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Abstract

A principal concern for AI systems is the occurrence of negative side effects, such
as a robot cleaner breaking a vase. This is critical when these systems use machine
learning models that were trained to maximise performance, without knowledge
or feedback about the negative side effects. Within Vase World and SafeLife,
two safety benchmarking domains, we analyse side effects during operation and
demonstrate that their magnitude is influenced by task difficulty. Using two forms
of confidence measure, we demonstrate that wrapping existing RL agents with
safety policies that activate when the agent’s confidence falls below a specified
threshold extends the Pareto frontier of both performance and safety.

1 Introduction

Many ML systems in open environments suffer from a specification problem: it is virtually impos-
sible to build an objective function that captures everything the system should do and, especially,
everything it should not do. Negative side effects (NSE) fall under this second category and are a
major concern in engineering, and a key problem of alignment. Some approaches have looked for
generic proxies to NSEs, such as minimising changes in the world: an agent should try to achieve
its goals making as few changes as possible in the environment [Armstrong and Levinstein, 2017].
However, in many situations, it is simply not possible to solve the task without affecting the world
significantly, or there is ambiguity in the distinction between small and big changes.

In this paper we propose a new approach based on confidence measures. We consider that a system
should pursue its preferred policy only when it has high confidence about the result of following the
policy. Otherwise, the system should enter a safe mode. Both the trigger for the safe mode and the
safe mode itself should be autonomous and accommodated to the nature of the domain.

We demonstrate the effectiveness of this approach within the Reinforcement Learning setting us-
ing options (see Appendix B for formulation details) for two popular DRL algorithms (DQN
[Mnih et al., 2013] and PPO [Schulman et al., 2017]). We utilise two methods for confidence esti-
mation ( reward-oriented and goal-oriented) to choose from depending on the domain of application.
Our method yields improvement on the Pareto frontier of performance and safety. The approach is
applicable to any kind of agent, with adjustable trade-offs between performance and safety.
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2 Background: Side Effects

Negative Side Effects (NSEs) are unanticipated or unintended effects caused by an AI system
during operation. NSEs are a key issue within the AI safety literature [Amodei et al., 2016]
and typically stem from the difficulty of fully articulating everything that the AI system should
not do. There are a number of proposed methods for measuring the NSEs caused by a system
[Armstrong and Levinstein, 2017, Leike et al., 2017, Turner et al., 2020b], but a recurring theme is
based on estimating counterfactual scenarios in which the system was not present (or had acted
differently), and comparing the changes in the state of the world. This may even require minimis-
ing some theoretic notion of empowerment [Salge et al., 2014, Klyubin et al., 2005], as a way to
avoid side effects [Amodei et al., 2016]. However, it is difficult to combine a training regime where
empowerment should be rewarded with an operation regime where it should be penalised.

Alternatively, side effects can be avoided by environmental design: including designated ’safe’ areas
into the training reward [Krakovna et al., 2019, Wainwright and Eckersley, 2019], or as a “secondary
objective” for which trade-offs are found [Saisubramanian et al., 2020]. But in these approaches
side effects simply become part of the specification or optimisation function, which represents a
significant deviation from the original definition of side effect.

In this paper we consider the scenario in which no feedback is given about side effects, being fully
unanticipated. The only information we assume is available is some rough estimates of how impact-
ful the agent’s actions are expected to be a priori. This can be as simple as saying that touching an
object is potentially impactful (value 1) while moving without touching anything is not impactful
(value 0). In our experiments we just distinguish between low-impact and high-impact actions, or
we simply define a no-op action as the only low-impact action.

3 Safety Wrappers

We “wrap” the agent’s policy as an option, and provide a second option that activates based on agent
confidence, taking over with safer behaviour. The safety option terminates when the situation has
changed and the agent has recovered confidence. Safety wrappers will be constructed independently
from a specific algorithm or agent type, or its policy. As a result, they can be applied to agents that
are already trained, allowing for easy increases to agent safety without costly retraining.

Safety wrappers have two primary attributes that need to be provided or learnt: 1) A safe policy to ex-
ecute. 2) Trigger and termination conditions. From an initial policy πbase, this is packaged as a base
option Obase = (Ibase, πbase,Bbase) and a safety policy option Osafe = (Isafe, πsafe,Bsafe). Do-
main knowledge can provide a subset of actions that are generally safe, or to provide a hand-crafted
policy for safe behaviour, such as not moving or shutting down the system. The safety policy is
triggered by lack of confidence. We consider the agent’s confidence in two forms. Reward-oriented
confidence can be viewed as how sure the agent is that a certain state or state-action pair will lead to
a high return compared to the alternative actions available. Goal-oriented confidence can be viewed
as a measure of how often visiting a state leads to overall success.

To measure reward-oriented confidence we use the agent’s own network. For PPO, in state s with
actions A available we take the information entropy of the policy as an uncertainty measure and
invert it to represent confidence: the larger 1−H(s, π) = 1−

∑
a∈A π(s, a) log|A| π(s, a) the more

weight the agent is assigning to the action maximising π in state s being the best action. Some RL
algorithms, such as DQN, often use an ϵ-greedy policy; for these we can instead take the entropy
of the softmax of relevant Q-values. This achieves the same result, with less uniformly distributed
Q-values indicating a higher confidence in certain actions over others.

For the goal-oriented confidence we instead train a small logistic regression model that associates
states with the likelihood of final success, using rollouts of the trained agent’s policy. For all safety
wrappers, the confidence value is compared against a thresholding hyper-parameter representing risk
tolerance. If the confidence value is lower than the threshold δ then the base option Obase terminates
and the safety option Osafe activates. We denote this: Isafe = Bbase = {s | C(s) < δ},Bsafe =
Ibase = S \ Isafe, where C is the function mapping states to the chosen confidence measure.
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(a) Safety ACC (b) Reward ACC

Figure 1: Results for Vase World. Mean values from 1000 evaluated task instances presented,
shaded region denotes standard deviation in each direction from the mean. Here the threshold for
the reward-oriented wrapper was 0.15 for DQN and 0.2 for PPO. With the goal-oriented wrapper a
threshold of 0.15 was used for DQN and 0.65 for PPO. These were found empirically.

4 Experimental Domains and Set Up

We evaluate our methods in two domains: Vase World (inspired by Vacuum Cleaner World
[Russell and Norvig, 2009] and implemented in a fork of AI safety Gridworlds [Leike et al., 2017])
and SafeLife [Wainwright and Eckersley, 2019]. Both domains utilise procedural generation; re-
quiring successful agents to generalise more, as well as providing means to alter the environment’s
difficulty See appendicies C and D for more details on both environments, including complete de-
scriptions of the difficulty functions, side effect measurements, and visual depictions of the tasks.

We evaluate the effect of our safety wrappers on the performance of PPO and DQN on both Vase
World and SafeLife. Task instances for training come from procedural generation conditioned on a
uniformly selected difficulty. For evaluation, we use 1000 instances for each difficulty. For our safety
wrappers in Vase World and SafeLife we select relatively simple safety policies: a safe shutdown
in Vase World and a safe subset of actions in SafeLife. We focus primarily on investigating how
trigger and termination conditions can be identified. Within Vase World we apply both the reward-
oriented and goal-oriented safety wrappers. The logistic regression model to associate environment
states with success probability was trained for 10000 episodes using the learnt policy to generate
the trajectories. Observed success rates provided the training targets. Due to SafeLife’s massively
increased complexity when compared to Vase World, particularly when it comes to achieving goals
and their development over time, goal-oriented consequences of actions are more unpredictable. For
this reason, we limit our experiments to the reward-oriented confidence wrappers, demonstrating
that we can still improve the safety of the agent.

5 Results and Discussion

We present many of our results in the form of Agent Characteristic Curves (ACCs), which plot per-
formance against the difficulty of the instances, following the evaluation practices in Item Response
Theory (IRT) [Embretson and Reise, 2000] (see Appendix A for more details). Rather than only
presenting these curves for the reward received by the agent, we also show the effect that difficulty
has on other metrics; in particular, safety. This simple adaption of ACCs for evaluating safety is
novel and provides a new perspective for visualising safety within RL.

Vase World Figure 1 shows the agents’ performances in Vase World. In each plot, we compare
either DQN or PPO to their reward-oriented and goal-oriented safety wrapped counterparts as well as
the ‘uniform’ baseline. The wrapped agents have reduced rewards compared to both of the baseline
counterparts, but they improve safety, particularly the reward-oriented wrappers. In Figure 3a, we
plot mean reward against the safety score. The Pareto front of the agents with respect to mean reward
and safety score is shown in black. The minimum reward receivable in Vase World is −50 and the
maximum is −1. Most of the safety wrapped agents (with the exception of goal-oriented PPO) are
competitive and push the Pareto frontier.

SafeLife Within SafeLife we wrapped DQN and PPO with several confidence threshold values
(0.5, 0.25 and 0.1). Figure 2 demonstrates that difficulty not only affects the magnitude of the
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(a) DQN: Safety ACC (b) DQN: Reward ACC

(c) PPO: Safety ACC (d) PPO: Reward ACC

Figure 2: ACCs for SafeLife. Shaded regions denote one standard deviation from the mean. The
safety-wrapper variants are denoted by SW DQN/PPO in the legend followed by the threshold.

rewards, also that of the side effects. The decrease in safety at higher difficulties is limited; likely
due to the policies degenerating to cycles (See the exploration ACC Appendix E). Figure 3b plots
mean reward against safety score. The Pareto front is shown in black. We can see that each variant
of PPO dominates every variant of DQN. For some thresholding parameters our safety wrapper
approaches expand the Pareto front. In red and blue are the straight lines joining the unwrapped
agent and the agent that cannot perform unsafe actions for PPO and DQN respectively. These lines
represent the range of performance we would expect if the agent selected one of πbase and πsafe
with probability 0 ≤ p ≤ 1. Our agents that wrap PPO expand the Pareto frontier and lie above this
line and thus are an improvement over this approach. The same cannot be said for all of the agents
that wrap DQN, though it is the case for the most competitive DQN wrappers. Appendix E includes
further plots, comparing difficulty and entropy.1

(a) VaseWorld (b) SafeLife

Figure 3: Mean reward and safety scores over all evaluation episodes for all agents.

1Code used to generate our experimental results is available at:https://github.com/JohnBurden/SafelifeExperiments

4



6 Conclusion

In this work, we have shown that notions of confidence, both reward-oriented and goal-oriented, can
be used to create safety wrappers. Despite the fact that the notions of confidence used to build the
wrappers have nothing in common with the metrics of safety in these environments, RL agents em-
ploying these wrappers showed improved safety at a low cost to performance. We have also shown
that using difficulty-based evaluation allows for a more nuanced overview of the safety properties
of the system, and their relation to performance and exploration; this may also provide the ability to
assess the appropriateness of deploying an agent if we know the difficulty of an environment.

There are trade-offs between our two types of confidence; reward-oriented confidences are easier to
obtain, based on information already available to the agent. In contrast, Goal-oriented confidence
measures require an additional brief learning phase which scales with environment complexity.

Future work that develops confidence measures based on other information theoretic properties of
the agent’s policy or environment could provide safer policies and ideally further expand the Pareto
frontiers of safety wrapped agents. Equally, more complex external models could make for more
accurate goal-oriented safety wrappers.
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Appendix

This supplementary material includes a description of agent characteristic curves and the evaluation
of systems according to their difficulty, as well as further details about Vase World and SafeLife
such as information about the procedural generation, how difficulty is calculated, as well as the way
side effects are measured in SafeLife using the earth mover distance function. Additionally, ACCs
are provided for exploration rate against difficulty, and entropy against safety score within SafeLife.
Details about the compute used for experimentation are given. Finally, we also provide an AI risk
analysis, detailing how this work aims to help mitigate catastrophic risk from AI systems.

A Evaluation with respect to Difficulty

When we evaluate an agent (biological or artificial) across a range of situations, we commonly
measure its overall performance. Crucially, this ignores the difficulty of task instances, which may
provide more insight into the actual behaviour of the agent. As the difficulty increases, we would typ-
ically expect the agent’s performance to decrease. Additionally, the agent’s confidence is expected
to change as instances become more difficult. Understanding an agent’s limitations with regards to
task instance difficulty can help us understand when deployment of an agent is appropriate.

Item Response Theory (IRT) [Embretson and Reise, 2000], provides a framework for evaluating
agents and taking into account the difficulty of task instances. Denote task instances drawn from a
task distribution as µ ∼ D. An agent, or policy, π, receives an expected score ψπ(µ) for each task in-
stance µwith which it interacts. The overall performance of π is simply Eµ∼D[ψπ(µ)]. But consider
that each task instance µ has an associated (objective) difficulty ℏ(µ), which can be estimated from
the results of other agents or by some intrinsic characteristic of the task. To see the performance of
an agent with respect to difficulty, we can define ψD

π (h) = Eµ∼D:ℏ(µ)=h[ψπ(µ)], the expected score
given the difficulty. Plotting ψD

π (h) over difficulty gives what IRT refers to as an Agent Characteris-
tic Curve (ACC). ACCs have seen prior use in evaluating AI systems [Martínez-Plumed et al., 2019]
and provide a grounded approach for assessing an agent’s capabilities.

We will use a difficulty function that depends on several parameters of our procedural generator
of environments. More difficult tasks depend on the size of the problem (the grid), the density of
good and bad elements and the thresholds for success. This is summarised in Appendix D.4 of the
Appendix

B Options

Options [Sutton et al., 1999] are a framework to provide temporal abstractions to RL agents. Intu-
itively, options form sub-policies that the agent can invoke, temporarily passing control to the option.
Formally, given an MDP M = (S,A,R, P ) an option O is defined as O = (IO, πO,BO). IO is
the initiation set, a subset s ∈ S of the state-space where option O may be invoked. πO is the policy
that is followed by an option during its execution. BO is the termination set for O, mapping states
to probabilities of terminating the option and passing control back to the agent’s policy. Options can
be invoked by agents instead of primitive actions if the current state lies in IO.

C Vase World Details

C.1 Vase World

Vase world is a conceptually simple custom gridworld RL environment (loosely inspired by Vacuum
Cleaner World [Russell and Norvig, 2009]) in which an agent must navigate from its initial position
to the goal (see Fig. 4). A number of grid cells within the environment are occupied by vases. Vases
do not impede the agent’s movement, but break if the agent moves into the same cell. The agent’s
initial position, the goal position and location of all vases are all chosen uniformly at random at
the beginning of an episode. After each step the agent receives a reward of −1. The destruction of
vases does not affect the reward, making their destruction a true side effect of the agent’s action. We
make use of a safety score to present our results: σ = 0− d where d is the number of vases broken
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Figure 4: A depiction of Vase World. The agent, goal and vase are denoted by the cell containing
“A”, “G” and “V”, respectively.

in an episode. This environment was implemented using an adaptation of AI Safety Gridworlds
[Leike et al., 2017].

We use procedural generation to create a diversity of Vase World instances, and a compatible en-
coding of observations to allow the same policy to generalise over many environments. The size of
the grid is used as a proxy for the difficulty of a Vase World instance, with larger instances requiring
more steps to complete in expectation, requiring a more consistent policy from the agent to reach
the goal. The initial proportion of grid cells that are occupied by vases is constant for each grid
size. This ensures that any variation in the destruction of vases over grid size is not caused by vases
becoming “rarer” in the grid.

The observations received by an agent interacting with Vase World are a vector consisting of a
sequence of repeating numbers: x, y, a, b, c. Each of these represents the position and type of object
present in the Vase World instance. (x, y) denotes the position of the object in the grid of cells,
and (a, b, c) describes a one-hot encoding of the objects: Agent, Goal, Vase. For practical purposes,
the vector is a fixed size over all difficulty instances. It consists of the agent, the goal and 10 vases
(which is the maximum that can occur for the highest difficulty. This yields a vector of size 60. In
the event that not all of the vases are used, they are left as a sequence of 0s.

Difficulty in Vase World is relatively simple, each level of difficulty corresponds to a larger grid.
Vase World begins at difficulty 0 with a 2× 2 size grid. Each level of difficulty thereafter increases
the grid size by 1 cell in each direction: difficulty h has a grid size (h + 2) × (h + 2). A task
instance of difficulty h always contains ⌈0.05 × (h + 2)2⌉ vases, leading to approximately 5% of
cells containing a vase. The vases, agent and goal are distributed uniformly at random without the
possibility for overlap.

C.2 Models and Hyper-parameters

The experiments in VaseWorld use implementations of DQN and PPO from the StableBaselines 2
library [Hill et al., 2018]. The DQN network uses a simple feed forward policy with two hidden
layers of 256 and 128 nodes respectively. The final layer has an output for each action. The PPO
network architecture consists of two hidden linear layers of 64 nodes each. A value function branch
splits off with a single linear layer with one output. A policy function branch splits off with a
constrained linear layer outputs one value per action.

The hyper-parameters for DQN are summarised in the Table below:

DQN Parameters Value
Discount Factor 0.99
Learning Rate 5e− 4
ϵ-schedule Linear Decrease over first 20% of episodes
ϵ-max 1.0
ϵ-min 0.05

Batch Size 32

9



Figure 5: A depiction of SafeLife: the agent must create life structures in the designated blue
positions before moving to the goal . Ideally the agent should not disturb the green life cells .
The agent cannot pass through walls but can push crates .

The hyper-parameters for PPO are summarised in the Table below:

PPO Parameters Value
Discount Factor 0.999

Generalised Advantage Estimator 0.95
Learning Rate 5e− 4

Entropy Coefficient 0.01
Value Function Coefficient 0.5

Max Gradient Norm 0.5
Clipping for Policy Loss 0.2

Clipping for Value Function Loss 0.2
Minibatch Size 8

Epochs Per Batch 3
no. steps per update 256

D SafeLife Details

D.1 SafeLife

SafeLife [Wainwright and Eckersley, 2019] is an environment designed to evaluate the safety of RL
agents [Miret et al., 2020, Turner et al., 2020a]. The environment is an extension of Conway’s Life
[Gardener, 1970] — cells “live“ or “die” according to simple rules about the status of neighbouring
cells. SafeLife includes an agent that can move around, creating or destroying life cells. The agent
must accomplish certain tasks (such as building or destroying life cells at specified locations) before
moving to a goal state, while trying to avoid causing unnecessary alterations to other cells. Figure 5
shows an instance of SafeLife.

SafeLife allows for highly complex interactions between the agent and environment, as well as
having the potential for actions to have long lasting consequences that may additionally take many
time steps to fully develop. Additionally, the environment uses procedural generation, allowing for
easy generation of many task instances. Despite appearing simple at first glance, it is a challenging
task for an agent to learn general successful policies for procedurally generated levels, requiring an
understanding of Life dynamics and long-term planning.

In the experiments we perform, we limit the goals of the task instances to the creation of life struc-
tures in the designated positions. This allows for an easier formulation of difficulty. A state of the
board has an associated point value determined by the number of designated cells which have had
life constructed in them by the agent. This value is denoted as V (s) for state s. After each step
by the agent s −→ s′, the agent is rewarded with V (s′) − V (s). The agent is also rewarded with
an additional 1 reward for reaching the level exit after filling at least half of the designated spaces.
Within SafeLife, these are known as “append-still“ tasks.
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The agent is also evaluated on the side effects that it causes to the pre-existing green life cells. Safe-
Life aims to compute this by comparing the world in which the agent acted against a counterfactual
world in which the agent did not exist. The side effect score gives a “normalised” value d to allow
for fair comparison against different task instances. For most cases this normalised value lies in
the range of [0, 1], but there are rare instances when this value can exceed 1. For a given episode,
we present our results as a safety score σ = 1 − d. More details about SafeLife, the Earth Mover
Distance used to calculate d and the difficulty parameters can be found in the appendix.

D.2 Side Effects in SafeLife

Here we will go into more detail about how the side effects of an episode are computed within
SafeLife. Within Safelife, actions can take many steps for their consequences to be felt. As a result,
it is not sufficient to simply compare final states. Instead, SafeLife creates action and inaction sets.
These are used to estimate the distribution with which a grid position contains a particular cell type.
The action set, Da, is created by simulating a further 1000 steps of the environment and storing the
state of the state for each step simulated. On the other hand, to create the inaction set, Di, 1000 + n
steps are simulated (and stored) from the initial board position, where n is the number of steps for
which the agent acted. Each of these sets allow the estimation of the proportion of time that board
position x ∈ ⟨x1, x2⟩ ∈ {1, ..., n} × {1, ...,m} contains cell type c:

ρcD(x) =
1

|D|
∑
s∈D

[1(s(x) = c)]

where D is the set of stored states, s is the state drawn from D and s(x) is the cell type present in s
at location x.

A ground distance function is also defined between board positions as g(x, y) = tanh(15 ∥x− y∥1)
where ∥x− y∥1 is the Manhattan distance between grid locations x and y. The calculated side effect
for Cell Type c is then:

dc(Da, Di) = EMD(ρcDa
, ρcDi

, g)

where Da and Di are the action and inaction sets respectively, and EMD is the earth mover dis-
tance function. Side effects in SafeLife are based on this distance metric, which aims to capture
the distance between two probability distributions based on the amount of work it would take to
transform one distribution to the other by moving around “distribution mass” [Rubner et al., 1998].

This side effect score dc(Da, Di) is then “normalised” against the inaction baseline to give a final
side effect score:

υc(Da, Di) =
dc(Da, Di)∑
x∈grid ρ

c
Di

(x)

This normalisation allows the comparison of agent behaviours in larger or more densely popu-
lated boards. The safety fraction metric we used in this paper is then simply σc(Da, Di) =
1− υc(Da, Di).

D.3 SafeLife Procedural Generation

Here we outline some of the details behind the SafeLife procedural generation. For each task in-
stance, the board begins empty. Regions are created in this empty space that initially contain the
majority of non-empty cells. Regions begin as a single grid cell and are expanded using a Dirichlet
process. The regions are constructed such that there will always be at least two grid cells separat-
ing any two regions. This separating space acts as a buffer and helps to keep some of the agent’s
consequences localised. Additionally, regions are required to be stable without interference from
the agent. Each region is of a (possibly randomly) determined type, which includes the parameters
required for generation (see Appendix D.4) for the parameters used in this paper. Individual re-
gions are constructed according to these parameters (see [Wainwright and Eckersley, 2019] for the
full details on this). The agent and level exit are then placed far away from each other in the buffer
region.
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Difficulty board_shape green_min_fill goals_min_fill goals_max_fill temperature
0 10× 10 0 0 0 0.1
1 15× 15 0.03 0.05 0.1 0.1
2 15× 15 0.03 0.05 0.1 0.2
3 15× 15 0.05 0.05 0.1 0.2
4 15× 15 0.07 0.05 0.15 0.2
5 15× 15 0.09 0.05 0.2 0.2
6 15× 15 0.1 0.05 0.2 0.2
7 15× 15 0.1 0.1 0.25 0.3
8 15× 15 0.1 0.15 0.25 0.4
9 15× 15 0.1 0.15 0.35 0.5

10 15× 15 0.1 0.15 0.4 0.5
11 15× 15 0.1 0.15 0.45 0.6
12 15× 15 0.1 0.2 0.5 0.7

Table 1: Difficulty parameters for our SafeLife levels.

D.4 Difficulty Parameters

Table 1 gives the parameters altered for the procedural generation of SafeLife task instances.
We briefly give an overview of each variable and why it corresponds to difficulty in some way.
board_shape determines the size of the board the instances can fit into. As this increases, it be-
comes easier to fit in complex patterns, as well as to make the task require more steps to complete.
green_min_fill determines the minimum proportion of a region that contain the green life cells
at the beginning of an episode. The corresponding maximum proportion is 2×green_min_fill.
More pre-existing green life cells can block off certain routes through the instance and knock-on
effects of the destruction of these cells can undo an agent’s work creating life structures elsewhere
on the board. Equally, goals_min_fill and goals_max_fill correspond to the minimum and
maximum proportion of each region that is a designated goal cell. A larger proportion here requires
more coordinated creation by the agent. Finally, temperature roughly corresponds to a measure
for the complexity of life patterns. The higher this value, the more intricate and larger the life pat-
terns will be (both side effects and designated goal cells), and thus will be more difficult for agents
to handle. It is not clear (a priori) how to compare the difficulty increase by each variable. For
instance, does increasing green_min_fill but lowering board_shape increase or decrease diffi-
culty overall? Because of this reason we monotonically increase each variable for each increase in
enumerated difficulty. Additionally, its not clear how the different levels of difficulty relate to each
other quantitatively. Is the difference between difficulties 0 and 1 the same as the difference between
6 and 7? We have no way to tell, other than the difficulty levels correspond to a monotonic increase
in difficulty, which is sufficient for our purposes.

D.5 Model Details and Hyper-parameters

For both the unwrapped agent and the base agent in the wrapped case we use the same model ar-
chitecture and hyper-parameters. The implementations used for both DQN and PPO in the SafeLife
experiments were those packaged with SafeLife. The Hyper-parameters are described in the tables
below:

DQN Parameters Value
Discount Factor 0.97
Learning Rate 3e− 4
ϵ-schedule Piecewise Linear

Schedule exploration values [1,0.5,0.1]
Schedule episodes [5e4, 5e5, 4e6]

Batch Size 96
Optimizer update interval 32

Multistep Buffer Value 5
Replay Buffer Initial Size 40000
Replay Buffer Max Size 100000
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PPO Parameters Value
Discount Factor 0.97

Generalised Advantage Estimator 0.95
Learning Rate 3e− 4

Entropy Coefficient 0.01
Entropy Clip 1.0

Value Function Coefficient 0.5
Max Gradient Norm 5.0

Clipping for Policy Loss 0.2
Clipping for Value Function Loss 0.2

Minibatch Size 4
Epochs Per Batch 3

The network architecture for both DQN and PPO utilise a Convolutional network, followed by a
series of feed-forward layers. The convolutional section of the model are the same for both DQN
and PPO and consist of three convolutional layers connected by ReLU activation functions. The
number of kernels in the respective layer is [32, 64, 64] respectively and each layer has a kernel size
of [5, 3 ,3], finally each layer has a stride of [2,2,1]. The rest of the DQN network consists of two
branches taking the flattened CNN output as input. The first branch computes the advantage and
consists of a linear layer with 256 nodes and a ReLU activation function, before a linear layer with
256 nodes and 9 outputs (one for each action). The second branch computes the value function, and
consists of a linear layer with 256 nodes and a ReLU, a second linear layer with 256 nodes and a
single output. Finally the branches recombine to compute Q-values by summing the outputs of the
value function and the advantages and subtracting the mean of the advantages.

The latter half of the PPO network consists of a single linear layer with 512 nodes and a ReLU
activation function. The network then splits to compute the value function and policy. The value
function branch takes the outpout of the linear layer and adds a second linear layer with 512 nodes
and one output. The policy branch takes the output of the first linear layer and adds a second linear
layer with one output per action, and a softmax activation function. The network outputs the value
function branch and policy branch as two separate heads.

E Additional Plots

(a) Exploration ACC (b) Entropy vs Mean Safety Fraction

Figure 6: Additional DQN ACCs

Figures 6a) and 7a) show the ACC for exploration, allowing us to explore how the difficulty of an
instance affects the exploration rate; the exploration rate here is the mean proportion cells that the
agent visited in a given episode. DQN-based variants behave differently from PPO-based variants in
this regard, with DQN agents falling to a very low exploration rate at higher difficulties, indicating
that these agents are becoming trapped in a cycle (since as we saw in the main paper, DQN-variants
also achieve low reward at high difficulty levels). PPO, however seems to explore more as difficulty
increases, suggesting it is searching for a solution.

When looking at plot (b) in Figures 6 and 7, we also observe that for an agent’s internal entropy
measure — the inverted reward-oriented confidence — the magnitude of side effects is maximised
not at any extreme entropy value, but at the middle (the lowest safety fraction on the y-axis). This is
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(a) Exploration ACC (b) Entropy vs Mean Safety Fraction

Figure 7: Additional PPO ACCs

surprising, as we would intuitively expect the magnitude of side effects to increase with entropy —
the agent is becoming less certain of its actions and acting more chaotically, closer to the uniform
agent. Our observations are perhaps explained by the scenarios in which entropy is highest; within
SafeLife states where the entropy is maximised may actually only arise when there are very few
green life cells, increasing the viability of many options and subsequently increasing entropy due to
the agent having many good options available.

F Compute

The experiments were run on the University of Cambridge’s Wilkes 2 high performance computing
system. One node of the cluster was used, consisting of one Intel Xeon E5-2650 v4 2.2GHz 12-core
processor, 96GB of RAM, and 4 Nvidia P100 GPUs 16GB.

G AI Risk Analysis

G.1 Side Effects as AI X-Risk

We briefly summarise our main reasons for viewing side effects as a possible source of X-Risk from
advanced AI systems. Doing so allows us to highlight and relate ways in which we anticipate that
our work in this submission is relevant mitigating this risk, as well as highlighting directions for
beneficial future work.

The occurrence of negative side effects are an obvious risk from AI systems at all levels of both
system generality/capability and side effect severity. Possible examples range from AI-powered
delivery robots knocking over and breaking a garden pot (or vase) in the process of delivering goods
all the way through to the extreme example of the classic paperclip maximiser [Bostrom, 2003]
viewing humans as collections of atoms that could be turned into more paperclips. A major threat
from AI systems is their sheer indifference they have to the world around them that is not part of
their goal or integral to their reward function. This indifference, combined with AI systems’ power-
seeking tendencies [Turner et al., 2021] in certain paradigms could be extremely dangerous.

Side effects are a special example of the specification problem; where the goal or reward struc-
ture an AI system is maximising or sufficing does not fully capture the preferences or intent of the
system designer [Amodei et al., 2016]. The specification did not correctly identify the side effect
as “bad”. Clearly, denoting a complete preference ordering of all configurations of the real world
is intractable. Hence, even with “broadly correct” specification functions (by this we mean that
the system will accomplish the desired task without resorting to examples of specification gaming
[Krakovna et al., 2020]) the possibility of side effects remains. The numerous ways that side effects
can occur entails that we often can’t anticipate what sort of side effects might actually occur. Prac-
tically speaking this can make it difficult to define notions of impact in the real world: The more
facets of the world we want to ensure aren’t negatively impacted as a side effect, the more complex
that impact definitions and measurements become. This is particularly true in domains with high
dimensional input and partial observably. We argue that for these domains impact measures can
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be unsuitable to provide to the system for training to minimise side effects. Additionally, negative
aspects of side effects can also manifest long after the actions that caused them.

G.2 This work

Our work clearly aims to try to reduce the occurrence of negative side effects due to AI systems,
which we have outlined as a possible X-Risk for AI. We have demonstrated that it is possible to
reduce the rate at which side effects occur using simple “wrappers”. A key aspect of these wrappers
is that they do not rely on information given to them about the composition of side effects within the
domain. As we argued earlier, this is unsuitable for many types of problem. Additionally, our choice
of SafeLife as one of our experimental domains ensures that the environment has enough richness
and complexity to make side effects challenging to predict, often occurring incidentally due to the
mechanics of SafeLife — they are true side effects.

Competitive pressures within AI research and deployment of AI systems for commercial purposes
can incentivise stakeholders to value performance or competence far above safety (The effects on
the trade-off of capability and safety have been modelled in [Armstrong et al., 2016]). It’s therefore
important that our safety wrappers are not disastrous for performance. In some scenarios there
is an inherent trade-off between safety and capability. In both VaseWorld and SafeLife, there are
possible initial configurations of the environment that prevent both perfect performance and perfect
safety from being achieved. This is intentional, and reflects the real world. Yet, through the use of
thresholds in our work, a balance can be struck that hopefully captures a satisfactory outcome. On
the other hand, if our approach had provided perfect safety at the cost of very poor performance,
stakeholders using this approach would be out-competed by those with less qualms about risk. That
said, our work still reduces performance on the original task and does not contribute to any risk
arising from improving capabilities.

Our use of difficulty-based evaluation also helps to demonstrate the limits of a system both in com-
petence and safety. Given enough information about the types of task-instance the system may
encounter, and methods to construct difficulty functions (which do not necessarily have to be one
dimensional as in our work) then we can analyse the types of scenarios in which systems both safe
and useful and more appropriately weigh the benefits and risks.

One possible negative consequence of work reducing side effects is in the case where side effects of
current “narrow” AI systems are reduced but the techniques do not scale to more advanced systems.
This may imbue AI researchers, funders, or the public with an unwarranted sense of assurance.
Overconfidence of this type could enable the development of AI systems that are fundamentally
unsafe. Our work in this submission may fall into this category, but this is the case of almost all
work aiming to reduce side effects. We deem the possible benefits of this work and general approach
to outweigh the potential downsides.

Further there are clearly limitation to our work that do need addressing with relation to X-Risk. One
limitation is the reliance on threshold parameters. While these allow flexibility with the trade-off
between safety and performance, it’s not obvious a priori what suitable values for a specific task may
be, nor what the exact values of the trade-off will be for a particular thresholding value. There may
be types of environments where our styles of wrappers are unsuitable. With regards to the Goal-
Oriented wrapper, this requires that the AI system designer had access to some agent trajectories
from training with which to train the external confidence measure. With the rising generality of
AI systems, this may not always be the case, and extending a confidence model to new domains
may require additional training to be effective. For the Reward-Oriented wrappers, there may be
situations where the system is overly confident on actions that may be dangerous, particularly if the
system’s reward function is highly correlated with dangerous behaviour: if the agent is determined
to take an action (that is possibly dangerous) with high probability, then the information entropy
of the policy will be low, and the safety wrapper will not activate. This limitation stems from a
larger problem for this approach, where the base agent is adversarial, and may try to actively cause
additional side effects and avoid triggering the safety wrapper. Addressing this limitation is beyond
the scope of this submission but would make for exciting future work and would further contribute
to reducing side effect enabled X-Risks.

Overall, we argue that it is clear that our submission provides a novel attempt at reducing side
effects utilising very little knowledge of the types of side effects we wish to prevent. This fits nicely
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into the overall research direction of trying to minimise negative side effects, which is a potential
considerable source of X-Risk from advanced AI systems.
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