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Abstract
The non-clairvoyant scheduling problem has
gained new interest within learning-augmented
algorithms, where the decision-maker is equipped
with predictions without any quality guarantees.
In practical settings, access to predictions may be
reduced to specific instances, due to cost or data
limitations. Our investigation focuses on scenar-
ios where predictions for only B job sizes out of
n are available to the algorithm. We first estab-
lish near-optimal lower bounds and algorithms in
the case of perfect predictions. Subsequently, we
present a learning-augmented algorithm satisfy-
ing the robustness, consistency, and smoothness
criteria, and revealing a novel tradeoff between
consistency and smoothness inherent in the sce-
nario with a restricted number of predictions.

1. Introduction
Optimal job scheduling is a longstanding and actively stud-
ied class of optimization problems (Panwalkar & Iskan-
der, 1977; Lenstra & Rinnooy Kan, 1978; Graham et al.,
1979; Martel, 1982; Cheng & Sin, 1990; Lawler et al., 1993;
Pinedo, 2012), with applications in various domains span-
ning from supply chain management (Hall & Potts, 2003;
Ivanov et al., 2016) to operating systems (Jensen et al.,
1985; Ramamritham & Stankovic, 1994; Steiger et al., 2004).
A particular setting is preemptive single-machine schedul-
ing (Pinedo, 2012; Baker & Trietsch, 2013), where n jobs
i ∈ [n] must be executed on the same machine, with the
possibility of interrupting a job and resuming it afterward,
and the objective is to minimize the sum of their comple-
tion times. An algorithm is called clairvoyant if it has
initial access to the job sizes, otherwise, it is called non-
clairvoyant (Motwani et al., 1994). The design of non-
clairvoyant scheduling algorithms is a classical problem
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in competitive analysis and online algorithms (Borodin &
El-Yaniv, 2005). In this paradigm, decisions must be made
in an environment where the parameters governing the out-
come are unknown or might evolve over time.

Due to the inherent difficulty of the problems in competi-
tive analysis, the performance of any online algorithm stays
bounded away from that of the optimal offline algorithm.
However, the ascent of machine learning motivated the incor-
poration of predictions in algorithm design, which started in
works such as (Munoz & Vassilvitskii, 2017; Kraska et al.,
2018), then was formalized in (Lykouris & Vassilvtiskii,
2018) and (Purohit et al., 2018). Since then, learning-
augmented algorithms became a popular research topic and
had multiple applications (Mitzenmacher & Vassilvitskii,
2022). The outcome of these algorithms depends both on the
parameters of the problem and the quality of the predictions.
They are required to have a performance that is near-optimal
when the predictions are accurate (consistency), near the
worst-case performance without advice if the predictions
are arbitrarily erroneous (robustness), and that degrades
smoothly as the prediction error increases (smoothness).

In practice, predictions often incur costs and, at times, are
infeasible due to the lack of data. It is, therefore, crucial to
understand the limitations and the feasible improvements
with a restrained number of predictions in scenarios with
multiple unknown variables. This question was first inves-
tigated for the caching problem (Im et al., 2022), and very
recently for metrical task systems (Sadek & Elias, 2024), in
settings where the algorithm is allowed to query a limited
number of predictions. It was also explored for the schedul-
ing problem (Benomar & Perchet, 2023), assuming that the
decision-maker can query the true sizes of B jobs out of n.
The authors present a

(
2− B(B−1)

n(n−1)

)
-competitive algorithm,

and they give a lower bound on the competitive ratio of
any algorithm only when B = o(n). The case of imperfect
predictions, however, is not examined.

In non-clairvoyant scheduling, besides the querying model
studied in the works mentioned above, predictions of the
sizes of certain jobs i ∈ I may be available, where I ⊂ [n],
perhaps derived from previous executions of similar tasks.
Assuming that I is a subset of [n] of size B, taken uni-
formly at random, we examine the limitations and possible
improvements of non-clairvoyant algorithms.
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1.1. Contributions

We initiate our analysis by addressing the scenario of perfect
predictions. We establish a lower bound on the (n,B)-
competitive ratio of any algorithm (for fixed n ≥ 2 and
B ≤ n), which extends the lower bound of 2− 4

n+3 in the
non-clairvoyant case (Motwani et al., 1994). Considering
that B = wn + o(n) for some w ∈ [0, 1], we derive from
the prior bound that the competitive ratio of any algorithm is
at least 2−w−( 4e −1)w(1−w), and we show an improved
bound of 2 − w − (3 − 2

√
2)w(1 − w). Demonstrating

these bounds is considerably more challenging than the case
B = 0, due to the eventual dependency between the actions
of the algorithm and the known job sizes.

In the case of perfect predictions, we show that knowing
only the relative order of the B job sizes, without knowledge
of their values, enables a (2 − B

n )-competitive algorithm,
which improves substantially upon the result of (Benomar &
Perchet, 2023). We propose a second algorithm leveraging
the true sizes of the B jobs, yielding an (n,B)-competitive
ratio of (2 − B

n −
2(1−B/n)

n+1 ), which is strictly better than
the former, although both are asymptotically equivalent.

Subsequently, we adapt the latter algorithm to handle im-
perfect predictions. While the difficulty in most works
on learning-augmented algorithms lies in ensuring robust-
ness and consistency, smoothness in the case of schedul-
ing with limited predictions is also not immediate. Along-
side the typical consistency-robustness tradeoff, our algo-
rithm also exhibits a consistency-smoothness tradeoff. More
precisely, governed by two hyperparameters λ, ρ ∈ [0, 1],
the (n,B)-competitive ratio of the algorithm is at most
min( 2

1−λ ,
C
λ + S

λ
nE[η]
OPT ). Here, E[η] denotes the total ex-

pected prediction error, OPT is the objective function
achieved by the optimal offline algorithm, 2

1−λ is the al-
gorithm’s robustness, C

λ = 1
λ (2 − B

n + ρB
n (1 − B−1

n−1 ))

its consistency, and S
λ = 1

λ (
4
ρ (1 − B

n ) +
B
n ) its smooth-

ness factor, characterizing the sensitivity of the bound to
E[η]. Notably, alterations in the parameter ρ yield oppos-
ing variations on the consistency and the smoothness factor.
Nonetheless, this tradeoff vanishes for B close to 0 or n,
and does not appear, for instance, in (Purohit et al., 2018),
(Bampis et al., 2022) or (Lindermayr & Megow, 2022).

We illustrate our results for the case of perfect predictions in
Figure 1, comparing them with the competitive ratio proved
in (Benomar & Perchet, 2023).

1.2. Related work

Since their introduction in (Purohit et al., 2018; Lykouris
& Vassilvtiskii, 2018), learning-augmented algorithms wit-
nessed an exponentially growing interest, as they offered a
fresh perspective for revisiting online algorithms, and pro-
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Figure 1. Lower bounds and competitive ratios for B known job
sizes.

vided new applications for machine learning in algorithm
design (Mitzenmacher & Vassilvitskii, 2022) and in the im-
plementation of data structures (Kraska et al., 2018; Lin
et al., 2022). Many fundamental problems in competitive
analysis were studied in this setting, such as ski rental (Gol-
lapudi & Panigrahi, 2019; Anand et al., 2020; Bamas et al.,
2020b; Diakonikolas et al., 2021; Antoniadis et al., 2021a;
Maghakian et al., 2023; Shin et al., 2023), secretary (Anto-
niadis et al., 2020; Dütting et al., 2021), matching (Dinitz
et al., 2021; Chen et al., 2022; Sakaue & Oki, 2022; Jin &
Ma, 2022), caching and metrical task systems (Lykouris &
Vassilvtiskii, 2018; Chlkedowski et al., 2021; Antoniadis
et al., 2023b;a; Christianson et al., 2023). In particular,
scheduling is one of the problems that were studied most
thoroughly. Different works cover various objective func-
tions (Purohit et al., 2018; Lattanzi et al., 2020; Azar et al.,
2021), prediction types (Antoniadis et al., 2021b; Merlis
et al., 2023; Lassota et al., 2023), error metrics (Im et al.,
2021; Lindermayr & Megow, 2022), and other aspects and
applications (Wei & Zhang, 2020; Bamas et al., 2020a;
Dinitz et al., 2022)

The setting of learning-augmented algorithms with limited
predictions was initially explored by Im et al. (2022) for
caching. The authors presented an algorithm using parsimo-
nious predictions, with a competitive ratio increasing with
the number of allowed queries. In another very recent paper
(Sadek & Elias, 2024), a similar setting is studied for the
more general problem of metrical task systems, where the
algorithm is allowed to query a reduced number of action
predictions (Antoniadis et al., 2023b), each giving the state
of an optimal algorithm at the respective query step. An
additional related study by Drygala et al. (2023) focuses on
the ski-rental and Bahncard problems in a penalized adapta-
tion of the setting with limited advice, where the cost of the
predictions is added to the algorithm’s objective function.
Other works have explored related settings with different
types of limited advice. For instance, the setting with a
restricted number of perfect hints was examined in the con-
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text of online linear optimization by (Bhaskara et al., 2021)
and in the multi-color secretary problem by (Benomar et al.,
2023). Another setting, where the algorithm can query two
types of hints—one that is free but possibly inaccurate, and
another that is expensive but accurate—has been studied
in several problems, such as correlation clustering (Silwal
et al., 2023), computing minimum spanning trees in a metric
space (Bateni et al., 2023), sorting (Bai & Coester, 2024),
and matroid optimization (Eberle et al., 2024).

In the context of scheduling, Benomar & Perchet (2023)
introduced the B-clairvoyant scheduling problem, where an
algorithm can query the exact sizes of B jobs at any moment
during its execution. They show that the optimal strategy
involves querying the sizes of B jobs selected uniformly at
random at the beginning of the process. They establish that,
if B = o(n), then the competitive ratio of any algorithm is
at least 2, then they provide a

(
2 − B(B−1)

n(n−1)

)
-competitive

algorithm. The same paper also addresses the secretary prob-
lem with restricted access to binary predictions of known
accuracy, and the ski-rental problem with access to an oracle
whose accuracy improves progressively over time.

The limit scenario B = 0 corresponds to the non-clairvoyant
scheduling problem, studied in-depth in (Motwani et al.,
1994). In particular, the paper demonstrates that the com-
petitive ratio of any non-clairvoyant algorithm is at least 2,
and that it is achieved by the round-robin algorithm, exe-
cuting all unfinished jobs concurrently at equal rates. On
the other hand, B = n corresponds to the setting presented
in (Purohit et al., 2018), where the authors introduce, for
all λ ∈ (0, 1), a preferential round-robin algorithm with
robustness 2

1−λ and consistency 1
λ .

1.3. Problem and notations

The decision-maker is given n jobs i ∈ [n] with unknown
sizes x1, . . . , xn to schedule on a single machine, and pre-
dictions (yi)i∈I of (xi)i∈I , with I a uniformly random sub-
set of [n] of size B. The objective is to leverage the available
predictions to minimize the sum of the completion times.
We assume that preemption is allowed, i.e. it is possible to
interrupt the execution of a job and resume it later, which is
equivalent, by neglecting the preemption cost, to assuming
that the jobs can be run in parallel at rates that sum to at
most 1.

To simplify the presentation, we consider that there are pre-
dictions y1, . . . , yn of x1, . . . , xn, but the decision-maker
has only access to yσ(1), . . . , yσ(B), where σ is a uniformly
random permutation of [n]. We denote by ηi = |xi− yi| the
error of the prediction yi, and by ησ =

∑B
i=1 ησ(i) the total

error of the predictions accessed by the algorithm.

Consider an algorithm A and an instance x = (x1, . . . , xn)
of job sizes, we denote by A(x) the sum of the completion

times of all the jobs when executed by A. Furthermore, for
all i ̸= j ∈ [n] and t > 0, we denote by

• SA
i (t) the processing time spent on job i until time t,

• tAi = inf{t ≥ 0 : SA
i (t) = xi} its completion time,

• DA
ij = SA

i (t
A
j ) the total time spent on job i before job

j terminates,

• and PA
ij = DA

ij +DA
ji the mutual delay caused by i, j

to each other.

When there is no ambiguity, we omit writing the dependency
to A. With these notations, it holds that tAi = xi+

∑
j ̸=i D

A
ji

for all i ∈ [n]. Consequently, the objective function of A
can be expressed as

A(x) =
n∑

i=1

xi +
∑

1≤i<j≤n

PA
ij . (1)

Observing that, for all i ̸= j ∈ [n], if i terminates be-
fore j then PA

ij ≥ xi, otherwise PA
ij ≥ xj , we deduce that

PA
ij ≥ min(xi, xj). Equality is achieved by the clairvoy-

ant algorithm that runs the jobs until completion in non-
decreasing size order (Motwani et al., 1994), which is the
optimal offline algorithm, that we denote OPT, satisfying

OPT(x) =
n∑

i=1

xi +
∑

1≤i<j≤n

min(xi, xj) . (2)

When the predictions are perfect, for all n ≥ 2 and B ≤ n,
we define the (n,B)-competitive ratio of algorithm A as the
worst-case ratio between its objective, knowing the sizes
of B jobs taken uniformly at random, and that of OPT, on
instances of n jobs

Rn,B(A) = sup
x∈(0,∞)n

E[A(x)]
OPT(x)

,

where the expectation E[A(x)] is taken over the permutation
σ and the actions of A if it a randomized algorithm.

If the number of predictions depends on the number of jobs,
i.e. B = (Bn)n≥1 defines a sequence of integers, then the
competitive ratio of A is defined by

CRB(A) = sup
n≥2

Rn,Bn
(A) .

When the predictions are imperfect, the competitive ratio
becomes also a function of E[ησ].
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2. Lower Bounds
In this section, we assume that the predictions are error-free,
and we establish lower bounds on the (n,B)-competitive
ratio of any algorithm, followed by a lower bound inde-
pendent of n when Bn = wn + o(n) for some w ∈ [0, 1].
These lower bounds are obtained by constructing random
job size instances x such that, for any deterministic algo-
rithm A, the ratio Eσ,x[A(x)]/Ex[OPT(x)] is above them.
The result then extends to randomized algorithms and yields
bounds on their (n,B)-competitive ratio by using Lemma
A.1, which is a consequence of Yao’s principle (Yao, 1977).

In all this section, we consider i.i.d. job sizes. Therefore,
we can assume without loss of generality that the B known
job sizes are x1, . . . , xB .

In the non-clairvoyant case B = 0, for any algorithm A,
taking i.i.d. exponentially distributed sizes gives, with easy
computation, that E[PA

ij ] = 1 (Remark A.4), which yields,
using Equations (1) and (2), the lower bound 2 − 4

n+3 on
the competitive ratio (Motwani et al., 1994). However, if
B > 0, the algorithm can act according to the information
it has on (xi)i∈I , and the dependence between its actions
and these job sizes makes the analysis more sophisticated.

For any positive and continuous function φ, and positive
numbers T ≥ x > 0 we denote

Gφ(x, T ) =

∫ T−x

0

dt

φ(t)
+

x

φ(T − x)
. (3)

We prove in the following theorem a generic lower bound,
using job sizes sampled independently from the distribution
Pr(xi ≤ t) = 1− φ(0)

φ(t) .

Theorem 2.1. Let φ : [0,∞)→ [0,∞) be a continuously
differentiable and increasing function satisfying φ(0) > 0,
φ′/φ is non-increasing and

∫∞
0

dt
φ(t)2 < ∞, and let αφ a

non-negative constant satisfying∫ ∞

0

{
inf
T≥x

Gφ(x, T )

}
φ′(x)

φ(x)2
dx ≥ αφ

∫ ∞

0

dt

φ(t)2
. (4)

If B = wn+ o(n) for some w ∈ [0, 1], then it holds for any
randomized algorithm A that

CRB(A) ≥ 2− 2(2− αφ)w + (3− 2αφ)w
2 .

Moreover, if
∫∞
0

dt
φ(t) <∞, then for all n ≥ 2 and B ≤ n

Rn,B(A) ≥ Cφ,n,B −
Cφ,n,B − 1

1 + n−1
2

∫ ∞
0

dt
φ(t)2∫ ∞

0
dt

φ(t)

,

where Cφ,n,B = (2− B
n )− (3− 2αφ)

B
n

(
1− B−1

n−1

)
.

To establish this theorem, we analyze i.i.d. job sizes sam-
pled from the distribution Pr(xi ≤ t) = 1 − φ(0)

φ(t) . We

derive in Lemma A.5 a lower bound on the mutual delays
incurred by these jobs during the run of any algorithm A.
This involves solving a functional minimization problem,
whose solution is expressed using the function Gφ defined
in (3). The left term in Inequality (4) is proportional to the
obtained lower bound, while the right term is proportional
to E[min(xi, xj)], which is the mutual delay caused in a
run of OPT. Finally, using the identity (1), this inequality,
which relates the mutual delays caused respectively by exe-
cuting A and OPT on the chosen job sizes, can be extended
to an inequality involving the objectives of both algorithms,
giving a lower bound on the competitive ratio.

If
∫∞
0

dt
φ(t) =∞, the expectation of the job sizes is infinite.

In this case, we consider a truncated distribution with a
maximum a > 0. After completing the analysis, we derive
a lower bound that depends on a and w, by considering
B = wn+ o(n) and n→∞, then, we conclude by taking
the limit a→∞.

For any value αφ in Theorem 2.1, observe that Cφ,n,0 = 2
and Cφ,n,n = 1, which means that the lower bound interpo-
lates properly the non-clairvoyant and clairvoyant settings.
The remaining task is to choose an adequate function φ
satisfying the conditions of the theorem with αφ as large
as possible. We first consider exponentially distributed job
sizes, often used to prove lower bounds in scheduling prob-
lems. This corresponds to φ(t) = et.

Corollary 2.2. For any algorithm A, it holds that

Rn,B(A) ≥ Cn,B −
4(Cn,B − 1)

n+ 3
,

with Cn,B = 2− B
n − ( 4e − 1)Bn

(
1− B−1

n−1

)
. In particular,

if B = wn+ o(n) then

CRB(A) ≥ (2− w)− ( 4e − 1)w(1− w) .

Corollary 2.2 gives, in particular, that Rn,0(A) ≥ 2− 4
n+3 ,

which corresponds exactly to the tight lower bound for the
non-clairvoyant scheduling problem (Motwani et al., 1994).
However, the bound is not tight for all values of B ≤ n.
To refine it, we consider distributions that would be more
difficult to process by the algorithm. One idea is to sample
a different parameter λi ∼ E(1) independently for each
i ∈ [n], then sample xi ∼ E(λi). The distribution of xi in
this case is given by

Pr(xi ≥ t) =

∫ ∞

0

Pr(xi ≥ t | λi = λ)e−λdλ

=

∫ ∞

0

e−(1+t)λdλ =
1

1 + t
,

which corresponds to φ(t) = 1 + t. More generally, we
consider φ(t) = (1 + t)r for r ∈ ( 12 , 1]. Such functions
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φ correspond to distributions with a heavy tale and with
infinite expectation (i.e.

∫∞
0

dt
φ(t) = ∞). Using Theorem

2.1, they only yield lower bounds on the competitive ratio
but not on Rn,B . Corollary 2.3 shows the bound obtained
for r → 1

2 .

Corollary 2.3. Let w ∈ [0, 1]. If B = wn + o(n), then it
holds for any algorithm A that

CRB(A) ≥ (2− w)− (3− 2
√
2)w(1− w) .

Remark 2.4. If xi is sampled from the distribution induced
by φ(t) = (1+ t)r, then xi+1 follows a Pareto distribution
with scale 1 and shape r (Arnold, 2014), which is commonly
used to model the distribution of job sizes in the context of
the scheduling problem.

3. Known Partial Order
Before investigating the problem within the learning-
augmented framework, we introduce an algorithm exclu-
sively for the scenario with perfect information. Subse-
quently, in Section 4, we present a second algorithm, that
we adapt to handle possibly erroneous predictions.

The optimal algorithm OPT does not necessitate precise
knowledge of job sizes. Instead, it relies solely on their
ordering. This observation suggests that it might be possible
to improve the competitive ratio of the non-clairvoyant case
by only knowing the relative order of a subset of the job
sizes. Therefore, rather than having access to the values
xσ(1), . . . , xσ(B), we assume that the decision-maker is only
given a priority ordering π of them, i.e. a bijection π :
[B]→ σ([B]) satisfying xπ(1) ≤ . . . ≤ xπ(B).

Algorithm 1 Catch-up and Resume Round-Robin (CRRR)
Input: Ordering π of xσ(1), . . . , xσ(1)

Set xπ(0) = 0
for i = 1 to B do

Run job π(i) for xπ(i−1) units of time
while job π(i) is not finished do

Run round-robin on {σ(j)}j>B ∪ {π(i)}
end while

end for
Run round-robin on {σ(j)}nj=B+1 until completion

In Algorithm 1 (CRRR), for all i ∈ [B], the execution of
job π(i) starts only upon the completion of job π(i− 1). At
this moment, all jobs σ(j) for j > B are either completed or
have undergone execution for xπ(i−1) units of time. CRRR
then runs job π(i) for a period of length xπ(i−1) to catch
up with the progress of the jobs {σ(j)}j>B . Following
this synchronization phase, it runs round-robin on the set of
jobs {σ(j)}j>B ∪ {π(i)} until π(i) terminates. The same
process iterates with π(i+ 1) afterward. Once all the jobs

σ(i) for i ∈ [B] are completed, the algorithm runs round
robin on the unfinished jobs in {σ(j)}j>B .

Leveraging the ordering π, the algorithm aims to minimize
the delays caused by longer jobs to shorter ones. In the ideal
scenario where B = n, each job begins execution only after
all shorter ones have been completed. When B < n, it is
evident that the jobs {σ(i)}i∈[B] should be executed in the
order specified by π. However, CRRR takes advantage of
this ordering even further, ensuring that job xπ(i) not only
avoids delaying xπ(i−1) but also does not delay any job σ(j)
with j > B that has a size at most xπ(i−1).

Theorem 3.1. Algorithm CRRR satisfies

2− B

n
− 2(1− B

n )

(n+ 1)(B + 1)
≤ Rn,B(CRRR) ≤ 2− B

n
.

Moreover, if B = ⌊wn⌋ for some w ∈ [0, 1], then
CR(CRRR) = 2− w.

Theorem 3.1 shows a substantially stronger result than
the one presented in (Benomar & Perchet, 2023), where
the algorithm leveraging the values of the job sizes
xσ(1), . . . , xσ(B) is only

(
2− B(B−1)

n(n−1)

)
-competitive.

Action predictions The information provided to CRRR
is the order in which the jobs {σ(i)}i∈[B] would be exe-
cuted by OPT. This corresponds to the error-free scenario
of action predictions (Antoniadis et al., 2023b; Lindermayr
& Megow, 2022; Lassota et al., 2023; Sadek & Elias, 2024),
where the decision-maker receives predictions regarding the
actions taken by the optimal offline algorithm, rather than
numeric predictions of unknown parameters. In the context
of the scheduling problem, utilizing the ℓ1 norm to measure
the error is not ideal for analyzing the action prediction
setting (Im et al., 2021). Alternative error metrics, which
account for the number of inversions in the predicted permu-
tation in comparison to the true one (Lindermayr & Megow,
2022), would be more suitable. Therefore, adapting CRRR
to imperfect action predictions is left for future research
as it requires different considerations. For now, we shift
our focus to introducing another algorithm that utilizes not
only the priority order induced by the job sizes, but the size
values themselves.

4. Predictions of the Job Sizes
We propose in this section a generic algorithm Switch,
which we will adapt in the cases of perfect and imperfect pre-
dictions. The algorithm takes as input n jobs with unknown
sizes and breakpoints zσ(1), . . . , zσ(B) that depend on the
predictions of xσ(1), . . . , xσ(B), then it alternates running
round-robin on the jobs {σ(j)}j>B and Shortest Predicted
Job First (SPJF), introduced in (Purohit et al., 2018), on the
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jobs {σ(i)}i∈[B], where the moment of switching from an
algorithm to another is determined by the breakpoints.

As in Section 3, we call ordering of zσ(1), . . . , zσ(B) any
bijective application π : [B] → σ([B]) satisfying zπ(1) ≤
. . . ≤ zπ(B). Note that, if the breakpoints are not pairwise
distinct, then the ordering is not unique. In that case, Switch
chooses an ordering π uniformly at random. We assume
furthermore that the breakpoints induce the same order as
the predictions, i.e. zσ(i) < zσ(j) ⇐⇒ yσ(i) < yσ(j) for
all i, j ∈ [B].

Algorithm 2 Switch algorithm Switch(zσ, x)
Input: Breakpoints zσ = (zσ(i))i∈[B]

π ← ordering of zσ chosen uniformly at random
for i = 1 to B do

while min
j>B

Sσ(j)(t)

xσ(j)
< 1 and max

j>B
Sσ(j)(t) < zπ(i) do

Run round-robin on {σ(j)}nj=B+1

end while
Run job π(i) until completion

end for
Run round-robin on {σ(j)}nj=B+1 until completion

Consider a run of Switch, and let i ∈ [B]. The first condi-
tion for entering the while loop is the existence of j > B
such that Sσ(j)(t) < xσ(j). This signifies that the jobs
{σ(j)}j>B are not all completed, which is a verification
feasible for the decision-maker without knowledge of the
sizes {xσ(j)}j>B . The second condition means that no job
σ(j) for j > B has been in execution for more than zπ(i)
units of time. Given that round-robin allocates equal impor-
tance to all jobs {σ(j)}j>B , upon exiting the while loop,
each job σ(j) is either completed or has been in execution
for precisely zπ(i) units of time. Following this step, job
π(i) is executed until completion, and the same process
recurs for i+ 1.

This algorithm ensures that any job xσ(i) with i ≤ B does
not delay any other job j whose size is at most xj ≤ zσ(i),
and the delay it causes to jobs not satisfying this condition
is exactly xσ(i). This allows efficient control of the mu-
tual delays between the jobs by conveniently choosing the
breakpoints.

4.1. Perfect Predictions

Assuming that the predictions are perfect, i.e. the decision-
maker knows the exact sizes of jobs σ(1), . . . , σ(B), it is
possible to set zσ(i) = xσ(i) for all i ∈ [B].

Theorem 4.1. Algorithm Switch with breakpoints zσ(i) =
xσ(i) for all i ∈ [B] satisfies

Rn,B(Switch) = 2− B

n
− 2(1− B

n )

n+ 1
.

In particular, if B = ⌊wn⌋ for some w ∈ [0, 1] then
CRB(Switch) = 2− w.

Note that the (n,B)-competitive ratio above is strictly better
than that of CRRR, presented in Theorem 3.1. However,
both algorithms have equivalent performance when n is
large. In particular, their competitive ratios coincide when
B = ⌊wn⌋.
A slight improvement on the (n,B)-competitive ratio can be
obtained by introducing randomness into Switch. Indeed,
consider the Run To Completion algorithm (RTC) defined
in (Motwani et al., 1994), executing all the jobs until com-
pletion in a uniformly random order. Then we have the
following result.

Proposition 4.2. The algorithm that runs RTC with prob-
ability 2(n−B)

n(n+3)−2B , and runs Switch with breakpoints
zσ(i) = xσ(i) for all i ∈ [B] with the remaining proba-
bility, has an (n,B)-competitive ratio of

2− B

n
− 2(1− B

n )(2− B
n )

n+ 3− 2B
n

.

For B = 0, the ratio above becomes 2− 4
n+3 , which is the

best possible in the non-clairvoyant setting.

4.2. Imperfect Predictions

We assume in this section that no quality guarantees are
given on the predictions {yσ(i)}i∈[B]. Recall that the total
error ησ =

∑B
i=1 |xσ(i) − yσ(i)| is a random variable be-

cause σ is a uniformly random permutation of [n], hence
our results will depend on E[ησ].

The goal is to design an algorithm that is consistent, robust,
and with a competitive ratio having a smooth dependency
to E[ησ]. We first study the consistency and smoothness of
Switch with well-chosen breakpoints, then we show that
combining it with round-robin as in (Purohit et al., 2018;
Lassota et al., 2023) gives robustness guarantees.

Using the trivial breakpoints zσ(i) = yσ(i) as in the previous
section is not enough to guarantee smoothness. Consider,
for example, job sizes all equal to 1, and B predictions
yσ(i) = 1− ϵ for an arbitrarily small ϵ. Blindly following
these predictions, taking zσ(i) = yσ(i) for all i ∈ [B], re-
sults in delaying all jobs with unknown sizes by B time units
compared to the case of perfect predictions. This creates a
discontinuity in the competitive ratio when ϵ becomes posi-
tive, proving non-smoothness. Hence, we consider instead
randomized breakpoints.

Algorithm 3 simply runs Switch with random breakpoints
zσ(i) = ξyσ(i). The following lemma gives an upper bound
on the algorithm’s objective function depending on the dis-
tribution F of ξ.
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Algorithm 3 imperfect predictions Switch(ξyσ, x)
Input: predictions (yσ(i))i∈[B], distribution F
Sample ξ ∼ F
Run Switch with breakpoints zσ(i) = ξyσ(i)

Lemma 4.3. Let F be a probability distribution on (0,∞),
and consider the mappings hF : (0,∞)2 → R and gF :
(0,∞)→ R defined by

hF (s, t) = t · Prξ∼F (ξ < s
t )

gF (s) = (1− s)Prξ∼F (ξ < s) + Eξ∼F [ξ1ξ<s] .

Let βF = sups∈(0,1]
gF (s)

s and γF = sups≥1(gF (s) + s).
If βF , γF < ∞ and hF is LF -Lipschitz w.r.t. the second
variable t, then for any job sizes x1, . . . , xn and B ≤ n, the
expected sum of the completion times achieved by Switch
with breakpoints zσ(i) = ξyσ(i) is at most

n∑
i=1

xi + C1
n,B,F

∑
i<j

min(xi, xj) + C2
n,B,FE[ησ] ,

with C1
n,B,F = 2− B

n −
(
2− βF − γF

)
B
n

(
1− B−1

n−1

)
and

C2
n,B,F = (1 + LF + E[ξ])(n−B) +B − 1.

A trivial choice of ξ is the constant random variable equal
to 1 a.s., but this is not enough to guarantee smoothness, as
it corresponds to the Dirac distribution F = δ1, for which
hF is not continuous w.r.t. to t. In the next lemma, we
provide a specific choice of distribution F depending on a
single parameter ρ, and we express the upper bound from
the previous lemma using this parameter.

Lemma 4.4. Let ρ ∈ (0, 1] and

F : s 7→ (1− e−(s−1)/ρ)1s>1

a shifted exponential distribution with parameter 1/ρ, i.e.
ξ ∼ 1 + E(1/ρ), then Switch with breakpoints zσ(i) =
ξyσ(i) for all i ∈ [B] has an (n,B)-competitive ratio of at
most(
2− B

n + ρB
n (1− B−1

n−1 )
)
+
(

4
ρ (1− B

n ) +
B
n

) nE[ησ]
OPT(x)

.

The previous lemma highlights a tradeoff between the
smoothness and the consistency of the algorithm. Indeed,
as ρ decreases, the algorithm gains in consistency, but the
term

(
4
ρ (1− B

n ) +
B
n

)
multiplying E[ησ] becomes larger.

However, while setting ρ close to zero results in an arbitrar-
ily high sensitivity to the error, setting it close to 1 gives
consistency of at most

(
2 − B(B−1)

n(n−1)

)
, which is still a de-

creasing function of B, interpolating the values 2 and 1
in the clairvoyant and non-clairvoyant cases. This implies

that sacrificing a small amount of consistency significantly
improves smoothness.

For B = n, assuming that all the job sizes are at least 1,
it holds that OPT(x) ≥ n(n + 1)/2 and the lemma gives
Rn,B(η;Switch) ≤ 1 + 2η

n , matching the bound proved on
(SPJF) in (Purohit et al., 2018). On the other hand, if η = 0,
setting ρ = 0 results in Rn,B(0;Switch) ≤ 2− B

n . Using
tighter inequalities in the proof, it is possible to retrieve the
bound established in Theorem 4.1 (See Inequality (36) in
Appendix C).

Preferential algorithm Now we need to adapt the algo-
rithm to guarantee robustness in the face of arbitrarily erro-
neous predictions. We use the same approach as Lemma 3.1
of (Purohit et al., 2018), which consists of running concur-
rently a consistent algorithm and round-robin at respective
rates λ, 1 − λ for some λ ∈ [0, 1]. However, their result
only applies for deterministic algorithms A satisfying for
any instances x = (x1, . . . , xn) and x′ = (x′

1, . . . , x
′
n) that(

∀i ∈ [n] : xi ≤ x′
i

)
=⇒ A(x) ≤ A(x′) .

Such algorithms are called monotonic. Switch with break-
points zσ(i) = ξyσ(i) is not deterministic since its objective
function depends both on σ and ξ. Nonetheless, we over-
come this difficulty by proving that, conditionally to σ and
ξ, its outcome is deterministic and monotonic, then we es-
tablish the following theorem.

Theorem 4.5. Let ρ ∈ (0, 1] and F = 1+E(1/ρ). Then the
preferential algorithm ALGλ which runs Algorithm 3 at rate
λ and round-robin at rate 1− λ has an (n,B)-competitive
ratio of at most

min

(
2

1− λ
,
Cρ,n,B

λ
+

Sρ,n,B

λ
· nE[ησ]

OPT(x)

)
,

with

Cρ,n,B =
(
2− B

n

)
+ ρB

n

(
1− B−1

n−1

)
Sρ,n,B = 4

ρ

(
1− B

n

)
+ B

n .

This upper bound generalizes that of (Purohit et al., 2018). It
presents a consistency-robustness tradeoff that can be tuned
by adjusting the parameter λ, and a consistency-smoothness
tradeoff controlled by the parameter ρ, which vanishes for
B close to 0 or n, as the terms multiplying ρ and 1/ρ re-
spectively in Cρ,n,B and Sρ,n,B become zero.

5. Experiments
In this section, we validate our theoretical findings by test-
ing the algorithms we presented on various benchmark job
sizes. In all the figures, each point is averaged over 104

independent trials.
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Perfect information We test the performance of Algo-
rithms Switch and CRRR against the hard instances used
to prove the lower bounds of Section 2: we consider i.i.d.
job sizes sampled from the exponential distribution with pa-
rameter 1, and job sizes drawn from the distribution Φ(r, a)
with parameters r = 0.51 and a = 104, characterized by
the tail probability

Pr(xa
i ≥ t) =

(1 + t)−r − (1 + a)−r

1− (1 + a)−r
1t<a ,

This distribution is a truncated version of the one defined
by Pr(x∞

i ≥ t) = 1
(1+t)r . The bound of Corollary 2.3 is

obtained by using this distribution for a > 0 and r ∈ ( 12 , 1),
and taking the limits n→∞, a→∞, and r → 1/2.
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Figure 2. Lower bounds and ratios of Switch, CRRR

Figure 2 exhibits the empirical ratios achieved by both
algorithms with a number n ∈ {20, 1000} of jobs. For
n = 20, Switch outperforms CRRR for the two distribu-
tions, whereas their ratios are very close for n = 1000. This
confirms that Switch and CRRR are asymptotically equiva-
lent, as can be deduced from Theorems 3.1 and 4.1. For the
exponential distribution, as expected, both algorithms have
ratios above the non-asymptotic lower bound of Corollary
2.2. Meanwhile, considering the distribution Φ(0.51, 104),
the empirical ratios for n = 20 are below the lower bound
of Corollary 2.3, because it is proved by taking n → ∞.
For n = 1000, the ratios match the lower bound.

Preferential algorithm In the remaining discussion, we
refer to Switch with breakpoints zσ(i) = ξyσ(i) and ξ ∼
1 + E(1/ρ), as Switch with parameter ρ.

We generate a synthetic instance of n = 50 job sizes, drawn
independently from the Pareto distribution with scale 1 and
shape 1.1. The Pareto distribution, known for its heavy

tail, is particularly suitable for modeling job sizes (Harchol-
Balter & Downey, 1997; Bansal & Harchol-Balter, 2001;
Arnold, 2014), and it is a commonly used benchmark for
learning-augmented scheduling algorithms (Purohit et al.,
2018; Lindermayr & Megow, 2022). Furthermore, we con-
sider noisy predictions yi = xi + εi for all i ∈ [50], where
εi is sampled independently from a normal distribution with
mean 0 and standard deviation τ .
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Figure 3. Preferential Algorithm (PA) with different parameters

Figure 3 illustrates the empirical ratio of the Preferential
Algorithm (PA) across various parameter configurations,
with varying error parameter τ .

The left plot displays the ratios for different λ and ρ values,
with B = 25 = n/2. When λ = 0, PA becomes round-
robin. For λ = 1 and ρ = 0.5, PA simply runs Switch(ρ =
0.5), which gives an improved consistency (τ = 0), not
equal to 1 because B < n and ρ > 0, and gives a ratio
that deteriorates arbitrarily as τ increases. In contrast, PA
with λ = 0.5 gives a weaker consistency but maintains
bounded ratios, even with arbitrarily erroneous predictions.
The choice of ρ = 0 exhibits a slightly better consistency
compared to ρ = 0.5, in line with theoretical expectations,
but there is no significant difference regarding sensitivity
to errors. This should not be surprising since setting ρ > 0
ensures smoothness in the worst-case (see Figure 4), but it
is not necessarily needed for all instances.

The right plot examines the influence of B on PA with pa-
rameters λ = 1 and ρ = 0.5, which corresponds to Switch
with ρ = 0.5. Larger B values improve consistency and
also yield a smaller sensitivity to small errors. However, for
high τ values, having numerous predictions leads to faster
performance deterioration compared to having fewer predic-
tions. This shows that more predictions enhance consistency,
while fewer predictions enhance robustness.

Consistency-smoothness To shed light on the tradeoff
between consistency and smoothness raised in Section 4.2,
we consider i.i.d. job sizes x1, . . . , x100, each taking the
value 1 w.p. 1/2 and 2 w.p. 1/2, and we consider noisy
predictions of the form yi = xi + εi, where εi follows a
uniform distribution over [−τ, τ ]. Figure 4 illustrates the
evolution, for τ varying in [0, 0.15], of the empirical com-
petitive ratio of Switch with parameter ρ ∈ {0, 0.1, 0.5}
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and B ∈ {50, 95},
For both values of B, the experiment reveals that larger
values of ρ give bigger ratios when τ = 0 (less consistency),
but on the other hand they yield less sensitivity to variations
of the expected prediction error (better smoothness), which
confirms our theoretical findings. In particular, for ρ = 0,
a significant discontinuity arises when τ becomes positive.
Figure 4 also shows that this tradeoff is less significant as
B approaches n = 100, with the consistency values for
ρ ∈ {0, 0.1, 0.5} drawing closer.
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Figure 4. Tradeoff between consistency and smoothness

6. Conclusion and Future Work
This paper explores the non-clairvoyant scheduling prob-
lem with a limited number of predicted job sizes. We give
near optimal lower and upper bounds in the case of perfect
predictions, and we introduce a learning-augmented algo-
rithm raising the common consistency-robustness tradeoff
and an additional consistency-smoothness tradeoff, the latter
vanishing when B approaches 0 or n.

Our findings join previous works in demonstrating that on-
line algorithms can indeed achieve improved performance
even when armed with a restricted set of predictions, which
is an assumption more aligned with practical scenarios. Fur-
thermore, they affirm the necessity of studying and under-
standing these regimes, as they may unveil unique behaviors
absent in the zero- or full-information settings.

6.1. Open Questions

Tight lower bounds In the case of perfect predictions,
there is a (small) gap between the lower bounds of Section
2 and the competitive ratios of Switch and CRRR. An
interesting research avenue is to close this gap, either by
designing better algorithms or improving the lower bound.
This could involve using Theorem 2.1 with more refined
distributions.

Reduced number of action predictions Algorithm
Switch leverages the job sizes’ predictions, not only the
order they induce. Using the ℓ1 norm to measure the error
is thus a suitable choice. However, as discussed in Section
3, Algorithm CRRR only uses the priority order in which

OPT runs (xσ(i))i∈[B]. An interesting question to explore
is how to adapt it in the case of imperfect action predictions,
using appropriate error measures.

Smooth and (2− B
n )-consistent algorithm Lemma 4.4

and Figure 4 emphasize that, to achieve smoothness, Switch
with parameter ρ must exhibit a consistency exceeding 2−B

n .
A compelling question arises: Is it possible to devise a
smooth algorithm with a consistency of at most 2− B

n ?

Impact Statement
This paper presents a work whose goal is to advance the
field of learning-augmented algorithms. There are many
potential societal consequences of our work, none of which
we feel must be specifically highlighted here.
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A. Lower bounds
A.1. Preliminary result

Lemma A.1. Let F be a probability distribution on (0,∞) with finite expectation, x an array of n i.i.d. random variables
sampled from F , and αn,B ≥ 0 satisfying for any deterministic algorithm A with access the sizes of B jobs that

Eσ,x[A(x)]
Ex[OPT(x)]

≥ αn,B ,

then for any (deterministic or randomized) algorithm ALG, we have

Rn,B(ALG) ≥ αn,B .

Proof. Let F and αn,B be as stated in the lemma. Using Yao’s minimax principle (Yao, 1977) we deduce that for any
randomized algorithm ALG

Eσ,x[ALG(x)] ≥ inf
A deterministic

Eσ,x[A(x)]

≥ αn,BEx[OPT(x)] ,

where the infimum is taken over all deterministic algorithms. The previous inequality can be written as

Ex

[
Eσ[ALG(x)]− αn,BOPT(x)

]
≥ 0 ,

and this implies that, necessarily, there exists a value x∗ = (x∗
n, . . . , x

∗
n) taken by x verifying Eσ[ALG(x∗)] −

αn,BOPT(x∗) ≥ 0, hence

Rn,B(ALG) ≥ Eσ[ALG(x∗)]

OPT(x∗)
≥ αn,B .

A.2. Proof of Theorem 2.1

Let A be a deterministic algorithm. Using Equation 1, it suffices to bound E[PA
ij ] for all i ̸= j to deduce a bound on E[A(x)],

and since PA
ij is a non-negative random variable, the focus can be narrowed down to bounding Pr(PA

ij > t) for all t > 0.
Following the proof scheme of (Motwani et al., 1994), we introduce the following definition.

Definition A.2. Let A be a deterministic algorithm given an instance of n jobs. For all i ̸= j ∈ [n] and t ≥ 0, we denote by
uA
i,j(t) the time spent on job i when the total time spent on both jobs i and j is t, assuming neither job i nor j is completed.

More precisely, uA
i,j(t) is defined by

uA
i,j(t) = SA

i

(
inf{t′ ≥ 0 : SA

i (t
′) + SA

j (t
′) = t}

)
.

uA
i,j is therefore a rule defined solely by the algorithm. For an instance x = (x1, . . . , xn) of job sizes, the real time spent on

i when a total time of t has been spent on both jobs i, j is given by min(uA
i,j(t), xi).

For all t ≥ 0, the following Lemma allows to express the event PA
ij > t using uA

ij(t).

Lemma A.3. Let x1, . . . , xn be instance of n job sizes, then for any algorithm A, for any i ̸= j ∈ [n] and t ≥ 0, the
following equivalence holds (

PA
ij > t

)
⇐⇒

(
xi > uA

i,j(t) and xj > t− uA
j,i(t)

)
Proof. Let A be an algorithm and i ̸= j ∈ [n]. We denote by Sij(t) = Si(t) + Sj(t) the total processing time spent on
both jobs i and j up to time t. Assuming that job i finishes first, i.e. ti ≤ tj , no processing time is spent on job i after ti,
hence Si(tj) = Si(ti) = xi, and Pij = Si(tj) + Sj(ti) = Sij(ti). By symmetry, we deduce that Pij = Sij(min(ti, tj)).
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Therefore, using that Si and Sj are non-decreasing and continuous, it holds for all t ≥ 0

Pij > t ⇐⇒ Sij(min(ti, tj)) > t

⇐⇒ min(ti, tj) > inf{t′ : Sij(t
′) ≥ t}

⇐⇒ xi > Si(inf{t′ : Sij(t
′) ≥ t}) and xj > Sj(inf{t′ : Sij(t

′) ≥ t}) (5)
⇐⇒ xi > uij(t) and xj > t− uij(t) . (6)

Equivalence (5) holds because ti = inf{t′ ≥ 0 : Si(t
′) ≥ xi}, thus for any s ≥ 0 we have t > s ⇐⇒ xi > Si(s). The

same holds for j. For Equivalence (6), we simply used Definition A.2 and the observation uij(t) + uji(t) = t.

Remark A.4. In the case of non-clairvoyant algorithms, the rule defining uA
ij(·) is dictated by the algorithm, independent of

the job sizes. Thus, if the job sizes are sampled independently from the exponential distribution, Lemma A.3 gives for all
i ̸= j that Pr(PA

ij > t) = Pr(xi > uA
i,j(t)) Pr(xj > t− uA

j,i(t)) = e−t, and it follows immediately that E[PA
ij ] = 1 for any

deterministic algorithm. This argument, used in (Motwani et al., 1994), is not applicable in our context since the algorithm
possesses access to certain job sizes, enabling the formulation of a rule for uA

i,j that considers this information. Therefore,
more sophisticated techniques become necessary for our analysis since the independence of the events xi > uA

i,j(t) and
xj > t− uA

j,i(t) is lost.

Lemma A.5. Let a ∈ (0,∞) and φ : [0,∞)→ [0,∞) a continuously differentiable and increasing function satisfying that
φ(0) > 0, t 7→ φ′(t)

φ(t) is non-increasing and
∫∞
0

dt
φ(t)2 <∞. Let xa

1 , . . . , x
a
n i.i.d. random job sizes with distribution

Pr(xa
1 ≤ t) = 1− φ(t)−1 − φ(a)−1

φ(0)−1 − φ(a)−1
1t<a ,

then for any algorithm A having access to the sizes of the first B jobs xa
1 , . . . , x

a
B , it holds that

E[PA
ij ] ≥

∫ ∞

0

φ(0)2

φ(t)2
dt− o(1)

a→∞
∀i ̸= j ≤ B ,

E[PA
ij ] ≥ 2

∫ ∞

0

φ(0)2

φ(t)2
dt− o(1)

a→∞
∀i ̸= j > B ,

E[PA
ij ] ≥ φ(0)2

∫ ∞

0

{
inf
T≥x

Gφ(x, T )

}
φ′(x)

φ(x)
dx− o(1)

a→∞
∀i ≤ B, j > B ,

where Gφ(x, T ) is defined in Equation (3), and the o(1)
a→∞

term does not depend on the algorithm A.

Although Lemma A.5 is stated with a ∈ (0,∞), the results also hold for random variables x∞
1 , . . . , x∞

n sampled from the
limit distribution Pr(x∞

1 ≤ t) = 1− φ(0)
φ(t) , where the o(1) term becomes zero.

Before proving the lemma, let us first observe that, since φ is increasing and
∫∞
0

dt
φ(t)2 < ∞, then necessarily

limx→∞ φ(x) =∞.

Proof. Let us first observe that for all t ≥ 0

Pr(min(x∞
1 , x∞

2 ) ≥ t) = Pr(x∞
1 ≥ t) Pr(x∞

2 ≥ t) =
φ(0)2

φ(t)2
,

hence

E[min(x∞
1 , x∞

2 )] =

∫ ∞

0

Pr(min(x∞
1 , x∞

2 ) ≥ t)dt =

∫ ∞

0

φ(0)2

φ(t)2
dt .

In the following, we prove separately the three claims of the Lemma: in the cases where both jobs sizes xi, xj are known,
both are unknown, and where only xi is known.
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Both job sizes are known For any i ̸= j ∈ [n], it holds that Pij ≥ min(xa
i , x

a
j ), and this true in particular for i ̸= j ∈ [B].

Furthermore, for any t ≥ 0, since φ(t) ≥ φ(0), we have that the mapping a 7→ φ(t)−1−φ(a)−1

φ(0)−1−φ(a)−1 is non-increasing. It follows
that

Pr(xa
1 ≤ t) ≤ 1−

(
lim

a′→∞

φ(t)−1 − φ(a′)−1

φ(0)−1 − φ(a′)−1

)
1t<a

= 1− φ(0)

φ(t)
1t<a , (7)

and therefore, for any i ̸= j ≤ B

E[Pij ] ≥ E[min(xa
1 , x

a
2)]

=

∫ ∞

0

Pr(xa
1 ≥ t)2dt

≥
∫ ∞

0

φ(0)2

φ(t)2
1t<adt =

∫ a

0

φ(0)2

φ(t)2
dt

=

∫ ∞

0

φ(0)2

φ(t)2
dt− o(1)

a→∞
.

Both job sizes are unknown For i ̸= j > B, the algorithm ignores the job sizes xa
i and xa

j Therefore, ui,j is independent
of xa

i and xa
j . Consequently, using Lemma A.3, the independence of xa

i and xa
j , then Inequality (7), we obtain

Pr(Pij > t) = Pr(xi > ui,j(t) and xj > t− ui,j(t))

= Pr(xi > ui,j(t)) Pr(xj > t− ui,j(t))

≥
(

φ(0)

φ(ui,j(t))
1ui,j(t)<a

)(
φ(0)

φ(t− ui,j(t))
1t−ui,j(t)<a

)
=

φ(0)21t−a<ui,j(t)<a

φ(ui,j(t)φ(t− ui,j(t))
.

Using that φ′

φ is non-increasing, we have for any t, u ≥ 0 that

d

du
(φ(u)φ(t− u)) = φ′(u)φ(t− u)− φ(u)φ′(t− u)

= φ(u)φ(t− u)

(
φ′(u)

φ(u)
− φ′(t− u)

φ(t− u)

)
The sign of d

du (φ(u)φ(t− u)) is the same as that of φ′(u)
φ(u) −

φ′(t−u)
φ(t−u) , which is a non-increasing function. It is null for

u = t/2, hence it is non-positive for u ≤ t/2 and non-negative for u ≥ t/2. This implies that u 7→ φ(u)φ(t−u) is minimal
for u = t/2, i.e. φ(u)φ(t− u) ≤ φ( t2 )

2 for all t, u ≥ 0, in particular

Pr(Pij > t) ≥ φ(0)2

φ(t/2)2
1t−a<ui,j(t)<a ,

and it follows that

E[Pij ] =

∫ ∞

0

Pr(Pij > t)dt ≥
∫ ∞

0

φ(0)2

φ( t2 )
2
1t−a<ui,j(t)<adt .

Observing that, for any t ≥ 0, the mapping a 7→ φ(0)2/φ( t2 )
2
1t−a<ui,j(t)<a is non-decreasing, and its limit is

φ(0)2/φ( t2 )
2, the monotone convergence theorem guarantees that

lim
a→∞

∫ ∞

0

φ(0)2

φ( t2 )
2
1t−a<ui,j(t)<adt =

∫ ∞

0

φ(0)2

φ( t2 )
2
dt

= 2

∫ ∞

0

φ(0)2

φ(t)2
dt ,
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therefore, for any i ̸= j > B

E[Pij ] ≥ 2

∫ ∞

0

φ(0)2

φ(t)2
dt− o(1)

a→∞
.

Only the size of one job is known For i ≤ B and j > B, the algorithm knows xa
i , therefore uij(·) can be a function of

xa
i . By Lemma A.3 then Inequality (7), it holds for all t ≥ 0 that

Pr(Pij > t) = Pr(xa
i > ui,j(t) and xa

j > t− ui,j(t))

= E[1xa
i >ui,j(t)1xa

j>t−ui,j(t)]

= E
[
1xa

i >ui,j(t)E[1xa
j>t−ui,j(t) | xa

i , ui,j(t)]
]

= E
[
1xa

i >ui,j(t) Pr
(
xa
j > t− ui,j(t) | ui,j(t)

)]
≥ E

[
1xa

i >ui,j(t)

φ(0)1t−ui,j(t)<a

φ(t− ui,j(t))

]
≥ φ(0)E

[
1t−a<ui,j(t)<xa

i

φ(t− ui,j(t))

]
,

and we obtain by integrating over t and then using Tonelli’s theorem that

E[Pij ] =

∫ ∞

0

Pr(Pij > t)dt

≥ φ(0)E
[∫ ∞

0

1t−a<ui,j(t)<xa
i

φ(t− ui,j(t))
dt

]
.

Recall that ui,j(t) is defined as the time spent on job i when a total of t units of time have been spent on both jobs i and j,
thus uij(0) = 0, uij is non-decreasing and it is 1-Lipschitz. Let us denote by V the set of functions on [0,∞) satisfying
these properties

V =
{
v : [0,∞)→ [0,∞) : v(0) = 0 and v(t2)−v(t1)

t2−t1
∈ [0, 1] ∀t1 < t2

}
,

and for all x ≥ 0 and T ∈ [0,∞], we denote by Vx,T the subset of V defined as

Vx,T =
{
v ∈ V : inf{t ≥ 0 : v(t) ≥ x} = T

}
.

For any x ≥ 0 and v ∈ V , let Tv = inf{t ≥ 0 : v(t) ≥ x}, then v ∈ Vx,Tv
. Since v is 1-Lipschitz and v(0) = 0, it holds

that Tv ≥ x. If v(t) < x for all t ≥ 0 then Tv =∞. Therefore, we have for any x ≥ 0

V =
⋃

T∈[x,∞]

Vx,T .

Furthermore, given that v is non-decreasing, v(t) < x if and only if t < Tv . Consequently, E[Pij ] satisfies

E[Pij ] ≥ φ(0)E
[
inf
v∈V

∫ ∞

0

1t−a<v(t)<xa
i

φ(t− v(t))
dt

]
= φ(0)E

[
inf

T∈[xa
i ,∞]

inf
v∈Vxa

i
,T

∫ ∞

0

1t−a<v(t)<xa
i

φ(t− v(t))
dt

]

= φ(0)E

[
inf

T∈[xa
i ,∞]

inf
v∈Vxa

i
,T

∫ T

0

1t−a<v(t)

φ(t− v(t))
dt

]
. (8)

Let x > 0 and T ∈ [x,∞], and define v∗x,T : t ≥ 0 7→ (t− T + x)1t>T−x, then for all v ∈ Vx,T we have v(t) ≥ v∗x,T (t)
for all t ∈ [0, T ]. Indeed, v(t) ≥ 0 = v∗x,T (t) for t ∈ [0, T − x], and if v(t) < v∗x,T (t) for some t ∈ [T − x, T ] then,
because v is 1-Lipschitz, we have

v(T ) ≤ v(T − x) + x < v∗x,T (T − x) + x = x ,
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which contradicts v(T ) ≥ x. Finally, as φ and v 7→ 1t−a<v are both non-decreasing, it holds for any v ∈ Vx,T that∫ T

0

1t−a<v(t)

φ(t− v(t))
dt ≥

∫ T

0

1t−a<v∗
x,T (t)

φ(t− v∗x,T (t))
dt

=

∫ T−x

0

1t−a<0

φ(t)
dt+

∫ T

T−x

1t−a<t−T+x

φ(T − x)
dt

=

∫ min(a,T−x)

0

dt

φ(t)
+

x1T−x<a

φ(T − x)

=

{ ∫ T−x

0
dt

φ(t) +
x

φ(T−x) if T − x < a∫ a

0
dt

φ(t) if T − x ≥ a
(9)

=

{
Gφ(x, T ) if T − x < a∫ a

0
dt

φ(t) if T − x ≥ a
. (10)

Taking the infimum over v ∈ Vx,T then over T ∈ [x,∞] in (10) gives for any x ≥ 0 that

inf
T∈[x,∞]

inf
v∈Vx,T

∫ T

0

1t−a<v(t)

φ(t− v(t))
dt ≥ min

(
inf

T∈[x,a+x)
Gφ(x, T ),

∫ a

0

dt

φ(t)

)
≥ min

(
inf

T∈[x,∞]
Gφ(x, T ),

∫ a

0

dt

φ(t)

)
,

and substituting into 8 leads to

E[Pij ] ≥ φ(0)E
[
min

(
inf

T∈[xa
1 ,∞]

Gφ(x
a
1 , T ),

∫ a

0

dt

φ(t)

)]
.

Let us denote by fa and f∞ respectively the density functions of xa
1 and x∞

1 . We have for any x > 0 that

fa(x) =
d

dx
Pr(xa

1 ≤ x) =
φ′(x)/φ(x)2

φ(0)−1 − φ(a)−1
1x<a ≥

φ(0)φ′(x)

φ(x)2
1x<a = f∞(x)1x<a , (11)

therefore

E[Pij ] = φ(0)

∫ ∞

0

min

(
inf

T∈[x,∞]
Gφ(x, T ),

∫ a

0

dt

φ(t)

)
fa(x)dx

≥ φ(0)

∫ ∞

0

min

(
inf

T∈[x,∞]
Gφ(x, T ),

∫ a

0

dt

φ(t)

)
f∞(x)1x<adx . (12)

Observing for all x > 0 that

inf
T∈[x,∞]

Gφ(x, T ) ≤ lim
T→∞

Gφ(x, T ) =

∫ ∞

0

dt

φ(t)
(13)

and that the mapping a 7→ min
(
infT∈[x,∞] Gφ(x, T ),

∫ a

0
dt

φ(t)

)
f∞(x)1x<a is non-decreasing, the monotone convergence

theorem, the continuity of the minimum, then Inequality 13 guarantee that

lim
a→∞

∫ ∞

0

min

(
inf

T∈[x,∞]
Gφ(x, T ),

∫ a

0

dt

φ(t)

)
f∞(x)1x<adx

=

∫ ∞

0

lim
a→∞

{
min

(
inf

T∈[x,∞]
Gφ(x, T ),

∫ a

0

dt

φ(t)

)
f∞(x)1x<a

}
dx

=

∫ ∞

0

min

(
inf

T∈[x,∞]
Gφ(x, T ),

∫ ∞

0

dt

φ(t)

)
f∞(x)dx

=

∫ ∞

0

(
inf

T∈[x,∞]
Gφ(x, T )

)
f∞(x)dx

= φ(0)

∫ ∞

0

(
inf

T∈[x,∞]
Gφ(x, T )

)
φ′(x)

φ(x)2
dx .
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Finally, the previous term is finite because∫ ∞

0

(
inf

T∈[x,∞]
Gφ(x, T )

)
φ′(x)

φ(x)2
dx ≤

∫ ∞

0

Gφ(x, 2x)
φ′(x)

φ(x)2
dx

=

∫ ∞

0

(∫ x

0

dt

φ(t)
+

x

φ(x)

)
φ′(x)

φ(x)2
dx

≤
∫ ∞

0

(
2

∫ x

0

dt

φ(t)

)
φ′(x)

φ(x)2
dx

= 2

∫ ∞

0

(∫ ∞

t

φ′(x)

φ(t)2

)
dt

φ(t)

= 2

∫ ∞

0

dt

φ(t)2
<∞ .

Therefore ∫ ∞

0

min

(
inf

T∈[x,∞]
Gφ(x, T ),

∫ a

0

dt

φ(t)

)
φ(0)

φ(t)
1t<adt

= φ(0)

∫ ∞

0

(
inf

T∈[x,∞]
Gφ(x, T )

)
φ′(x)

φ(x)2
dx− o(1) ,

and substituting into Inequality (12) gives the aimed result.

A.2.1. PROOF OF THE THEOREM

Using the previous lemmas, we can now prove the theorem.

Proof. Let x = (x1, . . . , xn) be an array of i.i.d. random job sizes with distribution Pr(xi ≤ t) = 1− φ(0)
φ(t) . Observe that

E[x1] =

∫ ∞

0

Pr(x1 ≥ t)dt = φ(0)

∫ ∞

0

dt

φ(t)
, E[min(x1, x2)] =

∫ ∞

0

Pr(x1 ≥ t)2dt = φ(0)2
∫ ∞

0

dt

φ(t)2
.

Lemma A.5 with a =∞ gives for any algorithm A that E[Pij ] ≥ E[min(x1, x2)] for i ̸= j ≤ B, E[Pij ] ≥ 2E[min(x1, x2)]
for i ̸= j > B, and E[Pij ] ≥ αφE[min(x1, x2)] for i ≤ B, j > B. Indeed, the probability density function of x1 is
t 7→ φ(0)φ′(t)

φ(t)2 , and we have for all i ≤ B and j > B that

φ(0)E
[
inf

T≥x1

Gφ(x1, T )
]
= φ(0)2

∫ ∞

0

{
inf
T≥x

Gφ(x, T )

}
φ′(x)

φ(x)2
dx

≥ αφφ(0)
2

∫ ∞

0

dt

φ(t)2
= αφE[min(x1, x2)] .

Assume that
∫∞
0

dt
φ(t) <∞, i.e. E[x1] <∞, then by Equation (1) it holds that

E[A(x)] ≥ nE[x1] +
∑

1≤i<j≤B

E[min(x1, x2)] +
∑

B<i<j≤n

2E[min(x1, x2)] +

B∑
i=1

n∑
j=B+1

αφE[min(x1, x2)]

= nE[x1] +

(
B(B − 1)

2
+ (n−B)(n−B − 1) + αφB(n−B)

)
E[min(x1, x2)] ,
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the terms multiplying E[min(x1, x2)] can be reordered as follows

B(B − 1)

2
+ (n−B)(n−B − 1) + αφB(n−B)

=
B(B − 1)

2
+ (n−B)(n− 1 + (αφ − 1)B)

=
B(B − 1)

2
+ n(n− 1) + (αφ − 1)nB − nB −B((αφ − 1)B − 1)

=
B(B − 1)

2
+ n(n− 1) + (αφ − 2)nB − (αφ − 1)B(B − 1)− (αφ − 2)B

= n(n− 1)− (2− αφ)(n− 1)B + ( 32 − αφ)B(B − 1) (14)

=
n(n− 1)

2

(
2− (4− 2αφ)

B

n
+ (3− 2αφ)

B(B − 1)

n(n− 1)

)
(15)

=
n(n− 1)

2

(
2− B

n
− (3− 2αφ)

B

n

(
1− B(B − 1)

n(n− 1)

))
, (16)

hence

E[A(x)] = nE[x1] + Cn,B
n(n− 1)

2
E[min(x1, x2)] .

On the other hand, by equation (2)

E[OPT(x)] = E

 n∑
i=1

xi +
∑
i<j

min(xi, xj)

 = nE[x1] +
n(n− 1)

2
E[min(x1, x2)] ,

therefore

E[A(x)]
E[OPT(x)]

≥ nE[x1] + Cn,B
n(n−1)

2 E[min(x1, x2)]

nE[x1] +
n(n−1)

2 E[min(x1, x2)]

= Cn,B −
Cn,B − 1

1 + n−1
2

E[min(x1,x2)]
E[x1]

,

and using Lemma A.1, this yields

Rn,B(A) ≥ Cn,B −
Cn,B − 1

1 + n−1
2

E[min(x1,x2)]
E[x1]

.

If Bn = wn+ o(n) for some w ∈ [0, 1], then

CRB(A) ≥ lim inf
n→∞

Rn,Bn
(A)

≥ 2− 2(2− αφ)w + (3− 2αφ)w
2 .

Assume now that
∫∞
0

dt
φ(t) =∞, thus E[x1] =∞. Let a > 0, and xa = (xa

1 , . . . , x
a
n) be i.i.d. job sizes with distribution

Pr(xa
1 ≤ t) = 1− φ(t)−1 − φ(a)−1

φ(0)−1 − φ(a)−1
1t<a .

Therefore xa
1 has a finite expectation E[xa

1 ] ≤ a. Denoting by x1, x2 i.i.d. random variables with distribution Pr(x1 ≤ t) =

1− φ(0)
φ(t) , Lemma A.5 and Equation (1) give for any algorithm A that

E[A(xa)] ≥ nE[xa
1 ] +

∑
1≤i<j≤B

(E[min(x1, x2)]− o(1)
a→∞

) +
∑

B<i<j≤n

(2E[min(x1, x2)]− o(1)
a→∞

)

+

B∑
i=1

n∑
j=B+1

(αφE[min(x1, x2)]− o(1)
a→∞

)

= nE[xa
1 ] + Cn,B

n(n− 1)

2
E[min(x1, x2)]− n2 o(1)

a→∞
, (17)
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where the last equation is obtained with the same computation as in the case
∫∞
0

dt
φ(t) <∞. Moreover, if a ≥ 1 then

E[min(xa
1 , x

a
2)] =

∫ ∞

0

Pr(min(xa
1 , x

a
2) ≥ t)dt =

∫ ∞

0

(
φ(t)−1 − φ(a)−1

φ(0)−1 − φ(a)−1

)2

1t<adt ,

and we have for any t ≥ 0 that
(

φ(t)−1−φ(a)−1

φ(0)−1−φ(a)−1

)2
≤ φ(t)−2

(φ(0)−1−φ(1)−1)2 , which is an integrable function. Furthermore, φ is

increasing and 1/φ2 is integrable, hence lim
a→∞

φ(a) =∞. Therefore, the dominated convergence theorem gives that

lim
a→∞

E[min(xa
1 , x

a
2)] =

∫ ∞

0

lim
a→∞

{(
φ(t)−1 − φ(a)−1

φ(0)−1 − φ(a)−1

)2

1t<a

}
dt

=

∫ ∞

0

φ(0)2

φ(t)2
dt

= E[min(x1, x2)] .

It follows that

OPT(xa) = E

 n∑
i=1

xa
i +

∑
i<j

min(xa
i , x

a
j )


= nE[xa

1 ] +
n(n− 1)

2
E[min(xa

1 , x
a
2)]

= nE[xa
1 ] +

n(n− 1)

2
E[min(x1, x2)] + n2 o(1)

a→∞
.

Combining this with Inequality (17), then using Lemma A.1, we obtain that

Rn,B ≥
nE[xa

1 ] + Cn,B
n(n−1)

2 E[min(x1, x2)]− n2 o(1)
a→∞

nE[xa
1 ] +

n(n−1)
2 E[min(x1, x2)] + n2 o(1)

a→∞

,

and if B = wn+ o(n) then

CRB(A) ≥ lim inf
n→∞

Rn,B(A) ≥

(
2− 2(2− αφ)w + (3− 2αφ)w

2
)
E[min(x1, x2)]− o(1)

a→∞
E[min(x1, x2)] + o(1)

a→∞

and finally, taking the limit a→∞ yields

CRB(A) ≥ 2− 2(2− αφ)w + (3− 2αφ)w
2 .

A.3. Proof of Corollary 2.2

Proof. Let us consider i.i.d. exponentially distributed job sizes. This corresponds to φ(t) = et for all t ≥ 0. It holds that
φ(0) = 1 > 0, φ is increasing, φ′

φ = 1 is non-increasing, and∫ ∞

0

dt

φ(t)
=

∫ ∞

0

e−tdt = 1 ,

∫ ∞

0

dt

φ(t)2
=

∫ ∞

0

e−2tdt =
1

2
.

Furthermore, it holds for all x ≥ 0 and T ≥ x that

G(x, T ) =

∫ T−x

0

dt

φ(t)
+

x

φ(T − x)

=

∫ T−x

0

e−tdt+ xe−(T−x)

= 1 + (x− 1)e−(T−x) .
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Thus, for all x ≥ 0

inf
T≥x

G(x, T ) =

{
G(x, x) = x if x < 1
lim

T→∞
G(x, T ) = 1 if x ≥ 1 ,

and it follows that

φ(0)2
∫ ∞

0

{
inf
T≥x

Gφ(x, T )

}
φ′(x)

φ(x)2
dx =

∫ ∞

0

{
inf
T≥x

Gφ(x, T )

}
e−xdx

=

∫ 1

0

xe−xdx+

∫ ∞

1

e−xdx

= 1− 1
e

= 2(1− 1
e )

∫ ∞

0

dt

φ(t)2
.

Finally, by Theorem 2.1, it holds for any algorithm A having access to the sizes of B jobs that

Rn,B(A) ≥ Cn,B −
Cn,B − 1

1 + n−1
4

= Cn,B −
4(Cn,B − 1)

n+ 3
,

with

Cn,B = 2− (4/e)
B

n
+ (4/e− 1)

B(B − 1)

n(n− 1)
.

In particular, if B = wn+ o(n), then again by Theorem 2.1 we have

CR(A) ≥ 2− 4
ew + ( 4e − 1)w2 .

A.4. Proof of Corollary 2.3

Proof. Let r ∈ ( 12 , 1), and consider φ : t 7→ (1 + t)r. It holds that φ(0) = 1 > 0, φ is increasing, φ′

φ : t 7→ r
1+t is

non-increasing, and
∫∞
0

dt
φ(t)2 =

∫∞
0

dt
(1+t)2r = 1

2r−1 <∞ because r > 1
2 . Moreover, it holds for all x ≥ 0 and T ≥ x that

G(x, T ) =

∫ T−x

0

dt

φ(t)
+

x

φ(T − x)

=

∫ T−x

0

dt

(1 + t)r
+

x

(1 + T − x)r

= − 1

1− r
+

(1 + T − x)1−r

1− r
+

x

(1 + T − x)r
,

therefore, for all x ≥ 0

inf
T≥x

G(x, T ) = − 1

1− r
+ inf

T≥x

{
(1 + T − x)1−r

1− r
+

x

(1 + T − x)r

}
= − 1

1− r
+ inf

y∈[0,1]

{
y−(1−r)

1− r
+ xyr

}
,

where the last inequality is obtained by considering y = 1
1+T−x . It holds that

d

dy

(
y−(1−r)

1− r
+ xyr

)
= −y−(2−r) + rxy−(1−r)

= rxy−(2−r)

(
y − 1

rx

)
,
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The mapping y 7→ y−(1−r)

1−r +xyr is thus minimized on [0,∞) for y = 1
rx , and it is minimized on [0, 1] for y∗ = min(1, 1

rx ).
Therefore, it holds for x ≤ 1

r that y∗ = 1 and infT≥x G(x, T ) = − 1
1−r + ( 1

1−r + x) = x, and for x > 1
r we have y∗ = 1

rx
and

inf
T≥x

G(x, T ) = − 1

1− r
+

(rx)1−r

1− r
+ (rx)−r

= − 1

1− r
+

(
1

1− r
+

1

r

)
(rx)1−r

= − 1

1− r
+

(rx)1−r

r(1− r)
.

We deduce that

φ(0)2
∫ ∞

0

{
inf
T≥x

Gφ(x, T )

}
φ′(x)

φ(x)2
dx =

∫ 1/r

0

(
− 1

1− r
+ x

)
r

(1 + x)r+1
dx

+

∫ ∞

1/r

(
− 1

1− r
+

(rx)1−r

r(1− r)

)
r

(1 + x)r+1
dx

= − 1

1− r
+

∫ 1/r

0

rx

(1 + x)1+r
dx+

r1−r

1− r

∫ ∞

1/r

x1−r

(1 + x)r+1
dx

≥ − 1

1− r
+

r1−r

1− r

∫ ∞

1/r

x1−r

(1 + x)r+1
dx . (18)

Let us denote Wr =
∫∞
1/r

x1−r

(1+x)r+1 dx. It holds that

Wr =

∫ ∞

1/r

x1−r

(1 + x)r+1
dx

=

∫ ∞

1/r

(
x

1 + x

)1−r
dx

(1 + x)2r

≥
∫ ∞

2

√
x

1 + x
· dx

(1 + x)2r
(r > 1

2 )

≥
∫ 1/3

0

√
1− s

s2−2r
ds (s← 1

1+x )

=

∫ 1/3

0

√
1− s · d

ds

(
s2r−1

2r − 1

)
ds

=

[
s2r−1

√
1− s

2r − 1

]1/3
0

+
1

2(2r − 1)

∫ 1/3

0

s2r−1

√
1− s

ds

=
3−(2r−1)

√
2/3

2r − 1
+

1

2(2r − 1)

∫ 1/3

0

s2r−1

√
1− s

ds .

It holds for all r ∈ ( 12 , 1) that s2r−1
√
1−s
≤ 1√

1−s
, which is an integrable function on [0, 1

3 ], hence the dominated convergence
theorem guarantees that

lim
r→ 1

2

1

2

∫ 1/3

0

s2r−1

√
1− s

ds =
1

2

∫ 1/3

0

lim
r→ 1

2

s2r−1

√
1− s

ds

=
1

2

∫ 1/3

0

ds√
1− s

=
[
−
√
1− s

]1/3
0

= 1−
√
2/3 ,
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we deduce that

(2r − 1)Wr = 3−(2r−1)
√
2/3 +

1

2

∫ 1/3

0

s2r−1

√
1− s

ds

=

(√
2/3− o(1)

r→1/2

)
+

(
1−

√
2/3− o(1)

r→1/2

)
= 1 + o(1)

r→1/2

.

Substituting into Inequality 18, and recalling that
∫∞
0

dt
φ(t)2 = 1

2r−1 , we deduce that for r close to 1
2

φ(0)2
∫ ∞

0

{
inf
T≥x

Gφ(x, T )

}
φ′(x)

φ(x)2
dx ≥ − 1

1− r
+

r1−r

1− r
Wr

=

(
−2r − 1

1− r
+

(
r1−r

1− r

)
(2r − 1)Wr

)∫ ∞

0

dt

φ(t)2

=
(
o(1) + (

√
2 + o(1))(1− o(1))

)∫ ∞

0

dt

φ(t)2

=
(√

2 + o(1)
)∫ ∞

0

dt

φ(t)2
.

Consequently, by Theorem 2.1, if B = wn+ o(n), it holds for any algorithm A that

CR(A) ≥ 2− 2

(
2−
√
2− o(1)

r→1/2

)
w +

(
3− 2

√
2− o(1)

r→1/2

)
w2 ,

and taking the limit when r → 1
2 gives

CR(A) ≥ 2− 2(2−
√
2)w + (3− 2

√
2)w2 .

B. Known partial order
B.1. Preliminary results

Lemma B.1. For any real numbers x1, . . . , xn, if σ is a uniformly random permutation of [n] then

E[min(xσ(1), xσ(2))] =
2

n(n− 1)

∑
1≤i<j≤n

min(xi, xj) .

Proof. Since σ is uniformly random, we have for any i ̸= j that E[min(xσ(1), xσ(2))] = E[min(xσ(i), xσ())], thus

E[min(xσ(1), xσ(2))] =
2

n(n− 1)
E
[ ∑
1≤i<j≤n

min(xσ(i), xσ(j))
]

=
2

n(n− 1)

∑
1≤i<j≤n

min(xi, xj) .

Lemma B.2. For any real numbers x1, . . . , xn, if σ is a uniformly random permutation of [n] then

E[xσ(1)1xσ(1)<xσ(2)
] ≤ E[min(xσ(1), xσ(2))] =

1

n(n− 1)

∑
1≤i<j≤n

min(xi, xj) ,

with equality if x1, . . . , xn are pairwise distinct.
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Proof. σ is a uniformly random permutation of [n], therefore E[xσ(i)1xσ(i)<xσ(j)
] = E[xσ(1)1xσ(1)<xσ(2)

] for all i ̸= j ∈ [n].
It follows that

E[xσ(1)1xσ(1)<xσ(2)
] =

1

2

(
E[xσ(1)1xσ(1)<xσ(2)

] + E[xσ(2)1xσ(2)<xσ(1)
]
)

≤ 1

2
E[xσ(i)1xσ(1)<xσ(2)

+ xσ(2)1xσ(2)≤xσ(1)
]

=
1

2
E[min(xσ(1), xσ(2))] ,

and using Lemma B.1 concludes the proof. To have equality, it must hold that 1xσ(2)<xσ(1)
= 1xσ(2)≤xσ(1)

for any
permutation, and this is true if and only if the values x1, . . . , xn are pairwise distinct.

B.2. Proof of Theorem 3.1

Proof. For any i ̸= j ≥ B + 1, as in round-robin, Pσ(i)σ(j) = 2min(xσ(i), xσ(j)). For i ̸= j ≤ B, since the jobs
{xσ(k)}Bk=1 are run in non-decreasing order one after the other, it holds that Pσ(i)σ(j) = min(xσ(i), xσ(j)). Finally, for
i ≤ B and j ≥ B + 1, the delay caused by σ(j) to π(i) is always Dσ(j)π(i) = min(xπ(i), xσ(j)). On the other hand if
xσ(j) ≤ xπ(i−1) then xσ(j) terminates before phase i begins, thus job π(i) does not delay job σ(j): Dπ(i)σ(j) = 0. If
xσ(j) > xπ(i−1), then after the first step of phase i, the time spent on each of the jobs π(i) and σ(j) is xπ(i−1). Both jobs
are then executed with identical processing powers until one of them is terminated, thus

Dπ(i)σ(j) = min(xπ(i), xσ(j))1xσ(j)>xπ(i−1)

= xπ(i)1xσ(j)>xπ(i)
+ xσ(j)1xπ(i)≥xσ(j)>xπ(i−1)

.

With the convention xπ(0)=0, taking the sum over i gives

B∑
i=1

Dπ(i)σ(j) =

B∑
i=1

xπ(i)1xσ(j)>xπ(i)
+ xσ(j)

B∑
i=1

1xπ(i)≥xσ(j)>xπ(i−1)

=

B∑
i=1

xσ(i)1xσ(j)>xσ(i)
+ xσ(j)1xσ(j)≤xπ(B)

≤
B∑
i=1

xσ(i)1xσ(j)>xσ(i)
+ xσ(j) . (19)

Using Lemma B.2, and recalling that {π(i)}Bi=1 = {σ(i)}Bi=1, we have in expectation,

E
[ B∑

i=1

Dσ(i)σ(j)

]
= E

[ B∑
i=1

Dπ(i)σ(j)

]
≤ B

2
E[min(xσ(1), xσ(2))] +

1

n

n∑
k=1

xk , (20)

and it follows that, for any j ≥ B + 1

E
[ B∑

i=1

Pσ(i)σ(j)

]
= E

[ B∑
i=1

Dσ(j)σ(i)

]
+ E

[ B∑
i=1

Dσ(i)σ(j)

]
≤ BE[min(xσ(1), xσ(2))] +

B

2
E[min(xσ(1), xσ(2))] +

1

n

n∑
k=1

xk

=
3B

2
E[min(xσ(1), xσ(2))] +

1

n

n∑
k=1

xk ,
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hence

n∑
j=B+1

E
[ B∑

i=1

Pσ(i)σ(j)

]
≤ 3

2
B(n−B)E[min(xσ(1), xσ(2))] +

(
1− B

n

) n∑
k=1

xk .

Finally, using Equation (1), the previous upper bounds on Pσ(i)σ(j) for all i ̸= j, then Equation (16) with 3/2 instead of απ

gives that the objective of CRRR on the instance x = {x1, . . . , xn} satisfies in expectation

E[CRRR(x)] =

n∑
i=1

xi + E
[ ∑
1≤i<j≤n

Pσ(i)σ(j)

]
=

n∑
i=1

xi +
∑

1≤i<j≤B

E[min(xσ(i), xσ(j))] +
∑

B<i<j≤n

2E[min(xσ(i), xσ(j))]

+

n∑
j=B+1

E
[ B∑

i=1

Pσ(i)σ(j)

]
(21)

≤
(
2− B

n

) n∑
i=1

xi +

(
B(B − 1)

2
+ (n−B)(n−B − 1) +

3

2
B(n−B)

)
E[min(xσ(1), xσ(2))]

=

(
2− B

n

) n∑
i=1

xi +

(
2− B

n

)
n(n− 1)

2
E[min(xσ(1), xσ(2))]

=

(
2− B

n

) n∑
i=1

xi +

(
2− B

n

) ∑
1≤i<j≤n

min(xi, xj) (22)

=

(
2− B

n

)
OPT(x) , (23)

where we used B.1 for (22) then Equation (2) for (23). Therefore, the (n,B)-competitive ratio of Algorithm 1 satisfies

Rn,B(CRRR) ≤ 2− B

n
. (24)

For proving the lower bound on Rn,B , let ε > 0 and let us consider job sizes xε
i = 1 + iε for all i ∈ [n]. Observe that the

only inequalities we used in the analysis are Inequalities (19) (xσ(j)1xσ(j)≤xπ(B)
≤ xσ(j)), and (20) given by Lemma B.2.

The second one becomes equality if the job sizes are pairwise distinct, which is satisfied by {xε
i}ni=1. As for Inequality (19),

since the job sizes xε are pairwise distinct and all larger than 1, we can give instead a lower bound on E[xσ(j)1xσ(j)≤xπ(B)
]
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for j > B as follows

E[xσ(j)1xσ(j)≤xπ(B)
] = E[xσ(j)1σ(j)≤π(B)]

≥ Pr(σ(j) < π(B)) = Pr(σ(n) < max
i≤B

σ(i))

=

n∑
k=B+1

k−1∑
m=1

Pr(σ(n) = m,max
i≤B

σ(i) = k)

=

n∑
k=B+1

k−1∑
m=1

B∑
ℓ=1

Pr(σ(n) = m,σ(ℓ) = k,∀i ∈ [B] \ {ℓ} : σ(i) ∈ [k − 1] \ {m})

=

n∑
k=B+1

k−1∑
m=1

B∑
ℓ=1

1

n!

(
k − 2

B − 1

)
(B − 1)!(n−B − 1)!

=

n∑
k=B+1

k−1∑
m=1

B!(n−B − 1)!

n!

(
k − 2

B − 1

)

=
B!(n−B − 1)!

n!

n∑
k=B

(k − 1)

(
k − 2

B − 1

)

=
B ·B!(n−B − 1)!

n!

n∑
k=B

(
k

B

)
=

B ·B!(n−B − 1)!

n!

(
n

B + 1

)
=

B

B + 1
.

Therefore, instead of (19), we have the lower bound

E
[ B∑

i=1

Dσ(i)σ(j)

]
= E

[ B∑
i=1

Dπ(i)σ(j)

]
=

B

2
E[min(xσ(1), xσ(2))] + E[xσ(j)1xσ(j)≤xπ(B)

] (25)

≥ B

2
+

B

B + 1
, (26)

and thus, since we proved earlier that Dσ(i)σ(j) = min(xε
σ(i),xε

σ(j)
for all i ≤ B and j > B, it holds that

E
[ B∑

i=1

Pσ(i)σ(j)

]
≥

B∑
i=1

E[min(xσ(i),xσ(j)
] +

B

2
+

B

B + 1
≥ 3B

2
+

B

B + 1

and using that xε
i ≥ 1 for all i ∈ [n], we obtain by substituting the previous inequalities into (21) that

E[CRRR(xε)] ≥ n+
B(B − 1)

2
+ (n−B)(n−B − 1) + (n−B)

(
B

2
+

B

B + 1

)
=

(
n+ (n−B)

B

B + 1

)
+

(
B(B − 1)

2
+ (n−B)(n−B − 1) +

3B

2
(n−B)

)
=

(
2n−B − n−B

B + 1

)
+

(
n(n− 1)− (n− 1)B

2

)
= (n+ 1)

(
n− B

2

)
− n−B

B + 1
.
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On the other hand, Equation (2), along with xε
i ≤ 1 + nε for all i ∈ [n], gives

OPT(xε) ≤
n∑

i=1

(n− i+ 1)(1 + nε) =
n(n+ 1)

2
(1 + nε) ,

and it follows that

Rn,B(CRRR) ≥ E[CRRR(xε)]

OPT(xε)

≥
(n+ 1)

(
n− B

2

)
− n−B

B+1

n(n+1)
2 (1 + nε)

=
1

1 + nε

(
2− B

n
− 2(1− B

n )

(n+ 1)(B + 1)

)
.

Taking the limit ε→ 0 and using Inequality (24), we obtain that

2− B

n
− 2(1− B

n )

(n+ 1)(B + 1)
≤ Rn,B(CRRR) ≤ 2− B

n
.

Finally, if Bn = ⌊wn⌋ for some w ∈ [0, 1] then Bn ≥ wn, hence CRB(CRRR) = supn≥2 Rn,Bn(CRRR) ≤ 2− w, and
this bound is reached by the lower bound on Rn,Bn

for n→∞, which gives that CRB(CRRR) = 2− w.

C. Predictions of the job sizes
C.1. Proof of Theorem 4.1

We first compute the mutual delays of the jobs in Switch with any breakpoints.

Lemma C.1. For any job sizes x = (x1, . . . , xn), and for any permutation σ of [n] and breakpoints zσ = (zσ(1), . . . , zσ(B)),
the Switch algorithm Switch(zσ, x) satisfies for all i ̸= j ∈ [n] that

Pσ(i)σ(j) = xσ(i)1zσ(i)<zσ(j)
+ xσ(j)1zσ(i)>zσ(j)

+ (θijxσ(i) + (1− θij)xσ(j))1zσ(i)=zσ(j)
if i, j ≤ B ,

Pσ(i)σ(j) = 2min(xσ(i), xσ(j)) if i, j > B ,

Pσ(i)σ(j) = xσ(i)1xσ(j)>zσ(i)
+min(zσ(i), xσ(i)) if i ≤ B, j > B .

where θij is a Bernoulli random variable with parameter 1/2 independent of σ for all i ̸= j ∈ [B].

Proof. Let us first define the random variables θij . For all i ̸= j ∈ [B], if zσ(i) ̸= zσ(j) then let θij be an independent
Bernoulli random variable with parameter 1/2, and if zσ(i) = zσ(j) then let θij be the indicator that zσ(i) comes before zσ(j)
with the ordering π. Since π is an ordering of the breakpoints chosen uniformly at random, then θij is a Bernoulli random
variable with parameter 1/2 independently of σ.

For i ̸= j ∈ [B], if zσ(i) < zσ(j) then job σ(i) is executed until completion before job σ(j) starts being executed, thus
Dσ(i)σ(j) = xσ(i) and Dσ(j)σ(i) = 0 and Pσ(i)σ(j) = xσ(i). By symmetry, if zσ(i) > zσ(j) then Pσ(i)σ(j) = xσ(j).
In the case where zσ(i) = zσ(j), since π is chosen uniformly at random among all the permutations of [B] satisfying
zπ(1) ≤ . . . ≤ zπ(B), each of the jobs σ(i), σ(j) is run until completion before the other one starts with equal probability
1/2, hence Pσ(i)σ(j) = θijxσ(i) + (1− θij)xσ(j). It follows that

Pσ(i)σ(j) = xσ(i)1zσ(i)<zσ(j)
+ xσ(j)1zσ(i)>zσ(j)

+ (θijxσ(i) + (1− θij)xσ(j))1zσ(i)=zσ(j)
.

For i ̸= j > B, jobs σ(i), σ(j) are processed symmetrically and the delays they cause to each other are the same as in
round-robin. Therefore Dσ(i)σ(j) = Dσ(j)σ(i) = min(xσ(i), xσ(j)), and it holds that

Pσ(i)σ(j) = 2min(xσ(i), xσ(j)) .
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For i ≤ B and j > B, at the time when job σ(i) starts being executed, it holds by definition of Algorithm 2 that either job
σ(j) is completed or Sσ(j) = zσ(i), hence the delay caused by job σ(j) to job σ(i) is Dσ(j)σ(i) = min(zσ(i), xσ(j)). On
the other hand, job σ(i) delays job σ(j) if and only if xσ(j) > zσ(i), and in this case job σ(i) runs until completion before
job σ(j) is completed, hence Dσ(i)σ(j) = xσ(i)1xσ(j)>zσ(i)

, and it follows that

Pσ(i)σ(j) = xσ(i)1xσ(j)>zσ(i)
+min(zσ(i), xσ(i))

C.1.1. PROOF OF THE THEOREM

Using the previous lemma, we now prove Theorem 4.1

Proof. Using Lemma C.1, it holds for all i ̸= j ∈ [n] that Pσ(i)σ(j) = min(xσ(i), xσ(j)) if i, j ≤ B, Pσ(i)σ(j) =
2min(xσ(i), xσ(j)) if i, j > B, and if i ≤ B and j > B then

Pσ(i)σ(j) = min(xσ(i), xσ(j)) + xσ(i)1xσ(i)<xσ(j)
.

Taking the expectation over σ then using Lemma B.2 gives

E[xσ(i)1xσ(i)<xσ(j)
] = E[xσ(1)1xσ(1)<xσ(2)

]

≤ 1

2
E[min(xσ(1), xσ(2))] , (27)

hence for any i ≤ B and j > B

E[Pσ(i)σ(j)] ≤
3

2
E[min(xσ(1), xσ(2))] .

It follows from Equation (1) that for any instance of n job sizes x = (x1, . . . , xn), the switch algorithm 2 with breakpoints
(zσ(i))

B
i=1 = (xσ(i))

B
i=1 satisfies

E[Switch(xσ, x)] ≤
n∑

i=1

xi +
∑

1≤i<j≤B

E[min(xσ(1), xσ(2))] +
∑

B<i<j≤n

2E[min(xσ(i), xσ(j))]

+

B∑
i=1

n∑
j=B+1

3

2
E[min(xσ(i), xσ(j))]

=

n∑
i=1

xi +

(
B(B − 1)

2
+ (n−B)(n−B − 1) +

3

2
B(n−B)

)
E[min(xσ(1), xσ(2))]

=

n∑
i=1

xi +

(
2− B

n

)
n(n− 1)

2
E[min(xσ(1), xσ(2))]

=

n∑
i=1

xi +

(
2− B

n

) ∑
1≤i<j≤n

min(xi, xj) , (28)

where we used Lemma B.1 for the last equation. We can assume without loss of generality that x1 ≤ . . . ≤ xn, which yields∑
1≤i<j≤n min(xi, xj) =

∑n
i=1(n− i)xi. Finally, Equation (2) gives

E[Switch(xσ, x)]

OPT(x)
≤
∑n

i=1 xi +
(
2− B

n

)∑n
i=1(n− i)xi∑n

i=1 xi +
∑n

i=1(n− i)xi

= 2− B

n
− (1− B

n )
∑n

i=1 xi∑n
i=1(n− i+ 1)xi

= 2− B

n
− (1− B

n )∑n
i=1(n− i+ 1)qi

, (29)
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where qi = (
∑n

j=1 xj)
−1xi for all i ∈ [n]. The variables (qi)

n
i=1 satisfy

∑n
i=1 qi = 1, and we can assume without

loss of generality that q1 ≤ . . . ≤ qn (i.e. x1 ≤ . . . ≤ xn). Expression (29) is maximized under these constraints for
q1 = . . . = qn = 1

n . It follows for all job sizes x1, . . . , xn that

E[Switch(xσ, x)]

OPT(x)
≤ 2− B

n
− 2(1− B

n )

n+ 1
,

hence Rn,B(Switch) ≤ 2− B
n −

2(1−B
n )

n+1 . Let us now prove that this is exactly the competitive ratio of ALG. Observe that
the only inequality we used while analyzing Switch(xσ, x) is Inequality (27), which becomes an equality if the job sizes
are pairwise distinct. Let us, therefore, consider job sizes x(ε)

i = 1 + iε ∈ [1, 1 + nε] for some ε > 0. All the inequalities
becoming inequalities, it holds in particular that

Rn,B(Switch) ≥ E[Switch(xσ, x(ε))]

OPT(x(ε))
= 2− B

n
− (1− B

n )
∑n

i=1 x
(ε)
i∑n

i=1(n− i+ 1)x
(ε)
i

≥ 2− B

n
− (1− B

n )
∑n

i=1(1 + nε)∑n
i=1(n− i+ 1)

= 2− B

n
− (1 + nε)

2(1− B
n )

n+ 1
,

and taking ε→ 0 yields that

Rn,B(Switch) = 2− B

n
− 2(1− B

n )

n+ 1
.

Let w ∈ [0, 1]. If B = ⌊wn⌋, then B/n ≥ w and it holds for all n ≥ 2 that Rn,B(Switch) ≤ 2 − w, and this bound is
reached for n→∞, thus CRB(Switch) = 2− w.

C.2. Proof of Proposition 4.2

Proof. It is shown in (Motwani et al., 1994) that for any instance x = (x1, . . . , xn), the expected sum of completion times
resulting from a run of RTC is E[RTC(x)] = n+1

2

∑n
i=1 xi. Using Equation 28, we deduce that the algorithm ALG that

runs RTC with probability 2(n−B)
n(n+3)−2B and runs Switch with breakpoints zσ = xσ with the remaining probability satisfies

E[ALG(x)] =
2(n−B)

n(n+ 3)− 2B
RTC(x) +

(
1− 2(n−B)

n(n+ 3)− 2B

)
E[Switch(xσ, x)]

=
2(n−B)

n(n+ 3)− 2B
· n+ 1

2

n∑
i=1

xi +

(
1− 2(n−B)

n(n+ 3)− 2B

) n∑
i=1

xi +

(
2− B

n

) ∑
1≤i<j≤n

min(xi, xj)


=

(
(n− 1)(n−B)

n(n+ 3)− 2B
+ 1

) n∑
i=1

xi +

(
1− 2(n−B)

n(n+ 3)− 2B

)(
2− B

n

) ∑
1≤i<j≤n

min(xi, xj)

=

(
2− B

n
− 2(1− B

n )(2− B
n )

n+ 3− 2B
n

) n∑
i=1

xi +
∑

1≤i<j≤n

min(xi, xj)


=

(
2− B

n
− 2(1− B

n )(2− B
n )

n+ 3− 2B
n

)
OPT(x) .
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C.3. Proof of Lemma 4.3

Proof. Let x1, . . . , xn Let ξ be a random variable with distribution F . Let i ̸= j ≤ B, by symmetry, we can assume that
xσ(i) ≤ xσ(j). Lemma C.1 gives that

Pσ(i)σ(j) = xσ(i)1yσ(i)<yσ(j)
+ xσ(j)1yσ(i)>yσ(j)

+
xσ(i)+xσ(j)

2 1yσ(i)=yσ(j)

≤ xσ(i)1yσ(i)<yσ(j)
+ xσ(j)1yσ(i)≥yσ(j)

= xσ(i) + (xσ(j) − xσ(i))1yσ(i)≥yσ(j)

≤ xσ(i) + (xσ(j) − yσ(j) + yσ(i) − xσ(i))1yσ(i)≥yσ(j)

≤ xσ(i) + (ησ(i) + ησ(j))

= min(xσ(i), xσ(j)) + (ησ(i) + ησ(j)) ,

and we obtain in expectation that for all i ̸= j ≤ B

E[Pσ(i)σ(j)] ≤ E[min(xσ(i), xσ(j))] +
2

B
E[ησ] . (30)

For i ̸= j > B, Lemma C.1 gives

E[Pσ(i)σ(j)] = 2E[min(xσ(i), xσ(j))] . (31)

For i ≤ B and j > B, we have again by Lemma C.1 that

E[Pσ(i)σ(j)] = E[min(ξyσ(i), xσ(j))] + E[xσ(i)1ξyσ(i)<xσ(j)
] .

Conditional on the permutation σ, i.e. taking the expectation only over ξ, the first term can be bounded as follows

E[min(ξyσ(i), xσ(j)) | σ] ≤ E[min(ξxσ(i), xσ(j)) + ξησ(i) | σ]
= E[xσ(j)1ξxσ(i)≥xσ(j)

+ ξxσ(i)1ξxσ(i)<xσ(j)
| σ] + E[ξ]ησ(i)

= xσ(j) Pr(ξ ≥ xσ(j)

xσ(i)
| σ) + xσ(i)E

[
ξ1

ξ<
xσ(j)

xσ(i)

| σ
]
+ E[ξ]ησ(i) , (32)

and for the second term, the expectation conditional on σ satisfies

E[xσ(i)1ξyσ(i)<xσ(j)
| σ] ≤ E[yσ(i)1ξyσ(i)<xσ(j)

+ ησ(i) | σ]
= yσ(i) Pr(ξ <

xσ(j)

yσ(i)
| σ) + ησ(i)

= hF (xσ(j), yσ(i)) + ησ(i)

≤ hF (xσ(j), xσ(i)) + LF |xσ(i) − yσ(i)|+ ησ(i) (33)

= xσ(i) Pr(ξ <
xσ(j)

xσ(i)
| σ) + (1 + LF )ησ(i) , (34)

where we used for (33) that hF is L-Lipschitz with respect to the second variable. Combining (32) and (34) yields

E[Pσ(i)σ(j) | σ] ≤ xσ(j) + (xσ(i) − xσ(j)) Pr(ξ <
xσ(j)

xσ(i)
| σ) + xσ(i)E

[
ξ1

ξ<
xσ(j)

xσ(i)

| σ
]
+ (1 + LF + E[ξ])ησ(i)

= xσ(j) + xσ(i)

((
1− xσ(j)

xσ(i)

)
Pr(ξ <

xσ(j)

xσ(i)
| σ) + E

[
ξ1

ξ<
xσ(j)

xσ(i)

| σ
])

+ (1 + LF + E[ξ])ησ(i)

= xσ(j) + xσ(i)gF
(xσ(j)

xσ(i)

)
+ (1 + LF + E[ξ])ησ(i) . (35)
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We can assume without of generality that x1 ≤ . . . ≤ xn. It holds by definition of the constants βF and γF that
gF
(xσ(j)

xσ(i)

)
≤ βF

xσ(j)

xσ(i)
if σ(j) < σ(i), and gF

(xσ(j)

xσ(i)

)
≤ γF − xσ(j)

xσ(i)
if σ(j) > σ(i), which gives

E
[
xσ(j) + xσ(i)gF

(xσ(j)

xσ(i)

)]
=

1

2
E
[
xσ(j) + xσ(i)gF

(xσ(j)

xσ(i)

)
| σ(j) < σ(i)

]
+

1

2
E
[
xσ(j) + xσ(i)gF

(xσ(j)

xσ(i)

)
| σ(j) > σ(i)

]
≤ 1 + βF

2
E[xσ(j) | σ(j) < σ(i)] +

γF
2
E[xσ(i) | σ(j) > σ(i)]

=
1 + βF

2
E[min(xσ(i), xσ(j)) | σ(j) < σ(i)] +

γF
2
E[min(xσ(i), xσ(j)) | σ(j) > σ(i)]

=
1 + βF + γF

2
E[min(xσ(i), xσ(j))] ,

thus we obtain by taking the expectation over σ in (35) that

E[Pσ(i)σ(j)] ≤
(

1+βF+γF

2

)
E[min(xσ(i), xσ(j))] +

(
1+LF+E[ξ]

B

)
E[ησ] .

Using Equation 1, the inequality above, Inequalities (30), (31), then Equation 16 with 1+βF+γF

2 instead of απ , we deduce
that Algorithm 3 satisfies for any job sizes x1, . . . , xn that

E[Switch(ξyσ, x)] =
n∑

i=1

xi +
∑

1≤i<j≤n

E[Pσ(i)σ(j)]

≤
n∑

i=1

xi +
∑

1≤i<j≤B

(
E[min(xσ(i), xσ(j))] +

2

B
E[ησ]

)
+

∑
B<i<j≤n

2E[min(xσ(i), xσ(j))]

+

B∑
i=1

n∑
j=B+1

((
1+βF+γF

2

)
E[min(xσ(i), xσ(j))] +

(
1+LF+E[ξ]

B

)
E[ησ]

)
=

n∑
i=1

xi +

(
B(B − 1)

2
+ (n−B)(n−B − 1) +

(
1+βF+γF

2

)
B(n−B)

)
E[min(xσ(1), xσ(2))]

+
(
B − 1 + (1 + LF + E[ξ])(n−B)

)
E[ησ]

=

n∑
i=1

xi +
(
n(n− 1) +

(
1− βF+γF

2

)
B(B − 1)−

(
3
2 −

βF+γF

2

)
B(n− 1)

)
E[min(xσ(1), xσ(2))]

+ (B − 1 + (1 + LF + E[ξ])(n−B))E[ησ]

=

n∑
i=1

xi +

(
2−

(
3− βF − γF

)B
n

+
(
2− βF − γF

)B(B − 1)

n(n− 1)

)∑
i<j

min(xi, xj)

+
(
B − 1 + (1 + LF + E[ξ])(n−B)

)
E[ησ] ,

where we used Lemma B.1 for the last equality.

C.4. Proof of Lemma 4.4

Proof. Let ξ ∼ 1 + E(1/ρ). The mapping hF defined in Lemma 4.3 becomes for all s, t > 0

hF (s, t) = tF ( st ) = t
(
1− e−

1
ρ (

s
t−1)

)
1t<s .

For all s > 0, it holds for all t < s that

∂hF (s, t)

∂t
= 1− e

1
ρ (

s
t−1) − t× s

ρt2
e−

1
ρ (

s
t−1) = 1−

(
s

ρt
+ 1

)
e−

1
ρ (

s
t−1) ,
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but the mapping u 7→ (uρ + 1)e−
u−1
ρ is decreasing on [1,∞]. Indeed

∂

∂u

(
(uρ + 1)e−

u−1
ρ

)
= 1

ρe
−u−1

ρ − 1
ρ (

u
ρ + 1)e−

u−1
ρ = − u

ρ2 e
−u−1

ρ < 0 ,

and since s
t > 1 we deduce that

−1

ρ
= 1− lim

u→1
(uρ + 1)e−

u−1
ρ ≤ ∂hF (s, t)

∂t
≤ 1− lim

u→∞
(uρ + 1)e−

u−1
ρ = 1 ,

thus |∂hF (s,t)
∂t | ≤ max(1, 1

ρ ) =
1
ρ for all t < s. Otherwise, if t ≥ s then hF (s, t) = 0 and hF (s, ·) is continuous in t = s,

therefore t 7→ hF (s, t) is 1
ρ -Lipschitz.

On the other hand, given that ξ > 1 a.s., it holds for s ≤ 1 that E[ξ1ξ<s] = 0, and for s > 1 that

E[ξ1ξ<s] = Pr(ξ < s) + E[(ξ − 1)1ξ−1<s−1]

= F (s) +

∫ ∞

0

t1t<s−1
e−t/ρ

ρ
dt

= F (s) +

∫ s−1

0

te−t/ρ

ρ
dt

= F (s) +
[
−(t+ ρ)e−t/ρ

]s−1

0

=
(
1− e−(s−1)/ρ

)
+
(
−(s− 1 + ρ)e−t/ρ + ρ

)
= 1 + ρ+ (s+ ρ)e−(s−1)/ρ .

If follows for all s > 0 that

gF (s) = (1− s)
(
1− e−(s−1)/ρ

)
1s>1 +

(
1 + ρ+ (s+ ρ)e−(s−1)/ρ

)
1s>1

=
(
(2 + ρ)− s− (1 + ρ)e−(s−1)/ρ

)
1s>1 ,

hence βF = sup0<s≤1
gF (s)

s = 0 and

γF = sup
s≥1

(gF (s) + s) = sup
s≥1

(
(2 + ρ)− (1 + ρ)e−(s−1)/ρ

)
= 2 + ρ .

Finally, with LF = 1
ρ , βF = 0 and γF = 2+ ρ, and observing that E[ξ] = 1 + ρ, the constants C1

n,B,F and C1
n,B,F defined

in Lemma 4.3 satisfy

C1
n,B,F = 2− (1− ρ)

B

n
− ρ

B(B − 1)

n(n− 1)
= 2− B

n
+ ρ

B

n

(
1− B − 1

n− 1

)
,

C2
n,B,F ≤ (2 + ρ+ 1

ρ )(n−B) +B ≤ 4

ρ
(n−B) +B ,

and the objective function of Algorithm 3 with any job sizes x = {x1, . . . , xn} can be upper-bounded as follows

E[Switch(ξyσ, x)] ≤
n∑

i=1

xi + C1
n,B,F

∑
i<j

min(xi, xj) +

(
4

ρ
(n−B) +B

)
E[ησ] ,

and by Equation (2) we obtain

E[Switch(ξyσ, x)]
OPT(x)

≤
∑n

i=1 xi + C1
n,B,F

∑
i<j min(xi, xj)∑n

i=1 xi +
∑

i<j min(xi, xj)
+

(
4

ρ
(n−B) +B

)
E[ησ]

OPT(x)

= C1
n,B,F −

(C1
n,B,F − 1)

∑n
i=1 xi∑n

i=1 xi +
∑

i<j min(xi, xj)
+

(
4

ρ
(n−B) +B

)
E[ησ]

OPT(x)
.
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As we showed in the proof of Theorem 4.1, we have
∑n

i=1 xi∑n
i=1 xi+

∑
i<j min(xi,xj)

≥ 2
n+1 , and the minimum is reached when all

the job sizes are equal.

E[Switch(ξyσ, x)]
OPT(x)

≤ C1
n,B,F −

2(C1
n,B,F − 1)

n+ 1
+
(

4
ρ (1− B

n ) +
B
n

) nE[ησ]
OPT(x)

,

which yields after taking the supremum over instances x of n jobs

Rn,B(η;Switch) ≤ C1
n,B,F −

2(C1
n,B,F − 1)

n+ 1
+
(

4
ρ (1− B

n ) +
B
n

) nE[ησ]
OPT(x)

(36)

≤ C1
n,B,F +

(
4
ρ (1− B

n ) +
B
n

) nE[ησ]
OPT(x)

=
(
2− B

n + ρB
n (1− B−1

n−1 )
)
+
(

4
ρ (1− B

n ) +
B
n

) nE[ησ]
OPT(x)

.

C.5. Proof of Theorem 4.5

Proof. Let ρ ∈ (0, 1], and x = (x1, . . . , xn) be an instance of job sizes all at least equal to 1. Before starting to run, the
algorithm has access to predictions yσ(1), . . . , yσ(B) of xσ(1), . . . , xσ(B), it samples ξ ∼ 1+E(1/ρ) and sets the breakpoints
zσ(i) = ξyσ(i) for all i ∈ [B]. With σ and the breakpoints fixed, the preferential algorithm runs Algorithm 2 at rate λ and
round-robin at rate 1 − λ. Lemma C.1 and Equation 1 guarantee that, with a fixed permutation σ and fixed breakpoints,
Algorithm 2 is monotonic, as all the mutual delays Pσ(i)σ(j) are non-decreasing functions of xσ(i) and xσ(j). Following the
proof of Lemma 3.1 in (Purohit et al., 2018), when running the preferential algorithm, the completion times of Algorithm
2 increase by a factor of 1/λ, while the completion times of round-robin increase by a factor 1/(1 − λ), and since both
algorithms are monotonic, the fact that some jobs are run simultaneously by both of them can only improve the objective
function. Denoting Switch(ξyσ, x) the objective function of Algorithm 2 with instance x = (xi)

n
i=1 and breakpoints

ξyσ = (ξyσ(i))
B
i=1, and RR(x) the objective function of round-robin with x, it follows that

ALGλ(x) ≤ min

(
Switch(ξyσ, x)

λ
,

RR(x)

1− λ

)
.

Given that RR(x) is deterministic and 2-competitive, and using Lemma 4.4, we obtain by taking the expectation that

E[ALGλ(x)] ≤ E
[
min

(
RR(x)

1− λ
,

Switch(ξyσ, x)
λ

)]
≤ min

(
RR(x)

1− λ
,
E[Switch(ξyσ, x)]

λ

)

≤ min

 2

1− λ
,

(
2− B

n + ρB
n (1− B−1

n−1 )
)
+
(

4
ρ (1− B

n ) +
B
n

)
nE[ησ]
OPT(x)

λ

OPT(x),

which concludes the proof.
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