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Abstract

Natural language is often the easiest and most convenient modality for humans to specify tasks
for robots. However, learning to ground language to behavior typically requires impractical
amounts of diverse, language-annotated demonstrations collected on each target robot. In
this work, we aim to separate the problem of what to accomplish from how to accomplish it, as
the former can benefit from substantial amounts of external observation-only data, and only
the latter depends on a specific robot embodiment. To this end, we propose Video-Language
Critic, a reward model that can be trained on readily available cross-embodiment data using
contrastive learning and a temporal ranking objective, and use it to score behavior traces
from a separate actor. When trained on Open X-Embodiment data, our reward model
enables 2x more sample-efficient policy training on Meta-World tasks than a sparse reward
only, despite a significant domain gap. Using in-domain data but in a challenging task
generalization setting on Meta-World, we further demonstrate more sample-efficient training
than is possible with prior language-conditioned reward models that are either trained with
binary classification, use static images, or do not leverage the temporal information present
in video data.

1 Introduction

Advances in natural language processing and vision-language representations have enabled a significant
increase in the scalability and generalization abilities of learned control policies for robotics. Methods
involving large architectures, such as Transformers (Vaswani et al., 2017), and internet-scale pretraining
have transferred well to both high-level (Liang et al., 2022; Vemprala et al., 2023) and low-level (Brohan
et al., 2022; Lynch et al., 2022; Shridhar et al., 2022) robotic control. Natural language has many desirable
features as a modality for specifying tasks. Unlike structured, hand-designed task sets, natural language is
unrestricted and open-domain. Moreover, prompts can be specified as precisely or vaguely as appropriate.
While goal images, demonstration videos, or goal states more broadly, have been considered as an alternative
open-domain task definition modality (Chen et al., 2021; Alakuijala et al., 2023; Ma et al., 2023b), they
typically have to specify irrelevant environment details, such as the background. Furthermore, language
readily supports task definitions with novel combinations of actions, objects and their attributes, as well as
subtask sequencing, in a way that facilitates the policy’s understanding of unseen tasks.

Most prior work has proposed to learn language-conditioned policies end-to-end, i.e., directly predicting an
action in the robot’s action space given the current state and task description. However, this has several
downsides: first, fitting large models on the full problem requires a significant amount of high-quality
demonstration data from the target robot domain. Second, the resulting policy depends entirely on the
specific robot instance, observation space, and controller type (e.g., joint or task space control) and does
not easily transfer to other settings. Moreover, much of the prior work addresses vision-language grounding
in robotics purely with imitation learning (Brohan et al., 2022; Lynch et al., 2022; Shridhar et al., 2022;
Open X-Embodiment Collaboration et al., 2023), without attempting to discriminate between low-quality
and expert demonstrations. As a result, the resulting policies are inherently limited by the skills of the
demonstrators, and no novel solutions can be discovered through planning or interaction. This line of work
overlooks performance gains that could be obtained by converting the language prompts to a scalar reward
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Figure 1: Overview: Our similarity function, Sθ, is trained using video-caption pairs (vi
1:T , ci). The visual

encoder (ViT; Dosovitskiy et al. (2021)) is applied separately to each video frame vt to produce a sequence of
image features, which are appended to the caption embedding produced by the text encoder. The temporal
aggregator then predicts a similarity score for each time step t of the video. We use cross-entropy and
sequence ranking objectives to encourage the predicted scores to be high for matching video-caption pairs
and low for mismatching pairs, and to monotonously increase over a successful execution.

function. Manually defining a well-specified dense reward function to communicate task success is typically
laborious and error-prone, and must be repeated for each task. To make progress towards a general-purpose
robotic system that can learn human-level skills both in terms of quality (dexterity, robustness) and variety
of skills, we argue these systems will need to be able to critique their own behavior, by learning reward
functions at scale.

We address this problem by learning a foundation video-language-conditioned reward model, i.e., a critic that
evaluates the progress (in the form of a video) of a task, given as a human-language instruction, and assigns
a reward based on how close the robot is to completing the task. By leveraging large cross-task pretraining
data, which may come from a variety of robots, our Video-Language Critic (VLC) can learn to score the
alignment between a textual description and task execution regardless of the specific robot embodiment.
Our experimental evaluation on Meta-World (Yu et al., 2019) manipulation tasks shows that VLC can learn
useful general-purpose reward functions not only from in-domain, but also out-of-domain data (from Open
X-Embodiment Collaboration et al. (2023)) collected from different robot embodiments. In Section 4, we
show that VLC 1) accelerates the training of a wide range of manipulation tasks and 2) enables zero-shot
learning on unseen tasks, when combined with a sparse task completion signal.

Recent work in language-conditioned rewards for robotics has used either binary classification (Shao et al.,
2021; Silva et al., 2021; Nair et al., 2022a), contrastive vision-language alignment (Nair et al., 2022b; Ma
et al., 2023a; Sontakke et al., 2023) or reconstruction (Karamcheti et al., 2023) objectives. However, they
have not fully leveraged temporal ordering of frames to encourage increasing scores over successful episodes.
In contrast, VLC provides a dense reward evaluating in-episode progress, learned through contrastive ranking.
The advantages and contributions of our approach are as follows:

• We learn vision-language manipulation using actor-agnostic videos and instructions at scale without
requiring tedious demonstration collection on a specific robot. Unlike end-to-end policy learning, our
method can learn from cross-embodiment data without action labels.
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• Through maximizing the learned reward, our policies can improve over sub-optimal demonstrations,
by executing the task faster or by finding better solutions.

• Our method, VLC, enables a 3x sample efficiency gain over a sparse task-completion reward, or 2x
when trained exclusively on cross-embodiment data with a significant domain gap.

• VLC generalizes to unseen tasks through large-scale pretraining and language conditioning and leads
to faster policy training than 5 prior reward learning methods.

• VLC is agnostic to the type of policy learning, and can be combined with model-free or model-based
reinforcement learning, affordance-based grasping or model-predictive control.

2 Related Work

Vision-language imitation Many prior works have aimed to connect language instructions and vision-
based observations in robotics (Lynch & Sermanet, 2020; Brohan et al., 2022; Lynch et al., 2022; Shridhar et al.,
2022; Guhur et al., 2023) and in video games (Fan et al., 2022), mostly through large-scale demonstrations
(Lynch & Sermanet, 2020; Brohan et al., 2022; Fan et al., 2022; Lynch et al., 2022) or pretraining (Shridhar
et al., 2022; Guhur et al., 2023). However, the majority of approaches have considered imitation-based
objectives only, without ranking existing trajectories or attempting to outperform prior data. We instead
propose to learn a state-value function from cross-domain offline behavior, which can be optimized using
either online, offline or model-based policy training.

Multi-modal representations Pretrained vision-language representations (Radford et al., 2021) have
been adapted to a wide range of downstream tasks (Shridhar et al., 2022; Guhur et al., 2023). Shridhar et al.
(2022) propose to augment pretrained CLIP (Radford et al., 2021) with Transporter nets (Zeng et al., 2021) to
handle fine-grained spatial awareness required for precise manipulation. Xiao et al. (2022) train a CLIP-like
contrastive embedding space from crowd-sourced language annotations for trajectories from the robot. We
draw inspiration from these works, but instead define an embodiment-agnostic, language-conditioned reward
function, which supports improvement over demonstration data.

Video retrieval Our work is related to video retrieval as we seek to move beyond image-language correspon-
dence and match task descriptions with history-aware state representations. As learning representations across
time is computationally expensive, many prior works have proposed to start from pretrained image-language
representations and aggregate them over time, while fine-tuning the aggregation function’s weights on video
retrieval (Bain et al., 2022; Luo et al., 2022; Lu et al., 2023). Unlike in video retrieval, we aim to not only
assign high alignment scores to full videos, but provide smoothly increasing reward over the whole video to
indicate task progress.

Inverse RL Several works have proposed to infer the reward function of a task using examples of expert
behavior, and to train an RL policy to optimize this reward (Russell, 1998). Most relevantly to our setting, a
line of prior inverse RL methods considers the case where the observed behavior is not annotated with actions
and may come from different action and observation spaces altogether, typically a human demonstrator
(Sermanet et al., 2018; Schmeckpeper et al., 2020; Chen et al., 2021; Shao et al., 2021; Silva et al., 2021; Nair
et al., 2022a; Zakka et al., 2022; Alakuijala et al., 2023; Ma et al., 2023b). Many of these works use either a
goal image (Zakka et al., 2022; Alakuijala et al., 2023; Ma et al., 2023b) or a demonstration video (Sermanet
et al., 2018; Chen et al., 2021) rather than language conditioning, and some are only applicable for data from
a single task at a time (Schmeckpeper et al., 2020; Zakka et al., 2022). Moreover, handling multi-task reward
learning with an additional task identifier state variable, as done by Chen et al. (2021), requires a predefined
grouping into a discrete set of tasks. By contrast, our use of language to define tasks enables a more subtle
and composable task space.

Language-conditioned inverse RL Although a few prior works have used unrestricted natural language
to define rewards for robotic manipulation tasks using either binary classification (Shao et al., 2021; Silva
et al., 2021; Nair et al., 2022a) or contrastive vision-language alignment (Fan et al., 2022; Nair et al., 2022b;
Ma et al., 2023a; Sontakke et al., 2023), these methods have not fully leveraged the temporal ordering of
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frames in their objective to encourage increasing scores over a successful episode. We instead propose to
explicitly learn increasing rewards for partial trajectories making progress towards solving the task. Moreover,
most prior methods use only a single image or a pair of images, whereas we consider the full episode to better
represent partially observable tasks. Moreover, many prior works only considered data from the actor’s own
observation space (Silva et al., 2021; Fan et al., 2022; Nair et al., 2022a), whereas we propose to learn from
cross-embodiment data allowing zero-shot transfer to a robot with different morphology, kinematics, and
visual appearance.

Specifically, a few prior works (Fan et al., 2022; Baumli et al., 2023; Rocamonde et al., 2023) have explored
CLIP-based models for learning vision-language reward functions. However, these works have been limited
to image features of the current time step (Baumli et al., 2023; Rocamonde et al., 2023) or a snapshot of
the most recent history (Fan et al., 2022). We instead propose to score behavior at the time series level
by comparing the task description and a full video trajectory. Despite its name, RoboCLIP (Sontakke
et al., 2023) (proposed to solve a similar problem to our work) is not based on the CLIP architecture or the
pretrained representations unlike our method, but the S3D architecture (Xie et al., 2018), and mainly shares
the InfoNCE loss with CLIP.

3 Video-Language Critic

We propose to learn language-conditioned robotic manipulation by first training an embodiment-agnostic
reward function on video-caption pairs, and then using the learned reward model to guide the autonomous
training of a robot-specific policy. To serve as a useful reward signal for downstream policy learning, the
learned function should accurately represent the intended task, while providing enough signal to the agent to
enable efficient learning (Ackley & Littman, 1992; Singh et al., 2009; 2010; Sorg, 2011). It should exhibit at
least two key properties: accuracy and temporal smoothness. Making progress in the specified task should be
rewarded with positive feedback with as little delay as possible, i.e., the function should smoothly increase
over a successful execution. In fact, the problem of optimal reward shaping is equivalent to learning the
value function for the optimal policy (Sorg, 2011), suggesting that an optimal densely shaped reward should
monotonously increase over a successful demonstration (assuming the reward we ultimately wish to maximize
corresponds to sparse goal reaching). Moreover, the end-of-episode scores for successful trajectories should
exceed those of incomplete or failed executions: classification accuracy between successes and failures should
be high. With these desiderata, we formulate Video-Language Critic, a language-conditioned reward model
trained with cross-entropy and sequential ranking objectives to encourage progressively increasing scores over
a successful video’s duration.

Contrastive video-language training Our approach is motivated by the success of contrastive image-
language pretraining and the wide applicability of pretrained CLIP (Radford et al., 2021) encoders as
foundation models. The problem of comparing observed behavior to a desired task description is analogous
to the setting of CLIP; however, we extend the contrastive learning approach to scoring videos. Compared
to a single image, using sequences of frames sampled across the full trajectory increases the generality of
our reward function, and could allow it to handle non-Markovian (i.e., history-dependent) tasks. Such tasks
might involve partial observability, repetitive or circular movements, or be described relative to an earlier
state; even simple object displacement tasks may fall in this category.

Reward model architecture We define video and text encoder networks similar to CLIP4Clip used for
video retrieval (Luo et al., 2022), the task of finding videos within an existing dataset that most closely match
a given textual query. The general architecture is shown in Fig. 1. First, each video frame is processed with
an image encoder network while the video caption is processed with a text encoder, both initialized with
CLIP in order to benefit from its large-scale vision-language pretraining. Luo et al. (2022) tested different
aggregation strategies for reasoning over the resulting sequence of image features. In video retrieval, averaging
image features over time was found to be sufficient, and no performance benefit could be obtained with
an attention-based aggregation. While video retrieval shares similarities with our setting, task progress
evaluation requires a much more nuanced understanding of temporal dynamics: for one, reversing the video
should typically result in a very different reward value.
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To support this, it is necessary for the temporal aggregation function to process the input frames as an
ordered sequence, which in the case of Transformer aggregators is achieved using position embeddings.
Furthermore, we find that embedding both modalities independently of each other and comparing with a
cosine similarity, as done by CLIP as well as CLIP4Clip’s sequence Transformer aggregation, causes the
resulting video representation to lose too much of the information relevant to task completion. Thus, instead
of using cosine similarity, we train a single temporal aggregation Transformer to directly output
a similarity score based on the concatenated textual and image features. Each encoder’s weights are
fine-tuned and the aggregation function is trained from scratch for the video-text matching task. We refer to
the full architecture, consisting of both the encoder networks and the aggregation Transformer, as a similarity
function Sθ, parameterized by θ.

Contrastive objective As training signal, we wish to leverage weak supervision from video-level captions
without known spatial or temporal extent. We use a contrastive objective function to encourage each caption
to better match its corresponding video than other videos, and vice versa. We therefore train the similarity
prediction network Sθ with symmetric cross-entropy as done by Radford et al. (2021), i.e., with the mean of
text-to-video and video-to-text cross-entropy terms, for video-caption pairs (vi, ci), i = 1..N :

Lxent = (L(v1:N , c1:N ) + L(c1:N , v1:N ))/2, (1)

with the cross-entropy loss from modality x to modality y defined as:

L(x1:N , y1:N ) = − 1
N

N∑
i=1

log exp(Sθ(xi, yi))∑N
j=1 exp(Sθ(xi, yj))

. (2)

Sequential ranking objective Video inputs also contain implicit information about the relative ranking
of states, which is not leveraged in prior reward learning approaches (Fan et al., 2022; Nair et al., 2022a;b;
Karamcheti et al., 2023; Ma et al., 2023a; Sontakke et al., 2023). We propose to learn from this temporal
signal by extending the cross-entropy objective with a sequential ranking term. Each subsequent state in
a successful trajectory should, in general, have higher value for completing the task than its predecessors,
which the reward function should reflect. Our total loss then becomes:

LV LC = Lxent + α

N

N∑
i=1

|vi|−1∑
t=1

|Sθ(vi
1:t, ci) − Sθ(vi

1:t+1, ci)|+ (3)

where α is a hyperparameter balancing both objective terms and |x|+ denotes max(x, 0).

In order to ensure the reward model learns to discriminate videos based on task completion rather than
simply the presence of relevant objects in the scene, it may be beneficial to include failure examples featuring
similar environments. Task failures are typically easier to generate than success examples and thus fairly
inexpensive to collect. When available, we leave these videos uncaptioned and treat them only as additional
negatives in contrastive learning, and do not include them in the ranking loss.

4 Experiments

We evaluate the accuracy and effectiveness of the learned video-language rewards on simulated robotic
manipulation tasks from the Meta-World benchmark (Yu et al., 2019). We evaluate VLC’s ability to inform
successful policy training in three settings of increasing difficulty. First, we assess the ability of our model to
jointly represent several robotic tasks with a single language-conditioned prediction network in Section 4.1.
Second, we test our models’ ability to generalize to unseen Meta-World tasks with the help of vision-language
pretraining as well as extrapolation from training tasks in Section 4.2. In Section 4.3, we demonstrate our
method’s out-of-domain transfer ability: VLC is used to learn an embodiment-agnostic reward function for
any language-conditioned manipulation task by observing a variety of robot actors from Open X-Embodiment
(Open X-Embodiment Collaboration et al., 2023), a large dataset collected from a variety of real-world robots
in different environments. We further report comparisons to prior work, both quantitatively and qualitatively,
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in Section 4.4, and demonstrate VLC’s effectiveness in planning with a known dynamical model in Section
4.5. Finally, in Appendix E, we investigate the model’s robustness to visual variations (brightness shift and
image noise).

Training details We perform hyperparameter selection, ablation studies, and finalize all training details
on data from VLMbench (Zheng et al., 2022), a second robotic benchmark. This avoids Meta-World specific
tuning and allows for a fairer comparison with prior work. Details on this dataset and our model ablations
are included in Appendix A. We observe the same hyperparameters perform well both on VLMbench videos
and in interactive RL policy training on Meta-World, which highlights the method’s applicability across
domains. Further VLC training details are reported in Appendix B. To train control policies, we use Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), an off-policy RL algorithm. As the reward function, we use either
a sparse task completion reward, equal to 1 if the task has been solved and 0 otherwise, or a weighted sum
of the learned VLC reward and the sparse reward. As the similarity Sθ(v1:t, c) predicted by VLC can take
arbitrary values, we apply a few normalization operations to aid in the stability of RL optimization (van
Hasselt et al., 2016) (details in Appendix B.2).

Environments We evaluate VLC in RL policy training on robotic manipulation tasks from the Meta-World
benchmark. As the focus of this work is the problem of learning a foundation reward model, we keep to a
standard single-task policy training setup and condition on full state information as defined by Meta-World
(see Appendix C for more details on the environment definitions). Compared to using image-only observations,
this reduces training time and computational cost while allowing us to demonstrate the effectiveness of our
reward function. We consider the subset of tasks that can be reliably solved using the dense Meta-World
rewards, which are manually specified for each environment based on the full state of the environment.
Specifically, we include tasks that can be solved with ≥98% success within a maximum training length of
800,000 steps. We further split these in half into 12 easy (learned in <240,000 steps) and 13 hard tasks (240k
– 800k steps).

4.1 Multi-task reward function

To validate VLC’s effectiveness as a multi-task reward function, we first train our model on video data
from all 50 tasks. We collect 40 video demonstrations per task for a total video dataset of 2000 successful
executions. We further collect 1600 failure examples by replacing the demonstrator’s actions with random
actions with probability 0.7, and refer to this joint dataset as MW50 (short for Meta-World). We do not
make any modifications to the data generating process to explicitly encourage exploration, as we want to
validate our method in the context of existing offline data, which typically does not cover the full state space.
A key challenge VLC needs to overcome is to sufficiently generalize from the successes and failures present
in the data to evaluate out-of-distribution trajectories, as the RL policy may act very differently from the
demonstration data.

The policy training results are shown in Table 1, with learning curves for the hard task set in Fig. 2. To
summarize learning speed with a single number, we report success rate of the policy evaluated at the training
length at which the manually specified Meta-World reward solves the task to ≥98% success. VLC trained on
MW50 enables improved sample efficiency relative to the sparse reward only, which demonstrates that VLC
can sufficiently generalize to trajectories not seen in demonstration data, and can effectively represent task
progress for multiple tasks at once. However, a few tasks, such as Handle Press, are learned in so few trials
even with sparse reward alone that there is little room for improvement in reward design, and learning is
instead bottlenecked by the policy training’s sample efficiency. This is why the biggest gains are obtained for
the harder tasks.

4.2 Task generalization to unseen environments

Next, we evaluate VLC’s ability to generalize to entirely unseen tasks using language conditioning. For
this purpose, we split Meta-World into 40 training and 10 test tasks (every 5th task alphabetically). This
leaves roughly 1600 successful and 1300 unsuccessful videos as training data – we refer to this subset as
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Figure 2: Success rate of RL policies on hard Meta-World tasks, over the number of environment
steps (mean of 5 random seeds and standard error). Dashed lines denote convergence (≥ 0.98).

Table 1: Success rates (%) of sparse reward only training vs. VLC trained on either MW50 or Open X,
evaluated at the training length at which the Meta-World hand-designed reward solves the task.

sparse only VLC MW50 VLC Open X

easy (12) 53 ± 6 65 ± 5 54 ± 6
hard (13) 62 ± 5 91 ± 3 72 ± 5
mean 58 ± 4 78 ± 3 63 ± 4

MW40. Of the test tasks, 2 are in the easy set, 4 in hard and 4 are unsolved even with the curated single-task
Meta-World rewards, and hence not our primary evaluation target.

Success rates of RL policies on these 6 held-out tasks are shown in Table 2 (calculated similarly to Table 1),
with learning curves in Fig. 3. In most tasks, the addition of VLC rewards improves sample efficiency of RL
training despite the tasks having never been seen in reward function training, with average success rates 34
percentage points over the sparse baseline and an average sample efficiency improvement of over 5x.

In addition to task generalization, we further evaluate VLC in out-of-distribution visual conditions in Appendix
E.

4.3 Embodiment generalization to unseen domains

The advantage of our method, and pretraining a reward function in general, is that no data collection
on the target robot and in the target environment is required. To demonstrate this, we train VLC on
cross-embodiment data from Open X-Embodiment (Open X-Embodiment Collaboration et al., 2023). We use
the language-annotated subset, with a total of 698,000 episodes of diverse tasks filmed in various real-world
robotic labs. Although some of this data does feature the Sawyer robot used in Meta-World simulations, this
is only a marginal subset of 0.33% of the language-annotated videos. Moreover, the domain gap remains
significant due to real-world variations in objects, backgrounds, lighting conditions, task instances and
instruction formats, as well as the embodiment gap between the simulated and the real robots.

We successfully train policies (see Table 1 and Fig. 2) using Open X trained models despite a significant
domain gap, highlighting the generalizability of large-scale vision-language training. We obtain an average
2.1x sample efficiency gain over the sparse reward in tasks solved by both rewards (sample efficiency is
ill-defined if either does not solve the task), with particularly large improvements in Handle Pull Side (7x),
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Figure 3: Success rate of RL policies on held-out Meta-World tasks, over the number of environment
steps. VLC achieves improved sample efficiency compared to any prior approach in 3/6 tasks.

Table 2: Success rates (%) of VLC and prior work trained on MW40, evaluated on 6 unseen tasks (2 easy, 4
hard) at the training length at which the Meta-World hand-designed reward solves the task.

LOReL RoboCLIP LIV Voltron R3M VLC (ours) sparse only
easy (2) 57 ± 21 46 ± 26 30 ± 10 18 ± 10 2 ± 1 58 ± 22 39 ± 12
hard (4) 60 ± 6 51 ± 11 63 ± 5 35 ± 11 24 ± 14 79 ± 8 42 ± 10
mean 59 ± 9 50 ± 12 39 ± 11 29 ± 9 16 ± 10 72 ± 11 41 ± 8

Reach Wall (7x) and Slide Plate (6x) and an average 5 percentage point success rate increase across all 25
tasks despite misrepresenting a few tasks. Note that unlike RT-X (Open X-Embodiment Collaboration et al.,
2023), our method does not use action labels, and remains equally applicable on observation-only data.

4.4 Comparison to prior work

To validate VLC’s benefits, we compare its performance to prior language-conditioned reward models LOReL
(Nair et al., 2022a), RoboCLIP (Sontakke et al., 2023), LIV (Ma et al., 2023a), Voltron (Karamcheti et al.,
2023) and R3M (Nair et al., 2022b), each fine-tuned on MW40. A breakdown of the key differences between
VLC and these baseline methods is shown in Table 5 in Appendix D; in summary: VLC is the only method to
use a sequence ranking objective or a temporal aggregation Transformer, and one of only two to use history
conditioning. Training and implementation details for the baselines are also included in the Appendix D.

We find VLC’s combination of cross-entropy and the sequential ranking objective, temporal Transformer
architecture as well as full video conditioning to produce more informative reward predictions than existing
methods, as shown by faster policy training on average in Table 2 and Fig. 3. For increased statistical
significance, we use 5 additional random seeds (10 total) for VLC and the two strongest baselines: RoboCLIP
and LOReL. Moreover, on qualitative inspection of the shape of the predicted rewards (Appendix F), we find
VLC’s outputs to better distinguish successes from failures compared to either RoboCLIP or LOReL. Thanks
to its broad coverage of execution history and the sequential loss term, VLC also produces rewards that more
smoothly increase over successful episodes than either prior method.

4.5 Model-based evaluation

As a pretrained reward function, VLC can also inform model-based planning. We demonstrate this in a
proof-of-concept experiment, where we do not learn the model but instead assume access to a known transition
model as well as action primitives. The action primitives include grasping and reaching, parameterized by
target positions (such as the locations of objects detected in the scene), and are defined using segments from
the expert policies available in Meta-World. We evaluate VLC’s ability to identify the action primitive with
the correct execution for a held-out task by assigning it a higher score than for incorrect executions. In each
task, we compare one successful trajectory with 5 unsuccessful ones with randomly sampled target positions.

We find VLC to generalize well to these tasks zero-shot, with 80% mean accuracy on held-out tasks,
outperforming RoboCLIP (46%) and LOReL (36%). A breakdown per task is shown in Table 3.
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Table 3: Model-based experiment: Accuracy (%) of VLC-MW40 in identifying a successful execution out
of 6 sampled trajectories, averaged over 50 random scene initializations for each held-out task. Two action
primitives are required to solve Assembly and Pick Out of Hole: first grasping the required object, then
moving it as specified, such as lifting it out of the hole.

Plate Slide Side

Stick
Push

Handle Pull Side

Faucet
Open

Door Open

Coffee Push

Button Topdown Wall

Reach
Pick

Out of Hole (Grasp)

Pick
Out of Hole (Goal)

Assem
bly (Grasp)

Assem
bly (Goal)

Mean

VLC 100 20 96 100 40 94 54 82 100 100 97 100 80
RoboCLIP 88 60 58 4 86 32 4 14 26 82 44 50 46
LOReL 26 14 44 14 4 22 22 28 72 54 100 30 36

5 Conclusion

We proposed Video-Language Critic (VLC), a method for training a foundation reward model for vision-
language manipulation. In particular, we train our critic using contrastive video-language alignment and
a ranking loss encouraging monotonic increases for successful trajectories. Our model predicts a language-
conditioned state-value function conditioned on only a history of image observations, and can therefore readily
be scaled to leverage external observation data from other actors. VLC can be used for various downstream
tasks, such as model-free and model-based reinforcement learning. Further, we experimentally validated
its usefulness as a reward function in out-of-distribution tasks (unseen, held-out environments in the same
domain) and out-of-domain tasks (an unseen environment and embodiment in a different domain). Our
experiments on Meta-World demonstrated improved results compared to 5 prior methods and a sparse reward
baseline, with success rate increases of 12 and 34 percentage units, respectively, and sample efficiency gains of
65% and 300%, respectively. Unlike methods based on predicting expert actions in a given embodiment, VLC
remains applicable in the absence of action labels. Therefore, it can be extended to equally learn from videos
of humans in future work.
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Supplementary Material

A Model ablations

A.1 VLMbench dataset

We use the VLMbench manipulation task suite to develop and validate our method without any Meta-World
specific tuning. For this purpose, we collect 2700 video demonstrations and 1600 failure cases from variations
of the picking task – covering different object shapes, sizes, colors and relative positions, as well as distractor
objects. The natural language instructions match this diversity in task variants, such as Grasp the cylinder or
Grasp the cyan object, and require distinguishing relevant objects from distractors with either absolute (color,
shape) or relative (size, position) properties, such as the the larger or the front object. For more details on
the benchmark, see Zheng et al. (2022).

We use these VLMbench videos to validate VLC design decisions, but defining a single informative metric on
the dataset of video-caption pairs (vi, ci), i = 1, ..., N , is difficult. Test loss, video retrieval metrics such as
mean recall, or classification metrics such as area under the ROC curve do not correspond well to the models’
ability to model task progress. The main difficulty is that part of the caption-to-video matching task can
be solved by simply connecting objects referred to in the caption to objects present in the scene, without
considering temporal information or actual task success.

To support informative evaluation of our models, we therefore further define a set of 19 test episodes: in
each test case, the same initialization of the scene is used to generate alternative trajectories that grasp
at different objects in the scene, only one of which solves the correct task. The accuracy over this set of
videos is our main model selection metric of interest, i.e., in how many out of 19 instances does the model
assign a higher score to the successful video than any incorrect video from the same initialization. Out of
evaluation metrics available at training time, we find video-to-text cross-entropy to correlate the most with
this test-time accuracy, and so use this metric on a set of validation trajectories to choose model checkpoints.

A.2 Ablation results

We compare two temporal aggregation methods as proposed by Luo et al. (2022): the sequence transformer
and the tight-type transformer. The sequence transformer aggregates the sequence of image features
[ViT(v1), ViT(v2), ..., ViT(vT )] into a single embedding vector Sθ(v1:T ), which it then compares to the caption
embedding TextEnc(c) with cosine similarity. The tight-type transformer, on the other hand, includes the
caption embedding as an additional input to the temporal aggregator Sθ(v1:T , c), as shown in Fig. 1.

We report the results of our ablation study in Table 4. In addition to the choice of architecture, we observe
performance gains from adding image augmentations from the Albumentations library (Buslaev et al., 2020),
by sampling frames randomly from uniform intervals instead of deterministic uniform sampling, the addition
of the sequence ranking term, as well as considering failure examples only as negatives in the contrastive
objective, and report results using these settings in Section 4.

B Training details

B.1 Reward training

We subsample the videos to 12 time steps. Capping the maximum video length is a practical choice both
in terms of learning ability and computational cost. We keep the default value of 12 frames in CLIP4Clip,
though we change these to be linearly sampled from across the entire video. Informed by the findings of our
ablation studies in Section A, at training time, we additionally apply image augmentations and randomize
frame sampling. We set α, the ranking loss weight, to 33 based on accuracy on VLMbench test episodes.

Computational cost Reward training on Meta-World videos took 2 hours for MW50 on a single NVIDIA
A100 GPU, and 1 hour for MW40 on a GeForce RTX 3090 GPU. Training on the significantly larger Open
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Table 4: Accuracy on VLMbench test episodes for various model ablations. α is the weight of the sequence
ranking loss term.

Architecture α Data augmentations Failures Accuracy (%)
Sequence transf. 0 - as negatives only 51.6 ± 3.1

" " image " 62.1 ± 4.2
" " frame sampling " 44.2 ± 3.6
" " image & frame sampling " 60.0 ± 4.3
" " image & frame sampling yes 72.6 ± 7.1

Tight type " - as negatives only 52.6 ± 4.7
" " image " 72.6 ± 3.1
" " frame sampling " 55.8 ± 8.4
" " image & frame sampling " 80.0 ± 4.5
" " image & frame sampling yes 76.8 ± 4.6
" 3.3 image & frame sampling as negatives only 82.1 ± 4.3
" 10 " " 83.2 ± 2.0
" 33 " " 88.4 ± 5.4
" 100 " " 85.3 ± 3.1

X-Embodiment dataset took 256 hours (nearly 11 days) on a single A100. However, we believe this length
could be greatly reduced in future work by improving data loading throughput and running on multiple
GPUs.

B.2 Policy training

For RL training experiments, we adapt the SAC implementation of CleanRL (Huang et al., 2022). Policy
evaluation is done every 20,000 timesteps for 50 episodes. Both the actor and critic networks contain three
hidden layers of size 400, and optimization is done using Adam (Kingma & Ba, 2017). Other algorithm
hyperparameters were kept at the implementation’s default values.

Reward normalization As reward model predictions for the starting state can vary across initial states,
even for the same task, we shift the rewards of the episode such that r1 = 0, as the subsequent behavior
should be scored relative to this state. In addition to this, we apply the standard normalization logic from
Gymnasium (Towers et al., 2023), which scales reward values such that their exponential moving average has
fixed variance (1 − γ)2.

Reward component weighting We experimentally set the relative weights of the VLC and sparse reward
components to 1 and 50, respectively, the motivation being that the sparse reward, once obtained, should
be able to override the dense intermediate reward predictions. We chose these values after testing three
other settings: (0.01, 10), (0.1, 10), and (0.1, 20), which also performed quite well. For sparse reward only
experiments, we did not find significant differences in the scale of the reward, but for some tasks using a
weight of 50 seemed to perform better than 1 or 10, so we report results using this value for consistency with
the VLC experiments.

Computational cost Training length and hence computational cost varies considerably across tasks. We
terminate training after convergence to ≥98% success (averaged over the 10 most recent evaluations), or after
a maximal training length set per task. The resulting average training length across all 25 tasks was 600k
environment steps for VLC MW50 and 750k for the Open X trained model. The corresponding GPU hours
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vary slightly based on exact architecture used, but we obtained approximately 750k steps in 24 hours on
a single NVIDIA V100 or P100 GPU. Our total computational budget was therefore 19.2 GPU hours × 5
random seeds × 25 tasks = 2,400 GPU hours for the RL training experiments with VLC MW50 and 24 × 5
× 25 = 3,000 hours with VLC Open X. For the MW40 task generalization experiments, the average training
length was again 600k for VLC, but 10 random seeds were used, so the corresponding cost for training on 6
tasks was approximately 1150 GPU hours for our method, and slightly more for baselines that took longer to
train.

C Meta-World environment definitions

The Meta-World environments are a set of continuous control robotic manipulation tasks. The state space
of each environment is R39, containing the positions and orientations of relevant objects as well as the xyz-
position of the robot’s end-effector. An action a in [−1, 1]4 consists of the desired end-effector xyz-translation,
and one dimension for controlling the openness of the gripper. We refer to Yu et al. (2019) for more details
on the state information.

D Baseline implementations

For the LOReL baseline experiment, we used the proposed binary classification objective, reversed negatives
and 2-frame conditioning (first and last), while keeping all of our other training details and data augmentations
identical to our method. This is to ensure LOReL’s smaller and older original architecture as well as
lack of visual representation pretraining did not account for any difference in performance. The original
implementations were used for all other methods, and pretrained checkpoints (e.g., HowTo100M (Miech et al.,
2019) pretraining for RoboCLIP) were reused when applicable. Pretraining datasets, architectures, training
objectives and history lengths for each model are listed in Table 5.

Although not considered as a source of data in the original works, we also use our failure videos as additional
negatives in the contrastive objective of LIV, RoboCLIP and R3M. Model selection was performed based on
validation loss on held-out trajectories. Otherwise, the training procedure and hyperparameter settings were
kept unchanged from the original works. In policy training, we apply identical reward normalization (offset
and scale, as described in Section 4) for all methods, and reuse the multiplier 50 for the sparse reward.

E Robustness to visual variations

To evaluate VLC’s generalization to visual observation shift and noise, we run additional experiments where
the brightness of the scene is reduced, and uniformly sampled pixel noise is added per image. Example images
of this perturbation compared to the original appearance are included in Fig. 4. The success rate curves are
included in Fig. 5. 2/6 tasks’ performance is somewhat affected by this noise, but 4/6 are unaffected.

Figure 4: Left: Example observation from the Open Faucet task with the original brightness (0.3) and
without image noise. Right: Example observation from the same scene with shifted brightness (0.01) and
pixel-wise noise sampled uniformly from [0, 0.2].
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Table 5: Key differences to prior work. Previous methods use various objectives, but VLC is the first to
include a sequence ranking loss, encouraging smooth, dense rewards. Moreover, our model’s conditioning on
12 frames instead of just 1 or 2 like each prior work apart from RoboCLIP allows history-aware progress
evaluation, which is important for a variety of tasks (such as distinguishing Turn faucet clockwise and Turn
faucet counter-clockwise). Finally, VLC defines rewards based on the output of the temporal Transformer,
which is more expressive than compressing the text and video separately into an embedding space and
comparing them with either cosine or Euclidean distance, as done by all prior works other than LOReL. As
LOReL did not originally use any visual pretraining and used a small architecture, for a fair comparison, we
compared to a reimplementation of its training objective while reusing CLIP pretraining and our architecture.

Objective Num.
images

Architecture Reward
defined by

Pretraining
data

VLC
(ours)

CLIP +
sequence ranking

12 CLIP + temporal
Transformer

model output
(temporal
Transformer)

CLIP

LOReL
(original
work)

binary classification 2 12-layer CNN +
small classifier &
DistilBERT (Sanh,
2019)

model output language only

LOReL
(our reim-
plementa-
tion)

binary classification 2 CLIP + temporal
Transformer

model output
(temporal
Transformer)

CLIP

Robo-
CLIP

CLIP 32 S3D
(Xie et al., 2018)

cosine Howto100M
(Miech et al.,
2019)

LIV CLIP + VIP
(variant of
time-contrastive; Ma
et al. (2023b))

1 CLIP
(ResNet-based)

cosine CLIP +
EPIC-
KITCHENS
(Damen et al.,
2018)

Voltron visual reconstruction +
language generation

2 Transformer
encoder-decoder &
DistilBERT

Euclidean Something-
Something v2
(Goyal et al.,
2017)

R3M CLIP + time-contrastive
(Sermanet et al., 2018) +
L1 sparsity

1 ResNet (He et al.,
2016) &
DistilBERT

Euclidean Ego4D
(Grauman
et al., 2022)
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Figure 5: Success rates in VLC training under brightness shift and image noise (as shown in Fig. 4).

F Qualitative evaluation

Figure 6: Qualitative evaluation of rewards predicted over time steps of an example successful (above)
and unsuccessful (below) test episode. Predictions are offset so the episode start has reward 0, as done in
policy training, except for RoboCLIP, which only assigns a reward for the final time step in RL training, as
in the original work (the full curve is shown here for visualization only). In this figure, rewards are further
normalized per task and method so that the success and failure episode rewards are comparable: e.g., in
Faucet Open, VLC assigns at most 75% of its reward prediction for the end of the success episode to any
step of the failure episode; this is similar in spirit to the scale normalization used in policy training (which
instead normalizes running statistics). A good reward model gives higher rewards in the top row than the
bottom row. Good correlation with the Meta-World reward also implies an understanding of the task, but is
not strictly required for successful RL training.
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