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ABSTRACT

Image enhancement is considered an ill-posed inverse problem due to its tendency
to have multiple solutions. The loss of information makes accurately reconstructing
the original image from observed data challenging. Also, the quality of the result is
often subjective to individual preferences. This obviously poses a one-to-many map-
ping challenge. To address this, we propose a Bayesian Enhancement Model (BEM)
that leverages Bayesian estimation to capture inherent uncertainty and accommo-
date diverse outputs. Our approach, integrated within a two-stage framework,
first employs a Bayesian Neural Network (BNN) to model reduced-dimensional
image representations, followed by a deterministic network for refinement. We
further introduce a dynamic Momentum Prior to overcome convergence issues
typically faced by BNNs in high-dimensional spaces. Extensive experiments across
multiple low-light and underwater image enhancement benchmarks demonstrate
the superiority of our method over traditional deterministic models, particularly
in real-world applications lacking reference images, highlighting the potential of
Bayesian models in handling one-to-many mapping problems.

1 INTRODUCTION

In computer vision, image enhancement refers to the process of enhancing the perceptual quality,
visibility, and overall appearance of an image, which can involve reducing noise, increasing contrast,
sharpening details, or correcting colour imbalances. In image enhancement tasks such as low-light
image enhancement (LLIE) and underwater image enhancement (UIE), a common challenge arises
from dynamic photography conditions, where a single degraded input image can correspond to
multiple plausible target images. This phenomenon, known as the one-to-many mapping problem,
arises because multiple valid outputs can be generated depending on varying conditions during image
capture, such as changes in lighting, exposure, or other factors.

Recent advances in deep learning have shifted image enhancement towards data-driven approaches.
Several deep learning-based models (Zamir et al., 2022; Cai et al., 2023) have achieved advanced
results by learning mappings between low-quality inputs and their high-quality counterparts using
paired datasets. However, we observe that existing datasets exhibit the one-to-many relationship
between their input and target domains. Specifically, we observe cases where there exist at least
two image pairs with input images that are either identical or visually indistinguishable, yet their
corresponding targets exhibit notable variations. When such discrepancies arise due to ambiguity in
the target domain, a traditional deep neural network—being a deterministic function—struggles to
effectively model these one-to-many image pairs. Previous methods employing deterministic neural
networks (DNNs) for image enhancement often overlook this class of one-to-many samples, leading
to sub-optimal solutions. Figure 1 (middle) demonstrates how a deterministic neural network trained
on one-to-many mapping data struggles to predict any specific target, instead producing an averaged
output due to “regression toward the mean”.

To tackle the inherent ambiguity in image enhancement tasks caused by one-to-many mappings, we
adopt a Bayesian framework that models these mappings probabilistically. Rather than relying on a
sub-optimal deterministic approach, our method leverages Bayesian inference to sample multiple
sets of network weights from a learned distribution, effectively creating a diverse ensemble of deep
networks. Each sampled network captures a distinct plausible solution, allowing our model to map
a single input to a distribution of possible target outputs. This approach theoretically enables the
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Figure 1: One-to-Many Mapping. The left panel shows an image crop x associated with multiple
targets {y1, . . . ,y6}. A DNN (middle) trained on such data tends to predict the weighted average of
all targets. In contrast, a BNN (right) models the one-to-many relation by producing different outputs
according to a learned probability distribution.

mapping of all plausible variations, effectively modelling the complex one-to-many relationships
present in real-world scenarios.

While Bayesian Neural Networks (BNNs) have shown promise in capturing uncertainty in various
tasks (Kendall & Cipolla, 2016; Kendall et al., 2015; 2018), their potential in addressing the one-to-
many mapping problem for image enhancement remains largely under-explored. By incorporating
Bayesian inference into the enhancement process, our approach captures uncertainty in dynamic,
uncontrolled environments, providing a more flexible and robust solution than traditional deterministic
models. However, applying BNNs to these tasks presents significant challenges due to the high
dimensionality of image data and the strong 2D spatial correlations between pixels. For example, the
weight uncertainty in BNNs often leads to noisy image outputs, while models with high-dimensional
weight spaces are prone to underfitting. Following our approach, we systematically address these
challenges, unleashing the potential of BNNs in image-related tasks by overcoming their limitations
and improving their performance in high-dimensional settings.

As the first work to explore the feasibility of BNNs for image enhancement, we selected tasks where
the one-to-many mapping problem is particularly pronounced, such as LLIE and UIE, to effectively
validate our theoretical framework. The main contributions of this paper are summarised as follows:

• We identify the one-to-many mapping issue between inputs and outputs as a primary
bottleneck in image enhancement models, and propose the first Bayesian-based Enhancement
Model (BEM) to learn this mapping relation.

• We introduce a dynamic prior called the Momentum Prior to mitigate the convergence
difficulties typically encountered by BNNs in high-dimensional weight spaces.

• To reduce the complexity of BEM in modelling high-dimensional image data, we propose
an innovative two-stage approach that combines the strengths of Bayesian Neural Networks
(BNNs) and Deterministic Neural Networks (DNNs).

2 RELATED WORK

Bayesian Deep Learning. BNNs quantify uncertainty by learning distributions over network
weights, offering robust predictions (Neal, 2012). Variational Inference (VI) is a common method for
approximating these distributions (Graves, 2011; Blundell et al., 2015). Gal & Ghahramani (2016)
simplify the implementation of BNNs by interpreting dropout as an approximate Bayesian inference
method. Recent advancements show that adding uncertainty only to the final layer can efficiently
approximate a full BNN (Harrison et al., 2024). Another line of approaches, such as Krishnan et al.
(2020), explored the use of empirical Bayes to specify weight priors in BNNs to enhance the model’s
adaptability to diverse datasets. These BNN approaches have shown promise across a range of
vision applications, including camera relocalisation (Kendall & Cipolla, 2016), semantic and instance
segmentation (Kendall et al., 2015; 2018). Despite these advances, BNNs remain underutilised in
image enhancement tasks.

Probabilistic Models in Image Enhancement. Several works have utilised probabilistic models
to address different aspects of image enhancement. Jiang et al. (2021) employed GANs to capture
features for LLIE, while Fabbri et al. (2018) leveraged CycleGAN (Zhu et al., 2017) to generate
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synthetic paired datasets, addressing data scarcity in UIE. FUnIE-GAN (Islam et al., 2020) further
demonstrated effectiveness in both paired and unpaired UIE training. Anantrasirichai & Bull (2021)
applied unpaired learning for LLIE when the scene conditions are known. Wang et al. (2022)
applied normalising flow-based methods to reduce residual noise in LLIE predictions. However,
its invertibility constraint limits model complexity. Zhou et al. (2024) mitigated this by integrating
normalising flows with codebook techniques, introducing latent normalising flows. Diffusion Models
(DMs) have been widely adopted for enhancement tasks (Hou et al., 2024; Tang et al., 2023). While
DMs inherently address one-to-many mappings, their high latency for generating a single sample
makes producing hundreds of candidates impractical due to prohibitive delays. Due to the practical
limitations in generating multiple candidates, DM-based methods often prefer to produce an average
of multiple targets, as this helps reduce the quality fluctuations within a single sampling process, as
suggested by Jiang et al. (2023a).

2.1 PRELIMINARIES

In image enhancement, the output of a neural network can be interpreted as the conditional probability
distribution of the target image, y ∈ Y , given the degraded input image x ∈ X , and the network’s
weights w: P (y|x,w). Assuming the prediction errors follow a Gaussian distribution, the conditional
probability density function (PDF) of the target image y can be modeled as a multivariate Gaussian,
where the mean is given by the neural network output F (x;w):

P (y|x,w) = N (y|F (x;w),diag(σ2)). (1)

The network weights w can be learned through maximum likelihood estimation (MLE). Given
a dataset of image pairs {xi,yi}Ni=1, the MLE estimate wMLE is computed by maximising the
log-likelihood of the observed data:

wMLE = argmax
w

N∑
i=1

logP (yi|xi,w),
(2)

By optimising such an objective function in Eq. (2), the network Fw learns an injective function,
Fw : X → Y . The deterministic nature of such a mapping implies that when yi ̸= yj , the condition
xi ̸= xj must hold. We argue that this deterministic process is inadequate in cases where one input
corresponds to multiple plausible targets. In Sec. 3, we delve into methods for addressing this issue.

3 MODELLING THE ONE-TO-MANY MAPPING

During inference, the one-to-many mapping relation can be viewed as stemming from predictive
uncertainty. To model this uncertainty, we can train multiple sets of network weights or even multiple
networks, where each set is capable of predicting one of the potential targets. To train such diverse
sets of weights, we adopt a Bayesian Probabilistic Model (Neal, 2012), assuming that the weights
are drawn from an unknown distribution. By repeatedly sampling from this distribution, we obtain
multiple sets of weights, which the network then maps to potential targets.

3.1 BAYESIAN ENHANCEMENT MODELS

We introduce uncertainty into the network weights w through Bayesian estimation, thus obtaining a
posterior distribution over the weight, w ∼ P (w|y,x). During inference, weights are sampled from
this distribution. The posterior distribution over the weights is expressed as:

P (w|y,x) = P (y|x,w)P (w)

P (y|x) (3)

where P (y | x,w) represents the likelihood of observing y given the input x and weights w, P (w)
denotes the prior distribution of the weights, and P (y | x) is the marginal likelihood.

Unfortunately, for any neural networks the posterior in Eq. (3) cannot be calculated analytically. This
makes it impractical to directly sample weights from the true posterior distribution. Instead, we
can leverage variational inference (VI) to approximate P (w|y,x) with a more tractable distribution
q(w|θ). Such that, we can draw samples of weights w from the distribution q(w|θ). As suggested
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by (Hinton & Van Camp, 1993; Graves, 2011; Blundell et al., 2015), the variational approximation is
fitted by minimising their Kullback-Leibler (KL) divergence:

θ⋆ = argmin
θ

KL [q(w|θ)∥P (w|y,x)]

= argmin
θ

∫
q(w|θ) log q(w|θ)

P (w)P (y|x,w)
dw (Apply Equation 3)

= argmin
θ

−Eq(w|θ) [logP (y|x,w)] + KL [q(w|θ)∥P (w)] .

(4)

We define the resulting cost function from Eq. (4) as:
L(x,y) = −Eq(w|θ) [logP (y|x,w)]︸ ︷︷ ︸

data-dependent term

+KL [q(w|θ)∥P (w)]︸ ︷︷ ︸
prior matching term

.
(5)

The loss function L(x,y) in Eq. (5), also known as the variational free energy, consists of two
components: the prior matching term and the data-dependent term. The prior matching term can
be approximated using the Monte Carlo method or computed analytically if a closed-form solution
exists. The data-dependent term is equivalent to minimising the mean squared error between the
input-output pairs in the training data. To optimise L(x,y), the prior distribution P (w) must be
defined. In Sec. 3.2, we define a dynamic prior that accelerates convergence and better models
complex one-to-many mappings in the data.

3.2 MOMENTUM PRIOR WITH EXPONENTIAL MOVING AVERAGE

BNNs with high-dimensional weight spaces often encounter challenges such as underfitting or even
non-convergence. This limitation is a significant factor hindering their performance in low-level
vision tasks. To address this, we propose the concept of Momentum Prior, which leverages an
exponential moving average strategy to stabilise the training process and improve convergence.

Suppose that the variational posterior is a diagonal Gaussian, then the variational posterior parameters
are θ = (µ,σ). A posterior sample of the weights w can be obtained via the reparameterisation
trick (Kingma, 2014).

w = µ+ σ ◦ ϵ with ϵ ∼ N (0, I). (6)
Having liberated our algorithm from the confines of fixed priors, we propose a dynamic prior by
updating the prior’s parameters to the exponential moving average (EMA) of the variational posterior
parameters. Specifically, for the prior P (w) = N (w;µEMA

t ,σEMA
t

2
I), the parameters are updated

at each minibatch training step t over the training period [0, 1, 2, . . . , T ] as follows:

µEMA
0 = 0, σEMA

0 = σo1,

µEMA
t = βµEMA

t−1 + (1− β)µt, t = 1...T,

σEMA
t = βσEMA

t−1 + (1− β)σt, t = 1...T,

(7)

where µt and σt represent the mean and variance from the variational posterior q(w|θ) at training
step t, σo is a scalar controlling the magnitude of initial variance in the prior distribution, and β
denotes the EMA decay rate. Thereafter, for minibatch optimisation with M image pairs, we update
θ = (µ,σ) at step t by minimising minibatch loss Lmini(x,y), reformulated from Eq. (5) as:

Lmini(x,y) = −Eq(w|θ) [logP (y|x,w)]︸ ︷︷ ︸
data-dependent term

+
1

M
KL [q(w|θ)∥P (w)]︸ ︷︷ ︸

prior matching term

,

=
1

M

[ M∑
i

Ew∼q(w|θ)∥F (xi;w)− yi∥22︸ ︷︷ ︸
data-dependent term

+ log
σEMA
t

σ
+

σ2 + (µ− µEMA
t )

2

2σEMA
t

2 − 1

2︸ ︷︷ ︸
prior matching term

]
,

(8)
where the prior matching term is expressed as the analytical solution of KL [q(w|θ)∥P (w)].

Unlike empirical Bayes (Robbins, 1956; Krishnan et al., 2020), which defines a static prior based on
MLE-optimised parameters, our momentum-based strategy incrementally refines the prior during
training. This continuous adaptation prevents the model from exploiting shortcut learning when
optimising the data-dependent term in Eq. (5), thereby avoiding sub-optimal solutions.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 PREDICTIONS UNDER UNCERTAINTY

After optimising the variational posterior parameters θ⋆ via Eq. (4), predictions are made by sampling
weights w from the variational posterior distribution q(w|θ). As shown in Algorithm 1, we sample
K sets of network weights {wk}Kk=1, where each wk is used to produce a corresponding output ŷk

via F (x;wk). A quality metric D is then employed to rank the K candidates and select the most
suitable output yopt, with higher D-values indicating better quality.

Algorithm 1: Prediction
Input: Input x, network F
Initialisation: the best score sbest ← 0;
for k ← 1 to K do

Sample ϵk ∼ N (0, I);
wk ← Calculate Eq. (6);
ŷk = F (x;wk);
if reference y exists then

sk = D(ŷk,y) ; // reference
else

sk = D(ŷk) ; // no-reference

if sk > sbest then
Update sbest ← sk;
Set yopt ← ŷk;

Output: Optimal prediction yopt.

The prediction process is described for two cases
depending on the availability of a reference:

i) With reference: When a reference image y is
available, the quality metric D can be instantiated
as the negative mean squared error (MSE) or other
perceptual metrics to rank the K candidates, with
the best score determining the final output.

ii) Without reference: in the absence of a refer-
ence image, the quality metric D(·) can be a no-
reference image quality metric, such as NIQE (Mit-
tal et al., 2012), UIQM (Panetta et al., 2015), or
UCIQE (Yang & Sowmya, 2015). Alternatively,
vision-language models like CLIP (Radford et al.,
2021; Wang et al., 2023) can be used to find the best-
matching image based on a given textual description.
For instance, CLIP’s encoders can extract features
from a predicted image ŷk and a text prompt (e.g., “A bright photo”), denoted as hk and htext,
respectively. The quality metric D is then defined as their cosine similarity: D(ŷk) =

h⊤
k htext

∥hk∥∥htext∥ .

Meanwhile, our BEM can perform deterministic predictions (i.e., without requiring multiple weight
samples) by simply setting w = u. We refer to this deterministic mode as BEM-DNN. However, due
to its deterministic nature, BEM-DNN, like any deterministic model, is inherently sub-optimal for
capturing complex one-to-many mappings.

4 A TWO-STAGE APPROACH

Image data is inherently high-dimensional. While BNN can be directly applied to model such data, it
often compromises precision due to the complexity involved. To address this issue, we propose to
use BEM to model the one-to-many mapping in a lower-dimensional feature representation of image.
Then, we project the image features back to the original pixel space by a DNN.

4.1 THE FRAMEWORK

©

©
Inference:

Training:

Gradient:

v𝑥

DNN,wG

x
ϕ( ⋅ )

ොv𝑦

Lmini (v𝑦 ,ොv𝑦)

w ∼ q(w|θ)

ොy
L1(y, ොy)

v𝑦 
ϕ( ⋅ ) y

Up

Up

Up: Upsmapling : Concatenate Channels 

BNN,

©

x

Stage I Stage II

Figure 2: The two-stage pipeline. In Stage I, the BNN with weights w ∼ q(w|θ) is trained by
minimising the minibatch loss Lmini(vy, v̂y) in Eq. (8). In Stage II, the DNN with weights wG is
trained by minimising the L1 loss, L1(y, ŷ). The inference process is denoted by →, while the
training process for each stage is indicated by 99K. The gradient flow is shown with 99K.

Figure 2 illustrates our proposed two-stage framework. We apply a reduction function ϕ to compress
high-dimensional image data by either statistical summarisation or down-sampling, yielding compact
representations vx = ϕ(x) and vy = ϕ(y) in a lower-dimensional space. In the first stage, the BEM

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

models the complex one-to-many mapping between vx and vy . In the second stage, a DNN G refines
the results by taking the first-stage low-dimensional output v̂y along with the original low-quality
image x as inputs, producing a high-quality recovered image. The overall process is formulated as:

v̂y = F (ϕ(x);w), w ∼ q(w | θ), (9)

ŷ = G(v̂y,x;w
G), (10)

where wG denotes the weights of the second-stage model. We explore two reduction functions:
bilinear downsampling and local 2D histogram. Both methods are effective; however, bilinear
downsampling provides higher measurement values on full-reference image quality assessment
metrics. Additionally, considering bilinear downsampling offers a more efficient computation, we
adopt it as the default setting. Further analysis of the reduction function ϕ is provided in Appendix A.

During the training phase of the second-stage model, we use the downsampled features of the target
image y along with the low-quality image x as input to the DNN, instead of using the output from
the first-stage model. This strategy removes constraints imposed by the first-stage model, thereby
allowing the second stage to reach its full potential. Importantly, as illustrated in the inference flow in
Figure 2, the inference process remains independent of the target image.

Backbone Network. For both the first and the second stage models, we adopt the same backbone
network, but with different input and output layers. To enable weight uncertainty for the first stage
model, we convert all the convolution and linear layers in the backbone network to their Bayesian
counterparts, the weight parameters of which are obtained via Eq. (6). Inspired by Mamba (Gu &
Dao, 2023) and VMamba (Liu et al., 2024b), featuring their linear computational complexity for long
sequence modelling, we employ a Mamba as the backbone of our BEM. The overall framework is
akin to a U-Net. We provide the details and experiment with the backbone in Appendix B.

4.2 SPEEDING UP INFERENCE
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Figure 3: Inference speed before and after acceler-
ation. A parallel implementation of D is employed.
The model runs on an Nvidia RTX 4090.

Similar to diffusion models, our BEM benefits
from multiple inference passes to produce high-
quality outputs. However, unlike the sequential
denoising process of diffusion models, BEM al-
lows parallel execution. We accelerate inference
using two main strategies: I) Applying Algo-
rithm 1 only to the first-stage model to gener-
ate a low-resolution output, vopt. With a 16×
downsampling in function ϕ, this provides a the-
oretical 256× speedup. II) Parallelising the K
iterations along the batch dimension achieves
a speedup proportional to the GPU’s parallel
computing capability. As illustrated in Figure 3,
the accelerated inference speed for image reso-
lutions of 5122 and 10242, is in the same level
of the single-pass inference. However, when the function D does not support parallel execution,
the speed decreases proportionally to D’s computational complexity. This acceleration strategy
introduces a minor degradation in image quality: at K = 100, we observe an average drop of 3.2%
in PSNR, while no decrease is noted in UIQM.

5 EXPERIMENTS

Datasets. We conduct experiments on several low-light image enhancement (LLIE) and underwater
image enhancement (UIE) datasets. For LLIE, we evaluate our method on LOL-v1 (Wei et al., 2018)
and LOL-v2 (real and synthetic subsets)(Yang et al., 2021), both of which have training and test splits,
as well as the unpaired LIME(Guo et al., 2016), NPE (Wang et al., 2013), MEF (Ma et al., 2015),
DICM (Lee et al., 2013), and VV (Vonikakis et al., 2018) datasets. For UIE, we use the UIEB (Li
et al., 2019a), U45 (Li et al., 2019b), and UCCS (Liu et al., 2020) datasets. The UIEB dataset is
further divided into training, validation (R90), and test (C60) subsets.
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Metrics. For paired datasets, we evaluate pixel-level accuracy using PSNR and SSIM, and perceptual
quality using LPIPS (Zhang et al., 2018). For real-world datasets, we use NIQE Mittal et al. (2012)
as a no-reference metric. In UIE tasks, we additionally evaluate image quality using UIQM (Panetta
et al., 2015) and UCIQE (Yang & Sowmya, 2015).

Settings. All models are trained with the Adam optimiser, starting at a learning rate of 2 × 10−4

and decaying to 10−6 using a cosine annealing schedule. The first-stage model is trained for 300K
iterations on inputs reduced to a size of 24× 24 through function ϕ, while the second-stage model is
trained for 150K iterations on inputs of size 128× 128. Batch size M is set to 8, and ϕ defaults to
bilinear downsampling with a 1

16 scaling factor. Unless stated otherwise, K is 100, D in Algorithm 1
is negative MSE, and σo in Eq. (7) is set to 0.05.

5.1 QUANTITATIVE RESULTS

Table 1: Quantitative comparisons on the LOL-v1 and v2 datasets using PSNR, SSIM, and LPIPS.
Models in grey adjust their output colour using the ground-truth mean (GT-Mean) value. For each
section, the best results are in bold, and the second-best are underlined.

Method GT Mean LOL-v1 LOL-v2-real LOL-v2-syn
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LLFlow (Wang et al., 2022) ✓ 25.13 0.872 0.117 26.20 0.888 0.137 24.81 0.919 0.067
GlobalDiff (Hou et al., 2024) ✓ 27.84 0.877 0.091 28.82 0.895 0.095 28.67 0.944 0.047
GLARE (Zhou et al., 2024) ✓ 27.35 0.883 0.083 28.98 0.905 0.097 29.84 0.958 -
BEM-DNN (ours) ✓ 28.30 0.881 0.072 31.41 0.912 0.064 30.58 0.958 0.033
BEM (ours) ✓ 28.80 0.884 0.069 32.66 0.915 0.060 32.95 0.964 0.026

KinD (Zhang et al., 2019) ✗ 19.66 0.820 0.156 18.06 0.825 0.151 17.41 0.806 0.255
Restormer (Zamir et al., 2022) ✗ 22.43 0.823 0.147 18.60 0.789 0.232 21.41 0.830 0.144
SNR-Net (Xu et al., 2022) ✗ 24.61 0.842 0.151 21.48 0.849 0.157 24.14 0.928 0.056
RetinexFormer Cai et al. (2023) ✗ 25.16 0.845 0.131 22.80 0.840 0.171 25.67 0.930 0.059
RetinexMamba Bai et al. (2024) ✗ 24.03 0.827 - 22.45 0.844 - 25.89 0.935 -
BEM (ours) ✗ 26.83 0.877 0.072 28.89 0.902 0.076 29.22 0.955 0.031

Full-Reference Evaluation. For the LLIE tasks, we present quantitative comparisons with state-of-
the-art methods on the LOL-v1 and LOL-v2 datasets, as detailed in Table 1. The table is divided
into two sections: the first compares models that adjust their output colour using the ground-truth
mean, while the second lists models that do not rely on this adjustment. Our BEM significantly
outperforms all previous methods across all metrics. Notably, on LOL-v2-real, BEM achieves
an exceptionally high PSNR of 28.89 dB, surpassing the second-best RetinexFormer by 6.09 dB.
Although deterministic models are considered sub-optimal in the one-to-many mapping problem,
our BEM-DNN (deterministic mode) still surpasses the previous methods across all benchmarks.
We observed that previous methods often struggle to maintain high perceptual quality (measured by
LPIPS) while ensuring pixel-level accuracy. However, our BEM excels in both, delivering the highest
SSIM (0.877) and the lowest LPIPS (0.072). For the UIE tasks, we present quantitative comparisons

Table 2: Quantitative comparisons on the UIEB-R90, UIEB-C60, U45, and UCCS datasets in terms
of PSNR, SSIM, UIQM, and UCIQE. Best results are in bold, second best are underlined.

Method UIEB-R90 UIEB-C60 U45 UCCS
PSNR ↑ SSIM ↑ UIQM ↑ UCIQE ↑ UIQM ↑ UCIQE ↑ UIQM ↑ UCIQE ↑

WaterNet (Li et al., 2019a) 21.04 0.860 2.399 0.591 - - 2.275 0.556
Ucolor (Li et al., 2021) 20.13 0.877 2.482 0.553 3.148 0.586 3.019 0.550
PUIE-MP (Fu et al., 2022) 21.05 0.854 2.524 0.561 3.169 0.569 2.758 0.489
Restormer (Zamir et al., 2022) 23.82 0.903 2.688 0.572 3.097 0.600 2.981 0.542
CECF (Cong et al., 2024) 21.82 0.894 - - - - - -
FUnIEGAN (Islam et al., 2020) 19.12 0.832 2.867 0.556 2.495 0.545 3.095 0.529
PUGAN (Cong et al., 2023) 22.65 0.902 2.652 0.566 - - 2.977 0.536
U-Shape (Peng et al., 2023) 20.39 0.803 2.730 0.560 3.151 0.592 - -
Semi-UIR (Huang et al., 2023) 22.79 0.909 2.667 0.574 3.185 0.606 3.079 0.554
WFI2-Net (Zhao et al., 2024) 23.86 0.873 - - 3.181 0.619 - -

BEM (ours) 25.62 0.940 2.931 0.567 3.406 0.620 3.224 0.561
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on the UIEB-R90 dataset, as shown in Table 2. Our BEM outperforms the second-best WFI2-Net by
1.76 dB in PSNR. This superior performance, observed consistently across both LLIE and UIE tasks,
highlights the effectiveness and versatility of our method.

Table 3: No-reference evaluation on LIME,
NPE, MEF, DICM and VV, in terms of
NIQE↓. The best results are in blodface.

Method DICM LIME MEF NPE VV

KinD (Zhang et al., 2019) 5.15 5.03 5.47 4.98 4.30
ZeroDCE (Guo et al., 2020) 4.58 5.82 4.93 4.53 4.81
RUAS (Liu et al., 2021) 5.21 4.26 3.83 5.53 4.29
LLFlow (Wang et al., 2022) 4.06 4.59 4.70 4.67 4.04
PairLIE (Fu et al., 2023b) 4.03 4.58 4.06 4.18 3.57
RFR (Fu et al., 2023a) 3.75 3.81 3.92 4.13 -
GLACE (Zhou et al., 2024) 3.61 4.52 3.66 4.19 -
CIDNet (Feng et al., 2024) 3.79 4.13 3.56 3.74 3.21

BEM (ours) 3.55 3.56 3.14 3.72 2.91

No-Reference Evaluation. For no-reference low-
light images, we recover them using Algorithm 1 and
D is instantiated as the NIQE metric. We then eval-
uate our method on five unpaired datasets as shown
in Table 3, where we report the NIQE scores of
SOTA methods. Our BEM consistently outperforms
prior methods across all datasets. For enhancing no-
reference underwater images, we instantiate D in
Algorithm 1 as the UIQM and UCIQE metrics. We
then evaluate our method on the C60, U45 and UCCS
test sets. As shown in Table 2, BEM achieves the best
UIQM scores across all test sets. With the UCIQE
metric, we also achieve the best results in the U45
and UCCS test sets. These results, spanning different
tasks and datasets, demonstrate the robustness and
effectiveness of our method in real-world applications.

5.2 VISUAL ANALYSIS

Predictions of One-to-Many. In Figure 4, we visualise the prediction process of BEM, where
multiple plausible candidates are generated. As shown at the top of the figure, these candidates
exhibit apparent visual differences. The best prediction candidate is selected using Algorithm 1,
which is visually closer to the reference image. For no-reference prediction, we demonstrate that
using the CLIP score with the text prompt, “A bright photo,” results in the brightest image
being outputted. By instantiating D as the NIQE metric, we can avoid generating overexposed
predictions, as shown at the bottom right.

16.3 dB 21.2 dB 24.5 dB 29.6 dB 30.4 dB

Full-Reference Inference:

No-Reference Inference: 

Input Reference

49 62 74 80 93

CLIP : Brightness

Input 2.672.732.823.12 2.95Input

NIQE

Figure 4: Visualisation of the predicting process of BEM in both cases with reference (top) and
without reference (bottom). Zoom in for more details.

Qualitative Comparisons. We visually compare our BEM with twelve state-of-the-art UIE methods,
including WaterNet (Li et al., 2019a), PRWNet (Huo et al., 2021), FUnIEGAN (Islam et al., 2020),
PUGAN Cong et al. (2023), MMLE (Zhang et al., 2022), PUIE-MP (Fu et al., 2022), FiveA+(Jiang
et al., 2023b), CLUIE (Li et al., 2023), Semi-UIR (Huang et al., 2023), UColor (Li et al., 2021),
DM-Underwater (Tang et al., 2023), and CLIP-UIE (Liu et al., 2024a). As depicted in the first and
second rows of Figure 5, our BEM achieves superior removal of underwater turbidity compared to
other methods. In deeper ocean images with dominant blueish effects (last row in Figure 5), BEM
can better enhance visual clarity. Visual comparisons on five unpaired LLIE test sets are shown in
Figure 6, where our restored images offer better perceptual improvement. For example, in DICM, our
method enhances brightness while effectively avoiding overexposure. These visual improvements
align with the superior quantitative results presented in Sec. 5.1. HD visual results are included in
Appendix E.
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FUnIEGANPRWNetWaterNetInput BEM (Ours)

R90

U45

Input UColor DM-Underwater

PUIE-MP

CLIP-UIE PUIE-MP BEM (Ours)

Ground Truth

PUGAN

Input FiveA+ CLUIE BEM (Ours)Semi-UIR PUIE-MP

C60

MMLE

Figure 5: Visual comparisons on the R90, C60 and U45 datasets. Best viewed when zoomed in.

Input Input

KinD

DIC
M

LIME

KinD++

NPE

SNR-Net

ZeroDCE

Input

Input

Input

VV
RUAS BEM (Our) BEM (Ours)BEM (Ours)

DICM MEF

BEM (Ours) BEM (Ours)

Figure 6: Visual comparisons on the DICM, LIME, MEF, NPE and VV datasets.

5.3 ABLATION STUDIES

Single-Stage vs. Two-Stage Approaches. We assess the performance of our two-stage ap-
proach by comparing it against a single-stage variant. As discussed in Sec. 4, directly con-
verting a DNN into a BNN typically results in noisy predictions. To generate smooth out-
puts, our single-stage model retains the last layer in the network as a deterministic layer, the
entire process of which is opposite to the Bayesian last layer method (Harrison et al., 2024).

Table 4: Single-stage vs. two-stage approaches on
LOL-v1. FLOPs are calculated in an input size of
256×256 pixels.

Model FLOPs PSNR ↑ SSIM ↑

Single Stage 20.41G 24.78 0.852
Two Stages 20.49G 26.83 0.877

While the two-stage approach introduces only
marginal additional computational overhead, its
performance significantly surpasses that of the
single-stage model, as shown in Table 4. This
highlights the efficiency and effectiveness of our
two-stage approach.

Magnitude of Uncertainty. The performance
improvements of our BEM primarily stem from
its ability to effectively model the one-to-many
mapping using BNNs. To support this claim, we
evaluate the influence of the variance in the variational posterior on model performance. As shown in
Figure 7, except for BEM with σ◦ = 0.0001, all other BEM instances outperform the DNN. This
indicates that by setting a moderate variance in the momentum prior, BEM can significantly surpass
its DNN counterpart.
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Figure 7: Effect of initial variance values (i.e., σo in Eq. 7) on model performance. The results
are obtained by evaluating single-stage models on the LOL-v1 dataset. “Determ.” denotes the
deterministic baseline model.

Impact of Different Priors. We evaluate the effectiveness of our momentum prior against
two baseline priors: a naive Gaussian prior and an empirical Bayes prior. The naive Gaus-
sian prior is defined as P (W) = N (0, 0.1I). The empirical Bayes prior, MOPED (Krish-
nan et al., 2020), is defined as P (W) = N (wMLE, 0.1I), where wMLE represents the maxi-
mum likelihood estimate (MLE) of the weights learned by optimising a deterministic network.

0 50 100 150 200 250
Iteration (x1000)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
PS

N
R

 (d
B

)
Momentum Prior
Empirical Bayes Prior
Native Gaussian

Figure 8: Training curves of one-stage BEMs with
different priors. The PSNR for each iteration is
calculated using the mean weight µ.

In the case of the empirical Bayes prior, the
mean µ of the variational posterior q(w|θ) is
initialised as the MLE of the weights, wMLE,
and the posterior variance σ is set to 0.1wMLE,
as suggested by Krishnan et al. (2020). As
shown in Figure 8, the momentum prior demon-
strates a clear advantage over both baselines,
providing faster convergence and superior per-
formance. While the empirical Bayes prior ac-
celerates training during early iterations, its per-
formance degrades over time due to the fixed
nature of the prior. The fixed prior, learned from
the same data, can act as a shortcut during the
optimisation of the variational posterior param-
eters, minimising the loss function in Eq. (5)
predominantly by reducing the prior matching
term KL [q(w|θ)∥P (w)]. This behaviour by-
passes data-driven learning, ultimately resulting in sub-optimal solutions that do not fully capture the
data’s inherent uncertainty.

6 DISCUSSION AND CONCLUSION

Although BEM demonstrates stronger generalisation capability than DNN-based methods, fully
realising its potential will require intentionally collecting target images under diverse capture settings
to further increase label diversity. While using small image crops as training data can alleviate the
label diversity problem to some extent, similar to conventional data augmentation strategies in DNNs,
this approach has limitations. We leave these aspects for future work. Additionally, the distinction
between image enhancement and image restoration is not always well-defined, as some restoration
tasks (e.g., image colourisation and de-raining) may also present one-to-many mapping challenges.
Consequently, our BEM could be extended to certain image restoration scenarios.

Overall, we identified the one-to-many mapping problem as a key limitation in existing image
enhancement tasks and introduced the first Bayesian-based model to address this issue. To facilitate
efficient training on high-dimensional data, we proposed a Momentum Prior that dynamically refines
the prior distribution during training, enhancing convergence and performance. Our two-stage
framework integrates the strengths of BNNs and DNNs, yielding a flexible yet computationally
efficient model. Extensive experiments on various image enhancement benchmarks demonstrate
significant performance gains over state-of-the-art models, showcasing the potential of Bayesian
probabilistic models in handling the inherent ambiguities of image enhancement tasks, paving the
way for future research in modelling complex one-to-many mappings in low-level vision tasks.
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A EXPERIMENTS ON REDUCTION FUNCTION ϕ

Regarding the form of reduction function ϕ in Eq. (9). we consider two instantiations: bilinear
downsampling and local 2D histogram. As illustrated in Figure 9. with the local histogram, the
recovered images preserve more details than that of bilinear downsampling, due to additional
configuration for the histogram’s bin number, avoiding losing much information when the downsample
scale is larger.

(a) Bilinear Down

ϕ( ⋅ )

H × 𝑊 × 3
H
16

 × W
16

× 3 

ϕ( ⋅ )

H × 𝑊 × 3
H
16

 × W
16

× 18 

(b) Local Histogram

Figure 9: With the same downsampling scale, the local histogram offers more precise control over
the amount of retained information by adjusting the number of bins (corresponding to the number of
channels). In contrast, bilinear downsampling tends to lose excessive details, especially when using
larger downsampling strides.

The discrete nature of histograms poses challenges in both prediction accuracy and computational
speed. To address this, we approximate the histogram calculation using Kernel Density Estimation
(KDE), which significantly improves both computation efficiency and prediction accuracy. As shown
in Table 5, while the pixel-level PSNR of local histogram-based ϕ is slightly lower than that of
bilinear downsampling, we attribute this to the larger variance inherent in histogram values, which
the model struggles to fit effectively.

Table 5: Comparisons of different instantiations of ϕ. The PSNR values on LOL-v1 are reported. K
is set to 100.

Function ϕ Down Scale Bins Channels PSNR ↑

Bilinear Down 8 N/A 3 25.87
Local Histogram 8 3 9 25.29
Local Histogram 8 10 30 24.96
Local Histogram 8 16 48 24.80

Bilinear Down 16 N/A 3 26.83
Local Histogram 16 10 30 25.89
Local Histogram 16 16 48 25.83

Despite this, we observe that the local histogram approach exhibits slightly better colour representation
compared to the bilinear instance. In Figure 10, we present a visual comparison between the two
implementations, highlighting that the histogram-based model generates more vivid colours. However,
the bilinear downsampling method performs better in restoring details in areas where significant
information loss occurs.

B INVESTIGATION ON MAMBA BACKBONE

Considering Mamba’s linear computational complexity for long sequence modelling, we adopt the
VMmaba Liu et al. (2024b) to build the backbone of our BEM. The overall framework is akin to a
U-Net, but we replace all the Transformer blocks Dosovitskiy et al. (2020) with the Visual State-Space
(VSS) blocks, each of which is composed of a 2D Selective Scan (SS2D) module Liu et al. (2024b)
and a feedforward network (FFN). The formulation of VSS block Liu et al. (2024b) in layer l can be
expressed as

hl = SS2D (LN (hl−1)) + hl−1,

hl+1 = FFN (LN (hl)) + hl,
(11)
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HistogramBilinearHistogram Bilinear

Figure 10: Visual comparison between the local histogram and bilinear downsampling implementa-
tions of the reduction function ϕ. The bilinear ϕ demonstrates better restoration capability compared
to the histogram-based counterpart. However, the histogram-based ϕ shows better global colour
representation. Best viewed when zoomed in.

where FFN denotes the feedforward network and LN denotes layer normalisation. hl−1 and hl

denote the input and output in the l-th layer, respectively. Our network backbone consists of an input
convolutional layer, 12 VSS blocks, and an output layer. The first 6 VSS blocks form the encoder
of a U-Net, where the spatial dimensions of the feature maps are halved every two blocks, while
the number of channels is doubled. Specifically, given an input image with a shape of H ×W × 3,
the encoding blocks obtain hierarchical feature maps of sizes H × W × C, H

2 × W
2 × 2C and

H
4 × W

4 × 4C. The remaining 6 VSS blocks constitute the decoder, upsampling these encoding
feature maps hierarchically with the pixelshuffle layers (Shi et al., 2016). At each scale level,
lateral connections are built to link corresponding blocks in the encoder and decoder.

Construct the backbone. We build our backbone by gradually evaluating each configuration of
a vanilla Mamaba-based UNet. We thoroughly investigate settings including ssm-ratio, block
numbers, n_feat and mlp-ratio. The training strategies for all variants are identical. Setting
n_feat denotes the number of feature maps in the first conv3×3’s output. Setting d_state
denotes the state dimension of SSM. Note that the established baseline assures two things: 1) Further
naively introducing additional parameters and FLOPs, e.g., scaling models with more blocks, will not
help boost the performance. 2) A technique with additional parameters introduced to the baseline
model can no doubt demonstrate its effectiveness if the modified model shows better results than the
baseline.

To balance both speed and performance, we selected the model in the second row of Table 6 as the
backbone for our BEM. The chosen backbone features a simple architecture with no task-specific
modules, enhancing its generalisability and establishing a solid foundation for extending our method
to other types of vision tasks.

C CONTROLLABLE LOCAL ENHANCEMENT

Thanks to the interpretability of the lower-dimensional representations in both the spatial and channel
dimensions, we can easily achieve local adjustment with a masking strategy. The local adjustment is
particularly useful in the cases where the input images are unevenly distorted, and we want to retain
the undistorted regions consistent before and after enhancement. The local adjustment process can be
achieved by using a mask layer M: ylocal = G(γM⊙ v,x;wG), where v can be lower-dimensional
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Table 6: The performance of deterministic Mamba UNet variants with different d_state,
ssm-ratio, mlp-ratio, n_feat and block numbers. PSNR and SSIM on LOL-v1 are
reported. Since the deterministic networks trained using minibatch optimisation are likely to fit very
different targets each time, the results will fluctuate greatly. We train each model five times and report
the average performance.

d_state ssm-ratio mlp-ratio n_feat
block FLOPs Params TP PSNR SSIM

numbers (G) (M) img/s (dB)
1 1 2.66 40 [2,2,2] 14.25 1.23 125 22.45 0.828
1 1 4 40 [2,2,2] 20.41 1.52 78 23.76 0.842
16 1 2.66 40 [2,2,2] 25.50 1.37 84 23.83 0.840
32 1 2.66 40 [2,2,2] 37.49 1.52 61 21.93 0.812
16 2 4 40 [2,2,2] 44.36 2.08 58 23.67 0.830
16 2 4 52 [2,2,2] 65.10 3.37 40 23.21 0.833
16 2 4 40 [2,2,2,2] 54.82 7.77 51 23.44 0.838
1 2 4 40 [2,2,2] 21.87 1.79 82 22.73 0.834

features extracted from a real image or estimated by the first stage model via Eq. (9). We can use a
scalar γ to control the strength of the enhancement effect. A demonstration of the local enchantment
is shown in Figure 11.

Mask LayerBefore After

Figure 11: The local brightness of an image before adjustment (left) can be edited locally by providing
a mask layer (middle). The image after adjustment (right) shows improved brightness in the regions
indicated by the mask.

Compared to directly applying the mask to the output, our local enhancement strategy not only reduces
the dependency on mask accuracy but also results in smoother transitions at the mask boundaries.
This mitigates issues such as excessive roughness or colour inconsistencies between processed and
unprocessed regions.

D LABEL DIVERSITY AUGMENTATION

Theoretically, an infinite number of target images could correspond to a single input. However,
current paired datasets often lack sufficient label diversity, which may become a bottleneck for BEM
model performance.

Table 7: Evaluation of label augmentation strategies for enhancing label diversity. PSNR scores are
obtained using single-stage models on LOL-v1.

Model Gamma Correction Saturation Shift CLAHE PSNR ↑

BEM 24.78
BEM ✓ 24.89
BEM ✓ ✓ 24.93
BEM ✓ ✓ ✓ 24.86

DNN 24.02
DNN ✓ ✓ ✓ 21.58
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Without relying on additional data collection to increase label diversity, we propose two strategies for
augmenting label diversity within existing datasets:

i) When training a deep network, high-resolution images are often divided into smaller crops (e.g.,
128×128). Many of these smaller image crops may represent the same scene, but due to various
factors, such as being captured at different moments in a video or having different capture settings,
the corresponding target crops show differences in colour or brightness. Thus, using these crops as
input during training, the actual label diversity within the training data is naturally increased.

ii) Existing labels can be further enriched by applying data augmentation techniques such as random
brightness adjustments, saturation shifts, changes in colour temperature, gamma corrections, and
histogram equalisation.

Both strategies contribute to increasing label diversity to some extent. In Table 7, we evaluate whether
expanding the number of target images using gamma correction, saturation shift, and CLAHE Reza
(2004) can further improve the model’s performance. Among these, saturation shift is a linear
transformation, while gamma correction and CLAHE are nonlinear methods. We observed that
deterministic networks showed a decline in performance after applying these label augmentation
techniques. This can be attributed to DNNs overfitting to local solutions that deviate further from the
inference image as uncertainty in the data increases. In contrast, BEM exhibited a slight increase in
PSNR when using these augmented labels. For consistency, these augmentation strategies were not
applied in other experiments.

E SUPPLEMENTARY VISUALISATIONS

HD Visualisation for LLIE. To facilitate a closer inspection of enhanced image details, we present
high-resolution visual comparisons in Figure 12, where the predictions of state-of-the-art models
are displayed at their original resolutions. The high-resolution visualisation reveals that previous
state-of-the-art methods tend to exhibit varying degrees of noise artefacts in the enhanced results,
significantly degrading perceptual quality. In contrast, our method effectively suppresses these noise

BEM (Ours) RetinexFormer

KinD SNR-Net

Figure 12: Visual comparisons with KinD, SNR-Net and RetinexFormer under images’ original
resolution. The sample is from the LOL-v2-real dataset.
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artefacts, which are often introduced by low-light conditions. Furthermore, our approach achieves
superior detail restoration, while other methods show signs of blurring and detail loss.

More Visualisations for UIE. In Figure 13, we present additional visual comparisons on the U45
and UCCS datasets, demonstrating that our method consistently outperforms PUGAN and PUIE-MP
in enhancing various underwater scenes.

PUGAN

PUIE-MP

BEM
(Ours)

U45 UCCS

Figure 13: Visual comparisons with PUGAN and PUIE-MP on the U45 and UCCS test sets.
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