1) close to failure; (2) reduced efficiency; and (3) full efficiency. For simplicity, we focus
on a binary classification task using only “close to failure”and “full efficiency”categories.

Heartbeat anomaly detection. We employ the MIT-BIH Arrhythmia Database (Goldberger et al.,
2000). This dataset comprises ECG recordings from 48 subjects, each sampled at 360Hz, and cat-
egorizes heartbeats into several types, including Normal beat (N), Atrial premature beat (A), and
Premature ventricular contraction (V), among others. To reduce the difficulty of the task, we down-
sample the signals to 72Hz and focus on a binary classification task using only the Normal beat (N)
and Premature ventricular contraction (V) categories.

Human sensing task. We utilize a dataset collected using a TP-Link TL-WDR4300 WiFi router
operating at 5 GHz with a 40 MHz bandwidth (Zhuravchak et al., 2022). The dataset specifically
captures the absence of human presence across three different rooms. Each room’s environment is
carefully monitored to record Channel State Information (CSI) that reflects the presence or absence
of occupants, providing a robust basis for occupancy detection tasks.

Indoor localization task. We utilize a dataset collected in a laboratory environment using an IoT
system developed in (Huang et al., 2022). The dataset consists of RSSI signals, the basis for
determining human positions within the space. By collecting RSS fingerprints at various reference
points, a signal radio map is constructed using a modified Gaussian Process Regression (GPR)
method. This approach allows us to estimate the RSS distribution at any given location, providing a
reliable means of localizing human presence in the environment.

4.1.3 LLM BASELINES.

In the conducted experiments, we utilize a combination of proprietary and open-source LLMs, in-
cluding gpt-3.5-turbo, gpt-4-turbo, claude-3-5-sonnet, gemini-pro, Mistral-7B3, and LLama2-7B4.
This diverse selection of models enables a comprehensive evaluation of the LLMs’ capabilities in
executing IoT tasks and provides insights into their respective strengths and limitations in real-world
applications. The code implementations of IoT-LLM have been attached in the supplementary ma-
terials and will be made public after publication.

4.2 RESULTS AND ANALYSIS

To evaluate the efficacy of our proposed framework in enhancing the capabilities of IoT task reason-
ing for LLMs, we use HarGPT (Ji et al., 2024) as the baseline, of which the prompts only contain

3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
4https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
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Figure 3: Response example of LLM for human activity recognition (HAR). For more comprehen-
sive examples, please refer to Appendix A.

raw IoT data and corresponding task descriptions, without any data preprocessing, domain knowl-
edge, and demonstrations. The overall performance of LLMs on IoT tasks is shown in Table 1 and
Table 2. The results show that our proposed method consistently boosts the performance of all the
LLMs to complete IoT tasks in real-world scenarios. Notably, advanced LLMs such as Claude-3.5,
Gemini-pro, and GPT-4 have demonstrated significant performance improvements, evolving from
near-random guessing to effectively solving certain tasks. After analyzing the overall performance
and outputs of LLMs in IoT task reasoning, we can answer the questions we proposed in the intro-
duction now. Here is a summary of our arguments regarding the IoT task reasoning with LLMs.

LLMs excel in various IoT tasks but struggle with complex data challenge. Based on the
experimental results, we observe that when provided with perception data (i.e., IoT data collected
by sensors) and external knowledge, advanced LLMs like GPT-4 and Claude-3.5 can effectively
perform various IoT tasks in the physical world, particularly excelling in HAR using IMU data.
However, LLMs’ performance is limited by their intrinsic lack of domain-specific knowledge and
difficulty in comprehending numerical data. For instance, in the task of heartbeat anomaly detection,
even provided with external knowledge, LLMs perform sub-optimally. This is because the time-
series nature of ECG data presents significant challenges for LLMs due to its numerical density and
length. Although we have mitigated some of these challenges by simplifying the data, this approach
only addresses the issue at the data level without fundamentally resolving it at the model level.
Additionally, LLMs inherently lack the extensive medical knowledge required for comprehensive
analysis. While retrieved knowledge can suffice for simpler tasks, more complex problems may
necessitate further model fine-tuning to incorporate deeper and broader medical expertise.

9
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LLMs are excellent learners in IoT task reasoning. Without domain-specific knowledge and
relevant demonstrations, LLMs face significant challenges in performing IoT tasks, often resort-
ing to near-random guessing, especially in tasks such as heartbeat anomaly detection. This indicates
that real-world tasks remain challenging for LLMs to execute directly. However, LLMs are excellent
learners, and their capabilities can be significantly enhanced through data simplification & enrich-
ment and knowledge retrieval augmentation. Specifically, the LLama2-7B, Mistral-7B, Claude-3.5,
Gemini-pro, GPT-3.5, and GPT-4 models exhibit average performance improvements of 30%, 62%,
44%, 69%, 43%, and 65% respectively across various tasks, underscoring the effectiveness of our
methodology.

LLMs can act as experts, not just classifiers or predictors. In our study, we prompt LLMs to
generate both an analysis of the task and the final answer. Based on this analysis, we demonstrate that
LLMs can fully comprehend preprocessed IoT data and effectively utilize the provided knowledge
to perform IoT tasks. Unlike traditional DL/ML methods, which are trained end-to-end to produce
only the final answer, LLMs offer more explainable results. Specifically, LLMs not only provide the
final answer but also the reasoning behind it, akin to expert suggestions in daily life. For instance,
when tasked with human activity recognition (as illustrated in Fig.3), the LLM delivers a detailed
step-by-step analysis before presenting the final answer.

4.3 ABLATION STUDY

To evaluate the impact of different components within our framework, we performed an ablation
study using GPT-4 on HAR and industrial anomaly detection tasks. We tested the following con-
figurations: (1) IoT data simplification and enrichment, (2) addition of retrieved domain knowledge
based on (1), (3) inclusion of retrieved demonstrations based on (2), and (4) the full configura-
tion, which incorporates role descriptions and chain-of-thought techniques as outlined in the Prompt
Configuration stage. The results, presented in Table 3, reveal that for straightforward tasks such
as classifying walking and standing activities, IoT data simplification and enrichment and domain
knowledge retrieval are sufficient. However, for more complex tasks, the inclusion of additional
modules significantly boosts performance. Overall, our findings indicate that each module in our
framework progressively enhances the ability of LLMs to perform IoT-related tasks using IoT data.

Table 3: Ablation study of different modules within our framework on three tasks.

Method IoT tasks (Accuracy↑)

HAR-2cls HAR-3cls Machine
Baseline 77.3% 43.3% 49.5%

+ IoT data simplification and enrichment 96.0% 47.3% 62.7%

+ retrieved domain knowledge 100.0% 78.7% 78.0%

+ retrieved demonstrations 100.0% 86.7% 83.3%

Full setting 100.0% 87.8% 92.4%

5 CONCLUSION

LLMs often struggle with tasks requiring an understanding of physical laws. To address this, we pro-
pose IoT-LLM, a framework that integrates IoT sensor data with LLMs to enhance their perception
and reasoning abilities in the physical world. Evaluated on tasks like human activity recognition and
industrial anomaly detection, IoT-LLM improves LLM performance by approximately 65%, though
challenges remain in specialized domains. This approach systematically enhances LLM capabilities
for real-world applications by leveraging IoT data.

Limitations. While LLMs can manage low-dimensional time-series data, they face significant
challenges with higher-dimensional data, such as audio and 3D point cloud data, due to their ex-
tensive length and complexity. Integrating such data into the context of LLMs is both difficult and
impractical. Instead, directly fine-tuning LLMs with data specific to these modalities may be a more
effective approach. This strategy could be explored in future research to extend the capabilities of
LLMs to handle more complex data types within the IoT domain.
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A RESPONSE EXAMPLES OF LLMS FOR IOT TASKS

In this section, we present examples of responses generated by LLM for various applications, in-
cluding industrial anomaly detection, heartbeat anomaly detection, WiFi-based human sensing, and
indoor localization. To emphasize the output of the LLMs, we do not provide detailed prompts;
instead, we simply display the raw IoT sensor data and the corresponding user queries.

Figure 4: Response example of LLM for industrial anomaly detection.
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Figure 5: Response example of LLM for heartbeat anomaly detection.
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Figure 6: Response example of LLM for WiFi-based human sensing.
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Figure 7: Response example of LLM for WiFi-based indoor localization.

B PROMPT TEMPLATE

In the Prompt Configuration stage within our framework, we systematically organize IoT data de-
scription, task description, retrieved pertinent knowledge (including IoT domain knowledge and
task-specific demonstrations), and role description to generate the final prompt according to the
prompt template, as shown in Fig. 8. For example, based on the final prompt template, we obtain
the final prompt (as shown in Fig. 9) for heartbeat anomaly detection.
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Figure 8: Final prompt template.
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Figure 9: Final prompt for heartbeat anomaly detection. Note that role description is generated
automatically by AI models (e.g., ChatGPT).
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Figure 10: During IoT data simplification and enrichment stage, raw IoT data is transformed into IoT
data description, which is easier to understand by LLMs. Raw IoT data is enriched with descriptive
metadata, including natural language expressions of implicit physical information like units. Spe-
cialized tokenization techniques and extraction of temporal or frequency domain features further
enhance LLMs’ understanding of numerical and time-series data. These improvements make IoT
data more accessible and interpretable for LLMs, facilitating its use in real-world applications.
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