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ABSTRACT

Image enhancement is considered an ill-posed inverse problem due to its tendency
to have multiple solutions. The loss of information makes accurately reconstructing
the original image from observed data challenging. Also, the quality of the result
is often subjective to individual preferences. This obviously poses a one-to-many
mapping challenge. To address this, we propose a Bayesian Enhancement Model
(BEM) that leverages Bayesian estimation to capture inherent uncertainty and ac-
commodate diverse outputs. To address the noise in predictions of Bayesian Neural
Networks (BNNs) for high-dimensional images, we propose a two-stage approach.
The first stage utilises a BNN to model reduced-dimensional image representations,
while the second stage employs a deterministic network to refine these representa-
tions. We further introduce a dynamic Momentum Prior to overcome convergence
issues typically faced by BNNs in high-dimensional spaces. Extensive experi-
ments across multiple low-light and underwater image enhancement benchmarks
demonstrate the superiority of our method over traditional deterministic models,
particularly in real-world applications lacking reference images, highlighting the
potential of Bayesian models in handling one-to-many mapping problems.

1 INTRODUCTION

In computer vision, image enhancement refers to the process of enhancing the perceptual quality,
visibility, and overall appearance of an image, which can involve reducing noise, increasing contrast,
sharpening details, or correcting colour imbalances. In image enhancement tasks such as low-light
image enhancement (LLIE) and underwater image enhancement (UIE), a common challenge arises
from dynamic photography conditions, where a single degraded input image can correspond to
multiple plausible target images. This phenomenon, known as the one-to-many mapping problem,
arises because multiple valid outputs can be generated depending on varying conditions during image
capture, such as changes in lighting, exposure, or other factors.

Recent advances in deep learning have shifted image enhancement towards data-driven approaches.
Several deep learning-based models (Zamir et al., 2022; Cai et al., 2023) have achieved advanced re-
sults by learning mappings between low-quality (LQ) inputs and their high-quality (HQ) counterparts
using paired datasets. However, we observe that existing datasets exhibit the one-to-many relationship
between their input and target domains. Specifically, we observe cases where there exist at least
two image pairs with input images that are either identical or visually indistinguishable, yet their
corresponding targets exhibit notable variations. When such discrepancies arise due to ambiguity in
the target domain, a traditional deep neural network—being a deterministic function—struggles to
effectively model these one-to-many image pairs. Previous methods employing deterministic neural
networks (DNNs) for image enhancement often overlook this class of one-to-many samples, leading
to sub-optimal solutions. Figure 1 (middle) demonstrates how a deterministic neural network trained
on one-to-many mapping data struggles to predict any specific target, instead producing an averaged
output due to “regression toward the mean”.

To tackle the inherent ambiguity in image enhancement tasks caused by one-to-many mappings, we
adopt a Bayesian framework that models these mappings probabilistically. Rather than relying on a
sub-optimal deterministic approach, our method leverages Bayesian inference to sample multiple
sets of network weights from a learned distribution, effectively creating a diverse ensemble of deep
networks. Each sampled network captures a distinct plausible solution, allowing our model to map
a single input to a distribution of possible target outputs. This approach theoretically enables the
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Figure 1: One-to-Many Mapping. The left panel shows an image crop x associated with multiple
targets {y1, . . . ,y6}. A DNN (middle) trained on such data tends to predict the weighted average of
all targets. In contrast, a BNN (right) models the one-to-many relation by producing different outputs
according to a learned probability distribution.

mapping of all plausible variations, effectively modelling the complex one-to-many relationships
present in real-world scenarios.

While BNNs have shown promise in capturing uncertainty in various tasks (Kendall & Cipolla,
2016; Kendall et al., 2015; 2018; Pang et al., 2020), their potential in addressing the one-to-many
mapping problem for image enhancement remains largely under-explored. By incorporating Bayesian
inference into the enhancement process, our approach captures uncertainty in dynamic, uncontrolled
environments, providing a more flexible and robust solution than traditional deterministic models.
However, applying BNNs to these tasks presents significant challenges due to the high dimensionality
of image data and the strong 2D spatial correlations between pixels: The weight uncertainty in
BNNs often leads to noisy image outputs, while models with high-dimensional weight spaces are
prone to underfitting (Dusenberry et al., 2020; Tomczak et al., 2021). To mitigate the noise in BNN
predictions, we propose a two-stage approach that combines a BNN and a DNN (Sec. 4). Following
our approach, we systematically address these challenges, unleashing the potential of BNNs in
low-light and underwater enhancement tasks.

As the first work to explore the feasibility of BNNs for image enhancement, we selected tasks where
the one-to-many mapping problem is particularly pronounced, such as LLIE and UIE, to effectively
validate our theoretical framework. The main contributions of this paper are summarised as follows:

• We identify the one-to-many mapping issue between inputs and outputs as a primary
bottleneck in image enhancement models for LLIE and UIE, and propose the first Bayesian-
based Enhancement Model (BEM) to learn this mapping relation.

• We introduce a dynamic prior called the Momentum Prior to mitigate the convergence
difficulties typically encountered by BNNs in high-dimensional weight spaces.

• To reduce the complexity of BEM in modelling high-dimensional image data, we pro-
pose an innovative two-stage approach that combines the strengths of Bayesian NNs and
Deterministic NNs).

2 RELATED WORK

Bayesian Deep Learning. BNNs quantify uncertainty by learning distributions over network
weights, offering robust predictions (Neal, 2012). Variational Inference (VI) is a common method for
approximating these distributions (Graves, 2011; Blundell et al., 2015). Gal & Ghahramani (2016)
simplify the implementation of BNNs by interpreting dropout as an approximate Bayesian inference
method. Recent advancements show that adding uncertainty only to the final layer can efficiently
approximate a full BNN (Harrison et al., 2024). Another line of approaches, such as Krishnan et al.
(2020), explored the use of empirical Bayes to specify weight priors in BNNs to enhance the model’s
adaptability to diverse datasets. These BNN approaches have shown promise across a range of
vision applications, including camera relocalisation (Kendall & Cipolla, 2016), semantic and instance
segmentation (Kendall et al., 2015; 2018). Despite these advances, BNNs remain underutilised in
image enhancement tasks.

Probabilistic Models in Image Enhancement. Several works have utilised probabilistic models
to address different aspects of image enhancement. Jiang et al. (2021) employed GANs to capture
features for LLIE, while Fabbri et al. (2018) leveraged CycleGAN (Zhu et al., 2017) to generate
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synthetic paired datasets, addressing data scarcity in UIE. FUnIE-GAN (Islam et al., 2020) further
demonstrated effectiveness in both paired and unpaired UIE training. Anantrasirichai & Bull (2021)
applied unpaired learning for LLIE when the scene conditions are known. Wang et al. (2022)
applied normalising flow-based methods to reduce residual noise in LLIE predictions. However,
its invertibility constraint limits model complexity. Zhou et al. (2024) mitigated this by integrating
normalising flows with codebook techniques, introducing latent normalising flows. Diffusion Models
(DMs) have been widely adopted for enhancement tasks (Hou et al., 2024; Tang et al., 2023). While
DMs inherently address one-to-many mappings, their high latency for generating a single sample
makes producing hundreds of candidates impractical due to prohibitive delays. Due to the practical
limitations in generating multiple candidates, DM-based methods often prefer to produce an average
of multiple targets, as this helps reduce the quality fluctuations within a single sampling process, as
suggested by Jiang et al. (2023a).

2.1 PRELIMINARIES

In image enhancement, the output of a neural network can be interpreted as the conditional probability
distribution of the target image, y ∈ Y , given the degraded input image x ∈ X , and the network’s
weights w: P (y|x,w). Assuming the prediction errors follow a Gaussian distribution, the conditional
probability density function (PDF) of the target image y can be modeled as a multivariate Gaussian,
where the mean is given by the neural network output F (x;w):

P (y|x,w) = N (y|F (x;w),diag(σ2)). (1)

The network weights w can be learned through maximum likelihood estimation (MLE). Given
a dataset of image pairs {xi,yi}Ni=1, the MLE estimate wMLE is computed by maximising the
log-likelihood of the observed data:

wMLE = argmax
w

N∑
i=1

logP (yi|xi,w),
(2)

By optimising such an objective function in Eq. (2), the network Fw learns an injective function,
Fw : X → Y . The deterministic nature of such a mapping implies that when yi ̸= yj , the condition
xi ̸= xj must hold. We argue that this deterministic process is inadequate in cases where one input
corresponds to multiple plausible targets. In Sec. 3, we delve into methods for addressing this issue.

3 MODELLING THE ONE-TO-MANY MAPPING

3.1 BAYESIAN ENHANCEMENT MODELS

We introduce uncertainty into the network weights w through Bayesian estimation, thus obtaining a
posterior distribution over the weight, w ∼ P (w|y,x). During inference, weights are sampled from
this distribution. The posterior distribution over the weights is expressed as:

P (w|y,x) = P (y|x,w)P (w)

P (y|x) (3)

where P (y | x,w) represents the likelihood of observing y given the input x and weights w, P (w)
denotes the prior distribution of the weights, and P (y | x) is the marginal likelihood.

Unfortunately, for any neural networks the posterior in Eq. (3) cannot be calculated analytically. This
makes it impractical to directly sample weights from the true posterior distribution. Instead, we
can leverage variational inference (VI) to approximate P (w|y,x) with a more tractable distribution
q(w|θ). Such that, we can draw samples of weights w from the distribution q(w|θ). As suggested
by (Hinton & Van Camp, 1993; Graves, 2011; Blundell et al., 2015), the variational approximation is
fitted by minimising their Kullback-Leibler (KL) divergence:

θ⋆ = argmin
θ

KL [q(w|θ)∥P (w|y,x)]

= argmin
θ

∫
q(w|θ) log q(w|θ)

P (w)P (y|x,w)
dw (Apply Equation 3)

= argmin
θ

−Eq(w|θ) [logP (y|x,w)] + KL [q(w|θ)∥P (w)] .

(4)

3
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We define the resulting cost function from Eq. (4) as:
L(x,y) = −Eq(w|θ) [logP (y|x,w)]︸ ︷︷ ︸

data-dependent term

+KL [q(w|θ)∥P (w)]︸ ︷︷ ︸
prior matching term

.
(5)

The loss function L(x,y) in Eq. (5), also known as the variational free energy, consists of two
components: the prior matching term and the data-dependent term. The prior matching term can
be approximated using the Monte Carlo method or computed analytically if a closed-form solution
exists. The data-dependent term is equivalent to minimising the mean squared error between the
input-output pairs in the training data. To optimise L(x,y), the prior distribution P (w) must be
defined. In Sec. 3.2, we define a dynamic prior that accelerates convergence and better models
complex one-to-many mappings in the data.

3.2 MOMENTUM PRIOR WITH EXPONENTIAL MOVING AVERAGE

In our preliminary work, significant performance degradation is observed when using naive Gaussian
(e.g., N (0, I)) or empirical Bayes priors. To address this, we propose the Momentum Prior, a simple
yet effective strategy that uses an exponential moving average to stabilise training by smoothing
parameter updates and promoting convergence to better local optima. Suppose that the variational
posterior is a diagonal Gaussian, then the variational posterior parameters are θ = (µ,σ). A posterior
sample of the weights w can be obtained via the reparameterisation trick (Kingma, 2014).

w = µ+ σ ◦ ϵ with ϵ ∼ N (0, I). (6)
Having liberated our algorithm from the confines of fixed priors, we propose a dynamic prior by
updating the prior’s parameters to the exponential moving average (EMA) of the variational posterior
parameters. Specifically, for the prior P (w) = N (w;µEMA

t ,σEMA
t

2
I), the parameters are updated

at each minibatch training step t over the training period [0, 1, 2, . . . , T ] as follows:

µEMA
0 = 0, σEMA

0 = σo1,

µEMA
t = βµEMA

t−1 + (1− β)µt, t = 1...T,

σEMA
t = βσEMA

t−1 + (1− β)σt, t = 1...T,

(7)

where µt and σt represent the mean and variance from the variational posterior q(w|θ) at training
step t, σo is a scalar controlling the magnitude of initial variance in the prior distribution, and β
denotes the EMA decay rate. Thereafter, for minibatch optimisation with M image pairs, we update
θ = (µ,σ) at step t by minimising minibatch loss Lmini(x,y), reformulated from Eq. (5) as:

Lmini(x,y) = −Eq(w|θ) [logP (y|x,w)]︸ ︷︷ ︸
data-dependent term

+
1

M
KL [q(w|θ)∥P (w)]︸ ︷︷ ︸

prior matching term

,

=
1

M

[ M∑
i

Ew∼q(w|θ)∥F (xi;w)− yi∥22︸ ︷︷ ︸
data-dependent term

+ log
σEMA
t

σ
+

σ2 + (µ− µEMA
t )

2

2σEMA
t

2 − 1

2︸ ︷︷ ︸
prior matching term

]
,

(8)
where the prior matching term is expressed as the analytical solution of KL [q(w|θ)∥P (w)].

The momentum prior is motivated by the following reasoning: it begins with a naive Gaussian
prior early in training, offering useful inductive biases (Wilson & Izmailov, 2020). However, as
training progresses, relying on a fixed simple prior can restrict the network’s capacity to fit the data
effectively. To overcome this, the momentum prior gradually updates its parameters with empirical
information from the data during training. The momentum prior is akin to the momentum teacher (He
et al., 2020; Grill et al., 2020) in self-supervised learning but differs by regularising variational
posterior parameters instead of student model outputs. This simple idea significantly improves BNN
performance on our task. Additionally, the momentum prior also shares similarities with deep learning
ensembles (Lakshminarayanan et al., 2017), a key strategy for uncertainty estimation, as per Ashukha
et al. (2020). Unlike empirical Bayes (Robbins, 1956; Krishnan et al., 2020), which defines a static
prior based on MLE-optimised parameters, our momentum-based strategy incrementally refines the
prior during training. This continuous adaptation prevents the model from exploiting shortcut learning
when optimising the data-dependent term in Eq. (5), thereby avoiding sub-optimal solutions.
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3.3 PREDICTIONS UNDER UNCERTAINTY

After optimising the variational posterior parameters θ⋆ via Eq. (4), predictions are made by sampling
weights w from the variational posterior distribution q(w|θ). As shown in Algorithm 1, we sample
K sets of network weights {wk}Kk=1, where each wk is used to produce a corresponding output ŷk

via F (x;wk). A quality metric D is then employed to rank the K candidates and select the most
suitable output yopt, with higher D-values indicating better quality.

Algorithm 1: Prediction
Input: Input x, network F
Initialisation: the best score sbest ← 0;
for k ← 1 to K do

Sample ϵk ∼ N (0, I);
wk ← Calculate Eq. (6);
ŷk = F (x;wk);
if reference y exists then

sk = D(ŷk,y) ; // reference
else

sk = D(ŷk) ; // no-reference

if sk > sbest then
Update sbest ← sk;
Set yopt ← ŷk;

Output: Optimal prediction yopt.

The prediction process is described for two cases
depending on the availability of a reference:

i) With reference: When a reference image y is
available, the quality metric D can be instantiated
as the negative mean squared error (MSE) or other
perceptual metrics to rank the K candidates, with
the best score determining the final output.

ii) Without reference: in the absence of a reference
image, the quality metric D(·) can be a no-reference
image quality metric, such as negative NIQE (Mit-
tal et al., 2012), UIQM (Panetta et al., 2015), or
UCIQE (Yang & Sowmya, 2015). Alternatively,
vision-language models like CLIP (Radford et al.,
2021; Wang et al., 2023) can be used to find the best-
matching image based on a given textual description.
For instance, CLIP’s encoders can extract features
from a predicted image ŷk and a text prompt (e.g., “A bright photo”), denoted as hk and htext,
respectively. The quality metric D is then defined as their cosine similarity: D(ŷk) =

h⊤
k htext

∥hk∥∥htext∥ .
We denote the BEM utilising CLIP as BEMCLIP. Meanwhile, our BEM can perform deterministic
predictions (i.e., without requiring multiple weight samples) by simply setting w = u. We refer to
this deterministic mode as BEMDeterm.. However, due to its deterministic nature, BEMDeterm., like any
deterministic model, is inherently sub-optimal for capturing complex one-to-many mappings.

4 BNN + DNN: A TWO-STAGE APPROACH

Image data is inherently high-dimensional. While BNN can be directly applied to model high-
dimensional image data, it compromises precision due to the complexity involved (see Appendix E
for detailed analysis). To address this issue, we propose to use BEM to model the one-to-many
mapping in a lower-dimensional feature representation of image. Then, we project the image features
back to the original pixel space by a DNN.

4.1 THE FRAMEWORK

©

©
Inference:

Training:

Gradient:

v𝑥

DNN,wG

x
ϕ( ⋅ )

ොv𝑦

Lmini (v𝑦 ,ොv𝑦)

w ∼ q(w|θ)

ොy
L1(y, ොy)

v𝑦 
ϕ( ⋅ ) y

Up

Up

Up: Upsmapling : Concatenate Channels 

BNN,

©

x

Stage I Stage II

Figure 2: The two-stage pipeline. In Stage I, the BNN with weights w ∼ q(w|θ) is trained by
minimising the minibatch loss Lmini(vy, v̂y) in Eq. (8). In Stage II, the DNN with weights wG is
trained by minimising the L1 loss, L1(y, ŷ). The inference process is denoted by →, while the
training process for each stage is indicated by 99K. The gradient flow is shown with 99K.

Figure 2 illustrates our proposed two-stage framework. We apply a reduction function ϕ to compress
high-dimensional image data by either statistical summarisation or down-sampling, yielding compact
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representations vx = ϕ(x) and vy = ϕ(y) in a lower-dimensional space. In the first stage, the BEM
models the complex one-to-many mapping between vx and vy . In the second stage, a DNN G refines
the results by taking the first-stage low-dimensional output v̂y along with the original low-quality
image x as inputs, producing a high-quality recovered image. The overall process is formulated as:

v̂y = F (ϕ(x);w), w ∼ q(w | θ), (9)

ŷ = G(v̂y,x;w
G), (10)

where wG denotes the weights of the second-stage model. We explore two reduction functions:
bilinear downsampling and local 2D histogram. Both methods are effective; however, bilinear
downsampling provides higher measurement values on full-reference image quality assessment
metrics. Additionally, considering bilinear downsampling offers a more efficient computation, we
adopt it as the default setting. Further analysis of the reduction function ϕ is provided in Appendix A.

During the training phase of the second-stage model, we use the downsampled features of the target
image y along with the low-quality image x as input to the DNN, instead of using the output from
the first-stage model. This strategy removes constraints imposed by the first-stage model, thereby
allowing the second stage to reach its full potential. Importantly, as illustrated in the inference flow
in Figure 2, the inference process remains independent of the target image. Further analysis for
two-stage frameworks is provided in Appendix E.

Backbone Network. For both the first and the second stage models, we adopt the same backbone
network, but with different input and output layers. To enable weight uncertainty for the first stage
model, we convert all the convolution and linear layers in the backbone network to their Bayesian
counterparts, the weight parameters of which are obtained via Eq. (6). Inspired by Mamba (Gu &
Dao, 2023) and VMamba (Liu et al., 2024b), featuring their linear computational complexity for long
sequence modelling, we employ a Mamba as the backbone of our BEM. The overall framework is
akin to a U-Net. We provide the details and experiment with the backbone in Appendix B.

4.2 SPEEDING UP INFERENCE
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Figure 3: Inference speed before and after acceler-
ation. A parallel implementation of D is employed.
The model runs on an Nvidia RTX 4090.

Similar to diffusion models, our BEM benefits
from multiple inference passes to produce high-
quality outputs. However, unlike the sequential
denoising process of diffusion models, BEM al-
lows parallel execution. We accelerate inference
using two main strategies: I) Applying Algo-
rithm 1 only to the first-stage model to gener-
ate a low-resolution output, vopt. With a 16×
downsampling in function ϕ, this provides a the-
oretical 256× speedup. II) Parallelising the K
iterations along the batch dimension achieves
a speedup proportional to the GPU’s parallel
computing capability. As illustrated in Figure 3,
the accelerated inference speed for image reso-
lutions of 5122 and 10242, is in the same level
of the single-pass inference. However, when the function D does not support parallel execution,
the speed decreases proportionally to D’s computational complexity. This acceleration strategy
introduces a minor degradation in image quality: at K = 100, we observe an average drop of 3.2%
in PSNR, while no decrease is noted in UIQM.

5 EXPERIMENTS

Datasets. We conduct experiments on several low-light image enhancement (LLIE) and underwater
image enhancement (UIE) datasets. For LLIE, we evaluate our method on LOL-v1 (Wei et al., 2018)
and LOL-v2 (real and synthetic subsets)(Yang et al., 2021), both of which have training and test splits,
as well as the unpaired LIME(Guo et al., 2016), NPE (Wang et al., 2013), MEF (Ma et al., 2015),
DICM (Lee et al., 2013), and VV (Vonikakis et al., 2018) datasets. For UIE, we use the UIEB (Li
et al., 2019a), U45 (Li et al., 2019b), and UCCS (Liu et al., 2020) datasets. The UIEB dataset is
further divided into training, validation (R90), and test (C60) subsets.
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Metrics. For paired datasets, we evaluate pixel-level accuracy using PSNR and SSIM, and perceptual
quality using LPIPS (Zhang et al., 2018). For real-world datasets, we use NIQE Mittal et al. (2012)
as a no-reference metric. In UIE tasks, we additionally evaluate image quality using UIQM (Panetta
et al., 2015) and UCIQE (Yang & Sowmya, 2015).

Settings. All models are trained with the Adam optimiser, starting at a learning rate of 2 × 10−4

and decaying to 10−6 using a cosine annealing schedule. The first-stage model is trained for 300K
iterations on inputs reduced to a size of 24× 24 through function ϕ, while the second-stage model is
trained for 150K iterations on inputs of size 128× 128. Batch size M is set to 8, and ϕ defaults to
bilinear downsampling with a 1

16 scaling factor. Unless stated otherwise, K is 100, D in Algorithm 1
is negative MSE, and σo in Eq. (7) is set to 0.05.

5.1 QUANTITATIVE RESULTS

Full-reference evaluation offers a limited view of model performance. Even without obvious distribu-
tional shifts between training and test sets, test results may not fully reflect the model’s generalisation
to real-world scenarios. In contrast, no-reference evaluation provides a more practical and meaningful
measure of a model’s utility in real-world applications.

Table 1: Full-reference evaluation on the LOL-v1 and v2 datasets. The BEM in grey selects the
output based on the GT images. The best results are in bold, and the second-best are underlined.

Method GT Mean LOL-v1 LOL-v2-real LOL-v2-syn
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

KinD (Zhang et al., 2019) ✗ 19.66 0.820 0.156 18.06 0.825 0.151 17.41 0.806 0.255
Restormer (Zamir et al., 2022) ✗ 22.43 0.823 0.147 18.60 0.789 0.232 21.41 0.830 0.144
SNR-Net (Xu et al., 2022) ✗ 24.61 0.842 0.151 21.48 0.849 0.157 24.14 0.928 0.056
RetinexFormer (Cai et al., 2023) ✗ 25.16 0.845 0.131 22.80 0.840 0.171 25.67 0.930 0.059
RetinexMamba (Bai et al., 2024) ✗ 24.03 0.827 0.146 22.45 0.844 0.174 25.89 0.935 0.054
LLFlow (Wang et al., 2022) ✓ 25.13 0.872 0.117 26.20 0.888 0.137 24.81 0.919 0.067
GlobalDiff (Hou et al., 2024) ✓ 27.84 0.877 0.091 28.82 0.895 0.095 28.67 0.944 0.047
GLARE (Zhou et al., 2024) ✓ 27.35 0.883 0.083 28.98 0.905 0.097 29.84 0.958 -

BEM (ours) ✗ 26.83 0.877 0.072 28.89 0.902 0.076 29.22 0.955 0.031
BEM (ours) ✓ 28.80 0.884 0.069 32.66 0.915 0.060 32.95 0.964 0.026
BEMDeterm. (ours) ✓ 28.30 0.881 0.072 31.41 0.912 0.064 30.58 0.958 0.033
BEMCLIP (ours) ✓ 28.43 0.882 0.071 30.01 0.910 0.076 31.51 0.961 0.030

Full-Reference Evaluation. For the LLIE tasks, we present quantitative comparisons with state-of-
the-art methods on the LOL-v1 and LOL-v2 datasets, as detailed in Table 1. Our BEM significantly
outperforms all previous methods across all metrics. Notably, on LOL-v2-real, BEM achieves an
exceptionally high PSNR of 32.66 dB. Although deterministic models are considered sub-optimal in
the one-to-many mapping problem, our BEMDeterm. (deterministic mode) still surpasses the previous
methods across all benchmarks. We observed that previous methods often struggle to maintain high
perceptual quality (measured by LPIPS) while ensuring pixel-level accuracy. However, our BEM
excels in both, delivering the highest SSIM (0.877) and the lowest LPIPS (0.072). For the UIE

Table 2: Quantitative comparisons on the UIEB-R90, UIEB-C60, U45, and UCCS datasets in terms
of PSNR, SSIM, UIQM, and UCIQE. Best results are in bold, second best are underlined.

Method UIEB-R90 UIEB-C60 U45 UCCS
PSNR ↑ SSIM ↑ UIQM ↑ UCIQE ↑ UIQM ↑ UCIQE ↑ UIQM ↑ UCIQE ↑

WaterNet (Li et al., 2019a) 21.04 0.860 2.399 0.591 - - 2.275 0.556
Ucolor (Li et al., 2021) 20.13 0.877 2.482 0.553 3.148 0.586 3.019 0.550
PUIE-MP (Fu et al., 2022) 21.05 0.854 2.524 0.561 3.169 0.569 2.758 0.489
Restormer (Zamir et al., 2022) 23.82 0.903 2.688 0.572 3.097 0.600 2.981 0.542
CECF (Cong et al., 2024) 21.82 0.894 - - - - - -
FUnIEGAN (Islam et al., 2020) 19.12 0.832 2.867 0.556 2.495 0.545 3.095 0.529
PUGAN (Cong et al., 2023) 22.65 0.902 2.652 0.566 - - 2.977 0.536
U-Shape (Peng et al., 2023) 20.39 0.803 2.730 0.560 3.151 0.592 - -
Semi-UIR (Huang et al., 2023) 22.79 0.909 2.667 0.574 3.185 0.606 3.079 0.554
WFI2-Net (Zhao et al., 2024a) 23.86 0.873 - - 3.181 0.619 - -

BEMCLIP (ours) 24.36 0.921 2.885 0.554 3.266 0.608 3.115 0.558
BEM (ours) 25.62 0.940 2.931 0.567 3.406 0.620 3.224 0.561
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tasks, we present quantitative comparisons on the UIEB-R90 dataset, as shown in Table 2. Our BEM
outperforms the second-best WFI2-Net by 1.76 dB in PSNR. This superior performance, observed
consistently across both LLIE and UIE tasks, highlights BEM’s effectiveness and versatility.

Table 3: No-reference evaluation on LIME,
NPE, MEF, DICM and VV, in terms of
NIQE↓. The best results are in blodface.

Method DICM LIME MEF NPE VV

KinD (Zhang et al., 2019) 5.15 5.03 5.47 4.98 4.30
ZeroDCE (Guo et al., 2020) 4.58 5.82 4.93 4.53 4.81
RUAS (Liu et al., 2021) 5.21 4.26 3.83 5.53 4.29
LLFlow (Wang et al., 2022) 4.06 4.59 4.70 4.67 4.04
PairLIE (Fu et al., 2023b) 4.03 4.58 4.06 4.18 3.57
RFR (Fu et al., 2023a) 3.75 3.81 3.92 4.13 -
GLARE (Zhou et al., 2024) 3.61 4.52 3.66 4.19 -
CIDNet (Feng et al., 2024) 3.79 4.13 3.56 3.74 3.21

BEMDeterm. (ours) 3.77 3.94 3.22 3.85 2.95
BEM (ours) 3.55 3.56 3.14 3.72 2.91

No-Reference Evaluation. For no-reference low-
light images, we recover them using Algorithm 1
and D is instantiated as the NIQE metric. We then
evaluate our method on five unpaired datasets as
shown in Table 3, where we report the NIQE scores
of SOTA methods. Our BEM consistently outper-
forms prior methods across all datasets. For enhanc-
ing no-reference underwater images, we instantiate
D in Algorithm 1 as the UIQM and UCIQE metrics.
We then evaluate our method on the C60, U45 and
UCCS test sets. As shown in Table 2, BEM achieves
the best UIQM scores across all test sets. With the
UCIQE metric, we also achieve the best results in
the U45 and UCCS test sets. These results, spanning
different tasks and datasets, demonstrate the robust-
ness and effectiveness of our method in real-world
applications.

5.2 VISUAL ANALYSIS

Predictions of One-to-Many. In Figure 4, we visualise the prediction process of BEM, where
multiple plausible candidates are generated. As shown at the top of the figure, these candidates
exhibit apparent visual differences. The best prediction candidate is selected using Algorithm 1,
which is visually closer to the reference image. For no-reference prediction, we demonstrate that
using the CLIP score with the text prompt, “A bright photo”, results in the brightest image
being outputted. By instantiating D as the NIQE metric, we can avoid generating overexposed
predictions, as shown at the bottom right.

16.3 dB 21.2 dB 24.5 dB 29.6 dB 30.4 dB

Full-Reference Inference:

No-Reference Inference: 

Input Reference

49 62 74 80 93

CLIP : Brightness

Input 2.672.732.823.12 2.95Input

NIQE

Figure 4: Visualisation of the predicting process of BEM in both cases with reference (top) and
without reference (bottom). Zoom in for more details.

Qualitative Comparisons. We visually compare our BEM with twelve state-of-the-art UIE methods,
including WaterNet (Li et al., 2019a), PRWNet (Huo et al., 2021), FUnIEGAN (Islam et al., 2020),
PUGAN Cong et al. (2023), MMLE (Zhang et al., 2022), PUIE-MP (Fu et al., 2022), FiveA+(Jiang
et al., 2023b), CLUIE (Li et al., 2023), Semi-UIR (Huang et al., 2023), UColor (Li et al., 2021),
DM-Underwater (Tang et al., 2023), and CLIP-UIE (Liu et al., 2024a). As depicted in the first and
second rows of Figure 5, our BEM achieves superior removal of underwater turbidity compared to
other methods. In deeper ocean images with dominant blueish effects (last row in Figure 5), BEM
can better enhance visual clarity. Visual comparisons on five unpaired LLIE test sets are shown in
Figure 6, where our restored images offer better perceptual improvement. For example, in DICM, our
method enhances brightness while effectively avoiding overexposure. These visual improvements
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align with the superior quantitative results presented in Sec. 5.1. HD visual results are included in
Appendix E.

FUnIEGANPRWNetWaterNetInput BEM (Ours)

R90

U45

Input UColor DM-Underwater

PUIE-MP

CLIP-UIE PUIE-MP BEM (Ours)

Ground Truth

PUGAN

Input FiveA+ CLUIE BEM (Ours)Semi-UIR PUIE-MP

C60

MMLE

Figure 5: Visual comparisons on the R90, C60 and U45 datasets. Best viewed when zoomed in.

Input Input

KinD

DIC
M

LIME

KinD++

NPE

SNR-Net

ZeroDCE

Input

Input

Input

VV
RUAS BEM (Our) BEM (Ours)BEM (Ours)

DICM MEF

BEM (Ours) BEM (Ours)

Figure 6: Visual comparisons on the DICM, LIME, MEF, NPE and VV datasets.

5.3 ABLATION STUDIES

Single-Stage vs. Two-Stage Approaches. We assess the performance of our two-stage ap-
proach by comparing it against a single-stage variant. As discussed in Sec. 4, directly con-
verting a DNN into a BNN typically results in noisy predictions. To generate smooth out-
puts, our single-stage model retains the last layer in the network as a deterministic layer, the
entire process of which is opposite to the Bayesian last layer method (Harrison et al., 2024).

Table 4: Single-stage vs. two-stage approaches on
LOL-v1. FLOPs are calculated in an input size of
256×256 pixels.

Model FLOPs PSNR ↑ SSIM ↑

Single Stage 20.41G 24.78 0.852
Two Stages 20.49G 26.83 0.877

While the two-stage approach introduces only
marginal additional computational overhead, its
performance significantly surpasses that of the
single-stage model, as shown in Table 4. This
highlights the efficiency and effectiveness of our
two-stage approach.

Magnitude of Uncertainty. The performance
improvements of our BEM primarily stem from
its ability to effectively model the one-to-many
mapping using BNNs. To support this claim, we
evaluate the influence of the variance in the variational posterior on model performance. As shown in
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Figure 7, except for BEM with σ◦ = 0.0001, all other BEM instances outperform the DNN. This
indicates that by setting a moderate variance in the momentum prior, BEM can significantly surpass
its DNN counterpart.
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Figure 7: Effect of initial variance values (i.e., σo in Eq. 7) on model performance. The results
are obtained by evaluating single-stage models on the LOL-v1 dataset. “Determ.” denotes the
deterministic baseline model.

Impact of Different Priors. We evaluate the effectiveness of our momentum prior against
two baseline priors: a naive Gaussian prior and an empirical Bayes prior. The naive Gaus-
sian prior is defined as P (W) = N (0, 0.1I). The empirical Bayes prior, MOPED (Krish-
nan et al., 2020), is defined as P (W) = N (wMLE, 0.1I), where wMLE represents the maxi-
mum likelihood estimate (MLE) of the weights learned by optimising a deterministic network.

0 50 100 150 200 250
Iteration (x1000)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

PS
N

R
 (d

B
)

Momentum Prior
Empirical Bayes Prior
Native Gaussian

Figure 8: Training curves of one-stage BEMs with
different priors. The PSNR for each iteration is
calculated using the mean weight µ.

In the case of the empirical Bayes prior, the
mean µ of the variational posterior q(w|θ) is ini-
tialised as the MLE of the weights, wMLE, and
the posterior variance σ is set to 0.1wMLE, as
suggested by Krishnan et al. (2020). As shown
in Figure 8, the momentum prior demonstrates
a clear advantage over both baselines. While
the empirical Bayes prior accelerates training
during early iterations, its performance degrades
over time due to the fixed nature of the prior.
The fixed prior, learned from the same data, can
act as a shortcut during the optimisation of the
variational posterior parameters, minimising the
loss function in Eq. (5) predominantly by reduc-
ing the prior matching term KL [q(w|θ)∥P (w)].
This behaviour bypasses data-driven learning,
ultimately resulting in sub-optimal solutions that do not fully capture the data’s inherent uncertainty.

6 DISCUSSION AND CONCLUSION

Although BEM demonstrates stronger generalisation capability than DNN-based methods, fully
realising its potential will require intentionally collecting target images under diverse capture settings
to further increase label diversity. While using small image crops as training data can alleviate the
label diversity problem to some extent, similar to conventional data augmentation strategies in DNNs,
this approach has limitations. We leave these aspects for future work. Additionally, the distinction
between image enhancement and image restoration is not always well-defined, as some restoration
tasks (e.g., image colourisation and de-raining) may also present one-to-many mapping challenges.
Consequently, our BEM could be extended to certain image restoration scenarios.

Overall, we identified the one-to-many mapping problem as a key limitation in existing image
enhancement tasks and introduced the first Bayesian-based model to address this issue. To facilitate
efficient training on high-dimensional data, we proposed a Momentum Prior that dynamically refines
the prior distribution during training, enhancing convergence and performance. Our two-stage
framework integrates the strengths of BNNs and DNNs, yielding a flexible yet computationally
efficient model. Extensive experiments on various image enhancement benchmarks demonstrate
significant performance gains over state-of-the-art models, showcasing the potential of Bayesian
probabilistic models in handling the inherent ambiguities of image enhancement tasks, paving the
way for future research in modelling complex one-to-many mappings in low-level vision tasks.
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A EXPERIMENTS ON REDUCTION FUNCTION ϕ

Regarding the form of reduction function ϕ in Eq. (9). we consider two instantiations: bilinear
downsampling and local 2D histogram. As illustrated in Figure 9. with the local histogram, the
recovered images preserve more details than that of bilinear downsampling, due to additional
configuration for the histogram’s bin number, avoiding losing much information when the downsample
scale is larger.

(a) Bilinear Down

ϕ( ⋅ )

H × 𝑊 × 3
H
16

 × W
16

× 3 

ϕ( ⋅ )

H × 𝑊 × 3
H
16

 × W
16

× 18 

(b) Local Histogram

Figure 9: With the same downsampling scale, the local histogram offers more precise control over
the amount of retained information by adjusting the number of bins (corresponding to the number of
channels). In contrast, bilinear downsampling tends to lose excessive details, especially when using
larger downsampling strides.

The discrete nature of histograms poses challenges in both prediction accuracy and computational
speed. To address this, we approximate the histogram calculation using Kernel Density Estimation
(KDE), which significantly improves both computation efficiency and prediction accuracy. As shown
in Table 5, while the pixel-level PSNR of local histogram-based ϕ is slightly lower than that of
bilinear downsampling, we attribute this to the larger variance inherent in histogram values, which
the model struggles to fit effectively.

Table 5: Comparisons of different instantiations of ϕ. The PSNR values on LOL-v1 are reported. K
is set to 100.

Function ϕ Downscale Bins Channels PSNR ↑

Bilinear Down 8 N/A 3 25.87
Local Histogram 8 3 9 25.29
Local Histogram 8 10 30 24.96
Local Histogram 8 16 48 24.80

Bilinear Down 16 N/A 3 26.83
Local Histogram 16 10 30 25.89
Local Histogram 16 16 48 25.83

Despite this, we observe that the local histogram approach exhibits slightly better colour representation
compared to the bilinear instance. In Figure 10, we present a visual comparison between the two
implementations, highlighting that the histogram-based model generates more vivid colours. However,
the bilinear downsampling method performs better in restoring details in areas where significant
information loss occurs.
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HistogramBilinearHistogram Bilinear

Figure 10: Visual comparison between the local histogram and bilinear downsampling implementa-
tions of the reduction function ϕ. The bilinear ϕ demonstrates better restoration capability compared
to the histogram-based counterpart. However, the histogram-based ϕ shows better global colour
representation. Best viewed when zoomed in.

B INVESTIGATION ON MAMBA BACKBONE
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Figure 11: Overview of the Mamba backbone architecture, consisting of five feature stages, each
comprising Li VSS blocks. The shortcut connections are implemented using addition. Panel (a)
illustrates the hierarchical structure of the backbone. Panel (b) details the VSS Block, including its
integration with the SS2D module. Panel (c) explains the SS2D mechanism, incorporating Cross-
Scan, structured state-space modelling (SSM), and patch merging. Further details about SS2D can be
found in Liu et al. (2024b).

Considering Mamba’s linear computational complexity for long sequence modelling, we adopt the
VMmaba Liu et al. (2024b) to build the backbone of our BEM. The overall framework is akin to a
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U-Net, but we replace all the Transformer blocks Dosovitskiy et al. (2020) with the Visual State-Space
(VSS) blocks, each of which is composed of a 2D Selective Scan (SS2D) module Liu et al. (2024b)
and a feedforward network (FFN). The formulation of VSS block Liu et al. (2024b) in layer l can be
expressed as

hl = SS2D (LN (hl−1)) + hl−1,

hl+1 = FFN (LN (hl)) + hl,
(11)

where FFN denotes the feedforward network and LN denotes layer normalisation. hl−1 and hl denote
the input and output in the l-th layer, respectively. As shown in Figure 11, the Mamba backbone
consists of an input convolutional layer, L1 + L2 + L3 + L4 + L5 VSS blocks, and an output
convolutional layer. After each downsampling operation, the spatial dimensions of the feature maps
are halved, while the number of channels is doubled. Specifically, given an input image with a
shape of H ×W × 3, the encoding blocks obtain hierarchical feature maps of sizes H ×W × C,
H
2 × W

2 × 2C and H
4 × W

4 × 4C. In the last two feature stages, the features are upsampled with the
pixelshuffle layers (Shi et al., 2016). At each scale level, lateral connections are built to link
the corresponding blocks in the encoder and decoder.

Construct the backbone. We build our backbone by gradually evaluating each configuration of
a vanilla Mamaba-based UNet. We thoroughly investigate settings including ssm-ratio, block
numbers, n_feat and mlp-ratio. The training strategies for all variants are identical. Setting
n_feat denotes the number of feature maps in the first conv3×3’s output. Setting d_state
denotes the state dimension of SSM. Note that the established baseline assures two things: 1) Further
naively introducing additional parameters and FLOPs, e.g., scaling models with more blocks, will not
help boost the performance. 2) A technique with additional parameters introduced to the baseline
model can no doubt demonstrate its effectiveness if the modified model shows better results than the
baseline.

Table 6: The performance of deterministic Mamba UNet variants with different d_state,
ssm-ratio, mlp-ratio, n_feat and block numbers. PSNR and SSIM on LOL-v1 are
reported. Since the deterministic networks trained using minibatch optimisation are likely to fit very
different targets each time, the results will fluctuate greatly. We train each model five times and report
the average performance.

d_state ssm-ratio mlp-ratio n_feat
block FLOPs Params TP PSNR SSIM

numbers (G) (M) img/s (dB)
1 1 2.66 40 [2,2,2] 14.25 1.23 125 22.45 0.828
1 1 4 40 [2,2,2] 20.41 1.52 78 23.76 0.842
16 1 2.66 40 [2,2,2] 25.50 1.37 84 23.83 0.840
32 1 2.66 40 [2,2,2] 37.49 1.52 61 21.93 0.812
16 2 4 40 [2,2,2] 44.36 2.08 58 23.67 0.830
16 2 4 52 [2,2,2] 65.10 3.37 40 23.21 0.833
16 2 4 40 [2,2,2,2] 54.82 7.77 51 23.44 0.838
1 2 4 40 [2,2,2] 21.87 1.79 82 22.73 0.834

To balance both speed and performance, we selected the model in the second row of Table 6 as the
backbone for our BEM. The chosen backbone features a simple architecture with no task-specific
modules, enhancing its generalisability and establishing a solid foundation for extending our method
to other types of vision tasks.

C CONTROLLABLE LOCAL ENHANCEMENT

Thanks to the interpretability of the lower-dimensional representations in both the spatial and channel
dimensions, we can easily achieve local adjustment with a masking strategy. The local adjustment is
particularly useful in the cases where the input images are unevenly distorted, and we want to retain
the undistorted regions consistent before and after enhancement. The local adjustment process can be
achieved by using a mask layer M: ylocal = G(γM⊙ v,x;wG), where v can be lower-dimensional
features extracted from a real image or estimated by the first stage model via Eq. (9). We can use a
scalar γ to control the strength of the enhancement effect. A demonstration of the local enchantment
is shown in Figure 12.
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Mask LayerBefore After

Figure 12: The local brightness of an image before adjustment (left) can be edited locally by providing
a mask layer (middle). The image after adjustment (right) shows improved brightness in the regions
indicated by the mask.

Compared to directly applying the mask to the output, our local enhancement strategy not only reduces
the dependency on mask accuracy but also results in smoother transitions at the mask boundaries.
This mitigates issues such as excessive roughness or colour inconsistencies between processed and
unprocessed regions.

D LABEL DIVERSITY AUGMENTATION

Theoretically, an infinite number of target images could correspond to a single input. However,
current paired datasets often lack sufficient label diversity, which may become a bottleneck for BEM
model performance.

Table 7: Evaluation of label augmentation strategies for enhancing label diversity. PSNR scores are
obtained using single-stage models on LOL-v1.

Model Gamma Correction Saturation Shift CLAHE PSNR ↑

BEM 24.78
BEM ✓ 24.89
BEM ✓ ✓ 24.93
BEM ✓ ✓ ✓ 24.86

DNN 24.02
DNN ✓ ✓ ✓ 21.58

Without relying on additional data collection to increase label diversity, we propose two strategies for
augmenting label diversity within existing datasets:

i) When training a deep network, high-resolution images are often divided into smaller crops (e.g.,
128×128). Many of these smaller image crops may represent the same scene, but due to various
factors, such as being captured at different moments in a video or having different capture settings,
the corresponding target crops show differences in colour or brightness. Thus, using these crops as
input during training, the actual label diversity within the training data is naturally increased.

ii) Existing labels can be further enriched by applying data augmentation techniques such as random
brightness adjustments, saturation shifts, changes in colour temperature, gamma corrections, and
histogram equalisation.

Both strategies contribute to increasing label diversity to some extent.

In Table 7, we evaluate whether expanding the number of target images using gamma correction,
saturation shift, and CLAHE Reza (2004) can further improve the model’s performance. Among
these, saturation shift is a linear transformation, while gamma correction and CLAHE are nonlinear
methods. We observed that deterministic networks showed a decline in performance after applying
these label augmentation techniques. This can be attributed to DNNs overfitting to local solutions
that deviate further from the inference image as uncertainty in the data increases. In contrast, BEM
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exhibited a slight increase in PSNR when using these augmented labels. For consistency, these
augmentation strategies were not applied in other experiments.

E SUPPLEMENTARY VISUALISATIONS

BEM (Ours) RetinexFormer

KinD SNR-Net

Figure 13: Visual comparisons with KinD, SNR-Net and RetinexFormer under images’ original
resolution. The sample is from the LOL-v2-real dataset.

HD Visualisation for LLIE. To facilitate a closer inspection of enhanced image details, we present
high-resolution visual comparisons in Figure 13, where the predictions of state-of-the-art models
are displayed at their original resolutions. The high-resolution visualisation reveals that previous
state-of-the-art methods tend to exhibit varying degrees of noise artefacts in the enhanced results,
significantly degrading perceptual quality. In contrast, our method effectively suppresses these noise
artefacts, which are often introduced by low-light conditions. Furthermore, our approach achieves
superior detail restoration, while other methods show signs of blurring and detail loss.

More Visualisations for UIE. In Figure 14, we present additional visual comparisons on the U45
and UCCS datasets, demonstrating that our method consistently outperforms PUGAN and PUIE-MP
in enhancing various underwater scenes.
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PUGAN

PUIE-MP

BEM
(Ours)

U45
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PUGAN

PUIE-MP

BEM
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Figure 14: Visual comparisons with PUGAN and PUIE-MP on the U45 and UCCS test sets.
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F MOTIVATION OF THE TWO-STAGE FRAMEWORK

To demonstrate the advantages and necessity of our two-stage BNN-DNN framework, we analyze its
performance by comparing it with five other frameworks, as shown in Figure 15. The corresponding
results on UIEB and LOL-v1 are presented in Table 8.

BNN DNN
Down

DNN DNN
Down

(d) BNN-DNN

(e) DNNdown-DNN

BNN

(a) BNN

DNN

(c) DNN

DNN DNN

(f) Cascaded DNNs

(b) BNN-v2

BNN

3×
3 

co
n

v

Figure 15: Illustration of six framework variants, including three one-stage models (a, b, and c) on the
left and three two-stage models (d, e, and f) on the right. The arrows indicate the inference process,
with each framework demonstrating different architectural designs. The square box labelled “Linear”
in (e) denotes that the final projection layer is a deterministic linear layer. In (d) and (e), the first
stage and second stage are training independently, while the two stages of Cascaded DNNs (f) are
training together. Enlarged views highlight key regions for better comparison.

F.1 LIMITATIONS OF ONE-STAGE BNN

In high-dimensional image data, BNN introduces uncertainty in the prediction of each pixel. As shown
in Figure 15 (a-b) and Figure 16, this pixel-level uncertainty manifests as noise in the output image,
which negatively impacts both visual perception and certain image quality metrics. Nevertheless, the
one-stage BNN models yet provide better results than pure DNN-based models. Visually, for example,
by comparing the enlarged views of Figure 15 (a) and Figure 15 (c), we can observe that the BNN
model is capable of recovering the red colour of the top surface of the box, while the DNN fails to do
so. To cancel the noise in the enchanted image, we attempt to strengthen the spatial relations between
adjacent pixels by retaining the BNN’s output layer as a deterministic 3×3 convolutional layer as
shown in Figure 15 (b). However, the denoising effect of this simple method is not satisfactory, and
because the deterministic layer is introduced in the end-to-end training, the diversity of the model
output is reduced.

F.2 RESORT TO THE TWO-STAGE BNN-DNN FRAMEWORK

In BNN-v2 (b), by removing the uncertainty in the weights of the final convolutional layer, specifically
by eliminating the random noise term ϵ ∼ N (0, I) in Eq. 6, we were able to significantly reduce the
noise frequency. This leads us to hypothesize that the strong Gaussian-like noise observed in the
output of BNN is primarily caused by the noise term ϵ in each Bayesian layer. Therefore, to eliminate
the noise in the output, it becomes necessary to replace the Bayesian layers near the output of the
BNN model with deterministic layers. However, this approach is not straightforward, as making
the layers near the output deterministic inherently makes the entire output deterministic, effectively
neutralizing the uncertainty provided by the BNN. To address this, we propose splitting the model
into a BNN part and a DNN part, and training them separately. This forms the basis of our two-stage
BNN-DNN framework.
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Table 8: Comparisons of various one-stage and two-stage frameworks. For two-stage frameworks,
the second column specifies whether 16× downsampling is applied to the input in the first stage.

Framework Downscale (Stage-I) UIEB-R90 LOL-v1

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

(a) BNN N/A 21.72 0.885 22.74 0.818
(b) BNN-v2 N/A 23.71 0.899 24.78 0.852
(c) DNN N/A 20.83 0.864 23.76 0.842
(d) BNN-DNN ✓ 25.62 0.940 26.83 0.877
(e) DNNdown-DNN ✓ 20.68 0.812 22.85 0.823
(f) Cascaded DNNs ✗ 20.95 0.873 23.98 0.827
(g) BNN-DNN ✗ 17.78 0.689 19.26 0.798

To demonstrate the benefits of our separate training scheme, we compare it with cascaded DNNs (c),
where both stages are trained jointly. As shown in Table 8, the two-stage separate training scheme
outperforms the conventional cascaded DNNs. Meanwhile, we conduct an ablation study on the
BNN component of the two-stage framework (d). Specifically, we replace the BNN part with a DNN
of equivalent size, resulting in the DNNdown framework (e). By comparing the performance of
both frameworks across different datasets, as shown in Table 8 , we observe that the BNN-DNN
framework outperforms DNNdown. This result verifies that the primary performance improvement
of the two-stage BNN-DNN framework is attributed to the BNN.

F.3 IMPORTANCE OF INPUT DOWNSAMPLING FOR STAGE-I

The input dimensionality reduction in the first stage of our BNN-DNN framework is crucial for
the successful training of the second-stage model. This is because the two stages are trained
independently, and during the training of the second stage, the predictions from the first stage are
replaced with ground-truth (GT) information. Without dimensionality reduction, the training of the
second stage becomes invalid, as it would merely result in learning an identity mapping, as evidenced
by the result shown in the last row in Table 8. Furthermore, the BNN in the first stage is trained on
downsampled, low-resolution images. We found that BNNs are more effective when dealing with
these lower-dimensional data. In Table 9, we compare the performance of the BNN trained on 16×
downsampled image datasets with its performance on the original resolution datasets. Our results
show that the BNN achieves more accurate predictions when processing lower-resolution images
compared to high-resolution images. In contrast, the DNN shows no obvious difference in predictive
performance between low-resolution and original-resolution images.

Table 9: Comparing the performance of one-stage BNN on 16× downsampled image data of LOL-v1
and that of the original resolution LOL-v1.

Model dataset PSNR ↑

BNNdown 16× down LOL-v1 25.43
BNN LOL-v1 22.74
DNNdown 16× down LOL-v1 22.25
DNN LOL-v1 23.76

In Figure 16, we compare the enhanced outputs of the one-stage and two-stage models. The one-stage
model’s output exhibits noticeable noise due to the per-pixel uncertainty predictions of the BNN,
whereas the two-stage model produces a noise-free output.
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One-Stage Two-Stage

Figure 16: A visual comparison of enhanced images produced by the one-stage BNN-v2 (left) and
two-stage BNN-DNN models (right).

G ANALYSIS OF PREDICTIVE UNCERTAINTY

In this section, we statistical analyse of the diversity in predictions generated by BEM. Table 10
presents the predictive uncertainty statistics collected from the LOL-v1 dataset. A larger standard
deviation indicates higher uncertainty, suggesting that the BEM produces more diverse predictions
and better captures the one-to-many mapping nature of the task. The maximum values approximate
the upper bound of the BEM’s predictive quality, while the minimum values approximate its lower
bound.

Table 10: Statistic data on predictive uncertainty on LOL-v1. CLIP (Brightness) indicate the CLIP
feature similarity using text prompt “Bright photo”. Likewise, CLIP (Quality) use prompt
“Good photo”.

Metric Maximum Mean Median Minimum Standard deviation

PSNR 26.89 22.87 22.97 17.90 1.911
SSIM 0.876 0.855 0.856 0.819 0.013
CLIP-IQA (Brightness) ×100 93.62 89.63 89.71 84.20 1.689
CLIP-IQA (Quality) ×100 64.34 59.13 59.08 54.22 1.825
CLIP-IQA (Noisiness) ×100 36.17 30.06 30.02 25.08 1.942
Negative NIQE - 4.647 -4.808 - 4.806 -4.971 0.059

As shown in Table 10, the minimum CLIP-IQA values in the LOL dataset are significantly smaller
than the maximum values, potentially reflecting the presence of low-quality GT images in the
dataset. We hypothesise that these poor-quality GT images significantly impact the performance
of deterministic neural networks. However, due to BEM’s uncertainty modelling, such low-quality
GT images primarily affect the lower bound of BEM’s predictive quality, minimising their overall
influence on performance.

In Figure 17, we randomly selected an input image from the heterogeneous dataset LSRW (Hai et al.,
2023) to analyse the distribution of its prediction results. We observe that, for each metric, although
many predictions fall within the central range, they are not overly concentrated. This demonstrates
the diversity of the model’s predictions.
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Figure 17: Distribution of 500 random predictions generated by the BEM model for a single
low-light image across different evaluation metrics, including PSNR, SSIM, and three CLIP-IQA
metrics (“Brightness”, “Quality”, “Noisiness”). Each violin plot visualises the density and range of
predictions.

From the uncertainty map (e) in Figure 18, we observe a structured distribution of uncertainty, where
regions expected to be in shadow exhibit lower uncertainty, while illuminated areas tend to have
higher uncertainty.

(a) Input (c) Max. (PSNR) (d) Min. (PSNR) (e) Uncertainty(b) GT

Figure 18: Visualisation of BEM outputs showing the input image (a), ground truth (b), the prediction
with the highest PSNR (c), the prediction with the lowest PSNR (d), and the uncertainty map (e). The
uncertainty is computed as the pixel-wise standard deviation across 500 predicted images.

To investigate how the predictive uncertainty and quality of BEM are influenced by the overall GT
quality in the training data, we conduct the following experiments as detailed in Appendices G.1 and
G.2.

G.1 STEP ONE: IDENTIFY LOW-QUALITY GT IMAGES IN TRAINING DATA

To separate training data with low-quality GT images from the dataset, we initially employed CLIP-
IQA (Wang et al., 2023) with text prompts (“Brightness”, “Noisiness”, “Qualit”) to filter out images
with low brightness, high noise levels, and poor quality. This automated process was followed by
manual refinement to identify and separate poor-quality GT images. Examples of low-quality GT
images from the LOL and UIEB training sets are shown in Figure 19 and Figure 20, alongside high-
quality GT images for comparison. While the algorithmic filtering reduced excessive subjectivity, the
manual refinement process may still introduce some subjective bias. Therefore, the separation results
should be treated as indicative rather than definitive.
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Low-Quality GT Images

High-Quality GT Images

Figure 19: Examples of low-quality and high-quality GT images from the LOL training set. The
categorisation may be influenced by subjective biases in assessing visual clarity, lighting, and overall
image quality.
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Low-Quality GT Images

High-Quality GT Images

Figure 20: Examples of low-quality and high-quality GT images from the UIEB training set. The
categorisation may be influenced by subjective biases in assessing visual clarity, lighting, and overall
image quality.

G.2 STEP TWO: IMPACT OF TRAINING DATA QUALITY ON PREDICTIVE PERFORMANCE

When the dataset contains low-quality ground-truth images, BEM generates a distribution of predictive
quality, producing both high-quality and low-quality outputs. The probability of generating high-
quality outputs is influenced by the proportion of high-quality ground-truth images in the training data.
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Figure 21: Impact of training data quality on
BEM. The x-axis represents the proportion of high-
quality images in the training dataset (τ ), while the
y-axis shows the percentage of high-quality pre-
dictions obtained after K = 100 sampling times
on the test set. Higher proportions of high-quality
training data lead to a greater likelihood of gener-
ating high-quality predictions. A prediction is clas-
sified as high-quality if its CLIP (Quality) score
exceeds 0.8.

Specifically, as the proportion of high-quality
ground-truth images increases, the probability
of sampling high-quality outputs during infer-
ence also rises. Consequently, fewer sampling
iterations are required to obtain satisfactory en-
hancement results. Conversely, when the pro-
portion of high-quality ground-truth images is
low, more sampling iterations are needed.

To examine whether the proportion of high-
quality ground-truth (GT) images in the training
data affects the likelihood of generating high-
quality outputs, we pose the question: Does in-
creasing the share of high-quality images in the
training set improve the probability of producing
high-quality results?

To test this hypothesis, we conducted the follow-
ing experiment: First, using the sample separa-
tion method described in Sec. G.1, we identified
and labelled low-quality GT images in the train-
ing dataset. Next, while keeping the total size of
the training dataset constant, we systematically
replaced low-quality GT images in the LOL-v1
training set with high-quality GT images from
the LOL-v2-real dataset. This allowed us to con-
trol the proportion of high-quality images in the
training data, denoted as τ .

The results, shown in Figure 21, demonstrate a clear trend: as the proportion of low-quality GT
images decreases, the likelihood of generating high-quality outputs increases consistently. When the
training dataset consists entirely of high-quality GT images (τ = 100%), BEM achieves significant
efficiency, producing a satisfactory enhanced output approximately once every five sampling iterations
on average. This highlights the direct relationship between training data quality and the predictive
performance of BEM. Nonetheless, the true strength of BEM lies in its ability to generate high-quality
enhanced images even when real-world data contains low-quality GT images, thanks to its uncertainty
modelling capabilities. The trade-off, however, is the need for more sampling attempts.

H USE CLIP TO PICK OUT A HIGH-QUALITY ENHANCED IMAGE

As illustrated in Figure 22, the ground-truth images in the test set are low-quality. When evaluated
using full-reference metrics such as MSE or PSNR, BEM produces outputs like image (b), which
closely resemble the low-quality GT image. In contrast, when using CLIP-IQA as a no-reference
metric, BEM generates outputs like image (a). Upon observation, image (a) demonstrates superior
illumination and clarity compared to image (b) in Figure 22.

Figure 23 illustrates the outputs selected by BEM using the no-reference CLIP metric and the full-
reference PSNR metric, alongside other unselected predictions. Notably, the results selected by both
metrics are visually acceptable.
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23.18 dB GT14.78 dB

17.31 dB 18.12 dB GT

(a) (b) (c)

Figure 22: A superior enhancement does not necessarily align with the suboptimal ground truth. The
left and middle images represent two plausible outputs from BEM, showcasing diverse enhancements.
The left images are selected using the no-reference CLIP-IQA (Qualify) metric, while the middle
images are chosen based on the full-reference PSNR metric.

Figure 23: Visualisation of BEM predictions. The pink box (□) highlights the output selected using
the no-reference CLIP-IQA (“Brightness”, “Noisiness”, “Quality”) metric, while the blue box (□)
highlights the output selected using the full-reference PSNR metric. The input image is from the
LSRW dataset (Hai et al., 2023).

In Table 11, we present the results obtained by instantiating the quality metric D in Algorithm 1 as
CLIP-IQA with the text prompts "Natural", "Brightness", and "Warm". Notably, we intentionally
avoided using "Quality" as the prompt for CLIP, as it tends to select the highest-quality images. Given
that some GT images in the LOL-v1 dataset are of suboptimal quality, this choice could result in a
decrease in full-reference metrics like PSNR.

I ADDITIONAL RESULTS ON UIEB
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Table 11: Additional quantitative results of BEM using CLIP-IQA (denoted as BEMCLIP) on the
LOL-v1 and v2 datasets. GT Mean is used to adjust the output brightness. The BEM model use
full-reference quality metric is denoted as BEMfull.

Method LOL-v1 LOL-v2-real LOL-v2-syn
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

BEM 28.80 0.884 0.069 32.66 0.915 0.060 32.95 0.964 0.026
BEMCLIP 28.43 0.882 0.071 30.01 0.910 0.076 31.51 0.961 0.030
BEMDeterm. 28.30 0.881 0.072 31.41 0.912 0.064 30.58 0.958 0.033

In Table 12, we provide additional results on the validation set of UIEB in terms of FID and LPIPS.
The listed methods includes UIECˆ2-Net (Wang et al., 2021), Water-Net (Li et al., 2019a), U-color (Li
et al., 2021), U-shape (Peng et al., 2023), DM-water (Tang et al., 2023), PA-Diff and (Zhao et al.,
2024b) WFI2-net (Zhao et al., 2024a).

Table 12: Results on UIEB in terms of FID and LPIPs.

Method UIECˆ2-Net Water-Net U-color U-shape DM-water PA-Diff WFI2-net BEM (ours)

FID ↓ 35.06 37.48 38.25 46.11 31.07 28.74 27.85 26.11
LPIPS ↓ 0.2033 0.2116 0.2337 0.2264 0.1436 0.1328 0.1248 0.1019

(a) (b) (c) 

Figure 24: (a) Input image; (b) input image after linear brightness adjustment; (c) output of the
one-stage BNN. When the input photo is particularly dark, the read noise becomes more prominent
after brightness adjustment, making its impact on the output more noticeable. This suggests that the
one-stage BNN might amplify such noise unintentionally due to its inherent uncertainty, leading to
less desirable output results.
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