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Abstract

Instruction tuning has been widely used001
to unleash the complete potential of large002
language models. Notably, complex and003
diverse instructions are of significant impor-004
tance as they can effectively align models005
with various downstream tasks. However,006
current approaches to constructing large-scale007
instructions predominantly favour powerful008
models such as GPT-4 or those with over009
70 billion parameters, under the empirical010
presumption that such larger language011
models (LLMs) inherently possess enhanced012
capabilities. In this study, we question this013
prevalent assumption and conduct an in-depth014
exploration into the potential of smaller015
language models (SLMs) in the context of016
instruction evolution. Extensive experiments017
across three scenarios of instruction evolution018
reveal that smaller language models (SLMs)019
can synthesize more effective instructions020
than LLMs. Further analysis demonstrates021
that SLMs possess a broader output space022
during instruction evolution, resulting in023
more complex and diverse variants. We024
also observe that the existing metrics fail025
to focus on the impact of the instructions.026
Thus, we propose Instruction Complex-Aware027
IFD (IC-IFD), which introduces instruction028
complexity in the original IFD score to evaluate029
the effectiveness of instruction data more030
accurately. Our source code is available at:031
https://anonymous.4open.science/r/Evolution-032
Analysis-8BB9033

1 Introduction034

Large Language Models (LLMs) have demon-035

strated exceptional performance in various NLP036

tasks and are widely integrated into a variety of037

applications, represented by ChatGPT and Copi-038

lot (Ouyang et al., 2022; OpenAI, 2023; Dubey039

et al., 2024). A key factor in unleashing the full040

potential of these models is high-quality instruc-041

tion tuning data, which plays a crucial role in post-042

training and enhances their effectiveness as AI as- 043

sistants. In particular, incorporating more complex 044

and diverse instructions allows models to better 045

align with different domains and tasks, boosting 046

their performance in a variety of downstream appli- 047

cations (Zhang et al., 2023). However, generating 048

such diverse instructions remains time-consuming 049

and labor intensive (Zheng et al., 2024a; Zhao et al., 050

2024; Liu et al., 2024), which undoubtedly presents 051

a significant challenge for the automated and scal- 052

able alignment of LLMs. Recently, a series of 053

efforts utilizing LLMs for automatic instruction 054

evolution have garnered sustained attention from 055

the community. Specifically, foundational work 056

like Self-Instruct (Wang et al., 2023) begins with a 057

small set of seed instructions and uses a powerful 058

supervision model to obtain a large number of syn- 059

thetic instructions. Furthermore, Evol-Instruct (Xu 060

et al., 2024a) refines and evolves existing instruc- 061

tions to produce more complex variants. 062

However, previous studies mainly favour strong 063

LLMs like GPT-4 or those with more than 70 bil- 064

lion parameters to synthesize instructions, empiri- 065

cally assuming that larger language models inher- 066

ently have superior instruction evolution capabil- 067

ities. But is this really the case? Recently, Xu 068

et al. (2024c) propose the Larger Models’ Paradox, 069

which points out that larger models do not neces- 070

sarily lead to better performance when generating 071

responses, but it overlooks the analysis of instruc- 072

tions. We propose that smaller language models, 073

which require less computational demand and have 074

lower instruction following capabilities, may pro- 075

vide a more efficient and effective alternative for 076

evolving more complex and diverse instructions. 077

To gain insight into this, we investigate the differ- 078

ences between smaller language models (SLMs) 079

and larger language models (LLMs) in generating 080

high-quality instructions. Specifically, given a set 081

of base models and seed instructions, we are partic- 082

ularly interested in the following research question: 083
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RQ1: Do SLMs Perform Better than LLMs in084

Evolving Instructions?085

In response to this, we conduct comprehensive086

experiments across three distinct instruction evolu-087

tion scenarios: Evol-Instruct, AutoIF (Dong et al.,088

2024), and Auto Evol-Instruct (Zeng et al., 2024).089

In these experiments, we use small (∼8B) and large090

(∼70B) models from the Llama-3.1 and Qwen-2091

families to evolve and synthesize new instructions,092

while also fine-tuning various backbone models.093

The experimental results across all three scenar-094

ios consistently indicate that larger, more powerful095

LLMs do not outperform SLMs in evolving effec-096

tive instructions. More interestingly, SLMs even097

demonstrate the capability to evolve more complex098

and diverse instructions. To further investigate why099

more powerful LLMs perform worse than SLMs in100

generating new instructions, we subsequently pose101

the second research question.102

RQ2: Why do SLMs Outerperform LLMs in103

Evolving Instructions?104

To better understand why more powerful LLMs105

underperform compared to SLMs in evolving in-106

structions, we compare the top-1 token probabil-107

ities of both models during the synthetic of in-108

structions. Our findings demonstrate that LLMs,109

due to their superior instruction following capa-110

bilities, tend to generate a higher proportion of111

high-probability top-1 tokens when evolving new112

instructions. This overconfidence in token genera-113

tion results in a narrower output space. In contrast,114

SLMs can generate a wider variety of tokens, lead-115

ing to more complex and diverse instructions. To116

further investigate what kind of instruction data is117

effective, we propose the third research question.118

RQ3: How Do We Determine Whether An In-119

struction is Effective without Instruction Tuning?120

Evaluations that do not require instruction tuning121

can more efficiently assess instruction data. Recent122

such evaluations often fail to account for the impact123

of the instructions themselves. For instance, reward124

models (Cai et al., 2024) are commonly used to125

assess the quality of responses generated based on126

a given instruction, yet they tend to overlook the127

quality of the instruction itself. Similarly, while the128

IFD score (Li et al., 2024) measures the influence129

of instructions on response generation, it neglects130

the effect of the instruction’s inherent complexity.131

We introduce the Instruction Complex-Aware IFD132

(IC-IFD) score, which incorporates the difficulty133

of the instruction as a penalty term in the original134

IFD. We conduct extensive filtering instruction data135

experiments, and the results demonstrate that the 136

IC-IFD score provides a more accurate assessment 137

of instruction data, particularly in scenarios where 138

the instructions exhibit higher complexity levels. 139

In summary, our key contributions are as follows: 140

(1) To the best of our knowledge, we are the 141

first to comprehensively explore the performance 142

discrepancies between SLMs and LLMs in synthe- 143

sizing instructions. 144

(2) Extensive experimental results demonstrate 145

that SLMs have a broader output space, leading to 146

evolving more complex and diverse instructions. 147

(3) We propose the IC-IFD score, which intro- 148

duces the difficulty of the instruction as a penalty 149

term. Comprehensive experiments show that IC- 150

IFD can more accurately assess the effectiveness 151

of instruction data without instruction tuning. 152

2 Preliminaries 153

(Auto) Evol-Instruct. The goal of (Auto) Evol 154

Instruct is to refine original instructions by using 155

artificially designed or LLM-generated evolution- 156

ary trajectories, thereby increasing their complexity 157

and fostering the development of a more capable 158

model. Formally, given an instruction evolution 159

model Θe, a response generation model Θr, and 160

an original instruction dataset D = {(Ii,Ri)}ni=1, 161

where I and R are instructions and responses and 162

n represents the data size, we employ either ar- 163

tificially designed methods or the Θe-generated 164

evolutionary trajectory T to obtain more complex 165

and diverse evolutionary dataset Devol = {(Iei = 166

Θe(Ii|T ),Rei = Θr(R|Iei))}ni=1. 167

AutoIF. The goal of AutoIF is to automatically 168

construct large-scale and reliable instructions from 169

a small set of seed instructions (which can also 170

be seen as constraints) to improve instruction fol- 171

lowing ability. In this paper, we only utilize the 172

first several steps of AutoIF. Specifically, given a 173

small set of seed instructions Is, we first prompt 174

the supervised model Θ to construct a large num- 175

ber of verifiable instructions Inew based on Is. 176

Subsequently, we prompt Θ to generate the cor- 177

responding verification functions f and test cases 178

c for I = {Is, Inew}. Finally, cross-validation is 179

performed to obtain the final scalable and reliable 180

instructions Ifinal = {I|f(I, c) = True}. 181
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Model Instruction Following (IFEval) Math Reasoning Code Generation

Pr.(S) In.(S) Pr.(L) In.(L) GSM8K MATH HumanEval MBPP

Supervised Model: Llama-3.1-70B-Instruct
Mistral-7B-v0.3 19.59 31.77 22.74 34.65 33.89 3.16 24.39 6.00
DeepSeek-7B 36.23 48.20 41.04 52.52 48.07 2.96 28.66 33.00
Llama-3.2-3B 40.11 50.84 43.81 54.43 53.75 6.60 35.98 36.00
Llama-3-8B 33.83 46.28 36.41 49.28 63.00 7.62 43.90 36.20
Llama-3.1-8B 34.57 46.04 38.81 50.48 64.22 11.32 51.22 40.60
InternLM-2-7B 40.85 53.48 44.54 56.95 68.31 19.50 56.10 40.40

Supervised Model: Llama-3.1-8B-Instruct
Mistral-7B-v0.3 24.40 35.01 26.25 37.53 40.18 2.84 29.27 19.60
DeepSeek-7B 36.60 48.08 41.77 53.12 47.92 3.56 34.76 33.80
Llama-3.2-3B 41.59 53.48 45.66 57.07 55.12 7.32 39.02 32.80
Llama-3-8B 35.49 47.00 39.56 50.72 63.38 11.44 48.17 37.60
Llama-3.1-8B 38.45 50.96 43.81 55.28 67.10 13.12 48.78 41.60
InternLM-2-7B 43.07 54.80 47.32 58.39 68.08 20.32 57.93 40.80

Table 1: Comparison of performance with Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct as supervised models
under Evol-Instruct scenario.

Model Instruction Following (IFEval) Math Reasoning Code Generation

Pr.(S) In.(S) Pr.(L) In.(L) GSM8K MATH HumanEval MBPP

Supervised Model: Qwen-2-72B-Instruct
Mistral-7B-v0.3 20.15 30.94 23.84 34.41 46.93 3.26 32.32 1.80
DeepSeek-7B 35.67 47.12 39.56 50.84 44.81 2.76 36.59 34.00
Llama-3.2-3B 39.74 51.44 43.99 55.40 53.83 7.40 38.41 31.00
Llama-3-8B 34.75 45.80 37.71 48.92 63.76 10.06 43.90 35.40
Llama-3.1-8B 36.41 47.60 39.00 50.60 65.43 10.84 48.17 38.40
InternLM-2-7B 41.96 53.60 43.99 55.64 65.28 17.96 56.71 40.60

Supervised Model: Qwen-2-7B-Instruct
Mistral-7B-v0.3 25.32 37.17 29.76 41.01 47.31 2.20 32.93 12.00
DeepSeek-7B 36.41 48.56 39.37 51.32 48.07 3.82 35.37 33.20
Llama-3.2-3B 43.81 55.16 47.87 58.27 56.56 7.18 39.63 31.40
Llama-3-8B 38.92 48.33 43.81 52.19 63.91 8.66 45.73 38.40
Llama-3.1-8B 34.75 45.80 39.93 51.08 68.76 14.02 46.34 38.60
InternLM-2-7B 44.12 55.16 48.62 58.73 66.87 19.60 58.54 41.40

Table 2: Comparison of performance with Qwen-2-7B-Instruct and Qwen-2-72B-Instruct as supervised models
under Evol-Instruct scenario.

3 RQ1: Do SLMs Perform Better than182

LLMs in Evolving Instructions?183

In this section, we investigate the potential of SLMs184

in evolving complex and diverse instructions across185

three distinct scenarios: Evol-Instruct, AutoIF, and186

Auto Evol-Instruct. Through a series of compre-187

hensive experiments and analyses, we attempt to188

answer the questions raised in RQ1. For clarity, we189

will refer to the instruction data evolved by SLMs190

and LLMs as SLM-INST and LLM-INST. The191

implementation details for the three scenarios, as192

well as our experimental hyperparameters, can be193

found in Appendix A.1.194

3.1 Evol-Instruct Scenario195

In this section, we primarily focus on whether196

SLMs can evolve more complex and challenging197

instruction data compared to LLMs. 198

Seed Datasets. Following (Xu et al., 2024a; Zeng 199

et al., 2024), we utilize the following seed datasets 200

for instruction following, mathematical reasoning 201

and code generation: (1) Alpaca (Taori et al., 2023), 202

(2) GSM8K Train (Cobbe et al., 2021), and (3) 203

Code Alpaca (Chaudhary, 2023). More detailed 204

information can be found in Appendix A.2. 205

Evaluation Benchmarks and Metrics. We use 206

IFEval (Zhou et al., 2023b) to assess instruction fol- 207

lowing capability, GSM8K and MATH (Hendrycks 208

et al., 2021b) to evaluate mathematical reasoning 209

ability, and HumanEval (Chen et al., 2021) and 210

MBPP (Austin et al., 2021) to assess code genera- 211

tion performance. For detailed information, please 212

refer to Appendix A.3. 213
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Figure 1: Comparison of performance on Llama-3-8B during three iterations of instruction evolution, using Llama-
3.1-8B-Instruct and Llama-3.1-70B-Instruct as supervised models for each round under Evol-Instruct scenario.
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Figure 2: Distribution of difficulty levels for instructions evolved during three iterations, using Llama-3.1-8B-
Instruct and Llama-3.1-70B-Instruct as supervised models for each round under Evol-Instruct scenario.

Results of Evol-Instruct. We conduct two sets214

of experiments, using the Llama-3.1 (Dubey et al.,215

2024) and Qwen-2 (Yang et al., 2024) model series216

for instruction evolution. This approach helps elim-217

inate potential biases specific to each model series,218

ensuring the generalizability of the conclusions.219

Specifically, we use Llama-3.1-8B-Instruct and220

Qwen-2-7B-Instruct as SLMs and Llama-3.1-70B-221

Instruct and Qwen-2-72B-Instruct serve as LLMs222

for instruction evolution. To ensure that the gener-223

ated responses do not influence the experimental224

conclusions, we consistently use Qwen-2.5-72B-225

Instruct (Team, 2024) as the response generator.226

Table 1 and Table 2 present a comparative analy-227

sis of benchmark results for SLM-INST and LLM-228

INST using the Llama and Qwen model families,229

highlighting the following key insights1.230

(1) We find that SLM-INST outperforms LLM-231

1More results and analyses regarding the performance of
seed instruction data and the impact of temperature are pro-
vided in Appendix A.4.

INST across instruction following, mathematical 232

reasoning, and code generation, demonstrating su- 233

perior overall performance in both the Llama and 234

Qwen model families. 235

(2) More complex and difficult instruction data 236

leads to more effective improvements in instruc- 237

tion following capabilities (Dong et al., 2024). Our 238

results show that SLM-INST significantly outper- 239

forms LLM-INST on IFEval, highlighting the abil- 240

ity of SLMs to generate more complex instructions 241

compared to LLMs. 242

Impact of Evolution Iteration. Figure 1 illus- 243

trates the performance of Llama-3-8B after three 244

rounds of evolution with the Llama-3.1 series (De- 245

tailed results can be found in Table 10). Iter 0 246

represents the performance of the seed instruction 247

data and we release the following key insights. 248

(1) We find that during the first two rounds of 249

evolution, the SLM-INST consistently outperforms 250

LLM-INST. Notably, in terms of the instruction 251
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Figure 3: Comparison of performance among Qwen-2.5 series models. Detailed results can be found in Table 11.

following, LLM-INST even experiences negative252

growth, further proving that SLMs are superior to253

LLMs in generating complex instructions.254

(2) The performance in the third round of evolu-255

tion shows an interesting phenomenon. While the256

SLM-INST continues to perform well in mathemat-257

ical reasoning, there is a significant drop in both258

instruction following and code generation. Fol-259

lowing (Xu et al., 2024b), we use Qwen-2.5-72B-260

Instruct to assess the difficulty level of the evolved261

instructions in each round, as shown in Figure 2.262

We find that the difficulty of the SLM-INST in the263

third round is excessively high. For example, in264

the third-round SLM-INST for Alpaca, nearly 70%265

of the instructions are categorized as "very hard".266

Such overly complex and difficult-to-understand267

instructions result in a decline in performance. Fur-268

ther data analysis and the evaluation prompt tem-269

plates can be found in Appendix A.5 and Figure 17.270

(3) We find that the complexity of SLM-INST in271

the second iteration surpasses that of LLM-INST272

in the third iteration, with SLM-INST also demon-273

strating superior performance. This suggests that274

we can leverage SLMs to generate more complex275

and challenging instructions with fewer computa-276

tional resources and evolutionary iterations, while277

simultaneously achieving better performance.278

Scaling Experiments. To further validate279

whether our findings hold across models of280

different sizes, we train models of various sizes281

within the Qwen-2.5 series (ranging from 0.5B to282

72B). The training details can be found in Table 7.283

Due to computational resource constraints, we284

perform full fine-tuning for models ranging from285

0.5B to 7B, while applying LoRA (Hu et al., 2022)286

for models from 14B to 72B. To avoid introducing287

additional biases, we switch the response generator288

to Llama-3.1-70B-Instruct during the training of 289

the Qwen-2.5 series models. As shown in Figure 3. 290

We find that in the instruction following evalu- 291

ation, SLM-INST performs slightly worse than 292

LLM-INST on 0.5B and 1.5B models. We believe 293

this is because the evolved instructions in Alpaca 294

are too challenging, and smaller models with 295

lower capabilities may struggle to understand the 296

instructions, leading to performance discrepancies. 297

However, in other evaluations, SLM-INST shows 298

consistently better performance which further 299

confirms our findings. 300

Finding 1

SLMs can evolve more complex and chal-
lenging instructions than LLMs.

301

3.2 AutoIF Scenario 302

In this section, we mainly concentrate on whether 303

SLMs can generate more diverse instruction data 304

compared to LLMs. 305

Evaluation Benchmarks and Metrics. We fully 306

adhere to the evaluation benchmarks used in 307

AutoIF. Specifically, we utilize IFEval and Fol- 308

lowBench (Jiang et al., 2024) to assess instruc- 309

tion following capabilities2. We also evaluate 310

our models on C-Eval (Huang et al., 2023), 311

MMLU (Hendrycks et al., 2021a), GSM8K, and 312

HumanEval to obtain a comprehensive assessment 313

of their capabilities. For detailed information, 314

please refer to Appendix A.3. 315

Results of AutoIF. We use the Llama-3.1 series 316

models for synthesizing instructions and we adopt 317

Qwen-2.5-72B-Instruct for generating responses 318

2We use the Microsoft Azure OpenAI GPT-4 API.
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Model IFEval FollowBench (HSR) Common Abilities

Pr.(S) In.(S) Pr.(L) In.(L) Level 1 Level 2 Level 3 Level 4 Level 5 Avg. C-Eval MMLU HumanEval GSM8K

Supervision Model: Llama-3.1-70B-Instruct
Llama-3.2-3B 40.85 51.92 42.33 53.84 61.17 57.59 50.55 33.09 26.74 45.83 41.37 52.65 29.88 27.07
Llama-3-8B 37.71 50.00 39.19 52.04 49.64 46.60 41.56 27.05 22.37 37.44 41.87 51.14 26.83 37.76
Llama-3.1-8B 41.96 53.36 42.70 54.20 51.77 45.60 45.04 34.85 26.61 40.78 44.50 56.39 31.10 38.21
Qwen-2-7B 41.96 53.60 43.62 55.64 72.18 62.45 56.43 41.31 35.42 53.56 81.08 55.71 57.32 79.68
Qwen-2.5-7B 49.17 60.31 50.46 61.51 78.88 73.78 61.50 51.99 45.42 62.31 80.46 58.39 67.68 85.90
InternLM-2-7B 46.21 56.71 48.06 58.63 68.89 62.23 54.17 44.27 42.06 54.33 60.11 60.59 65.35 50.00

Supervision Model: Llama-3.1-8B-Instruct
Llama-3.2-3B 43.62 54.20 46.95 57.07 56.95 61.46 50.20 37.65 34.16 48.08 40.56 49.08 25.00 29.87
Llama-3-8B 41.04 51.32 42.88 53.11 62.99 54.38 49.29 32.21 32.21 46.21 43.49 55.63 37.20 45.26
Llama-3.1-8B 42.51 54.92 44.73 56.71 63.99 58.15 53.29 39.49 36.02 50.19 43.77 58.32 32.32 47.92
Qwen-2-7B 44.92 55.76 47.50 58.39 78.75 63.30 52.31 50.28 43.08 57.54 80.11 56.84 65.24 79.53
Qwen-2.5-7B 50.09 59.59 52.50 61.75 77.86 70.22 59.86 53.35 47.18 61.69 79.74 60.17 72.56 84.69
InternLM-2-7B 47.50 57.67 50.83 61.15 74.73 66.16 61.94 54.10 46.28 60.64 63.03 63.16 70.96 54.27

Table 3: Comparison of performance with Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct as supervised models
under AutoIF scenario.

under the AutoIF scenario. As shown in Table 3,319

on the IFEval and FollowBench instruction follow-320

ing benchmarks, the instruction data augmented by321

SLMs achieved better performance. Especially on322

FollowBench, SLM-INST even achieve nearly a323

10% improvement over Llama-3-8B and Llama-3.1-324

8B. Meanwhile, on common abilities, SLM-INST325

also demonstrates competitive performance.326
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Figure 4: Distribution of Minimum Neighbor Distance
for instructions generated by Llama-3.1-8B-Instruct and
Llama-3.1-70B-Instruct in the AutoIF scenario.

AutoIF begins with a small set of manually327

crafted seed instructions, from which the model328

draws inspiration to generate a large number of329

new instructions and perform verifications to en-330

sure their quality. Since the generated instructions331

have undergone multiple rounds of verification,332

their diversity becomes even more crucial. Fol-333

lowing (Xu et al., 2024b), we use all-mpnet-base-334

v2 (Song et al., 2020) to measure similarity via335

minimum neighbor distance (MND) in the embed-336

ding space. Notably, a high number of samples337

with low MND suggests poor diversity within the338

dataset. Figure 4 demonstrates that SLM-INST has339

more samples with a larger MND, indicating higher 340

diversity than LLM-INST. 341

Finding 2

SLMs can generate more diverse instruc-
tions than LLMs.

342

3.3 Auto Evol-Instruct Scenario 343

In this section, we mainly focus on whether SLMs 344

can automatically evolve more effective instruc- 345

tions compared to LLMs. 346

Results of Auto Evol-Instruct. As shown in Ta- 347

ble 4, we find that the instruction data automati- 348

cally evolved by SLMs consistently performs better 349

across the Llama series models than LLMs. In addi- 350

tion, we prompt the Qwen-2.5-72B-Instruct model 351

to summarize and deduplicate keywords from the 352

trajectories generated by SLMs and LLMs (the 353

prompt template can be found in Figure 18). We 354

find that the number of trajectories produced by 355

SLMs is 6.9% higher than that of LLMs, further 356

highlighting that SLMs can design more varied evo- 357

lutionary trajectories, leading to more complex and 358

diverse instructions. 359

Finding 3

SLMs can automatically evolve more effec-
tive instructions than LLMs.

360

4 RQ2: Why Do SLMs Outperform 361

LLMs in Evolving Instructions? 362

In this section, we primarily analyze why SLMs 363

perform better from the perspectives of model in- 364

ference and real-world cases. 365
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Model Instruction Following (IFEval) Math Reasoning Code Generation

Pr.(S) In.(S) Pr.(L) In.(L) GSM8K MATH HumanEval MBPP

Supervised Model: Llama-3.1-70B-Instruct
Llama-3.2-3B 36.60 48.68 39.00 51.08 53.60 7.56 35.37 33.00
Llama-3-8B 35.86 47.60 38.63 50.24 63.91 9.18 38.41 32.40
Llama-3.1-8B 36.97 47.60 40.30 51.08 66.11 11.68 40.85 40.40

Supervised Model: Llama-3.1-8B-Instruct
Llama-3.2-3B 45.47 57.43 50.28 61.27 56.48 8.42 38.41 34.40
Llama-3-8B 37.34 49.64 39.74 51.56 67.40 12.26 43.90 34.80
Llama-3.1-8B 38.08 49.76 40.48 52.40 69.52 15.62 51.22 38.80

Table 4: Comparison of performance with Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct as supervised models
under Auto Evol-Instruct scenario.

0.00.20.40.60.81.0
Probability

0

1

2

3

4

5

6

De
ns

ity

LLMs
SLMs

Figure 5: Comparison of output token probability distri-
butions in the Evol-Instruct scenario.

Comparison of Token Distributions. The re-366

sults of our previous experiments indicate that367

SLMs are capable of evolving and generating more368

complex and diverse instructions. We hypothesize369

that this is due to the superior instruction follow-370

ing capabilities of LLMs, which result in a nar-371

rower output space (overconfidence) when follow-372

ing instructions, thereby leading to less diversity373

and complexity in the generated new instructions.374

To validate this hypothesis, we employ the Llama-375

3.1-8B-Instruct and Llama-3.1-70B-Instruct mod-376

els within the Evol-Instruct scenario to obtain the377

probability distributions of output tokens. By ex-378

tracting the top-1 token probability at each output379

position, we compare the output probability distri-380

butions between SLMs and LLMs. As shown in381

Figure 5, we observe that the top-1 token output382

probability for SLMs is lower, suggesting that the383

output distribution of SLMs is more diverse. This384

supports our hypothesis that, due to their relatively385

weaker instruction following capabilities compared386

to LLMs, SLMs generate a broader output space,387

leading to more diverse and complex instructions. 388

We also analyze some cases, and the detailed re- 389

sults can be found in Appendix A.4. 390

Finding 4

SLMs have a broader output space and are
less likely to be overconfident than LLMs.

391

5 RQ3: How Do We Determine Whether 392

An Instruction is Effective without 393

Instruction Tuning? 394

In this section, we primarily discuss how to deter- 395

mine whether instruction data is effective without 396

instruction tuning. 397

Instruction Complex-Aware IFD. As men- 398

tioned in (Xu et al., 2024c), existing evaluations 399

typically focus on assessing responses, such as us- 400

ing reward models, while neglecting the impact of 401

instructions on the data. Recently, Li et al. (2024) 402

proposed the instruction following Difficulty (IFD) 403

score to evaluate the quality of instructions. Specif- 404

ically, the formula for IFD is as follows. 405

IFDΘ(Q,A) =
LΘ(A|Q)

LΘ(A)
(1) 406

Where Q and A represent instructions and re- 407

sponses, and LΘ(·) represents the average cross 408

entropy loss determined by a model Θ. IFD can 409

be understood as the importance of instructions in 410

generating responses. A lower IFD means that a 411

sample does not require training, as the model is al- 412

ready able to generate the corresponding response 413

effectively when given the instruction. However, 414

as shown in Figure 1 and Table 15, when the diffi- 415

culty of the instructions is too high, it may result 416

in a higher IFD, but the overall performance may 417
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fall short of expectations. Inspired by this, we in-418

troduce the difficulty level of instructions into the419

original IFD and propose the Instruction Complex-420

Aware IFD (IC-IFD). Specifically, we introduce the421

perplexity of the instructions into the original IFD422

score, resulting in the following formula.423

IC-IFDΘ(Q,A) =
LΘ(A|Q)

LΘ(Q) · LΘ(A)
(2)424

Metrics IFEval

Pr.(S) In.(S) Pr.(L) In.(L)

Original 33.09 44.72 36.41 48.32
Instruction Len. 29.94 39.69 33.83 43.53
Instruction PPL 27.91 39.69 32.35 44.36
IFD 30.87 43.53 36.04 47.60
IC-IFD 34.01 46.16 38.82 50.72

Table 5: Comparison of different metrics under 25% of
Alpaca-iter3 evolved by SLMs on Llama-3-8B.

Performance of IC-IFD. To validate the effec-425

tiveness of IC-IFD, we aim to mitigate the perfor-426

mance degradation caused by the third round of427

instruction data evolved by SLMs. Specifically, we428

retain the top 25% of instruction data using sev-429

eral metrics, including instruction length (filtering430

out overly long instructions), instruction perplex-431

ity (PPL, filtering out instructions with excessively432

high PPL), IFD, and IC-IFD. As shown in Table 5,433

under the condition of retaining only 25% of the in-434

struction data, IC-IFD outperforms the full dataset,435

while other metrics exhibit varying degrees of per-436

formance degradation, thereby demonstrating the437

effectiveness of IC-IFD. Further experiments on438

IC-IFD can be found in Appendix A.4.439

6 Related Work440

Instruction tuning has become an essential strategy441

for enhancing the capabilities of large language442

models (LLMs) (Ouyang et al., 2022; OpenAI,443

2023). By curating high-quality datasets, we can444

more effectively align these models with specific445

objectives (Zhou et al., 2023a). Recently, some446

researchers have highlighted the significance of447

instruction data that is either manually annotated448

or developed with human involvement, such as449

ShareGPT (Chiang et al., 2023) and OpenAssis-450

tant (Köpf et al., 2023). Meanwhile, other studies451

concentrate on leveraging LLMs to generate high-452

quality datasets with minimal human effort (Xu453

et al., 2024a; Luo et al., 2024, 2023). Wang et al. 454

(2023) introduces Self-Instruct, which begins with 455

a small collection of manually crafted seed instruc- 456

tions and utilizes LLMs to expand these instruc- 457

tions, ultimately producing a large-scale instruction 458

set that improves model abilities. Xu et al. (2024a) 459

presents Evol-Instruct, which employs LLMs for 460

the iterative enhancement of the original instruc- 461

tions through both in-depth and breadth evolution, 462

resulting in a more complex and diverse instruction 463

dataset. Auto Evol-Instruct (Zeng et al., 2024) fur- 464

ther removes human involvement, enabling LLMs 465

to autonomously design the evolution trajectory 466

based on the original instructions. AutoIF (Dong 467

et al., 2024) introduces a code feedback mechanism 468

that allows LLMs to generate evaluation code for 469

verifying whether the quality of the instructions 470

meets the required standards. Xu et al. (2024b) 471

only provides a single prompt to induce the model 472

to generate a large amount of instruction data. Cur- 473

rent research primarily focuses on utilizing larger 474

language models, such as GPT-4 (OpenAI, 2023), 475

for constructing complex instructions. More re- 476

cently, Xu et al. (2024c) explores the performance 477

differences of various-sized models as response 478

generators. In contrast, we concentrate on the po- 479

tential of smaller language models in evolving com- 480

plex instructions. This innovation not only reduces 481

the costs associated with instructions construction 482

but, more importantly, offers a comprehensive eval- 483

uation and exploration, highlighting the significant 484

capabilities inherent in smaller models and provid- 485

ing valuable insights for future work. 486

7 Conclusion 487

In this paper, we compare the performance of 488

SLMs and LLMs in evolving instructions. Ex- 489

tensive experiments demonstrate that SLMs can 490

synthesize more effective instructions at a lower 491

computational cost than LLMs. Through an anal- 492

ysis of the model output distributions, we observe 493

that SLMs exhibit a broader output space, leading 494

to more complex and diverse instructions. Fur- 495

thermore, we introduce instruction complexity as 496

a penalty term in the original IFD and propose IC- 497

IFD, which allows for more accurate assessment of 498

instruction data effectiveness without the need for 499

instruction tuning. Our work also lays the ground- 500

work for future research on SLMs in instruction 501

data synthesis, offering a foundation understanding 502

for further exploration. 503
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Limitations504

Although our work provides valuable insights505

that SLMs perform better in evolving instructions506

through comprehensive experiments, several direc-507

tions are worth exploring in future research.508

(1) We have only conducted experiments in in-509

struction following, mathematical reasoning, and510

code generation. We have not focused on other511

broader domains, and there may have interesting512

discoveries in these areas that require future work.513

(2) Our work focuses on comparing SLMs and514

LLMs in evolving instruction sets, rather than ex-515

ploring the full potential of SLMs in synthesizing516

entire instruction datasets. Future research that517

investigates the capabilities of SLMs across the en-518

tire instruction data synthesis pipeline would be a519

promising and exciting direction to explore.520

(3) The IC-IFD we propose is based on our ob-521

servation that performance degrades with the emer-522

gence of high-difficulty instructions, which leads523

us to introduce instruction complexity as a penalty524

term in the original IFD. In the future, further ex-525

ploration into how to more accurately assess the526

effectiveness of instruction data without instruction527

tuning would be valuable.528
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A Appendix877

A.1 Experimental Details878

Evolution Details of Evol-Instruct. As shown879

in Figure 10, 11 and 12, the instruction evolution880

prompts we utilized are derived from (Xu et al.,881

2024a; Luo et al., 2024), with minor modifica-882

tions. For the Alpaca dataset, we employ four in-883

depth evolution methods: deepening, concretizing,884

adding constraints, and adding reasoning steps, in885

addition to one breadth-focused evolution method.886

However, for the GSM8K Train and Code Alpaca887

datasets, we exclude the breadth-focused method888

and use only the four in-depth methods. To en-889

sure a fair comparison, we apply these evolution890

methods to each original instruction in a fixed se-891

quence, rather than randomly selecting them as892

in the original Evol-Instruct. This strategy is de-893

signed to eliminate variations in the evolution of894

the same instruction, thereby reducing the potential895

for biased experimental conclusions. The results in896

Table1 and Table 2 are obtained after one round of897

evolution of the seed instructions.898

Evolution Details of AutoIF. Following the ap-899

proach in AutoIF, we typically employ Llama-3.1-900

8B-Instruct and Llama-3.1-70B-Instruct to carry901

out the Instruction Augmentation and Verification 902

steps, generating 780 and 420 instructions, respec- 903

tively. Due to the multiple verification steps re- 904

quired by AutoIF for filtering, the number of gen- 905

erated instructions varies. To ensure fairness, we 906

randomly select 420 instructions from the 780 gen- 907

erated by the SLMs for comparison. These in- 908

structions are then concatenated with queries from 909

ShareGPT to create a dataset of 6,720 instruction 910

data for subsequent training. 911

Evolution Details of Auto Evol-Instruct. We 912

compare the performance of Llama-3.1-8B-Instruct 913

and Llama-3.1-70B-Instruct in automatically de- 914

signing evolutionary trajectories for evolving in- 915

structions. Using the prompt template from Auto 916

Evol-Instruct (Zeng et al., 2024) (refer to Fig- 917

ure 15), we prompt the models to design evo- 918

lutionary trajectories and evolve instructions au- 919

tonomously. To avoid introducing additional bias, 920

we exclude the optimization stage from Auto Evol- 921

Instruct. The experimental setup and evaluation 922

benchmarks are consistent with those in Section 3.1. 923

Since the models occasionally fail to adhere to the 924

specified output format, leading to instruction ex- 925

traction errors, we perform random sampling on the 926

larger sets of evolved instructions from both mod- 927

els to ensure consistent quantities of instruction 928

data. We also use Qwen-2.5-72B-Instruct to gener- 929

ate the responses. Finally, for the Alpaca, GSM8K, 930

and Code Alpaca datasets, we conduct automatic 931

evolution and sampling, resulting in 40,483, 6,200, 932

and 15,533 instruction data points, respectively. 933

Implementation Details For a fair comparison, 934

all of our experiments maintain consistent data vol- 935

umes. During the construction of the instruction 936

data, we leverage the vLLM framework (Kwon 937

et al., 2023) for acceleration using a temperature 938

of 0.7 and a top_p value of 0.95. For training 939

the models, we utilize the LLaMA-Factory frame- 940

work (Zheng et al., 2024b) with a global batch size 941

of 64, a cutoff length of 2048, and a learning rate of 942

2e-5, following a cosine learning rate schedule over 943

3 epochs. No checkpoint selection is performed; 944

instead, all models are evaluated using the final 945

saved checkpoint. All experiments are carried out 946

on 8 × NVIDIA Tesla A100 GPUs. 947

Base Models. In the Evol-Instruct scenario, we 948

fine-tune Llama series models (Dubey et al., 2024) 949

including Llama-3.2-3B, Llama-3.1-8B, Llama-3- 950

8B, DeepSeek-7B (Bi et al., 2024), Mistral-7B- 951
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v0.3 (Jiang et al., 2023), and InternLM-2-7B (Cai952

et al., 2024) models. In the AutoIF scenario, we953

also use Llama series models as in Evol-Instruct, as954

well as Qwen series (Yang et al., 2024) models in-955

cluding Qwen-2.5-7B and Qwen-2-7B, along with956

InternLM-2-7B. For Auto Evol-Instruct, we evalu-957

ate the performance of the Llama series models.958

Hyperparameter Value

Learning Rate 2× 10−5

Number of Epochs 3
Number of Devices 8
Per-device Batch Size 1
Gradient Accumulation Steps 8
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max Sequence Length 2048

Table 6: Hyperparameters utilized in Evol-Instruct, Au-
toIF and Auto Evol-Instruct scenarios.

More Hyperparameter Details. We provide959

the detailed hyperparameters for supervised fine-960

tuning in Table 6. Except for IFEval and Follow-961

Bench, which are evaluated using their respective962

repositories, all other evaluations are conducted us-963

ing the OpenCompass (Contributors, 2023) frame-964

work, and vLLM is adopted for inference accelera-965

tion throughout the evaluation process to enhance966

computational efficiency and expedite the assess-967

ment procedures.968

A.2 Detailed Information of Seed Datasets969

In Evol-Instruction and Auto Evol-Instruct scenar-970

ios, we utilize the following seed datasets for in-971

struction following, mathematical reasoning, and972

code generation: (1) Alpaca, a dataset that con-973

tains about 52K instruction following data points,974

(2) GSM8K Train, a dataset that includes nearly975

7K high-quality, linguistically diverse grade school976

math word problems; and (3) Code Alpaca, a code977

generation dataset comprising approximately 20K978

samples. Table 8 presents the statistical informa-979

tion of the seed datasets.980

In the AutoIF scenario, we follow the setup de-981

scribed in the AutoIF paper, using the seed instruc-982

tions provided by the authors and the queries from983

ShareGPT to construct the instructions.984

Hyperparameter Value

General Hyperparameters
Number of Epochs 2
Number of Devices 8
Per-device Batch Size 1
Gradient Accumulation Steps 8
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max Sequence Length 2048

LoRA Hyperparameters
LoRA Rank 8
LoRA Alpha 8
LoRA Target all module
LoRA Dropout 0.0

Qwen-2.5-0.5B and 1.5B
Learning Rate 1× 10−5

Qwen-2.5-3B and 7B
Learning Rate 7× 10−6

Qwen-2.5-14B, 32B and 72B
Learning Rate 5× 10−5

Table 7: Hyperparameters utilized for fine-tuning Qwen-
2.5 series models.

A.3 Detailed Information of Evaluations 985

To evaluate the instruction following capabilities 986

of our models, we employ several benchmarks, in- 987

cluding IFEval and FollowBench. IFEval consists 988

of 25 types of verifiable instructions across approx- 989

imately 500 prompts, while FollowBench is a fine- 990

grained, constraint-based instruction following a 991

benchmark with five difficulty levels. It includes 992

diverse open-ended instructions that require eval- 993

uation by strong LLMs. We report both strict and 994

loose accuracy metrics at the prompt and instruc- 995

tion levels, and for FollowBench, we specifically 996

report the Hard Satisfaction Rate (HSR). 997

In addition to instruction following benchmarks, 998

we assess the models on other tasks. For math- 999

ematical reasoning, we use GSM8K and MATH. 1000

GSM8K consists of grade school math problems, 1001

while MATH presents more challenging mathemat- 1002

ical problems. We report accuracy scores for both 1003

datasets. For code generation, we evaluate the 1004

models using HumanEval and MBPP, reporting 1005

the pass@1 metrics. We also evaluate our models 1006

on C-Eval, and MMLU to provide a comprehen- 1007
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Seed Data

Dataset Datasize

Instruction Following Alpaca 51,983
Mathematical Reasoning GSM8K Train 7,473
Code Generation Code Alpaca 20,022

Table 8: Statistics of seed instruction data used in the
Evol-Instruct and Auto-Evol-Instruct scenarios.

sive assessment of the models’ capabilities across1008

various domains.1009

A.4 More Experimental Results1010

Seed Instruction Data Results. Table 9 presents1011

the experimental results for the seed instruction1012

datasets used in Evol-Instruct and Auto Evol-1013

Instruct scenarios. We observe that the perfor-1014

mance of models trained on these seed data is sub-1015

optimal. We argue that the quality of these seed1016

data is no longer adequate to further improve the1017

performance of the current advanced base models.1018

Detailed Results of Multi-Iteration Evolution.1019

Table 10 presents the detailed results of different1020

evolved iterations which are referred to Figure 1.1021

Detailed Results of Scaling Experiments. Ta-1022

ble 11 presents the detailed results of the model1023

scaling experiment shown in Figure 3.1024

The Impact of Temperatures. To explore the1025

impact of temperature on the evolutionary instruc-1026

tion data, we compare Llama-3.1-8B-Instruct and1027

Llama-3.1-70B-Instruct under different tempera-1028

tures. Specifically, we evolve the Code Alpaca data1029

under greedy decoding (with a temperature of 0)1030

and at five different temperatures ranging from 0.11031

to 0.9, and uniformly use Qwen-2.5-72B-Instruct1032

to generate the corresponding responses. As shown1033

in Table 12, the results of training on Llama-3.2-3B1034

indicate that the SLMs perform consistently better1035

than LLMs under all temperatures, which further1036

validates the universality of our conclusion.1037

More Results of IC-IFD. To further validate1038

the broad applicability of IC-IFD, beyond high-1039

difficulty instruction data, we use the IC-IFD and1040

IFD metrics to filter 5%, 10%, and 15% of the1041

original Alpaca dataset for training the Llama-3-1042

8B and Llama-3.2-3B models. We fine-tune the1043

models on the IC-IFD and IFD-filtered data and1044

evaluate their performance using instructions from1045

AlpacaFarm (Dubois et al., 2023). The generated1046
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IC-IFD vs. IFD on Llama-3-8B
Win
Tie
Lose
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Figure 6: Performance comparison of three data selec-
tion ratios on Alpaca dataset between IC-IFD and IFD.
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Figure 7: Performance comparison of three data selec-
tion ratios on Alpaca dataset between IC-IFD and full
dataset.

responses are then assessed using GPT-4 to deter- 1047

mine the win-tie-lose ratio (the evaluation prompt 1048

template can be found in Figure 20). As shown 1049

in Figure 6, we observe that IC-IFD consistently 1050

outperforms IFD across all three data ratio settings 1051

for both models. Furthermore, we compare the 1052

performance of models trained on IC-IFD-filtered 1053

data with those trained on the full Alpaca dataset. 1054

As shown in Figure 7, models trained on IC-IFD- 1055

filtered data also perform better than those trained 1056

on the full dataset, further demonstrating the effec- 1057

tiveness of the proposed IC-IFD. 1058

Case Study. We compare the evolution of SLMs 1059

and LLMs across two specific in-depth cases. As il- 1060

lustrated in Figure 8, we observe that in the "adding 1061

constraints" evolution trajectory, the evolved in- 1062

structions of SLMs incorporate two additional con- 1063

straints: lack of time for exercise and inability to 1064

limit diet, while the evolved instructions of LLMs 1065

only add the condition that the requirements must 1066

be feasible. Similarly, in the "deepening" evolu- 1067

tion trajectory, as shown in Figure 9, the evolved 1068

instructions of SLMs are significantly more chal- 1069

lenging, containing numerous in-depth conditions, 1070
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Model Instruction Following (IFEval) Math Reasoning Code Generation

Pr.(S) In.(S) Pr.(L) In.(L) GSM8K MATH HumanEval MBPP

Seed instruction data
Mistral-7B-v0.3 17.01 26.86 19.04 29.14 27.07 0.12 10.20 8.80
DeepSeek-7B 22.00 34.05 23.48 35.73 44.05 0.56 25.61 33.80
Llama-3.2-3B 22.55 34.17 25.88 37.65 46.40 0.56 28.05 32.20
Llama-3-8B 23.11 32.97 24.77 35.13 53.68 0.22 25.00 28.60
Llama-3.1-8B 27.54 38.13 28.65 39.21 56.41 7.56 29.88 31.80
InternLM-2-7B 32.72 45.08 35.30 48.08 61.87 10.28 42.07 40.00

Table 9: Results of seed instruction data.

Model Instruction Following (IFEval) Math Reasoning Code Generation

Pr.(S) In.(S) Pr.(L) In.(L) GSM8K MATH HumanEval MBPP

Supervised Model: Llama-3.1-70B-Instruct
Iteration 1 33.83 46.28 36.41 49.28 63.00 7.62 43.90 36.20
Iteration 2 32.53 43.76 34.20 46.16 64.59 10.04 42.07 36.60
Iteration 3 35.12 47.36 36.97 49.28 64.75 11.82 43.29 37.20

Supervised Model: Llama-3.1-8B-Instruct
Iteration 1 35.49 47.00 39.56 50.72 63.38 11.44 48.17 37.60
Iteration 2 36.78 48.20 40.30 50.84 64.82 11.48 48.78 39.40
Iteration 3 33.09 44.72 36.41 48.32 65.88 14.12 44.51 40.80

Table 10: Detailed performance of different evolved iterations on Llama-3-8B refer to Figure 1.

which is absent in the evolved instructions of LLMs.1071

Overall, from actual cases, SLMs can evolve more1072

complex and diverse instructions under the same1073

constraints or trajectories, achieving more effective1074

instructions at a lower computational cost.1075

A.5 Further Analysis1076

Difficulty Scores of Evol-Instruct. We utilize1077

the prompt template shown in Figure 19 to prompt1078

Qwen-2.5-72B-Instruct for evaluating the complex-1079

ity scores of the three-round data in the Evol-1080

Instruct scenario. As shown in Table 13, we find1081

that in each round, SLM-INST consistently outper-1082

forms LLM-INST in terms of complexity scores.1083

Interestingly, SLM-INST Iter 2 is even more dif-1084

ficult than LLM-INST Iter 3, as demonstrated by1085

the experiment in Figure 1, where the overall per-1086

formance of SLM-INST Iter 2 is superior to that of1087

LLM-INST Iter 3.1088

Quality Score Evaluated by Reward Model.1089

We also utilize InternLM-2-7B-Reward as the re-1090

ward model to evaluate the average scores of the1091

evolved instructions of both SLMs and LLMs.1092

Specifically, given the evolved prompt templates1093

(as shown in Figure 10 and 12), we then use the re-1094

ward model to evaluate the rewards of the evolved1095

instructions generated by SLMs and LLMs respec-1096

tively and obtain the mean reward of the instruction1097

set. As shown in Table 14, we find that the overall1098

scores of the instructions evaluated by the reward 1099

model are approximately in line with its perfor- 1100

mance during the training stage. However, on some 1101

datasets, it could not accurately reflect the quality 1102

of the instructions. Moreover, using the reward 1103

model cannot directly assess the quality of the in- 1104

structions. Instead, it requires the meta-instructions 1105

used when constructing the instructions. Therefore, 1106

the reward model cannot be well applied to the 1107

evaluation of instructions. 1108

Comparison of IFD and IC-IFD. We analyze 1109

the third-round evolved Alpaca dataset for both 1110

SLMs and LLMs. Specifically, we compute the 1111

IFD and IC-IFD scores for each sample in both 1112

datasets and compare their average scores. As 1113

shown in Table 15, we evaluate the average perfor- 1114

mance of IFEval on the two datasets using Llama- 1115

3-8B. We find that when the instruction difficulty 1116

level is too high, the IFD score tends to increase. 1117

However, the performance of the fine-tuned models 1118

does not align with expectations. In contrast, the 1119

IC-IFD score effectively captures the influence of 1120

instruction complexity, offering a more accurate 1121

data quality assessment. 1122

A.6 Prompt Templates 1123

Prompt Templates of Evol-Instruct. Figure 10 1124

shows the in-depth evolution prompt template for 1125

instruction evolution used in the Evol-Instruct sce- 1126
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Model Instruction Following (IFEval) Math Reasoning Code Generation

Pr.(S) In.(S) Pr.(L) In.(L) GSM8K MATH HumanEval MBPP

Supervised Model: Llama-3.1-70B-Instruct
Qwen-2.5-0.5B 18.48 32.73 22.00 35.85 40.26 16.32 30.49 27.60
Qwen-2.5-1.5B 28.84 42.67 31.98 46.04 62.32 24.06 50.00 43.20
Qwen-2.5-3B 37.89 48.56 42.70 53.60 76.12 26.44 63.41 55.40
Qwen-2.5-7B 46.21 56.83 50.64 60.79 76.12 38.14 70.73 61.60
Qwen-2.5-14B (LoRA) 40.11 54.43 48.24 61.99 87.79 49.94 75.00 67.20
Qwen-2.5-32B (LoRA) 42.88 57.31 51.20 64.15 87.79 55.02 80.49 71.20
Qwen-2.5-72B (LoRA) 50.63 68.43 57.12 70.98 91.05 58.83 82.93 76.00

Supervised Model: Llama-3.1-8B-Instruct
Qwen-2.5-0.5B 17.38 29.38 19.78 32.01 40.71 16.26 34.76 28.00
Qwen-2.5-1.5B 28.47 41.73 31.98 44.96 65.35 27.84 52.44 49.94
Qwen-2.5-3B 38.82 49.76 42.51 53.96 76.57 30.92 64.02 55.80
Qwen-2.5-7B 47.32 58.39 51.39 62.35 82.03 43.78 71.95 61.80
Qwen-2.5-14B (LoRA) 42.51 55.16 51.02 62.47 88.17 52.22 75.61 67.20
Qwen-2.5-32B (LoRA) 45.84 58.75 54.71 66.31 89.61 55.28 81.71 73.20
Qwen-2.5-72B (LoRA) 52.79 72.56 61.25 73.27 91.36 60.75 84.67 76.80

Table 11: Detailed performance among Qwen-2.5 series models refer to Figure 3.

Temperature HumanEval MBPP HumanEval MBPP

Supervised Model: Llama-3.1-70B-Instruct Supervised Model: Llama-3.1-8B-Instruct

greedy 37.20 33.40 39.63 36.40
0.1 36.59 36.40 37.80 37.60
0.3 38.41 35.20 39.63 37.80
0.5 35.98 33.40 37.80 35.80
0.7 35.98 36.00 39.02 32.80
0.9 34.76 33.00 40.24 35.80

Table 12: Performance among different temperatures on Llama-3.2-3B under code generation scenario.

Alpaca GSM8K Train Code Alpaca

Seed Instruction 27.63 34.05 26.01

LLM-INST Iter1 52.89 39.88 46.75
SLM-INST Iter1 66.35 48.85 58.86

LLM-INST Iter2 68.16 47.14 65.02
SLM-INST Iter2 77.62 63.48 73.37

LLM-INST Iter3 75.73 54.00 72.85
SLM-INST Iter3 82.44 72.12 79.19

Table 13: Scores of difficulty levels for instructions
evolved during three iterations, using Llama-3.1-8B-
Instruct and Llama-3.1-70B-Instruct as supervised mod-
els for each round under Evol-Instruct scenario.

nario, derived from (Xu et al., 2024a) and slightly1127

modified. Figures 11 and 12 demonstrate the1128

four in-depth methods and one in-breadth evolved1129

prompt template we adopt.1130

Prompt Templates of AutoIF. We utilize the1131

prompt templates consistent with those in (Dong1132

et al., 2024). Figures 13 and 14 represent the1133

prompts used in the two stages: Self-Instruct Seed1134

Instructions and Verification Funcs and Cases Gen-1135

eration.1136

Iteration Average Reward

Alpaca GSM8K Code Alpaca

Supervised Model: Llama-3.1-70B-Instruct
Iteration 1 1.54 0.74 1.10
Iteration 2 1.68 0.73 1.19
Iteration 3 1.56 0.69 1.14

Supervised Model: Llama-3.1-8B-Instruct
Iteration 1 1.59 1.01 1.23
Iteration 2 1.54 0.79 0.96
Iteration 3 1.42 0.97 1.03

Table 14: Comparison of average rewards among differ-
ent iteration evolution instruction data.

Prompt Templates of Auto Evol-Instruct. As 1137

shown in Figure 15, we utilize the prompt templates 1138

consistent with those in (Zeng et al., 2024) under 1139

Auto Evol-Instruct scenario. 1140

Prompt Templates of Response Generation. 1141

We use the prompt template shown in Figure 16 1142

to generate the corresponding responses for all in- 1143

structions. We adopt the data organization format 1144
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Original Instruction:
Give three tips for staying healthy.

LLMs Evolution Instruction:
Provide three actionable tips for staying healthy, considering a moderate lifestyle, and explain how they can be 
incorporated into a daily routine.

SLMs Evolution Instruction:
Consider the following additional constraint: 
Assuming a person has a busy schedule with limited time for exercise and a restrictive diet, provide three evidence-based 
tips for maintaining overall health and well-being.

Case Study (Adding Constraints)

Figure 8: Comparison of cases between LLMs and SLMs under adding constraints strategy.

Original Instruction:
Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?

LLMs Evolution Instruction:
Weng earns $12 an hour for babysitting, but her rate is prorated to the nearest 10-minute interval. Yesterday, she did 50 
minutes of babysitting. How much did she earn, and would her earnings change if she had worked for the full hour?

SLMs Evolution Instruction:
Consider a scenario where Weng earns a variable hourly wage for babysitting, which is $12 plus a 10% bonus for every 
hour worked on a weekday and a 15% bonus for every hour worked on a weekend. Yesterday, she worked 50 minutes of 
babysitting, which falls on a Saturday. Additionally, she has a 5% additional ones on her total earnings if she completes 
the babysitting job within the scheduled time. How much did she earn, considering the bonuses and additional earns?

Case Study (Deepening)

Figure 9: Comparison of cases between LLMs and SLMs under deepening strategy.

Datasets IFD (%) IC-IFD (%) Performance

SLMs (Alpaca iter 3) 83.04 35.89 40.64
LLMs (Alpaca iter 3) 82.03 37.05 42.18

Table 15: Comparison of IFD and IC-IFD on third-
round evolved Alpaca datasets from SLMs and LLMs.

from Llama-Factory, and therefore, when gener-1145

ating responses, we classify them into two types1146

based on the presence of an input.1147

Prompt Templates of Data Analysis. Figure 171148

and 19 show the prompt templates used to assess1149

the difficulty levels and scores of instructions. Fig-1150

ure 18 displays the prompt template used to analyze1151

the evolutionary trajectories automatically gener-1152

ated by the model.1153

Prompt Templates of Evaluation. Figure 201154

shows the prompt template used to assess the win-1155

tie-lose rates on AlpacaFarm.1156
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I want you to act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., 
ChatGPT and GPT-4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded to by humans.
You SHOULD complicate the given prompt using the following method:
{METHOD}
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 
20 words into #The Given Prompt#.
You MUST only generate the new prompt without #The Given Prompt# and #Rewritten Prompt#.
#The Given Prompt#:
{INSTRUCTION}
#Rewritten Prompt#:

In-Depth Evolution Prompt

Figure 10: In-depth evolution prompt template utilized in Evol-Instruct scenario.

Adding Constraints:
Please add one more constraint/requirement into #The Given Prompt#
Deepening:
If #The Given Prompt# contains inquiries about certain issues, the depth and breadth of the inquiry can be increased.
Concretizing:
Please replace general concepts with more specific concepts.
Adding Reasoning Steps:
If #The Given Prompt# can be solved with just a few simple thinking processes, you can rewrite it to explicitly request 
multiple-step reasoning.

In-depth Evolution Method

Figure 11: Four in-depth methods utilized in Evol-Instruct scenario.

I want you to act as a Prompt Creator.
Your goal is to draw inspiration from the #Given Prompt# to create a brand new prompt.
This new prompt should belong to the same domain as the #Given Prompt# but be even more rare.
The LENGTH and complexity of the #Created Prompt# should be similar to that of the #Given Prompt#.
The #Created Prompt# must be reasonable and must be understood and responded to by humans or modern AI chatbots.
You MUST only generate the new prompt without any other words or special symbols.
#Given Prompt#:
{INSTRUCTION}
#Created Prompt#:

In-breadth Evolution Prompt

Figure 12: In-breadth evolution prompt template utilized in Evol-Instruct scenario.

You are an expert for writing instructions. Please provide 50 different instructions that meet the following requirements:
- Instructions are about the format but not style of a response
- Whether instructions are followed can be easily evaluated by a Python function
Here are some examples of seed instructions we need:
{SEED_INSTRUCTIONS}
Do not generate instructions about writing style, using metaphor, or translation. Here are some examples of instructions 
we do not need:
- Incorporate a famous historical quote seamlessly into your answer
- Translate your answer into Pig Latin
- Use only words that are also a type of food
- Respond with a metaphor in every sentence
- Write the response as if you are a character from a Shakespearean play
Please generate one instruction per line in your response and start each line with '- '.
Do NOT repeat the seed instructions.

Self-Instruct Seed Instructions Prompt

Figure 13: Prompt template of Self-Instruct Seed Instructions in AutoIF scenario.
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You are an expert for writing evaluation functions in Python to evaluate whether a response strictly follows an 
instruction.
Here is the instruction: {INSTRUCTION}
Please write a Python function named `evaluate` to evaluate whether an input string `response` follows this instruction. 
If it follows, simply return True, otherwise return False.
Please respond with a single JSON that includes the evaluation function in the key `func`, and a list of three test cases 
in the key `cases`, which includes an input in the key `input` and an expected output in the key `output` in (true, false).
Here is an example of output JSON format: {{"func": "JSON_STR(use only \\n instead of \n)", "cases": [{{"input": 
"str", "output": "str"}}]}}.

Verification Funcs and Cases Generation

Figure 14: Prompt template of Verification Funcs and Cases Generation in AutoIF scenario.

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version. Please follow the 
steps below to rewrite the given #Instruction# into a more complex version.
Step 1: Please read the #Instruction# carefully and list all the possible methods to make this instruction more complex 
(to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do not provide 
methods to change the language of the instruction!
Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the #Instruction# 
more complex. The plan should include several methods from the #Methods List#.
Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can only 
add 10 to 20 words into the #Instruction#.
Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 
#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Final Rewritten 
Instruction# without any explanation.
Please reply strictly in the following format:
Step 1 #Methods List#: 
Step 2 #Plan#: 
Step 3 #Rewritten Instruction#: 
Step 4 #Finally Rewritten Instruction#:
#Instruction#: {INSTRUCTION}

Auto Evol-Instruct Prompt

Figure 15: Prompt template of Auto Evol-Instruct scenario.

 When input is provided:
    Given the following instruction and input, please provide a comprehensive and accurate response.
    Instruction: {INSTRUCTION}
    Input: {INPUT}
    Response: 

  When no input is provided:
    Given the following instruction, please provide a comprehensive and accurate response.
    Instruction: {INSTRUCTION}
    Response:

Response Generation Prompt

Figure 16: Prompt template of response generation.
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# Instruction
You first need to identify the given user intent and then label the difficulty level of the user query based on the content 
of the user query.

## User Query
{QUERY}

## Output Format
Given the user query, in your output, you first need to identify the user intent and the knowledge needed to solve the 
task in the user query. Then, rate the difficulty level of the user query as 'very easy', 'easy', 'medium', 'hard', or 'very 
hard’.

Remember, only generate the difficulty level without any other words or symbols.
## Output

Evaluate Difficulty Level

Figure 17: Prompt template of evaluating the difficulty levels.

You are tasked with generating a concise summary for the given trajectory of instruction evolution. Please follow the 
steps below:
Step 1: Carefully read the given trajectories of instruction evolution and identify the key concept or process it describes. 
Step 2: Create a short and simple phrase that accurately summarizes the core idea of the trajectory. The summary should 
be succinct and focus on the essence of the evolution process. Ensure that the phrase does not contain any unnecessary 
symbols, punctuation, or formatting. It should be just a brief, clear description of the method. Please ignore the numerical 
labels or special identifiers at the beginning of the methods. 
Provide only the summary phrase without any further explanation or additional information.
Trajectory of Instruction Evolution: {TRAJECTORY}

Extract Keywords of Trajectory

Figure 18: Prompt template of extracting the keywords from evolution trajectories.

# Instruction
You first need to identify the given user intent and then label the difficulty score of the user query based on the content 
of the user query.

## User Query
{QUERY}

## Output Format
Given the user query, in your output, you first need to identify the user intent and the knowledge needed to solve the 
task in the user query. Then, rate the difficulty score of the user query from 0 to 100.

Remember, only generate the difficulty score without any other words or symbols.
## Output

Evaluate Difficulty Score

Figure 19: Prompt template of evaluating the difficulty scores.
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[User]
{USER_QUERY}
[Assistant 1]
{ASSISTANT 1 QUERY}
[Assistant 2]
{ASSISTANT 2 QUERY}
[System Information]
We would like to request your feedback on the two dialogues shown above between two AI assistants. Focus on the 
AI's responses. The AI's responses should perfectly align with the user's needs. Additionally, the responses should be 
concise and to the point, avoiding unnecessary details or excessive information, while still being as comprehensive as 
possible in addressing the user's query. The answers must maintain good logical flow, use precise technical terms, and 
be factually accurate and objective.
Based on the above criteria, compare the performance of Assistant 1 and Assistant 2. Determine which one is "better 
than," "worse than," or "equal to" the other. First, compare their responses and analyze which aligns better with the 
stated requirements.
On the last line, output a single label only, selecting from one of the following:
'Assistant 1 is better than Assistant 2'
'Assistant 1 is worse than Assistant 2'
'Assistant 1 is equal to Assistant 2'

Evaluation Prompt

Figure 20: Prompt template of evaluating the win-tie-lose rates.
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