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A B S T R A C T

We investigate the feature compression of high-dimensional ridge regression using the optimal subsampling
technique. Specifically, based on the basic framework of random sampling algorithm on feature for ridge
regression and the A-optimal design criterion, we first obtain a set of optimal subsampling probabilities.
Considering that the obtained probabilities are uneconomical, we then propose the nearly optimal ones. With
these probabilities, a two step iterative algorithm is established which has lower computational cost and
higher accuracy. We provide theoretical analysis and numerical experiments to support the proposed methods.
Numerical results demonstrate the decent performance of our methods.
1. Introduction

For the famous linear model

𝑦 = 𝐴𝛽 + 𝜐,

where 𝑦 ∈ R𝑛 is the response vector, 𝐴 ∈ R𝑛×𝑝 is the design matrix,
𝛽 ∈ R𝑝 is the parameter vector, and 𝜐 ∈ R𝑛 is the standardized Gaussian
noise vector, ridge regression [1], also known as the least squares
regression with Tikhonov regularization [2], has the following form

min
𝛽

1
2
‖𝑦 − 𝐴𝛽‖22 +

𝜆
2
‖𝛽‖22, (1.1)

where 𝜆 is the regularized parameter, and the corresponding estimator
is

𝛽𝑟𝑙𝑠 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇 𝑦.

In this paper, we focus only on the case 𝑝 > 𝑛, i.e., the high-dimensional
ridge regression. For this case, the dominant computational cost of
the above estimator is from the matrix inversion which takes 𝑂(𝑝3)
flops by direct computation. One way to reduce the cost is to use the
Sherman–Morrison–Woodbury formula, which leads to 𝑂(𝑛2𝑝) flops.
Another straightforward way of amelioration is to solve the problem
(1.1) in the dual space. Specifically, we first solve the dual problem of
(1.1),

min
𝑧

1
2𝜆

‖𝐴𝑇 𝑧‖22 +
1
2
‖𝑧‖22 − 𝑧𝑇 𝑦, (1.2)

and the solution is

�̂�∗ = 𝜆(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦. (1.3)
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Then, setting

𝛽𝑟𝑙𝑠 =
𝐴𝑇 �̂�∗

𝜆
(1.4)

gives the estimator of (1.1) in an alternative form

𝛽𝑟𝑙𝑠 = 𝐴𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦. (1.5)

More details can be found in [3]. Now, the dominant computational
cost is also 𝑂(𝑛2𝑝) which appears in the computation of 𝐴𝐴𝑇 . However,
it is still prohibitive when 𝑝 ≫ 𝑛.

To reduce the computational cost, some scholars considered the
randomized sketching technique [4–9]. The main idea is to compress
the design matrix 𝐴 to be a small one �̂� by post-multiplying it by a
random matrix 𝑆 ∈ R𝑝×𝑟 with 𝑟 ≪ 𝑝, i.e., �̂� = 𝐴𝑆, and hence the
reduced regression can be called the compressed ridge regression. There
are two most common ways to generate 𝑆: random projection and
random sampling. The former can be the (sub)Gaussian matrix [6,7,9],
the sub-sampled randomized Hadamard transform (SRHT) [4–7,9], the
sub-sampled randomized Fourier transform [7], and the CountSketch
(also called the sparse embedding matrix) [6], and the latter can be
the uniform sampling and the importance sampling [8].

Specifically, building on (1.3) and (1.4), Lu et al. [4] presented the
following estimator

𝛽𝐿 =
𝑆𝑆𝑇𝐴𝑇 𝑧𝐿

𝜆
,

where 𝑆 is the SRHT and

𝑧𝐿 = 𝜆(𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)−1𝑦 (1.6)
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is the solution to the dual problem of the following compressed ridge
regression

min
𝛽𝐻

1
2
‖𝑦 − 𝐴𝑆𝛽𝐻‖

2
2 +

𝜆
2
‖𝛽𝐻‖

2
2, (1.7)

and obtained a risk bound. Soon afterwards, for 𝑆 generated by the
product of sparse embedding matrix and SRHT, Chen et al. [5] devel-
oped an estimator as follows:

𝛽𝐶 = 𝐴𝑇 (𝐴𝑆)†𝑇 (𝜆(𝐴𝑆)†𝑇 + 𝐴𝑆)†𝑦, (1.8)

where † denotes the Moore–Penrose inverse, and provided an estima-
tion error bound and a risk bound. Later, Avron et al. [6] proposed the
estimator 𝛽𝐴 = 𝐴𝑇 �̂�, where

�̂� = argmin
𝑏

1
2
‖𝐴𝑆𝑆𝑇𝐴𝑇 𝑏‖22 − 𝑦𝑇𝐴𝐴𝑇 𝑏 + 1

2
‖𝑦‖22 +

𝜆
2
‖𝑆𝑇𝐴𝑇 𝑏‖22

with 𝑆 being the CountSketch, SRHT, or Gaussian matrix. The above
problem is the sketch of the following regression problem

min
𝑏

1
2
‖𝐴𝐴𝑇 𝑏‖22 − 𝑦𝑇𝐴𝐴𝑇 𝑏 + 1

2
‖𝑦‖22 +

𝜆
2
‖𝐴𝑇 𝑏‖22,

hich is transformed from (1.1). Additionally, Wang et al. [7] and
acotte and Pilanci [9] applied the dual random projection proposed
n [10,11] to the high-dimensional ridge regression. By the way, there
re some works on compressed least squares regression [12–19], which
an be written in the following form

̂ 𝑙𝑠 = argmin
𝛼

1
2
‖𝑦 − 𝐴𝑆𝛼‖22, (1.9)

where 𝑆 is typically the (sub)Gaussian matrix.
To the best of our knowledge, there is few work of applying random

ampling to high-dimensional ridge regression. We only found a work
f [8], which proposed an iterative algorithm by using the random sam-
ling with the column leverage scores or ridge leverage scores as the
ampling probabilities. This algorithm can be viewed as an extension of
he method in [6]. However, there are some works on compressed least
quares regression via random sampling. As far as we know, Drineas
t al. [20] first applied the random sampling with column leverage
cores or approximated ones as the sampling probabilities to the least
quares regression and established the following estimator

̂𝐷 = 𝐴𝑇 (𝐴𝑆)†𝑇 (𝐴𝑆)†𝑦,

hich can be regarded as a special case of (1.8). Later, Slawski [18]
nvestigated (1.9) using uniform sampling, and discussed the predictive
erformance.

In this paper, we will consider the application of random sampling
n high-dimensional ridge regression further. Inspired by the technique
f the optimal subsampling used in e.g., [21–29], we will mainly
nvestigate the optimal subsampling probabilities for compressed ridge
egression. The nearly optimal subsampling probabilities and a two step
terative algorithm are also derived. The optimal subsampling is a very
ctive field in recent years, which was first proposed for least squares
egression [21] and then for logistic regression [22]. Later, some schol-
rs applied the technique to softmax regression [25], generalized linear
odels [26,27], quantile regression [28], ridge regression [29], and so

n. These works all focus on large sample problems, i.e., 𝑛 ≫ 𝑝, while
e concern the high-dimensional setting, i.e., 𝑝 ≫ 𝑛.

The remainder of this paper is organized as follows. The basic
ramework of random sampling algorithm and the optimal subsampling
robabilities are presented in Section 2. In Section 3, we propose
he nearly optimal subsampling probabilities and a two step iterative
lgorithm. The detailed theoretical analyses of the proposed methods
re also presented in Sections 2 and 3, respectively. In Section 4,
e provide some numerical experiments to test our methods. The

oncluding remarks of the whole paper are summarized in Section 5.
he proofs of all the main theorems are given in the appendix.

Before moving to the next section, we introduce some standard
2

otations used in this paper.
For the matrix 𝐴 ∈ R𝑛×𝑝, 𝐴𝑖, 𝐴𝑗 , ‖𝐴‖2 and ‖𝐴‖𝐹 denote its 𝑖-
th column, 𝑗-th row, spectral norm and Frobenius norm, respectively.
Also, its thin SVD is given as 𝐴 = 𝑈𝛴𝑉 𝑇 , where 𝑈 ∈ R𝑛×𝜌 and
𝑉 ∈ R𝑝×𝜌 have orthogonal columns, and 𝛴 ∈ R𝜌×𝜌 is a diagonal
matrix with the diagonal entries, i.e., the singular values of 𝐴, satisfying
𝜎1(𝐴) ≥ 𝜎2(𝐴) ≥ ⋯ ≥ 𝜎𝜌(𝐴) > 0.

For the above matrix 𝑉 , its row norms ‖𝑉 𝑖
‖2 with 𝑖 = 1,… , 𝑝 are

called the column leverage scores, which are similar to the famous
statistical leverage scores defined as the diagonal entries of the hat
matrix 𝐴(𝐴𝑇𝐴)†𝐴𝑇 .

For the matrix 𝑋 = 𝑉 𝛴𝜆, where 𝛴𝜆 is a diagonal matrix with

the diagonal entries being
√

𝜎𝑗 (𝐴)2

𝜆+𝜎𝑗 (𝐴)2
(𝑗 = 1,… , 𝜌), its row norms

‖𝑋𝑖
‖2 with 𝑖 = 1,… , 𝑝 are called the ridge leverage scores. For further

explanations on the above two definitions, see [8].
In addition, 𝑂𝑝(1) denotes that a sequence of random variables are

bounded in probability and 𝑜𝑝(1) represents that the sequence converges
to zero in probability. More details can refer to [30, Chap. 2]. In our
case, we also use 𝑂𝑝∣𝑛

to denote that a sequence of random variables
are bounded in conditional probability given 𝑛, where 𝑛 = (𝐴, 𝑦)
enotes the full data matrix. Especially, for any matrix 𝐺 whose entries
re sequences of random variables, 𝐺 = 𝑂𝑝(1) means that all the
ntries of 𝐺 are bounded in probability, 𝐺 = 𝑂𝑝∣𝑛

(1) represents that its
ntries are bounded in conditional probability given 𝑛, and 𝐺 = 𝑜𝑝(1)
ymbolizes that its entries converge to zero in probability.

. Optimal subsampling

In this section, we will present the basic framework of random
ampling algorithm, propose the optimal subsampling probabilities,
nd obtain the corresponding error analysis.

.1. Algorithm and optimal subsampling probabilities

Given a set of probabilities, i.e., the random sampling matrix 𝑆, our
pproximate estimator

̂ = 𝐴𝑇 (𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)−1𝑦 (2.1)

f the high-dimensional ridge regression (1.1) is the combination of the
olution to the compressed dual problem,

rgmin
𝑧

1
2𝜆

‖𝑆𝑇𝐴𝑇 𝑧‖22 +
1
2
‖𝑧‖22 − 𝑧𝑇 𝑦, (2.2)

.e.,

̂ = 𝜆(𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)−1𝑦, (2.3)

nd (1.4). That is, we first solve the problem (2.2) and then get the ap-
roximate estimator through (1.4). Note that this approach is different
rom the one in [4] though the expressions of �̂� in (2.3) and 𝑧𝐿 in (1.6)
re the same. In fact, the authors in [4] first solve the compressed ridge
egression (1.7) in the dual space and then find the estimator of the
ompressed regression via (1.4). Finally, the approximate estimator of
he original ridge regression is recovered by the random matrix 𝑆. The
etailed process of our approach, i.e., the basic framework of random
ampling algorithm, is listed in Algorithm 1.

emark 2.1. In Algorithm 1, the parameter 𝜆 can be determined by
-fold cross-validation, leave-one-out cross-validation, or generalized

ross-validation, see e.g., [29]. Since the main focus of this paper is
he performance of subsampling on high-dimensional ridge regression,
e omit the investigation of the choice of 𝜆.

Now, we investigate the sampling probabilities {𝜋𝑖}
𝑝
𝑖=1 in Algorithm

, which play a critical role on the performance of the algorithm. Below
re some well known probabilities discussed in the literature.

𝑈𝑁𝐼 1 .
• 𝐔𝐧𝐢𝐟𝐨𝐫𝐦 𝐬𝐚𝐦𝐩𝐥𝐢𝐧𝐠 (𝐔𝐍𝐈): 𝜋𝑖 = 𝑝
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Algorithm 1 Random Sampling Algorithm for High-dimensional Ridge
Regression (RSHRR)
Input: 𝑦 ∈ R𝑛, 𝐴 ∈ R𝑛×𝑝, the regularized parameter 𝜆, the sampling size 𝑟 with
≪ 𝑝, and the sampling probabilities {𝜋𝑖}

𝑝
𝑖=1 with 𝜋𝑖 ≥ 0 such that ∑𝑝

𝑖=1 𝜋𝑖 = 1.
Output: the dual solution �̂� and the primal solution 𝛽.

1. initialize 𝑆 ∈ R𝑝×𝑟 to an all-zeros matrix.
2. for 𝑡 ∈ 1,⋯ , 𝑟 do

• pick 𝑖𝑡 ∈ [𝑝] such that Pr(𝑖𝑡 = 𝑖) = 𝜋𝑖.
• set 𝑆𝑖𝑡 𝑡 =

1
√𝑟𝜋𝑖𝑡

.

3. end
4. calculate �̂� as in (2.3).
5. return 𝛽 = 𝐴𝑇 �̂�

𝜆
.

• 𝐂𝐨𝐥𝐮𝐦𝐧 𝐬𝐚𝐦𝐩𝐥𝐢𝐧𝐠 (𝐂𝐎𝐋): 𝜋𝐶𝑂𝐿
𝑖 =

‖𝐴𝑖‖
2
2

∑𝑝
𝑖=1 ‖𝐴𝑖‖

2
2
.

• 𝐋𝐞𝐯𝐞𝐫𝐚𝐠𝐞 𝐬𝐚𝐦𝐩𝐥𝐢𝐧𝐠 (𝐋𝐄𝐕) [8]: 𝜋𝐿𝐸𝑉
𝑖 =

‖𝑉 𝑖
‖

2
2

∑𝑝
𝑖=1 ‖𝑉

𝑖
‖

2
2
.

• 𝐑𝐢𝐝𝐠𝐞 𝐥𝐞𝐯𝐞𝐫𝐚𝐠𝐞 𝐬𝐚𝐦𝐩𝐥𝐢𝐧𝐠 (𝐑𝐋𝐄𝐕)[8]: 𝜋𝑅𝐿𝐸𝑉
𝑖 =

‖𝑋𝑖
‖

2
2

∑𝑝
𝑖=1 ‖𝑋

𝑖
‖

2
2
.

In the following, we discuss a new set of sampling probabilities,
.e., the optimal subsampling probabilities, which can be derived by
ombining the asymptotic variance of the estimators from Algorithm
and the A-optimal design criterion [31]. Considering the property of

race [32, Section 7.7] and the variance Var(𝛽 − 𝛽𝑟𝑙𝑠|𝑛) =
1
𝜆2
𝐴𝑇Var(�̂�−

�̂�∗|𝑛)𝐴, to let the trace tr(Var(𝛽−𝛽𝑟𝑙𝑠|𝑛)) attain its minimum, it suffices
o make tr(Var(�̂�− �̂�∗|𝑛)) get its minimum. Thus, we mainly investigate
he asymptotic variance of the dual estimator �̂�. As done in e.g., [21,
2,24–28], several conditions are first presented in Condition 2.1.
hey essentially describe the information on moment conditions and
re mainly used to derive two auxiliary lemmas, i.e., Lemma A.1
nd Lemma A.2, which are in turn indispensable for the proof of
heorem 2.1.

ondition 2.1. For the design matrix 𝐴 ∈ R𝑛×𝑝, we assume that
𝑝
∑

𝑖=1

‖𝐴𝑖‖
6
2

𝜋2
𝑖 𝑝3

= 𝑂𝑝(1), (2.4)

𝑝

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 ‖𝐴𝑖‖

2
2

𝑝2𝜋𝑖
= 𝑂𝑝(1), (2.5)

𝑝

𝑖=1

‖𝐴𝑖‖
2
2

𝑝
= 𝑂𝑝(1), (2.6)

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖

𝑝
= 𝑂𝑝(1), (2.7)

where 𝜋𝑖 with 𝑖 = 1,… , 𝑝 are the given probabilities.

Remark 2.2. With respect to uniform sampling, i.e., 𝜋𝑖 = 𝑝−1, the
conditions (2.4) and (2.5) are equivalent to
𝑝
∑

𝑖=1

‖𝐴𝑖‖
6
2

𝑝
= 𝑂𝑝(1),

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 ‖𝐴𝑖‖

2
2

𝑝
= 𝑂𝑝(1). (2.8)

In this case, to make (2.8) hold, it is sufficient to suppose that E(‖𝐴𝑖‖
6
2)

< ∞. Furthermore, the conditions (2.6) and (2.7) hold if E(‖𝐴𝑖‖
2
2) < ∞.

Remark 2.3. The above moment type conditions are wild. For
example, if the entries of 𝐴 obey the sub-Gaussian distribution [33],
then all the conditions mentioned above are satisfied. The reason is
that the sub-Gaussian distribution owns finite moments up to any finite
3

order.
With the above conditions, we can present the following asymptotic
distribution theorem.

Theorem 2.1. Assume that the conditions (2.4), (2.5), (2.6), and (2.7)
are satisfied. Then, as 𝑝 → ∞, 𝑟 → ∞, conditional on 𝑛 in probability, the
estimator �̂� constructed by Algorithm 1 satisfies

𝑉 −1∕2(�̂� − �̂�∗)
𝐿
←←←←←←←←→ 𝑁(0, 𝐼), (2.9)

where the notation
𝐿
←←←←←←←←→ represents the convergence in distribution, and

𝑉 = (
𝑀𝐴
𝑝

)−1
𝑉𝑐
𝑟
(
𝑀𝐴
𝑝

)−1

with 𝑀𝐴 = 𝐴𝐴𝑇 + 𝜆𝐼 and 𝑉𝑐 =
∑𝑝

𝑖=1
𝐴𝑖𝐴𝑇

𝑖 �̂�
∗ �̂�∗𝑇 𝐴𝑖𝐴𝑇

𝑖
𝑝2𝜋𝑖

.

Following the A-optimal design criterion and the asymptotic vari-
ance 𝑉 in (2.9), we can provide the optimal subsampling probabilities
for Algorithm 1 by minimizing the trace tr(𝑉 ). Noting that 𝑀𝐴 does not
depend on 𝜋𝑖 and is nonnegative definite, we get that 𝑉𝑐 (𝜋1) ≼ 𝑉𝑐 (𝜋2)
is equivalent to 𝑉 (𝜋1) ≼ 𝑉 (𝜋2) for any two sampling probability sets
1 = {𝜋(1)

𝑖 }𝑝𝑖=1 and 𝜋2 = {𝜋(2)
𝑖 }𝑝𝑖=1. Thus, we can simplify the optimal

criterion by avoiding computing 𝑀−1
𝐴 , namely, we can calculate the

optimal subsampling probabilities by minimizing tr(𝑉𝑐 ) instead of tr(𝑉 ).
ctually, this can be viewed as the L-optimal design criterion [31] with
= 𝑟𝑝−2𝑀2

𝐴.

heorem 2.2. For Algorithm 1, when

𝑂𝑃𝐿
𝑖 =

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2
∑𝑝

𝑖=1 ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2
, 𝑖 = 1,… , 𝑝, (2.10)

here 𝛽𝑟𝑙𝑠(𝑖) is the 𝑖th entry of the ridge estimator 𝛽𝑟𝑙𝑠, tr(𝑉𝑐 ) achieves its
inimum.

emark 2.4. When 𝜆 → 0+, (2.10) can be degraded to the optimal
ubsampling probabilities of the compressed least squares regression.

emark 2.5. Note that 𝑉𝑐 = 𝜆2
∑𝑝

𝑖=1
𝛽2𝑟𝑙𝑠𝐴𝑖𝐴𝑇

𝑖
𝑝2𝜋𝑖

. Thus, by

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣= ‖𝐴𝑇
𝑖 (𝐴𝐴

𝑇 + 𝜆𝐼)−1𝑦‖2 ≤ ‖𝐴𝑖‖2‖(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖2,

we have

tr(𝑉𝑐 ) ≤
𝜆2‖(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖22

𝑝2

𝑝
∑

𝑖=1

‖𝐴𝑖‖
4
2

𝜋𝑖

=
𝜆2‖(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖22

𝑝2

𝑝
∑

𝑖=1
𝜋𝑖

𝑝
∑

𝑖=1

‖𝐴𝑖‖
4
2

𝜋𝑖
.

Further, by Cauchy–Schwarz inequality, we obtain

𝜆2‖(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖22
𝑝2

𝑝
∑

𝑖=1
𝜋𝑖

𝑝
∑

𝑖=1

‖𝐴𝑖‖
4
2

𝜋𝑖
≥

𝜆2‖(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖2
𝑝2

(
𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2)

2.

Thus, analogous to Theorem 2.2, we get that when

𝜋𝑖 = 𝜋𝐶𝑂𝐿
𝑖 =

‖𝐴𝑖‖
2
2

∑𝑝
𝑖=1 ‖𝐴𝑖‖

2
2

, (2.11)

the upper bound of tr(𝑉𝑐 ), i.e.,
𝜆2‖(𝐴𝐴𝑇 +𝜆𝐼)−1𝑦‖22

𝑝2
∑𝑝

𝑖=1
‖𝐴𝑖‖

4
2

𝜋𝑖
, reaches the

inimum. Obviously, (2.11) is easier to compute compared with (2.10).
owever, we has to lose some accuracy as expense in this case.

Similarly, based on ‖𝐴𝑖‖
2
2 ≤ ‖𝐴‖2𝐹 , we have

r(𝑉𝑐 ) ≤
𝜆2‖𝐴‖2𝐹

𝑝2

𝑝
∑

𝑖=1

𝛽2𝑟𝑙𝑠(𝑖)
𝜋𝑖

=
𝜆2‖𝐴‖2𝐹

𝑝2

𝑝
∑

𝑖=1
𝜋𝑖

𝑝
∑

𝑖=1

𝛽2𝑟𝑙𝑠(𝑖)
𝜋𝑖

nd

𝜆2‖𝐴‖2𝐹
2

𝑝
∑

𝜋𝑖
𝑝
∑

𝛽2𝑟𝑙𝑠(𝑖) ≥
𝜆2‖𝐴‖2𝐹

2
(

𝑝
∑

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣)2.
𝑝 𝑖=1 𝑖=1 𝜋𝑖 𝑝 𝑖=1
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Then, we find that when

𝜋𝑖 = 𝜋𝑅𝑆𝐼𝑆
𝑖 =

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣
∑𝑝

𝑖=1 ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣
,

he above upper bound of tr(𝑉𝑐 ) reaches the minimum. Surprisingly,
𝑅𝑆𝐼𝑆
𝑖 corresponds to the screening criteria of iteratively thresholded
idge regression screener given in [34]. This fact implies that the
creener with the probabilities in (2.10) may perform better than the
ne in [34].

.2. Error analysis for RSHRR

We first give an estimation error bound.

heorem 2.3. Assume that

1‖𝑉
𝑖
‖2 ≤ ‖𝐴𝑖‖2 ≤ 𝑐2‖𝑉

𝑖
‖2 𝑎𝑛𝑑

1‖𝑉
𝑖
‖2‖𝑦‖2 ≤∣ 𝛽𝑟𝑙𝑠(𝑖) ∣≤ 𝑠2‖𝑉

𝑖
‖2‖𝑦‖2, 𝑖 = 1,… , 𝑝, (2.12)

here 0 < 𝑐1 ≤ 𝑐2 and 0 < 𝑠1 ≤ 𝑠2, and let 𝑟 ≥ 32𝑠2𝑐2𝜌
3𝑠1𝑐1𝜖2

ln( 4𝜌𝛿 ) with
, 𝛿 ∈ (0, 1). Then, for 𝑆 formed by 𝜋𝑖 = 𝜋𝑂𝑃𝐿

𝑖 and any 𝜖, with the
robability at least 1 − 𝛿, 𝛽 constructed by Algorithm 1 satisfies

𝛽 − 𝛽𝑟𝑙𝑠‖2 ≤ 𝜖‖𝛽𝑟𝑙𝑠‖2, (2.13)

where 𝛽𝑟𝑙𝑠 is as in (1.5).

Remark 2.6. The assumptions in (2.12) are reasonable and reachable
due to 𝐴𝑖 = 𝑈𝛴(𝑉 𝑖)𝑇 and

𝛽𝑟𝑙𝑠(𝑖) = 𝐴𝑇
𝑖 (𝐴𝐴

𝑇 + 𝜆𝐼)−1𝑦 = 𝑉 𝑖(𝛴 + 𝜆𝛴−1)−1𝑈𝑇 𝑦.

In fact, for the worst case, 𝑐1 = 𝜎𝜌(𝐴), 𝑐2 = 𝜎1(𝐴), and 𝑠1 and 𝑠2 are
controlled by min𝑗=1,…,𝜌{

𝜎𝑗 (𝐴)
𝜎2𝑗 (𝐴)+𝜆

} and max𝑗=1,…,𝜌{
𝜎𝑗 (𝐴)

𝜎2𝑗 (𝐴)+𝜆
}, respectively.

The aim for introducing the parameters 𝑐1, 𝑐2, 𝑠1, and 𝑠2 here is to
simplify the expression of 𝑟.

In the following, we provide a risk bound, in which the risk function
is defined as

risk(�̂�) = 1
𝑛
E𝑦(‖�̂� − 𝐴𝛽‖22),

where E𝑦 denotes the expectation on 𝑦, and �̂� denotes the prediction of
𝛽.

heorem 2.4. Suppose that the setting is the same as the one in Theo-

em 2.3, and let 𝜇 =

√

∑𝜌
𝑗=1

𝜎2𝑗 (𝐴)

(𝜎2𝑗 (𝐴)+𝜆)
2 . Then, for 𝑆 formed by 𝜋𝑖 = 𝜋𝑂𝑃𝐿

𝑖

and any 𝜖, with probability at least 1 − 𝛿,

risk(�̂�) ≤ risk(𝑦∗) +
3𝜖
𝑛
‖𝐴‖22(𝜇

2 + ‖𝛽‖22),

where �̂� = 𝐴𝛽 with 𝛽 constructed by Algorithm 1 and 𝑦∗ = 𝐴𝛽𝑟𝑙𝑠.

3. Two step iterative algorithm

Considering that the sampling probabilities (2.10) are uneconomic
since they are required to figure out 𝛽𝑟𝑙𝑠, we now present the approxi-
mate ones. Specifically, we first apply Algorithm 1 with 𝜋𝑖 = 𝜋𝐶𝑂𝐿

𝑖 and
the sampling size being 𝑟0 to return an approximation 𝛽 of 𝛽𝑟𝑙𝑠. Then, a
set of probabilities {𝜋𝑁𝑂𝑃𝐿

𝑖 }𝑝𝑖=1 are obtained by replacing 𝛽𝑟𝑙𝑠(𝑖) in (2.10)
with 𝛽(𝑖), i.e.,

𝜋𝑁𝑂𝑃𝐿
𝑖 =

∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2
∑𝑝

𝑖=1 ∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2
, 𝑖 = 1,… , 𝑝. (3.1)

We call them the nearly optimal subsampling probabilities. Moreover,
to further reduce the estimation error, we bring in the iterative method.

̂ ̂ ̂ ̂
4

The key motivation is that if ‖𝛽𝑡 − 𝛽𝑟𝑙𝑠‖2 ≤ 𝜖‖𝛽𝑡−1 − 𝛽𝑟𝑙𝑠‖2 holds at 𝑂
the 𝑡th iteration, then a solution owning the estimation error bound
𝜖𝑚‖𝛽0 − 𝛽𝑟𝑙𝑠‖2 will be returned when the approximation process is
epeated 𝑚 times. Putting the above discussions together, we propose
two step iterative algorithm, i.e., Algorithm 2.

Algorithm 2 Two Step Iterative Algorithm for High-dimensional Ridge
Regression
Input: 𝑦 ∈ R𝑛, 𝐴 ∈ R𝑛×𝑝, the regularized parameter 𝜆, the iterative number 𝑚,
he sampling size 𝑟 and 𝑟0, where 𝑟0 ≪ 𝑟 ≪ 𝑝.
Output: the dual estimator �̂�𝑚 and the recovered solution 𝛽𝑚.
Step 1:

1. initialize 𝑆∗ ∈ R𝑝×𝑟0 to an all-zeros matrix.
2. for 𝑖 ∈ 1,⋯ , 𝑝 do

• 𝜋𝐶𝑂𝐿
𝑖 = ‖𝐴𝑖‖

2
2

∑𝑝
𝑖=1 ‖𝐴𝑖‖

2
2
.

3. end
4. for 𝑡 ∈ 1,⋯ , 𝑟0 do

• pick 𝑖𝑡 ∈ [𝑝] such that Pr(𝑖𝑡 = 𝑖) = 𝜋𝑖.
• 𝑆∗

𝑖𝑡 𝑡
= 1

√𝑟0𝜋𝑖𝑡
.

5. end
6. compute 𝐴∗ = 𝐴𝑆∗.
7. compute 𝐶 = (𝐴∗𝐴∗𝑇 + 𝜆𝐼)−1.

Step 2:

1. set �̂�0 = 0.
2. for 𝑡 ∈ 1,⋯ , 𝑚 do

• 𝛽𝑡−1 =
1
𝜆
𝐴𝑇 �̂�𝑡−1.

• 𝑏𝑡 = 𝑦 − 𝐴𝛽𝑡−1 − �̂�𝑡−1.
• 𝑧 = 𝜆𝐶𝑏𝑡.
• 𝛽 = 𝐴𝑇 𝑧

𝜆
.

• compute 𝜋𝑁𝑂𝑃𝐿
𝑖 by (3.1).

• compute �̂�𝑡 by applying Algorithm 1 with 𝑦 = 𝑏𝑡 and 𝜋𝑖 = 𝜋𝑁𝑂𝑃𝐿
𝑖 .

• �̂�𝑡 = �̂�𝑡−1 + �̂�𝑡.

3. end
4. return �̂�𝑚 and 𝛽𝑚 = 𝐴𝑇 �̂�𝑚

𝜆
.

Remark 3.1. The step 2 of Algorithm 2 can be viewed as a variant of
iterative Hessian sketch (IHS) [7]. This is because, at the 𝑡th iteration,
applying Algorithm 1 for finding �̂�𝑡 is equivalent to applying Hessian
sketch to the residual between 𝑧 and �̂�𝑡−1. That is, at the 𝑡th iteration,
we need to solve the following problem

min
𝑤𝑡

1
2𝜆

‖𝑆𝑇𝐴𝑇𝑤𝑡‖
2
2 +

1
2
‖𝑤𝑡‖

2
2 −𝑤𝑇

𝑡 𝑏𝑡,

where 𝑤𝑡 = 𝑧 − 𝑧𝑡−1 and 𝑆 is constructed by 𝜋𝑁𝑂𝑃𝐿
𝑖 .

In addition, the step 2 of Algorithm 2 is also similar to Algorithm
1 in [8]. However, the key ideas of the two methods are different.
As mentioned above, the former is essentially the IHS, which is in
turn the specialization of Newton sketch in least squares problem [35].
While, the latter can be regraded as the preconditioned Richardson iter-
ation [36, Chap. 2] for solving (𝐴𝐴𝑇 + 𝜆𝐼)𝑧 = 𝜆𝑦 with pre-conditioner
𝑃−1 = (𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)−1 and the step-size being one. Moreover, its
andom sampling matrix 𝑆 is fixed during the iteration.

emark 3.2. The computational cost of Algorithm 2 includes two
ain parts. The first one is for computing 𝛽 and hence 𝜋𝑁𝑂𝑃𝐿

𝑖 , which
ainly appears in the step 1 of Algorithm 2 and costs 𝑂(𝑛𝑝 + 𝑛2𝑟0),

nd the other one is 𝑂(𝑚𝑛2𝑟 + 𝑚𝑛𝑝) consumed for deriving 𝛽𝑚, which
onstitutes the step 2 of Algorithm 2. As a result, the total cost is
(𝑛2𝑟 + 𝑚𝑛2𝑟 + 𝑚𝑛𝑝).
0
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By contrast, it suffices to run the step 2 in Algorithm 2 if 𝜋𝑂𝑃𝐿
𝑖 ,

𝜋𝐿𝐸𝑉
𝑖 , 𝜋𝑅𝐿𝐸𝑉

𝑖 , 𝜋𝑈𝑁𝐼
𝑖 , or 𝜋𝐶𝑂𝐿

𝑖 is used to generate 𝑆. In addition, when
𝜋𝑂𝑃𝐿
𝑖 is employed, 𝐶 in Algorithm 2 should be (𝐴𝐴𝑇 +𝜆𝐼)−1, and when

𝜋𝐿𝐸𝑉
𝑖 , 𝜋𝑅𝐿𝐸𝑉

𝑖 , 𝜋𝑈𝑁𝐼
𝑖 , or 𝜋𝐶𝑂𝐿

𝑖 is adopted, the lines 5–7 of the step 2 of
Algorithm 2 can be omitted. Consequently, taking the above first three
probabilities for obtaining 𝛽𝑚 costs 𝑂(𝑛2𝑝 +𝑚𝑛2𝑟 +𝑚𝑛𝑝),1 and applying
𝜋𝑈𝑁𝐼
𝑖 and 𝜋𝐶𝑂𝐿

𝑖 for 𝛽𝑚 spends 𝑂(𝑚𝑛2𝑟 + 𝑚𝑛𝑝).
Therefore, if 𝑟0 is much smaller than 𝑝, Algorithm 2 with 𝜋𝑁𝑂𝑃𝐿

𝑖 will
be much cheaper than the algorithm with 𝜋𝑂𝑃𝐿

𝑖 , 𝜋𝐿𝐸𝑉
𝑖 , or 𝜋𝑅𝐿𝐸𝑉

𝑖 . Oth-
erwise, these algorithms will have similar cost. As expected, Algorithm
2 with 𝜋𝑈𝑁𝐼

𝑖 or 𝜋𝐶𝑂𝐿
𝑖 is always quite cheap.

Next, we show that the difference of �̂�∗ and �̂�1 still obeys asymptot-
ically normal distribution, where �̂�1 is returned from Algorithm 2 with
𝑚 = 1.

Theorem 3.1. Suppose that the conditions (2.6) and (2.7) hold, and let

𝑁1‖𝐴𝑖‖2‖𝑦‖2 ≤∣ 𝛽(𝑖) ∣≤ 𝑁2‖𝐴𝑖‖2‖𝑦‖2 𝑎𝑛𝑑

𝑁3‖𝐴𝑖‖2‖𝑦‖2 ≤∣ 𝛽𝑟𝑙𝑠(𝑖) ∣≤ 𝑁4‖𝐴𝑖‖2‖𝑦‖2, 𝑖 = 1,… , 𝑝, (3.2)

where 𝛽(𝑖) is as in Algorithm 2, 0 < 𝑁1 ≤ 𝑁2, and 0 < 𝑁3 ≤ 𝑁4. Then, as
𝑝 → ∞, 𝑟 → ∞, 𝑟0 → ∞, conditional on 𝑛 and 𝛽 in probability, the dual
estimator �̂�1 constructed by Algorithm 2 satisfies

𝑉 −1∕2
𝑂𝑃𝐿 (�̂�1 − �̂�∗)

𝐿
←←←←←←←←→ 𝑁(0, 𝐼), (3.3)

where

𝑉𝑂𝑃𝐿 = (
𝑀𝐴
𝑝

)−1
𝑉𝑐𝑂𝑃𝐿

𝑟
(
𝑀𝐴
𝑝

)−1

with

𝑉𝑐𝑂𝑃𝐿 =
𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

𝑝2𝜋𝑂𝑃𝐿
𝑖

=
𝑝
∑

𝑖=1
∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

𝑝2 ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2
.

Now, we provide an estimation error bound of our algorithm.

Theorem 3.2. To the assumptions of Theorem 2.3, add that

𝑠3‖𝑉
𝑖
‖2‖𝑦‖2 ≤∣ 𝛽(𝑖) ∣≤ 𝑠4‖𝑉

𝑖
‖2‖𝑦‖2, 𝑖 = 1,… , 𝑝, (3.4)

where 𝛽(𝑖) is as in Algorithm 2 and 0 < 𝑠3 ≤ 𝑠4, the initial value �̂�0 is set
s 0, and let 𝑟 ≥ 32𝑠4𝑐2𝜌

3𝑠3𝑐1𝜖2
ln( 4𝜌𝛿 ) with 𝜖, 𝛿 ∈ (0, 1) and 𝑚 < 1

𝛿 . Then, for 𝑆
onstructed by 𝜋𝑁𝑂𝑃𝐿

𝑖 and any 𝜖, with the probability at least 1 − 𝑚𝛿, 𝛽𝑚
enerated from Algorithm 2 satisfies

𝛽𝑚 − 𝛽𝑟𝑙𝑠‖2 ≤ 𝜖𝑚‖𝛽𝑟𝑙𝑠‖2. (3.5)

emark 3.3. The bound (3.5) can be used to determine the iteration
umber. Specifically, it is enough to do log𝜖 𝜄 iterations to get ‖𝛽𝑚 −

�̂�𝑙𝑠‖2 ≤ 𝜄‖𝛽𝑟𝑙𝑠‖2.

. Numerical experiments

In this section, we provide the numerical results of experiments with
imulation data and real data. All experiments are implemented on a
aptop running MATLAB software with 16 GB random-access memory
RAM).

1 Note that the computational complexity only contains the main cost
f algorithms. Hence, the algorithms may perform a little differently in
omputing time though they have the same complexity.
5

4.1. Simulation data—Example 1

In this example, the simulation data is generated as done in [18].
Specifically, we first produce an 𝑛-by-𝑝 matrix 𝐵 randomly, whose
entries are drawn i.i.d. from the 𝑁(0, 1) distribution and SVD is denoted
as 𝑈𝐵𝛴𝐵𝑉 𝑇

𝐵 with 𝑈𝐵 ∈ R𝑛×𝑛, 𝛴𝐵 ∈ R𝑛×𝑛 and 𝑉𝐵 ∈ R𝑝×𝑛. Then, we
get 𝐴 by replacing 𝛴𝐵 with 𝛴0, i.e, 𝐴 = 𝑈𝐵𝛴0𝑉 𝑇

𝐵 , where 𝛴0 is a
diagonal matrix with polynomial decay diagonal entries 𝜎𝑗 (𝑗 = 1,… , 𝑛),
namely, 𝜎𝑗 ∝ 9 × 𝑗−8. Furthermore, we construct the response vector 𝑦
by 𝑦 = 𝐴𝛽 + 𝜍, where 𝛽 ∈ R𝑝 and 𝜍 ∈ R𝑛 have i.i.d. 𝑁(0, 1) entries.

In the specific experiments, we set 𝑛 = 800 and 𝑝 = 20000, and
split the data into 500 training part 𝐴 and 300 testing part 𝐴𝑡𝑒𝑠𝑡. The
description on parameters of the experiments is summarized in Table 1,
the explanation on six sampling methods is given in Table 2, and
the numerical results on accuracy, i.e., the estimation error ‖𝛽𝑚−𝛽𝑟𝑙𝑠‖2

‖𝛽𝑟𝑙𝑠‖2

and the prediction error ‖𝐴𝑡𝑒𝑠𝑡𝛽𝑚−𝐴𝑡𝑒𝑠𝑡𝛽𝑟𝑙𝑠‖2
‖𝐴𝑡𝑒𝑠𝑡𝛽𝑟𝑙𝑠‖2

, and CPU time2 are shown
in Tables 3–4 and Figs. 1–4. Note that all the error results shown in
figures are on log-scale and all the numerical results are based on 50
replications of Algorithm 2.

In the first experiment, we aim to show that the estimators estab-
lished by OPL and NOPL have better performance. The corresponding
numerical results are presented in Tables 3–4 and Figs. 1–3. From these
tables and figures, it is obvious to find that OPL and NOPL outperform
other methods on estimation and prediction accuracy no matter what
𝑟 and 𝜆 are and when 𝑚 is moderate, and the differences can be more
than nine orders of magnitude; see e.g., the case on 𝑚 = 3 in Tables 3–4.
But they need more computing time than COL and UNI. However, the
improvement in accuracy is more than the sacrifice of calculation cost,
and fortunately, OPL and NOPL are cheaper than LEV and RLEV. What
is more, we can observe that NOPL has extremely similar accuracy to
OPL, and the former consumes less running time. In addition, in most
cases, the errors of all the methods decrease when 𝑟, 𝜆 and 𝑚 increase.
Whereas, when 𝑚 is large enough, they are almost unchanged but very
small, and all the methods perform similarly. This is mainly because
iteration can reduce error and, in that case, the sampling ways have
negligible effect on accuracy.

For the second experiment, we compare the methods OPL and NOPL
with different 𝑟0. According to the numerical results displayed in Fig. 4,
it is evident to conclude that for different 𝑟0, NOPL is able to achieve
significantly similar accuracy to OPL but spends less computational
cost. The latter confirms the complexity analysis in Remark 3.2.

4.2. Simulation data—Example 2

For this example, we produce the simulation data as done in [8].
Specifically, we construct an 𝑛-by-𝑝 design matrix 𝐴 = 𝑃𝐷𝑄𝑇 + 𝛼𝑀 ,
where 𝑃 ∈ R𝑛×𝑛 is a random matrix with i.i.d. 𝑁(0, 1) entries, 𝐷 ∈ R𝑛×𝑛

is a diagonal matrix with diagonal entries 𝐷𝑖𝑖 = (1 − 𝑖−1
𝑝 )𝑖(𝑖 = 1,… , 𝑛),

∈ R𝑝×𝑛 is a random column orthonormal matrix, 𝑀 ∈ R𝑛×𝑝 is a
oise matrix with i.i.d. 𝑁(0, 1) entries, and 𝛼 > 0 is a parameter used
o balance 𝑃𝐷𝑄𝑇 and 𝑀 . In addition, the response vector 𝑦 ∈ R𝑛 is
enerated according to 𝑦 = 𝐴𝛽 + 𝛾𝜍, where 𝛽 ∈ R𝑝 and 𝜍 ∈ R𝑝 are
onstructed by i.i.d. 𝑁(0, 1) entries. In the specific experiments, we set
= 800, 𝑝 = 20000, 𝛼 = 0.0001 and 𝛾 = 0.5, divide the data into 500

raining part and 300 testing part, and repeat the implementations in
ection 4.1 with different 𝑟, 𝑟0, 𝜆 and 𝑚 shown in Table 5.

From the numerical results presented in Tables 6–7 and Figs. 5–8,
e can gain the similar observations to the ones in Section 4.1. That is,

aking different 𝑟 and 𝜆, and suitable 𝑚, OPL and NOPL always perform
etter than other methods on accuracy, however, need more CPU time
ompared with COL and UNI. And, OPL and NOPL still show better
omputational efficiency than LEV and RLEV. Besides, when setting a

2 To ensure fairness, the CPU time includes the time of computing 𝛽 .
𝑟𝑙𝑠



Knowledge-Based Systems 286 (2024) 111426H. Li and C. Niu
Table 1
Description of two experiments for example 1.
Kinds Comparison 𝑟 𝜆 𝑚 𝑟0 Results

1 six methods
500 to 5000 10 3 100 (NOPL) Figs. 1–3(a)
1000 1 to 50 3 100 (NOPL) Figs. 1–3(b)
1000 10 1 to 15 100 (NOPL) Tables 1–3 & Fig. 3(c)

2 OPL and NOPL 2000 10 3 100 to 2000 (NOPL) Fig. 4
Fig. 1. Comparison of estimation errors using different methods for example 1.
Fig. 2. Comparison of prediction errors using different methods for example 1.
Fig. 3. Comparison of CPU time using different methods for example 1.
6
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Fig. 4. Comparison of OPL and NOPL with different 𝑟0 for example 1.
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Table 2
Explanation of sampling methods with different probabilities.

Method 𝜋𝑖 Expression

OPL 𝜋𝑂𝑃𝐿
𝑖 ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2∕

∑𝑝
𝑖=1 ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2

NOPL 𝜋𝑁𝑂𝑃𝐿
𝑖 ∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2∕

∑𝑝
𝑖=1 ∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2

LEV 𝜋𝐿𝐸𝑉
𝑖 ‖𝑉 𝑖

‖

2
2∕
∑𝑝

𝑖=1 ‖𝑉
𝑖
‖

2
2

RLEV 𝜋𝑅𝐿𝐸𝑉
𝑖 ‖𝑋𝑖

‖

2
2∕
∑𝑝

𝑖=1 ‖𝑋
𝑖
‖

2
2

COL 𝜋𝐶𝑂𝐿
𝑖 ‖𝐴𝑖‖

2
2∕
∑𝑝

𝑖=1 ‖𝐴𝑖‖
2
2

UNI 𝜋𝑈𝑁𝐼
𝑖 1∕𝑝

Table 3
Comparison of estimation errors using different 𝑚 for example 1.

Methods 𝑚

1 2 3 4 10

OPL 2.0458e−06 1.8172e−08 6.5331e−14 1.5007e−15 1.1798e−15
NOPL 2.8882e−06 1.8012e−08 7.3978e−14 1.4667e−15 1.1803e−15
LEV 0.00756 7.745e−05 3.8597e−07 4.4529e−09 1.1796e−15
RLEV 0.00026 4.7143e−08 1.848e−11 1.6885e−15 1.1801e−15
COL 0.00027 3.7182e−08 1.4237e−11 1.9279e−15 1.1827e−15
UNI 0.02601 0.00118 3.7761e−05 6.8432e−07 2.0803e−15

Table 4
Comparison of prediction errors using different 𝑚 for example 1.

Methods 𝑚

1 2 3 4 10

OPL 1.0255e−06 1.8173e−08 3.2869e−14 8.034e−16 3.6206e−16
NOPL 1.374e−06 1.8014e−08 4.8969e−14 7.4065e−16 3.651e−16
LEV 0.00758 7.7457e−05 3.8601e−07 4.4533e−09 3.6472e−16
RLEV 0.00026 4.7143e−08 1.8481e−11 1.0908e−15 3.6414e−16
COL 0.00027 3.7183e−08 1.4237e−11 1.347e−15 3.7391e−16
UNI 0.02601 0.00118 3.7764e−05 6.8438e−07 1.3422e−15

proper 𝑟0 or a large 𝜆, NOPL and OPL have similar accuracy but the
former needs less running time. Unfortunately, when 𝑟0 is very large,
NOPL loses its advantage in CPU time. This is consistent with the dis-
cussions on computational cost given in Remark 3.2. In addition, unlike
the results on accuracy in Section 4.1, the corresponding improvement
of OPL and NOPL over other methods is not very remarkable in this
example, about one order of magnitude. This is mainly because the data
here is more even than the one from Example 1 and the importance
sampling is well-known to be more suitable for uneven data.
7

4.3. Real data—gene expression cancer RNA-seq data set

The data set is from the UCI machine learning repository, which can
be found in http://archive.ics.uci.edu/ml/datasets/gene+expression+
cancer+RNA-Seq. Here, we only take the first 700 samples (400 for
training part and 300 for testing part) with 20531 real-valued features,
and centralize the design matrix. The response vector consists of 1,
2, 3, 4 and 5 labels, which represent five different types of tumors,
i.e., PRAD, LUAD, BRCA, KIRC and COAD. We also centralize it.

We repeat the experiments in Sections 4.1 and 4.2 with different 𝑟,
𝑟0, 𝜆 and 𝑚. More details are put in Table 8.

The numerical results are displayed in Tables 9–10 and Figs. 9–12,
and the conclusions summarized from these tables and figures are akin
to the ones found in Sections 4.1 and 4.2. Namely, compared with UNI
and COL, the accuracy of OPL and NOPL is dramatically improved at
the cost of slightly computational efficiency, and OPL performs better
than LEV and RLEV on accuracy and computing time. Although NOPL
is only a little better than LEV and RLEV on accuracy, it owns great
advantage of CPU time. When taking a proper 𝑟0, NOPL can be a well
approximation of OPL but consumes less computing time. However,
when 𝑟0 is very large, NOPL will lose its superiority in computational
cost. In addition, for this real data, the choice of 𝜆 has little influence
n accuracy.

.4. Real data—gisette data set

This data set is also from the UCI machine learning repository,
hich can be found in http://archive.ics.uci.edu/ml/datasets/Gisette.

n our experiments, the first 200 samples (100 for training part and
00 for testing part) with 5000 real-valued features are taken, and
he response vector is made up with ±1 labels. Also, we centralize the

response vector and design matrix prior to analysis.
As done in Section 4.3, we can repeat the experiments in Sec-

tions 4.1 and 4.2 with different 𝑟, 𝑟0, 𝜆 and 𝑚 described in Table 11.
Considering that the obtained observations are similar to the ones
from Section 4.3, we omit the related numerical results here. Instead,
as done in [5,8], we next consider an alternative accuracy metric,
i.e., | 𝑔(𝛽𝑚)

𝑔(𝛽𝑟𝑙𝑠)
− 1|, where 𝑔(𝑥) = ‖𝐴𝑥 − 𝑦‖22 + 𝜆‖𝑥‖22.

The numerical results are shown in Tables 12–14. The observations
re also similar to the ones from Sections 4.1 and 4.2. To be more
pecific, whatever the values of 𝑟 and 𝑚 are, for accuracy, OPL and
OPL almost always outperform other methods. Similarly, as for CPU

ime, OPL and NOPL are inferior to UNI and COL, but are superior to
EV and RLEV. Only when 𝑟0 is not particularly large, NOPL has good
erformance on both accuracy and computing time, and qualifies as a
ell alternative to OPL. Besides, the change of 𝜆 also has little effect on

accuracy and CPU time. While, to save space, the corresponding results
are omitted.

http://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
http://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
http://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
http://archive.ics.uci.edu/ml/datasets/Gisette
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Table 5
Description of two experiments for example 2.
Kinds Comparison 𝑟 𝜆 𝑚 𝑟0 Results

1 six methods
3000 to 10000 20 15 2000 (NOPL) Figs. 5–7(a)
5000 1 to 200 15 2000 (NOPL) Figs. 5–7(b)
5000 20 1 to 30 2000 (NOPL) Tables 6–7 & Fig. 7(c)

2 OPL and NOPL 5000 20 15 500 to 20000 (NOPL) Fig. 8
Fig. 5. Comparison of estimation errors using different methods for example 2.
Fig. 6. Comparison of prediction errors using different methods for example 2.
Fig. 7. Comparison of CPU time using different methods for example 2.
8
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Fig. 8. Comparison of OPL and NOPL with different 𝑟0 for example 2.
Fig. 9. Comparison of estimation errors for different methods for Gene Expression Cancer RNA-Seq data set.
Fig. 10. Comparison of prediction errors for different methods for Gene Expression Cancer RNA-Seq data set.
5. Concluding remarks

In this paper, we explore the optimal subsampling probabilities of
high-dimensional ridge regression under the A-optimal design criterion
and provide a corresponding algorithm. To make the probabilities
cheaper and more practical, we give a set of nearly optimal ones. More-
over, a two step iterative algorithm is also provided to further improve
9

the accuracy of the estimator. For the proposed algorithms, we give de-
tailed theoretical analysis and extensive experiments. Numerical results
show that our methods, i.e., OPL and NOPL, outperform the existing
methods on accuracy, and the cheaper NOPL can be a good substitute
for OPL. An interesting future work is to study other high-dimensional
and complex regression problems, e.g., the high-dimensional quantile
regression.
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Fig. 11. Comparison of CPU time for different methods for Gene Expression Cancer RNA-Seq data set.
Fig. 12. Comparison of OPL and NOPL with different 𝑟0 and Gene Expression Cancer RNA-Seq data set.
Table 6
Comparison of estimation errors using different 𝑚 for example 2.

Methods 𝑚

1 4 10 13 16 22

OPL 0.14132 0.00038 2.8853e−09 7.9237e−12 2.3316e−14 3.2211e−15
NOPL 0.15264 0.00053 6.0318e−09 2.0625e−11 6.9721e−14 3.2309e−15
LEV 0.16803 0.00081 1.8649e−08 8.9978e−11 3.9035e−13 3.2226e−15
RLEV 0.16685 0.00079 1.8415e−08 8.1578e−11 3.9137e−13 3.2184e−15
COL 0.16751 0.00080 1.805e−08 8.7775e−11 4.3033e−13 3.2151e−15
UNI 0.16783 0.00084 1.8114e−08 8.5709e−11 4.4034e−13 3.2336e−15

Table 7
Comparison of prediction errors using different 𝑚 for example 2.

Methods 𝑚

1 4 10 13 16 22

OPL 0.158 0.00042 3.2237e−09 8.8176e−12 2.6332e−14 2.714e−15
NOPL 0.17002 0.00059 6.8145e−09 2.3055e−11 7.7973e−14 2.726e−15
LEV 0.18753 0.00091 2.0976e−08 1.0165e−10 4.3414e−13 2.7205e−15
RLEV 0.18829 0.00089 2.0577e−08 9.2623e−11 4.3598e−13 2.7082e−15
COL 0.18507 0.00091 2.0125e−08 9.6612e−11 4.7958e−13 2.7158e−15
UNI 0.18471 0.00093 2.0088e−08 9.6145e−11 4.959e−13 2.7352e−15
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Appendix A. Proof of Theorem 2.1

We start by establishing two lemmas.

Lemma A.1. Assuming that the conditions (2.4), (2.5) and (2.6) are
satisfied, we have
𝑝
∑

𝑖=1
𝜋𝑖‖

𝑒𝑖
𝑝
‖

3
2 = 𝑂𝑝(1), (A.1)

where 𝑒 = (
𝐴𝑖𝐴𝑇

𝑖 + 𝜆𝐼)�̂�∗ − 𝑦 with 𝑦 = 𝜆𝑦 and �̂�∗ being as in (1.3).
𝑖 𝜋𝑖
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∑

𝜋

∑

(

∑

Table 8
Description of two experiments using Gene Expression Cancer RNA-Seq data set.
Kinds Comparison 𝑟 𝜆 𝑚 𝑟0 Results

1 six methods
5000 to 10000 10 16 5000 (NOPL) Figs. 9–11(a)
8000 1 to 50 16 5000 (NOPL) Figs. 9–11(b)
8000 10 1 to 26 5000 (NOPL) Tables 9–10 & Fig. 11(c)

2 OPL and NOPL 8000 10 16 1000 to 20531 (NOPL) Fig. 12
T
E

V

Table 9
Comparison of estimation errors using different 𝑚 for Gene Expression Cancer RNA-Seq
data set.

Methods 𝑚

1 4 13 16 19

OPL 0.21365 0.00226 2.5971e−09 2.7892e−11 2.7727e−13
NOPL 0.23603 0.00335 1.0478e−08 1.5595e−10 2.202e−12
LEV 0.24382 0.0038 1.244e−08 1.9204e−10 2.8633e−12
RLEV 0.25115 0.0038 1.2808e−08 1.864e−10 2.9497e−12
COL 0.26221 0.00619 9.6599e−08 2.391e−09 6.0913e−11
UNI 0.46642 0.05523 0.00193 0.00053 0.00056

Table 10
Comparison of prediction errors using different 𝑚 for Gene Expression Cancer RNA-Seq
data set.

Methods 𝑚

1 4 13 16 19

OPL 0.06048 0.00053 6.3389e−10 6.5315e−12 6.632e−14
NOPL 0.06688 0.00081 2.633e−09 3.8972e−11 5.344e−13
LEV 0.08874 0.00099 3.3232e−09 5.4092e−11 7.7124e−13
RLEV 0.096764 0.00107 3.3518e−09 4.8333e−11 7.8531e−13
COL 0.07601 0.00137 2.0208e−08 5.2209e−10 1.3269e−11
UNI 0.20076 0.01479 0.00036 9.664e−05 8.8783e−05

Proof. With 𝑒𝑖 = (
𝐴𝑖𝐴𝑇

𝑖
𝜋𝑖

+ 𝜆𝐼)�̂�∗ − 𝑦 and (1.3), it is easy to see that

𝑝

𝑖=1
𝜋𝑖‖

𝑒𝑖
𝑝
‖

3
2 =

1
𝑝3

𝑝
∑

𝑖=1
𝜋𝑖‖(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦 − 𝑦‖32.

Then, considering the basic triangle inequality and the fact that ∑𝑝
𝑖=1

𝑖 = 1, we can have
𝑝

𝑖=1
𝜋𝑖‖

𝑒𝑖
𝑝
‖

3
2 ≤

1
𝑝3

[
𝑝
∑

𝑖=1
𝜋𝑖‖(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖32] +

‖𝑦‖32
𝑝3

+ 3 1
𝑝3

[
𝑝
∑

𝑖=1
𝜋𝑖‖(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖22‖𝑦‖2]

+ 3 1
𝑝3

[
𝑝
∑

𝑖=1
𝜋𝑖‖(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)(𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦‖2‖𝑦‖22]

≤
‖𝑦‖32𝜎

3
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

3
2

𝜋2
𝑖

+ 3𝜆
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

2
2

𝜋𝑖

+ 3𝜆2
𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆3) +

‖𝑦‖32
𝑝3

+ 3
‖𝑦‖32𝜎

2
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

2
2

𝜋𝑖
+ 2𝜆

𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆2)

+ 3
‖𝑦‖32𝜎𝑛(𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆). (A.2)

Following

‖𝑦‖22
𝑝

= 𝑜𝑝(1), (A.3)

which can be derived from 𝑛𝑝−1 → 0, and noting (2.4), (2.5), (2.6) and
A.2), we can get
𝑝

𝜋𝑖‖
𝑒𝑖
‖

3
2 ≤

‖𝑦‖32𝜎
3
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
3

(
𝑝
∑ ‖𝐴𝑖‖

6
2

2
)
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𝑖=1 𝑝 𝑝 𝑖=1 𝜋𝑖
+ 𝑜𝑝(1) by (2.5), (2.6), (A.2), and (A.3)
=𝑂𝑝(1). by (2.4)

Thus, (A.1) is arrived. □

Lemma A.2. Suppose that the conditions (2.5) and (2.7) hold. Then,
conditional on 𝑛 in probability,

𝑀𝐴 −𝑀𝐴
𝑝

= 𝑂𝑝∣𝑛
(𝑟−1∕2), (A.4)

𝑒∗

𝑝
= 𝑂𝑝∣𝑛

(𝑟−1∕2), (A.5)

where 𝑀𝐴 = 𝐴𝐴𝑇 + 𝜆𝐼 , �̂�𝐴 = 𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼 with 𝑆 ∈ R𝑝×𝑟 constructed
as in Algorithm 1, and 𝑒∗ = (�̂�𝐴�̂�∗ − 𝑦) with 𝑦 = 𝜆𝑦 and �̂�∗ being as in
(1.3).

Proof. First, note that

1
𝑝2

𝑝
∑

𝑖=1
𝜋𝑖[(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼) − (𝐴𝐴𝑇 + 𝜆𝐼)][(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼) − (𝐴𝐴𝑇 + 𝜆𝐼)]

= 1
𝑝2

𝑝
∑

𝑖=1
𝜋𝑖(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
− 𝐴𝐴𝑇 )(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
− 𝐴𝐴𝑇 )

= 1
𝑝2

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝐴𝑖𝐴𝑇

𝑖
𝜋𝑖

− 𝐴𝐴𝑇𝐴𝐴𝑇

𝑝2

= 𝑂𝑝(1),

where the last equality is from (2.5) and (2.7). This result implies, for
any 𝑛-dimensional vector 𝓁 with finite elements,

1
𝑝2

𝑝
∑

𝑖=1
𝜋𝑖[(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼) − (𝐴𝐴𝑇 + 𝜆𝐼)]𝓁𝓁𝑇 [(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼) − (𝐴𝐴𝑇 + 𝜆𝐼)]

= 1
𝑝2

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝓁𝓁

𝑇𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
− 𝐴𝐴𝑇 𝓁𝓁𝑇𝐴𝐴𝑇

𝑝2
= 𝑂𝑝(1). (A.6)

Thus, following E(�̂�𝐴 ∣ 𝐴) = 𝑀𝐴, it is natural to get

Var(
(�̂�𝐴 −𝑀𝐴)𝓁

𝑝
∣ 𝐴) =E[(

�̂�𝐴 −𝑀𝐴
𝑝

)𝓁𝓁𝑇 (
�̂�𝐴 −𝑀𝐴

𝑝
) ∣ 𝐴]

= 1
𝑟𝑝2

𝑝
∑

𝑖=1
𝜋𝑖[(

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)

− (𝐴𝐴𝑇 + 𝜆𝐼)]𝓁𝓁𝑇 [(
𝐴𝑖𝐴𝑇

𝑖
𝜋𝑖

+ 𝜆𝐼) − (𝐴𝐴𝑇 + 𝜆𝐼)]

=𝑂𝑝(𝑟−1),

which together with the Markov’s inequality implies (A.4).
Combining (A.3) and (A.6), we can get

1
𝑝2

𝑝
∑

𝑖=1
𝜋𝑖�̂�

∗𝑇 (
𝐴𝑖𝐴𝑇

𝑖
𝜋𝑖

+ 𝜆𝐼)𝓁𝓁𝑇 (
𝐴𝑖𝐴𝑇

𝑖
𝜋𝑖

+ 𝜆𝐼)�̂�∗

= 1
𝑝2

�̂�∗𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)𝓁𝓁𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)�̂�∗ + 𝑂𝑝(1). (A.7)

hus, considering 𝑒∗ =
∑𝑟

𝑡=1
1
𝑟 𝑒𝑖𝑡 with 𝑒𝑖𝑡 = (

𝐴𝑖𝑡𝐴
𝑇
𝑖𝑡

𝜋𝑖𝑡
+ 𝜆𝐼)�̂�∗ − 𝑦 and

(𝑒𝑖𝑡 ∣ 𝑛) = 0, and (A.7), we can obtain

ar(𝓁
𝑇 𝑒∗ ∣ 𝑛) =𝓁𝑇E[( 𝑒

∗
)( 𝑒

∗
)𝑇 ∣ 𝑛]𝓁 = 1

2
𝓁𝑇 (

𝑝
∑

𝜋𝑖𝑒𝑖𝑒
𝑇
𝑖 )𝓁
𝑝 𝑝 𝑝 𝑟𝑝 𝑖=1



Knowledge-Based Systems 286 (2024) 111426H. Li and C. Niu
Table 11
Description of two experiments using Gisette data set.
Kinds Comparison 𝑟 𝜆 𝑚 𝑟0 Results

1 six methods 1000 to 4300 10 10 900 (NOPL) Tables 12–13
2000 10 4 to 16 900 (NOPL) Tables 12–13

2 OPL and NOPL 2000 10 10 700 to 4700 (NOPL) Table 14
Table 12
Comparison of accuracy using different 𝑟 and 𝑚 for Gisette data set.
Methods 𝑟 𝑚

1000 1900 2500 4300 4 10 16

OPL 3.5349e−06 3.982e−08 7.6293e−09 3.1004e−10 0.00036 2.9281e−08 2.72e−12
NOPL 1.2591𝑒 − 05 1.7699e−07 2.9862e−08 1.3174e−09 0.00052 1.0058e−07 1.7147e−11
LEV 1.3525e−05 1.6463e−07 4.1241e−08 2.0237e−09 0.00066 1.1394e−07 2.7071e−11
RLEV 1.2316e−05 1.7819e−07 4.015e−08 2.0591e−09 0.00076 1.2599e−07 2.5367e−11
COL 2.3882e−05 2.5821e−07 5.2512e−08 2.3897e−09 0.00057 2.2314e−07 6.3088e−11
UNI 0.0017 9.6027e−06 2.3042e−06 6.0028e−08 0.00285 6.4834e−06 2.1745e−08
w

Table 13
Comparison of CPU time using different 𝑟 and 𝑚 for Gisette data set.

Methods 𝑟 𝑚

1000 1900 2500 4300 4 10 16

OPL 0.14007 0.1697 0.18937 0.25315 0.078267 0.17318 0.27027
NOPL 0.13402 0.16328 0.18895 0.25257 0.077768 0.16846 0.26195
LEV 0.15385 0.18681 0.20962 0.27081 0.10166 0.19108 0.27654
RLEV 0.16093 0.19294 0.21372 0.28097 0.11265 0.19875 0.28931
COL 0.11739 0.15268 0.17089 0.23678 0.06894 0.15783 0.25586
UNI 0.11008 0.1474 0.16925 0.22774 0.066508 0.15448 0.24998

= 1
𝑟𝑝2

𝓁𝑇 [
𝑝
∑

𝑖=1
𝜋𝑖((

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)�̂�∗ − 𝑦)((

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)�̂�∗ − 𝑦)𝑇 ]𝓁

= 1
𝑟𝑝2

𝑝
∑

𝑖=1
𝜋𝑖�̂�

∗𝑇 (
𝐴𝑖𝐴𝑇

𝑖

𝜋𝑖
+ 𝜆𝐼)𝓁𝓁𝑇 (

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+ 𝜆𝐼)�̂�∗ −

𝓁𝑇 𝑦𝑦𝑇 𝓁
𝑟𝑝2

=1
𝑟

[ 1
𝑝2

�̂�∗𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)𝓁𝓁𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)�̂�∗

+ 𝑂𝑝(1) −
𝓁𝑇 𝑦𝑦𝑇 𝓁

𝑝2
] by (A.7)

=1
𝑟
[
𝑦𝑇 𝓁𝓁𝑇 𝑦

𝑝2
+ 𝑂𝑝(1) −

𝓁𝑇 𝑦𝑦𝑇 𝓁
𝑝2

]

=𝑂𝑝(𝑟−1).

Consequently, by the Markov’s inequality, (A.5) is obtained. □

Proof of Theorem 2.1. Considering that

�̂� = (𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)−1𝑦 = �̂�−1
𝐴 𝑦,

�̂�∗ = (𝐴𝐴𝑇 + 𝜆𝐼)−1𝑦 = 𝑀−1
𝐴 𝑦,

where 𝑦 = 𝜆𝑦, we can rewrite �̂� − �̂�∗ as

�̂� − �̂�∗ = (𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)−1(𝑦 − (𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)�̂�∗)

= �̂�−1
𝐴 (𝑦 − �̂�𝐴�̂�

∗) = −�̂�−1
𝐴 𝑒∗

= −(�̂�−1
𝐴 −𝑀−1

𝐴 +𝑀−1
𝐴 )𝑒∗

= −𝑀−1
𝐴 𝑒∗ − (�̂�−1

𝐴 −𝑀−1
𝐴 )𝑒∗

= −𝑀−1
𝐴 𝑒∗ + �̂�−1

𝐴 (�̂�𝐴 −𝑀𝐴)𝑀−1
𝐴 𝑒∗

= −(
𝑀𝐴
𝑝

)−1 𝑒
∗

𝑝
+ (

�̂�𝐴
𝑝

)−1(
�̂�𝐴 −𝑀𝐴

𝑝
)(
𝑀𝐴
𝑝

)−1 𝑒
∗

𝑝
(A.8)

= −(
𝑀𝐴
𝑝

)−1 𝑒
∗

𝑝
+ 𝑂𝑝∣𝑛

(𝑟−1), (A.9)

where the last equality is derived by (2.7) and Lemma A.2. Thus, to
prove (2.9), we first prove

(
𝑉𝑐 )−1∕2( 𝑒

∗
)

𝐿
←←←←←←←←→ 𝑁(0, 𝐼). (A.10)
12

𝑟 𝑝
Recall that 𝑒∗
𝑝 =

∑𝑟
𝑡=1

1
𝑟𝑝 𝑒𝑖𝑡 with

𝑒𝑖𝑡 = (
𝐴𝑖𝑡𝐴

𝑇
𝑖𝑡

𝜋𝑖𝑡
+ 𝜆𝐼)�̂�∗ − 𝑦.

Now, we construct the sequence {
𝑒𝑖𝑡
𝑝 }𝑟𝑡=1. These random vectors are

independent and identically distributed and it is easy to get that E( 𝑒𝑖𝑡𝑝 ∣
𝑛) = 0. Furthermore, noting that

𝑉𝑐 =
𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

𝑝2𝜋𝑖
= 𝑂𝑝(1), (A.11)

which can be obtained from (2.5), together with (2.7) and (A.3), we
have

Var(
𝑒𝑖𝑡
𝑝

∣ 𝑛) =E(
𝑒𝑖𝑡𝑒

𝑇
𝑖𝑡

𝑝2
∣ 𝑛) =

𝑝
∑

𝑖=1
𝜋𝑖

𝑒𝑖𝑒𝑇𝑖
𝑝2

=
𝑝
∑

𝑖=1
𝜋𝑖

[(
𝐴𝑖𝐴𝑇

𝑖
𝜋𝑖

+ 𝜆𝐼)�̂�∗ − 𝑦][(
𝐴𝑖𝐴𝑇

𝑖
𝜋𝑖

+ 𝜆𝐼)�̂�∗ − 𝑦]𝑇

𝑝2

=
𝑝
∑

𝑖=1
𝜋𝑖𝑝

−2𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
�̂�∗�̂�∗𝑇

𝐴𝑖𝐴𝑇
𝑖

𝜋𝑖
+

(𝜆�̂�∗ − 𝑦)�̂�∗𝑇𝐴𝐴𝑇

𝑝2

+
𝐴𝐴𝑇 �̂�∗(𝜆�̂�∗ − 𝑦)𝑇

𝑝2
+

(𝜆�̂�∗ − 𝑦)(𝜆�̂�∗ − 𝑦)𝑇

𝑝2

=
𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

𝑝2𝜋𝑖
+ 𝑜𝑝(1) by (2.7) and (A.3)

=𝑉𝑐 + 𝑜𝑝(1) (A.12)

=𝑂𝑝(1). by (A.11) (A.13)

In addition, for any 𝜉 > 0, we have
𝑟
∑

𝑡=1
E[‖𝑟−

1
2 𝑝−1𝑒𝑖𝑡‖

2
2𝐼(‖𝑟

− 1
2 𝑝−1𝑒𝑖𝑡‖2 > 𝜉) ∣ 𝑛]

=
𝑝
∑

𝑖=1
𝜋𝑖‖𝑝

−1𝑒𝑖‖
2
2𝐼(‖𝑟

− 1
2 𝑝−1𝑒𝑖‖2 > 𝜉)

≤ (𝑟
1
2 𝜉)−1

𝑝
∑

𝑖=1
𝜋𝑖‖𝑝

−1𝑒𝑖‖
3
2

= 𝑜𝑝(1),

here the inequality is deduced by the constraint 𝐼(‖𝑟−
1
2 𝑝−1𝑒𝑖‖2 > 𝜉),

and the last equality is from Lemma A.1. Putting the above discussions
together, we find that the Lindeberg–Feller conditions are satisfied in
probability. Thus, by the Lindeberg–Feller central limit theorem [30,
Proposition 2.27], and noting (A.13), we can acquire

[Var(
𝑒𝑖𝑡 ∣ 𝑛)]−1∕2(𝑟−1∕2𝑝−1

𝑟
∑

𝑒𝑖𝑡 )
𝐿
←←←←←←←←→ 𝑁(0, 𝐼),
𝑝 𝑡=1
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A

t

w
p
∑

A

L
p
𝜎

𝜎

E

‖

L
a

‖

w

Table 14
Comparison of OPL and NOPL with different 𝑟0 for Gisette data set.
Methods Accuracy CPU time (s)

700 1700 3900 4700 700 1700 3900 4700

NOPL 1.5237𝑒 − 07 5.9818e−08 4.9386e−08 3.4255e−08 0.15302 0.15994 0.16707 0.17122
OPL 2.5851e−08 0.16999
𝐿

T

𝐿

w
a
▿

▿

w

which combined with 𝑒∗
𝑝 = 𝑟−1𝑝−1

∑𝑟
𝑡=1 𝑒𝑖𝑡 and Var( 𝑒∗𝑝 ∣ 𝑛) = 𝑟−1Var(

𝑒𝑖𝑡
𝑝 ∣

𝑛) gives

[𝑟−1Var(
𝑒𝑖𝑡
𝑝

∣ 𝑛)]−1∕2(
𝑒∗
𝑝
)

𝐿
←←←←←←←←→ 𝑁(0, 𝐼).

Thus, by Lemma A.2, (A.12), and the Slutsky’s Theorem [37, Theorem
6], we can get (A.10).

Now, we prove (2.9). Following (2.7) and (A.11), it is easy to get

𝑉 = (
𝑀𝐴
𝑝

)−1
𝑉𝑐
𝑟
(
𝑀𝐴
𝑝

)−1 = 𝑂𝑝(𝑟−1),

which together with (A.9) yields

𝑉 −1∕2(�̂� − �̂�∗) = −𝑉 −1∕2(
𝑀𝐴
𝑝

)−1
𝑒∗
𝑝

+ 𝑂𝑝∣𝑛
(𝑟−1∕2)

= −𝑉 −1∕2(
𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2(

𝑉𝑐
𝑟
)−1∕2

𝑒∗
𝑝

+ 𝑂𝑝∣𝑛
(𝑟−1∕2). (A.14)

In addition, it is verified that

𝑉 −1∕2(
𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2[𝑉 −1∕2(

𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2]𝑇

= 𝑉 −1∕2(
𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2(

𝑉𝑐
𝑟
)1∕2(

𝑀𝐴
𝑝

)−1𝑉 −1∕2 = 𝐼. (A.15)

Thus, combining (A.10), (A.14), and (A.15), by the Slutsky’s Theorem,
we get the desired result (2.9). □

ppendix B. Proof of Theorem 2.2

According to the Cauchy–Schwarz inequality, we have

r(𝑉𝑐 ) =
𝑝
∑

𝑖=1

𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖‖𝐴𝑖‖
2
2

𝑝2𝜋𝑖
= 𝜆2

𝑝
∑

𝑖=1

𝛽2𝑟𝑙𝑠(𝑖)‖𝐴𝑖‖
2
2

𝑝2𝜋𝑖

= 𝜆2

𝑝2

𝑝
∑

𝑖=1
𝜋𝑖

𝑝
∑

𝑖=1

𝛽2𝑟𝑙𝑠(𝑖)‖𝐴𝑖‖
2
2

𝜋𝑖
≥ 𝜆2

𝑝2
(

𝑝
∑

𝑖=1
|𝛽𝑟𝑙𝑠(𝑖)|‖𝐴𝑖‖2)2,

here the equality in the last inequality holds if and only if 𝜋𝑖 is
roportional to ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2 for some constant 𝐶0 ≥ 0. Thus, following
𝑝
𝑖=1 𝜋𝑖 = 1, the desired result (2.10) is obtained.

ppendix C. Proof of Theorem 2.3

We first present two auxiliary lemmas.

emma C.1 ([8, Theorem 23]). If 𝐽 , 𝐻 ∈ R𝑚×𝑚 are real symmetric
ositive semi-definite matrices such that 𝜎1(𝐽 ) ≥ 𝜎2(𝐽 ) ≥ ⋯ ≥ 𝜎𝑚(𝐽 ) and
1(𝐻) ≥ 𝜎2(𝐻) ≥ ⋯ ≥ 𝜎𝑚(𝐻), then

𝑗 (𝐽 −𝐻) ≤ 𝜎𝑗

(

𝐽 0
0 𝐻

)

, 𝑗 = 1,… , 𝑚.

specially,

𝐽 −𝐻‖2 ≤ max{‖𝐽‖2, ‖𝐻‖2}.

emma C.2. For 𝑆 established by 𝜋𝑖 = 𝜋𝑂𝑃𝐿
𝑖 , assuming that (2.12) holds

nd letting 𝑟 ≥ 8𝑠2𝑐2𝜌
3𝑠1𝑐1𝜖′

2 ln(
4𝜌
𝛿 ) with 𝜖′ ∈ (0, 12 ) and 𝛿 ∈ (0, 1), we have

𝑉 𝑇𝑆𝑆𝑇 𝑉 − 𝐼‖2 ≤ 𝜖′,

ith the probability at least 1 − 𝛿.
13

𝐿

Proof. The proof can be accomplished along the line of the proof of [8,
Theorem 3]. However, for our case, it is necessary to note that

‖𝐹𝑡‖2 = ‖𝑀𝑡𝑀
𝑇
𝑡 − 𝑉 𝑇 𝑉

𝑟
‖2 ≤ max{‖𝑀𝑡𝑀

𝑇
𝑡 ‖2,

1
𝑟
} by Lemma C.1

= 1
𝑟
max
1≤𝑖≤𝑝

{‖
(𝑉 𝑖)𝑇

√

𝜋𝑂𝑃𝐿
𝑖

𝑉 𝑖
√

𝜋𝑂𝑃𝐿
𝑖

‖2, 1} = 1
𝑟
max
1≤𝑖≤𝑝

{
‖𝑉 𝑖

‖

2
2

𝜋𝑂𝑃𝐿
𝑖

, 1}

= 1
𝑟
max
1≤𝑖≤𝑝

{
‖𝑉 𝑖

‖

2
2
∑𝑝

𝑖=1 ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2
, 1} by (2.10)

≤ 1
𝑟
max
1≤𝑖≤𝑝

{
‖𝑉 𝑖

‖

2
2
∑𝑝

𝑖=1 𝑠2𝑐2‖𝑉
𝑖
‖

2
2

𝑠1𝑐1‖𝑉 𝑖
‖

2
2

, 1} by (2.12)

≤ 1
𝑟
max
1≤𝑖≤𝑝

{
𝑠2𝑐2
𝑠1𝑐1

𝑝
∑

𝑖=1
‖𝑉 𝑖

‖

2
2, 1} ≤ 1

𝑟
max
1≤𝑖≤𝑝

{
𝑠2𝑐2
𝑠1𝑐1

𝜌, 1} ≤
𝑠2𝑐2𝜌
𝑟𝑠1𝑐1

and

E(𝐹 2
𝑡 ) +

(𝑉 𝑇 𝑉 )2

𝑟2
= E(𝑀𝑡𝑀

𝑇
𝑡 ‖𝑀𝑡‖

2
2) =

𝑝
∑

𝑖=1
𝜋𝑂𝑃𝐿
𝑖

(𝑉 𝑖)𝑇 𝑉 𝑖
‖𝑉 𝑖

‖

2
2

𝑟2(𝜋𝑂𝑃𝐿
𝑖 )2

= 1
𝑟2

𝑝
∑

𝑖=1

(𝑉 𝑖)𝑇 𝑉 𝑖
‖𝑉 𝑖

‖

2
2
∑𝑝

𝑖=1 ∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2
by (2.10)

≼ 1
𝑟2

𝑝
∑

𝑖=1

(𝑉 𝑖)𝑇 𝑉 𝑖
‖𝑉 𝑖

‖

2
2
∑𝑝

𝑖=1 𝑠2𝑐2‖𝑉
𝑖
‖

2
2

𝑠1𝑐1‖𝑉 𝑖
‖

2
2

by (2.12)

≼
𝑠2𝑐2
𝑟2𝑠1𝑐1

𝑝
∑

𝑖=1
(𝑉 𝑖)𝑇 𝑉 𝑖

𝑝
∑

𝑖=1
‖𝑉 𝑖

‖

2
2

=
𝑠2𝑐2𝜌
𝑟2𝑠1𝑐1

𝑝
∑

𝑖=1
(𝑉 𝑖)𝑇 𝑉 𝑖 =

𝑠2𝑐2𝜌
𝑟2𝑠1𝑐1

𝐼𝜌,

where 𝐹𝑡 = 𝑀𝑡𝑀𝑇
𝑡 − 𝑉 𝑇 𝑉

𝑟 with 𝑀𝑡 =
(𝑉 𝑖𝑡 )𝑇

√

𝑟𝜋𝑂𝑃𝐿
𝑖𝑡

and 𝑡 = 1,… , 𝑟. □

Proof of Theorem 2.3. Noting 𝛽 = 1
𝜆𝑉 𝛴𝑈𝑇 �̂� and 𝛽𝑟𝑙𝑠 = 1

𝜆𝑉 𝛴𝑈𝑇 �̂�∗,
we can rewrite (2.13) as
1
𝜆
‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2 ≤

𝜖
𝜆
‖𝛴𝑈𝑇 �̂�∗‖2. (C.1)

To prove (C.1), we define the loss functions 𝐿(𝑧) and �̂�(𝑧) as

(𝑧) = 1
2𝜆

‖𝐴𝑇 𝑧‖22 +
1
2
‖𝑧‖22 − 𝑧𝑇 𝑦

and

�̂�(𝑧) = 1
2𝜆

‖𝑆𝑇𝐴𝑇 𝑧‖22 +
1
2
‖𝑧‖22 − 𝑧𝑇 𝑦.

hus, by Taylor expansion, we can acquire

̂ (�̂�) = �̂�(�̂�∗) + (�̂� − �̂�∗)𝑇▿�̂�(�̂�∗) + (�̂� − �̂�∗)𝑇▿2�̂�(𝑧0)(�̂� − �̂�∗), (C.2)

here �̂�∗ and �̂� minimize the loss functions 𝐿(𝑧) and �̂�(𝑧), respectively,
nd 𝑧0 ∈ [�̂�, �̂�∗]. Moreover, following (▿2�̂�(𝑧0) − ▿2𝐿(𝑧0))�̂�∗ = ▿�̂�(�̂�∗) −
𝐿(�̂�∗), which is from

�̂�(�̂�∗) = ( 1
𝜆
𝐴𝑆𝑆𝑇𝐴𝑇 + 𝐼)�̂�∗ − 𝑦, ▿𝐿(�̂�∗) = ( 1

𝜆
𝐴𝐴𝑇 + 𝐼)�̂�∗ − 𝑦,

and

▿2�̂�(𝑧0) =
1
𝜆
𝐴𝑆𝑆𝑇𝐴𝑇 + 𝐼, ▿2𝐿(𝑧0) =

1
𝜆
𝐴𝐴𝑇 + 𝐼, (C.3)

e can obtain

̂ (�̂�∗)+(�̂�−�̂�∗)𝑇 (▿2�̂�(𝑧 )−▿2𝐿(𝑧 ))�̂�∗ = �̂�(�̂�∗)+(�̂�−�̂�∗)𝑇 (▿�̂�(�̂�∗)−▿𝐿(�̂�∗)).
0 0
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(
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𝑅

L
t

‖

P
(
∑

w
T

L

Thus, considering that

�̂�(�̂�∗) + (�̂� − �̂�∗)𝑇 (▿�̂�(�̂�∗) − ▿𝐿(�̂�∗)) ≤ �̂�(�̂�∗) + (�̂� − �̂�∗)𝑇▿�̂�(�̂�∗),

hich is derived by the fact (�̂� − �̂�∗)𝑇▿𝐿(�̂�∗) ≥ 0, and noting (C.2), we
an gain

̂ (�̂�∗) + (�̂�− �̂�∗)𝑇 (▿2�̂�(𝑧0) −▿2𝐿(𝑧0))�̂�∗ ≤ �̂�(�̂�) − (�̂�− �̂�∗)𝑇▿2�̂�(𝑧0)(�̂�− �̂�∗).

Further, by �̂�(�̂�∗) ≥ �̂�(�̂�), we have

(�̂� − �̂�∗)𝑇 (▿2𝐿(𝑧0) − ▿2�̂�(𝑧0))�̂�∗ ≥ (�̂� − �̂�∗)𝑇▿2�̂�(𝑧0)(�̂� − �̂�∗),

hich together with

�̂� − �̂�∗)𝑇▿2�̂�(𝑧0)(�̂� − �̂�∗) ≥ (�̂� − �̂�∗)𝑇 1
𝜆
𝐴𝑆𝑆𝑇𝐴𝑇 (�̂� − �̂�∗)

and (C.3) leads to

(�̂� − �̂�∗)𝑇 ( 1
𝜆
𝐴𝐴𝑇 − 1

𝜆
𝐴𝑆𝑆𝑇𝐴𝑇 )�̂�∗ ≥ (�̂� − �̂�∗)𝑇 1

𝜆
𝐴𝑆𝑆𝑇𝐴𝑇 (�̂� − �̂�∗).

hus, based on 𝐴 = 𝑈𝛴𝑉 𝑇 , it is straightforward to get
1
𝜆2

(�̂� − �̂�∗)𝑇 (𝑈𝛴2𝑈𝑇 − 𝑈𝛴𝑉 𝑇𝑆𝑆𝑇 𝑉 𝛴𝑈𝑇 )�̂�∗

≥ 1
𝜆2

(�̂� − �̂�∗)𝑇𝑈𝛴𝑉 𝑇𝑆𝑆𝑇 𝑉 𝛴𝑈𝑇 (�̂� − �̂�∗),

which is also allowed to be rewritten as
1
𝜆2

[𝛴𝑈𝑇 (�̂� − �̂�∗)]𝑇 (𝐼 − 𝑉 𝑇𝑆𝑆𝑇 𝑉 )𝛴𝑈𝑇 �̂�∗

≥ 1
𝜆2

[𝛴𝑈𝑇 (�̂� − �̂�∗)]𝑇 𝑉 𝑇𝑆𝑆𝑇 𝑉 [𝛴𝑈𝑇 (�̂� − �̂�∗)]. (C.4)

dding 1
𝜆2
[𝛴𝑈𝑇 (�̂� − �̂�∗)]𝑇 [𝛴𝑈𝑇 (�̂� − �̂�∗)] to both sides of (C.4) gives

1
𝜆2

[𝛴𝑈𝑇 (�̂� − �̂�∗)]𝑇 (𝐼 − 𝑉 𝑇𝑆𝑆𝑇 𝑉 )𝛴𝑈𝑇 �̂�∗

+ 1
𝜆2

[𝛴𝑈𝑇 (�̂� − �̂�∗)]𝑇 (𝐼 − 𝑉 𝑇𝑆𝑆𝑇 𝑉 )[𝛴𝑈𝑇 (�̂� − �̂�∗)]

≥ 1
𝜆2

[𝛴𝑈𝑇 (�̂� − �̂�∗)]𝑇 [𝛴𝑈𝑇 (�̂� − �̂�∗)]. (C.5)

aking the Euclidean norm on both sides of (C.5), we obtain
1
𝜆2

‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2‖𝐼 − 𝑉 𝑇𝑆𝑆𝑇 𝑉 ‖2‖𝛴𝑈𝑇 �̂�∗‖2

+ 1
𝜆2

‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2‖𝐼 − 𝑉 𝑇𝑆𝑆𝑇 𝑉 ‖2‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2

≥ 1
𝜆2

‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖22,

hich combined with Lemma C.2 indicates that
1
𝜆
𝜖′‖𝛴𝑈𝑇 �̂�∗‖2 +

1
𝜆
𝜖′‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2 ≥

1
𝜆
‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2. (C.6)

y rewriting (C.6) as
1
𝜆
‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2 ≤

𝜖′

1 − 𝜖′
1
𝜆
‖𝛴𝑈𝑇 �̂�∗‖2

nd considering the fact 𝜖′ < 1
2 , we have

1
𝜆
‖𝛴𝑈𝑇 (�̂� − �̂�∗)‖2 ≤

2𝜖′
𝜆

‖𝛴𝑈𝑇 �̂�∗‖2.

hus, setting 𝜖 = 2𝜖′, we get (C.1). That is, (2.13) is arrived. □

ppendix D. Proof of Theorem 2.4

The proof can be completed along the line of the proof of Theorem
in [5]. However, when we bound ‖𝑅‖2 with

= (𝜆𝛴−1 + 𝛴)−1𝛴(𝑉 𝑇𝑆𝑇𝑆𝑉 − 𝐼),

emma C.2 is adopted but not the oblivious subspace embedding
heorem [5, Theorem 5], namely,

𝑅‖2 ≤ ‖(𝜆𝛴−1 + 𝛴)−1𝛴(𝑉 𝑇𝑆𝑇𝑆𝑉 − 𝐼)‖2
≤ ‖(𝜆𝛴−1 + 𝛴)−1𝛴‖ ‖𝑉 𝑇𝑆𝑇𝑆𝑉 − 𝐼‖
14

2 2 t
≤ 𝜖′‖(𝜆𝛴−1 + 𝛴)−1𝛴‖2 by Lemma C.2
≤ 𝜖′,

where 𝜖′ satisfies 𝜖′ = 𝜖
2 .

Appendix E. Proof of Theorem 3.1

The proof is similar to the one of Theorem 2.1 (see Appendix A),
and we begin by presenting two lemmas.

Lemma E.1. Assume that the condition (2.6) and (3.2) hold. Then, for
𝑚 = 1 and 𝜋𝑁𝑂𝑃𝐿

𝑖 in (3.1), we have
𝑝
∑

𝑖=1
𝜋𝑁𝑂𝑃𝐿
𝑖 ‖

𝑒𝑖
𝑝
‖

3
2 = 𝑂𝑝(1), (E.1)

where 𝑒𝑖 = (
𝐴𝑖𝐴𝑇

𝑖
𝜋𝑁𝑂𝑃𝐿
𝑖

+ 𝜆𝐼)�̂�∗ − 𝑦 with 𝑦 = 𝜆𝑦 and �̂�∗ being as in (1.3).

roof. Similar to the proof of Lemma A.1, based on (2.6), (3.1), (3.2),
A.2), and (A.3), we have
𝑝

𝑖=1
𝜋𝑁𝑂𝑃𝐿
𝑖 ‖

𝑒𝑖
𝑝
‖

3
2 ≤

‖𝑦‖32𝜎
3
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

3
2

(𝜋𝑁𝑂𝑃𝐿
𝑖 )2

+ 3𝜆
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

2
2

𝜋𝑁𝑂𝑃𝐿
𝑖

+ 3𝜆2
𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆3) +

‖𝑦‖32
𝑝3

+ 3
‖𝑦‖32𝜎

2
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

2
2

𝜋𝑁𝑂𝑃𝐿
𝑖

+ 2𝜆
𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆2)

+ 3
‖𝑦‖32𝜎𝑛(𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆)

=
‖𝑦‖32𝜎

3
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

[
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

3
2

(∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2)2
(

𝑝
∑

𝑖=1
∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2)2

+ 3𝜆
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

2
2

∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2

𝑝
∑

𝑖=1
∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2 + 3𝜆2

𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2

+ 𝜆3] +
‖𝑦‖32
𝑝3

+ 3
‖𝑦‖32𝜎

2
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1

‖𝐴𝑖𝐴𝑇
𝑖 ‖

2
2

∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2
𝑝
∑

𝑖=1
∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2 + 2𝜆

𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆2)

+ 3
‖𝑦‖32𝜎𝑛(𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1
‖𝐴𝑖𝐴

𝑇
𝑖 ‖2 + 𝜆) by (3.1)

≤
‖𝑦‖32𝜎

3
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

[
𝑁2

2

𝑁2
1

(
𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2)

3

+ 3𝜆
𝑁2

𝑁1
(

𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2)

2

+ 3𝜆2
𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2 + 𝜆3] +

‖𝑦‖32
𝑝3

+ 3
‖𝑦‖32𝜎

2
𝑛 (𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

[
𝑁2

𝑁1
(

𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2)

2

+ 2𝜆
𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2 + 𝜆2]

+ 3
‖𝑦‖32𝜎𝑛(𝐴𝐴

𝑇 + 𝜆𝐼)
𝑝3

(
𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2 + 𝜆) by (3.2)

=𝑂𝑝(1), by (2.6) 𝑎𝑛𝑑 (A.3)

here the first inequality is gained by replacing 𝜋𝑖 in (A.2) with 𝜋𝑁𝑂𝑃𝐿
𝑖 .

hen, (E.1) is obtained. □

emma E.2. To the assumption of Lemma E.1, add that the condi-
𝑁𝑂𝑃𝐿
ion (2.7) holds. Then, for 𝑚 = 1 and 𝜋𝑖 in (3.1), conditional on 𝑛
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w

P
(
t

a

‖

F

‖

and 𝛽 in probability, we have

𝑀𝐴 −𝑀𝐴
𝑝

= 𝑂𝑝∣𝑛
(𝑟−1∕2), (E.2)

𝑒∗

𝑝
= 𝑂𝑝∣𝑛

(𝑟−1∕2), (E.3)

where 𝑀𝐴 = 𝐴𝐴𝑇 +𝜆𝐼 , 𝑀𝐴 = 𝐴𝑆𝑆𝑇𝐴𝑇 +𝜆𝐼 with 𝑆 constructed by 𝜋𝑁𝑂𝑃𝐿
𝑖 ,

and 𝑒∗ = (𝑀𝐴�̂�∗ − 𝑦) with 𝑦 = 𝜆𝑦 and �̂�∗ being as in (1.3).

Proof. The proof can be completed similar to the proof of Lemma A.2.
We only need to replace 𝜋𝑖 with 𝜋𝑁𝑂𝑃𝐿

𝑖 , and note that

1
𝑝2

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝐴𝑖𝐴𝑇

𝑖

𝜋𝑁𝑂𝑃𝐿
𝑖

= 1
𝑝2

(
𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝐴𝑖𝐴𝑇

𝑖

∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2
)(

𝑝
∑

𝑖=1
∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2)

≤
𝑁2

𝑁1𝑝2
(

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝐴𝑖𝐴𝑇

𝑖

‖𝐴𝑖‖
2
2

)(
𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2)

=
𝑁2

𝑁1𝑝2
(

𝑝
∑

𝑖=1
𝐴𝑖𝐴

𝑇
𝑖 )(

𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2)

= 𝑂𝑝(1), by (2.6) and (2.7) (E.4)
E(𝑀𝐴 ∣ 𝐴) = E𝛽 [E(𝑀𝐴 ∣ 𝐴, 𝛽)],

Var[
(𝑀𝐴 −𝑀𝐴)𝓁

𝑝
∣ 𝐴] = E𝛽{Var[

(𝑀𝐴 −𝑀𝐴)𝓁
𝑝

∣ 𝐴, 𝛽]},

E(𝑒𝑖𝑡 ∣ 𝑛) = E𝛽 [E(𝑒𝑖𝑡 ∣ 𝑛, 𝛽)],

Var(𝓁
𝑇 𝑒∗

𝑝
∣ 𝑛) = E𝛽 [Var(

𝓁𝑇 𝑒∗

𝑝
∣ 𝑛, 𝛽)],

where E𝛽 denotes the expectation on 𝛽. □

Remark E.1. The results (E.2) and (E.3) still hold when 𝑀𝐴 =
𝐴𝑆∗𝑆∗𝑇𝐴𝑇 + 𝜆𝐼 with 𝑆∗ ∈ R𝑝×𝑟0 formed by 𝜋𝐶𝑂𝐿

𝑖 .

Corollary E.1. For 𝑆∗ ∈ R𝑝×𝑟0 formed by 𝜋𝐶𝑂𝐿
𝑖 , 𝑧 = (𝐴𝑆∗𝑆∗𝑇𝐴𝑇 +

𝜆𝐼)−1𝑦 constructed by Algorithm 2 satisfies

‖𝑧 − �̂�∗‖2 = 𝑂𝑝∣𝑛
(𝑟−1∕20 ). (E.5)

Proof. Similar to (A.8), considering (2.7) and Remark E.1, we can get

𝑧 − �̂�∗ = −(
𝑀𝐴
𝑝

)−1 𝑒
∗

𝑝
+ (

𝑀𝐴
𝑝

)−1(
𝑀𝐴 −𝑀𝐴

𝑝
)(
𝑀𝐴
𝑝

)−1 𝑒
∗

𝑝
= 𝑂𝑝∣𝑛

(𝑟−1∕20 ),

hich suggests that (E.5) holds. □

roof of Theorem 3.1. Similar to the proof of Theorem 2.1 , noting
2.6), (2.7), (E.4), and Lemmas E.1 and E.2, and replacing 𝜋𝑖 and 𝑒𝑖𝑡 in
he proof of Theorem 2.1 with 𝜋𝑁𝑂𝑃𝐿

𝑖 and 𝑒𝑖𝑡 , respectively, we first get

�̂�1 − �̂�∗ = −(
𝑀𝐴
𝑝

)−1 𝑒
∗

𝑝
+ 𝑂𝑝∣𝑛

(𝑟−1), (E.6)

(
𝑉𝑐
𝑟
)−1∕2(

𝑒∗
𝑝
)

𝐿
←←←←←←←←→ 𝑁(0, 𝐼),

where

�̂�1 = (𝐴𝑆𝑆𝑇𝐴𝑇 + 𝜆𝐼)−1𝑦 = 𝑀−1
𝐴 𝑦,

𝑉𝑐 =
𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

𝑝2𝜋𝑁𝑂𝑃𝐿
𝑖

= 𝑂𝑝(1).

To get (3.3), in the following, we need to further prove

𝑉 −1∕2
𝑂𝑃𝐿 (�̂�1 − �̂�∗) = −𝑉 −1∕2

𝑂𝑃𝐿 (
𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2(

𝑉𝑐
𝑟
)−1∕2 𝑒

∗

𝑝
+ 𝑂𝑝∣𝑛

(𝑟−1∕2), (E.7)

where 𝑉 −1∕2
𝑂𝑃𝐿 (𝑀𝐴

𝑝 )−1( 𝑉𝑐𝑟 )
1∕2 satisfies

𝑉 −1∕2(
𝑀𝐴 )−1(

𝑉𝑐 )1∕2[𝑉 −1∕2(
𝑀𝐴 )−1(

𝑉𝑐 )1∕2]𝑇 = 𝐼 + 𝑂𝑝∣ (𝑟−1∕2). (E.8)
15

𝑂𝑃𝐿 𝑝 𝑟 𝑂𝑃𝐿 𝑝 𝑟 𝑛 0
Considering (2.6), (2.7), (2.10) and (3.2), we first obtain

1
𝑝2

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝐴𝑖𝐴𝑇

𝑖

𝜋𝑂𝑃𝐿
𝑖

= 1
𝑝2

(
𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝐴𝑖𝐴𝑇

𝑖

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2
)(

𝑝
∑

𝑖=1
∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2) by (2.10)

≤
𝑁4

𝑁3𝑝2
(

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 𝐴𝑖𝐴𝑇

𝑖

‖𝐴𝑖‖
2
2

)(
𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2) by (3.2)

=
𝑁4

𝑁3𝑝2
(

𝑝
∑

𝑖=1
𝐴𝑖𝐴

𝑇
𝑖 )(

𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2)

= 𝑂𝑝(1), by (2.6) and (2.7)

which indicates

𝑉𝑐𝑂𝑃𝐿 =
𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

𝑝2𝜋𝑂𝑃𝐿
𝑖

= 𝑂𝑝(1). (E.9)

From (2.7) and (E.9), it is evident to get

𝑉𝑂𝑃𝐿 = (
𝑀𝐴
𝑝

)−1
𝑉𝑐𝑂𝑃𝐿

𝑟
(
𝑀𝐴
𝑝

)−1 = 𝑂𝑝(𝑟−1), (E.10)

which combined with (E.6) suggests that (E.7) holds, that is,

𝑉 −1∕2
𝑂𝑃𝐿 (�̂�1 − �̂�∗) = −𝑉 −1∕2

𝑂𝑃𝐿 (
𝑀𝐴
𝑝

)−1 𝑒
∗

𝑝
+ 𝑂𝑝∣𝑛

(𝑟−1∕2)

= −𝑉 −1∕2
𝑂𝑃𝐿 (

𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2(

𝑉𝑐
𝑟
)−1∕2 𝑒

∗

𝑝
+ 𝑂𝑝∣𝑛

(𝑟−1∕2).

Now, we need to demonstrate that (E.8) also holds. Evidently, it suffices
to show that

𝑉 −1∕2
𝑂𝑃𝐿 (

𝑀𝐴
𝑝

)−1
𝑉𝑐 − 𝑉𝑐𝑂𝑃𝐿

𝑟
(
𝑀𝐴
𝑝

)−1𝑉 −1∕2
𝑂𝑃𝐿 = 𝑂𝑝∣𝑛

(𝑟−1∕20 ), (E.11)

because

𝑉 −1∕2
𝑂𝑃𝐿 (

𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2[𝑉 −1∕2

𝑂𝑃𝐿 (
𝑀𝐴
𝑝

)−1(
𝑉𝑐
𝑟
)1∕2]𝑇

= 𝑉 −1∕2
𝑂𝑃𝐿 (

𝑀𝐴
𝑝

)−1
𝑉𝑐
𝑟
(
𝑀𝐴
𝑝

)−1𝑉 −1∕2
𝑂𝑃𝐿

= 𝑉 −1∕2
𝑂𝑃𝐿 (

𝑀𝐴
𝑝

)−1
𝑉𝑐𝑂𝑃𝐿

𝑟
(
𝑀𝐴
𝑝

)−1𝑉 −1∕2
𝑂𝑃𝐿

+ 𝑉 −1∕2
𝑂𝑃𝐿 (

𝑀𝐴
𝑝

)−1
𝑉𝑐 − 𝑉𝑐𝑂𝑃𝐿

𝑟
(
𝑀𝐴
𝑝

)−1𝑉 −1∕2
𝑂𝑃𝐿

= 𝐼 + 𝑉 −1∕2
𝑂𝑃𝐿 (

𝑀𝐴
𝑝

)−1
𝑉𝑐 − 𝑉𝑐𝑂𝑃𝐿

𝑟
(
𝑀𝐴
𝑝

)−1𝑉 −1∕2
𝑂𝑃𝐿 .

Noting

𝑉𝑐 = [1
𝑝
(

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛷1

[ 1
𝑝
(

𝑝
∑

𝑖=1
∣ 𝛽(𝑖) ∣ ‖𝐴𝑖‖2)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛷2

,

𝑉𝑐𝑂𝑃𝐿 = [1
𝑝
(

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛷3

[ 1
𝑝
(

𝑝
∑

𝑖=1
∣ 𝛽𝑟𝑙𝑠(𝑖) ∣ ‖𝐴𝑖‖2)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛷4

,

nd the basic triangle inequality, we gain

𝑉𝑐 − 𝑉𝑐𝑂𝑃𝐿‖2 = ‖𝛷1𝛷2 −𝛷3𝛷4‖2

≤ ‖𝛷1 −𝛷3‖2‖𝛷2‖2 + ‖𝛷2 −𝛷4‖2‖𝛷3‖2.

ollowing (2.6), (3.2), (A.3), and (E.5), it is evident to gain

𝛷1 −𝛷3‖2 ≤ ‖

1
𝑝

𝑝
∑

𝑖=1

𝐴𝑖𝐴𝑇
𝑖 �̂�

∗�̂�∗𝑇𝐴𝑖𝐴𝑇
𝑖

‖𝐴𝑖‖2
( 1
∣ 𝛽(𝑖) ∣

− 1
∣ 𝛽𝑟𝑙𝑠(𝑖) ∣

)‖2

≤ 1
𝑝

𝑝
∑

𝑖=1

𝜆2𝛽2𝑟𝑙𝑠(𝑖)‖𝐴𝑖‖
2
2

‖𝐴𝑖‖2
(
∣ 𝛽(𝑖) − 𝛽𝑟𝑙𝑠(𝑖) ∣

∣ 𝛽𝑟𝑙𝑠(𝑖) ∣∣ 𝛽(𝑖) ∣
)

≤
𝜆𝑁4

𝑝𝑁1

𝑝
∑

𝑖=1

‖𝐴𝑖‖
3
2

‖𝐴𝑖‖
2
2

(‖𝐴𝑖‖2‖𝑧 − �̂�∗‖2) by (3.2)

= ‖𝑧 − �̂�∗‖2
𝑝
∑ 𝜆𝑁4‖𝐴𝑖‖

2
2 = 𝑂𝑝∣𝑛

(𝑟−1∕20 ), by (2.6) and (E.5)

𝑖=1 𝑝𝑁1
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w

m

C

R

‖𝛷2‖2 ≤
𝑁2‖𝑦‖2

𝑝

𝑝
∑

𝑖=1
‖𝐴𝑖‖

2
2 = 𝑂𝑝(1). by (2.6), (3.2), and (A.3)

Similarly, we have ‖𝛷2 − 𝛷4‖2 = 𝑂𝑝∣𝑛
(𝑟−1∕20 ) and ‖𝛷3‖2 = 𝑂𝑝(1).

Therefore, we get

‖𝑉 − 𝑉𝑐𝑂𝑃𝐿‖2 = 𝑂𝑝∣𝑛
(𝑟−1∕20 ),

which combined with (2.7) and (E.10) yields (E.11). Putting the above
discussions and the Slutsky’s Theorem together, the result (3.3) follows.

Appendix F. Proof of Theorem 3.2

Before providing the proof of Theorem 3.2, we first present a
lemma.

Lemma F.1. To the assumption of Lemma C.2, add that (3.4) holds and
𝑟 ≥ 32𝑠4𝑐2𝜌

3𝑠3𝑐1𝜖2
ln( 4𝜌𝛿 ) with 𝜖, 𝛿 ∈ (0, 1). Then, for any 𝜖, �̂�𝑡 obtained from the

𝑡th iteration of Algorithm 2 satisfies

‖

𝐴𝑇 �̂�𝑡
𝜆

−
𝐴𝑇𝑤∗

𝑡
𝜆

‖2 ≤ 𝜖‖
𝐴𝑇𝑤∗

𝑡
𝜆

‖2, (F.1)

here 𝑤∗
𝑡 is the solution of

in
𝑤𝑡

1
2𝜆

‖𝐴𝑇𝑤𝑡‖
2
2 +

1
2
‖𝑤𝑡‖

2
2 −𝑤𝑇

𝑡 𝑏𝑡.

Proof. The proof can be completed along the line of the proof of
Theorem 2.3. Particularly, in this case, Lemma C.2 still holds for 𝑆 = 𝑆,
where 𝑆 is formed by 𝜋𝑁𝑂𝑃𝐿

𝑖 . □

Proof of Theorem 3.2. At the 𝑡th iteration, following the discussion
in Remark 3.1 and (F.1), and setting

△∗
𝑡 =

𝐴𝑇𝑤∗
𝑡

𝜆
= 𝐴𝑇 �̂�∗

𝜆
−

𝐴𝑇 �̂�𝑡−1
𝜆

and △̂𝑡 =
𝐴𝑇 �̂�𝑡
𝜆 as the estimator of △∗

𝑡 , we can have

‖△̂𝑡 −△∗
𝑡 ‖2 ≤ 𝜖‖△∗

𝑡 ‖2 by (F.1)

= 𝜖‖𝐴
𝑇 �̂�∗

𝜆
−

𝐴𝑇 �̂�𝑡−1
𝜆

‖2

= 𝜖‖
𝐴𝑇 (�̂�𝑡−2 +𝑤∗

𝑡−1)
𝜆

−
𝐴𝑇 (�̂�𝑡−2 + �̂�𝑡−1)

𝜆
‖2

≤ 𝜖‖△̂𝑡−1 −△∗
𝑡−1‖2 ≤ 𝜖2‖△∗

𝑡−1 ‖2.

As a result,

‖△̂𝑚 −△∗
𝑚‖2 ≤ 𝜖‖△̂𝑚−1 −△∗

𝑚−1‖2 ≤ 𝜖𝑚‖△∗
1 ‖2

≤ 𝜖𝑚‖𝐴
𝑇 �̂�∗

𝜆
−

𝐴𝑇 �̂�0
𝜆

‖2

= 𝜖𝑚‖𝐴
𝑇 �̂�∗

𝜆
‖2 = 𝜖𝑚‖𝛽𝑟𝑙𝑠‖2.

onsidering that 𝛽𝑚 − 𝛽𝑟𝑙𝑠 = △̂𝑚 −△∗
𝑚, the conclusion is arrived.
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