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ABSTRACT

Research on anomaly detection in reinforcement learning settings is sparse. Only
a handful of methods have been proposed that - due to the absence of established
evaluation scenarios - are evaluated on simple, small-scale, and self-proposed
environments. This not only results in poor comparability but also leads to a
limited understanding of the strengths and weaknesses of current approaches,
rendering their applicability in real-world scenarios questionable. We address
this problem by introducing Anomaly-Gym, a comprehensive evaluation suite for
anomaly detection in reinforcement learning settings. In contrast to prior work,
Anomaly-Gym is based on principled design criteria that disentangle evaluation
from methodology. By enforcing specific constraints on the environments and
anomalies considered, we propose a broad spectrum of evaluation data that covers
both simulated and real-world tasks. In total, our benchmark features 10 differ-
ent environments, 25 anomaly types, 4 strength levels, as well as multiple sensor
modalities. We demonstrate the importance of these different aspects in a series of
experiments on pre-generated datasets. For instance, we show that simple meth-
ods, while generally neglected in previous work, achieve near-perfect scores for
settings with observational disturbances. In contrast, detecting perturbations of
actions or environment dynamics requires more complex methods. Our findings
also highlight current challenges with anomaly detection on image data and pro-
vide directions for future research.

1 INTRODUCTION

Anomaly detection (AD) is an essential component of safe and reliable machine learning (ML)
systems (Hendrycks et al., [2021)). It allows systems to initiate a conservative fallback policy or hand
over to human control whenever anomalies are detected that can potentially lead to unsafe or erratic
behavior (Nguyen et al., 2015 |Amodei et al.l |2016). Posing a long-standing problem in the field
of ML, AD has been studied thoroughly in domains such as computer vision (Yang et al., [2021)),
robotics (Wellhausen et al., 2020), and healthcare (Sabié et al., 2021) applications.

However, the Reinforcement Learning (RL) domain has only witnessed a handful of methods that
address AD. The field lacks publicly available benchmark datasets with challenging problems and
well-defined evaluation criteria. As a result, the evaluation of existing work focuses on simpler,
small-scale environments, often introduced in the same work as the corresponding methods. Poor
comparability and a limited understanding of the current approaches’ strengths and weaknesses are
consequences, rendering their applicability questionable, especially in real-world scenarios.

In this work, we address this problem from the bottom up with the following contributions. First, we
propose a general framework for evaluating AD within RL settings. Recognizing the potential bias in
existing evaluation schemes, our framework encompasses a set of principled desiderata and is based
on a clear connection to existing literature on AD. Second, we present Anomaly-Gym, a suite of 10
diverse tasks and 25 anomalies designed to rigorously test, evaluate, and compare different aspects of
AD for RL (see Figure[I)). In contrast to any existing work, Anomaly-Gym also incorporates meticu-
lously tuned anomaly strength levels as well as real-world data. Anomaly-Gym focuses on embodied
agent environments because they pose particularly important challenges in terms of safety. Third, we
demonstrate the utility of Anomaly-Gym in a series of experiments in which we evaluate existing de-
tection methods and baselines across the various environments, anomaly types, strength levels, and
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experiments and datasetﬂ are lop: SAP-GOEII{O, 1, 2}, URM-{Reach, Pick and Place (PHP)}

made publicly available. Bottom: MIJC-{CartpoleSwingup, Reacher3D, HalfCheetah}
URRtde-Reach, CAR-LaneKeep.

2 RELATED WORK

Anomaly Detection in Reinforcement Learning. In a relatively recent line of work, several tech-
niques have been proposed that tackle AD specifically in RL settings. See Table [T] for an overview.
While several benchmarks exist, they consider only small-scale settings, i.e., simple environments
with small, discrete action spaces and low dimensional vector observations. As a result, state-of-
the-art methods often disregard these benchmarks. Instead, new works typically introduce their own
evaluation environments. This is problematic, as it can lead to distorted comparisons and potentially
biased evaluation scenarios in favor of their own proposed methodology.

Anomaly Detection in other Fields. AD has been studied extensively in other fields. Although
RL has unique characteristics that are important to consider, i.e., sequential-interactive data, many
approaches from other fields can, in theory, also be adapted to RL. AD for temporally independent
samples is a long-standing problem. See |Chandola et al.| (2009); (Chalapathy & Chawlal (2019)
for surveys of classic and deep-learning-based methods. AD for time-series considers temporal
components of the data. See Lai et al.[| (2021) for a detailed survey. AD for image data is also
widely studied. Most commonly, classification tasks are considered, where the goal is to classify
test samples within the label space and to reject samples with semantics outside its support (Yang
et al., 2021). This task is also known as out-of-distribution (OOD) detection. Video AD considers
temporal sequences of images. See |Yang et al.| (2021); Nayak et al.| (2021) for recent surveys.
Robotics and RL are also inherently related. However, methods from this domain are typically
specialized for individual tasks or robotic platforms. Nonetheless, methods such as [Hornung et al.
(2014); [Wellhausen et al.| (2020); Ji et al.| (2022)) are potentially also applicable to AD in RL.

Robustness techniques such as domain generalization (Kirk et al., | 2023)) or adaptive control (Packer
et al., 2018) share related goals, aiming at training robust policies that perform reliably under var-
ious disturbances or uncertainties (e.g. deviations between training and deployment environment).
Anomaly detection complements these efforts by focusing on the identification of such deviations.

Adversarial RL focuses on perturbations to the agent’s observations or environment dynamics to
evaluate or improve the policy’s resilience to malicious attacks or worst-case scenarios. These per-
turbations, often imperceptible to humans, exploit model vulnerabilities with minimal input alter-
ation. While useful for probing model resilience, the real-world occurrence of such adversarial
examples remains debatable (Gilmer et al., 2018). In contrast, anomalies emerge via natural but
unanticipated variations, such as sensor faults, mechanical degradation, or distributional shifts.

In summary, all of the above fields differ in their specification of problem setup, assumptions, and
data, but they share important features with the problem of AD for RL. Although theoretically
possible, translation of these findings and methods towards AD in RL has not yet been practically
adopted. We believe this is partly due to the absence of a public and comprehensive benchmark.
Our work aims to bridge this gap by offering a coherent evaluation framework that is reproducible,
comparable, and easy to use, thereby facilitating the transfer of knowledge from related research
areas to RL settings. Offering a wide spectrum of different tasks, anomalies, and sensor modalities,

!Code: https://anonymous.4open.science/r/iclr-18811
Datasets: https://www.kaggle.com/datasets/anonymous31459/anomaly-gym
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Table 1: Related work on AD for RL. Anomalies: logic specific to gridworlds (L), action- (A),
observation- (O), dynamics- (D) disturbances. Observation Space: Vector(V) or Image(I) based.
Action Space: Discrete or Continuous. Real: real-world data. Pub: data/code publicly available.

Ref. Category | Environments | Anomalies | Obs. | Act. | Real Pub
L AOD VI|INR
| |Sedimeier et al.[(2019) | Method Classic Gym, | v v v
Gridworlds
Mohammed &l | Benchmark| Classic Gym |/ v
Valdenegro| (2021)
| |Goel et al[(2021) Benchmark| Gridworlds v v v v
| |Balloch et al[(2022) Benchmark| Gridworlds v 4 v
| |Danesh & Fern[(2021) Method Classic Gym, v v v v
Pybullet Ctrl.
| [Haider et al.[(2023)) Method Mujoco Ctrl. v I/ 4 4
| [Nasvytis et al.[(2024) Method Classic Gym i v v
| Martinez et al.|(2024) Analysis | Gridworlds v v v v
| [Haider et al.[(2024) Analysis | PickAndPlace |/ v
| [Zollicoffer et al.[(2024) | Method Gridworlds v / I/
| Zhang et al.[(2024) Method Classic Gym, v/ S/
Atari, Carla
ours Benchmark| Mujoco Ctrl., v v /| I/ v
Carla,Particles,
Robot manip.

the Anomaly-Gym evaluation suite and datasets allow for an in-depth analysis of existing techniques
on one hand, and lay the foundation for the development of novel approaches on the other.

3 ANOMALY DETECTION IN REINFORCEMENT LEARNING

To establish a clear and precise connection between AD and RL contexts, we start with a formal
definition of the problem and review the key taxonomy adopted in this work.

3.1 ANOMALY DETECTION

Definition of Anomaly. An anomaly is an observation that deviates considerably from some
concept of normality (Chandola et al., [2009).

Following Ruff et al.|(2021)), this can be formulated more formally via probability theory. Let X C
RP represent the data space associated with a specific task and let P be a probability distribution
over X. We define the notion of normality as a probability distribution PT over X. An anomaly is
then an observation z € X that resides in a low-probability region under P* such that

A={zreX|ph(x) <e}, (D
where pT is a pdf of P and ¢ > 0 is some threshold.

Types of Anomalies. Several anomaly types have been defined in the literature (Chandola et al.,
2009). A point anomaly refers to individual anomalous samples z € A. A group anomaly is a
collection of related samples, where the group as a whole exhibits anomalous behavior. A contextual
anomaly refers to samples that appear anomalous within a specific context, e.g., time or space.

Terminology. While anomaly, outlier, novelty or Out-of-Distribution (OOD) samples are often
distinguished, they fundamentally refer to low-probability samples under P (Ruff et al. [2021).
Consequently, methods for detecting such instances are inherently the same, regardless of the term
(OOD, outlier, novelty, anomaly). Therefore, we use the umbrella term anomaly.

3.2 CONNECTION TO REINFORCEMENT LEARNING

Reinforcement Learning. In RL, we consider sequential decision-making problems. Formally,
this can be described as a discrete-time Markov Decision Process (MDP) (Putermanl, 2014). An
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MDP is defined by the tuple M = (S, .A, T, r), where S denotes the state space, .A the action space,
T :S x A — S the transition operator that describes the system dynamics, andr : S x A — Ris
the reward function. The RL objective is to find a policy 7y : S — A, parameterized by 6, which
selects actions that maximize the expected cumulative sum of future rewards.

Anomaly Detection in Reinforcement Learning. The interaction between policy and MDP is the
fundamental data-generating process in RL. Assuming the policy is fixed after training |’} anomalies
in an MDP can be described via perturbations to individual components thereof, e.g., perturbations
to the state space, the action space, or the transition dynamics (Haider et al.,[2021). LetT" : M — M
be a perturbation to one or more components of an MDP. The objective of AD in RL is to identify
whether a given sample z originates from the original MDP, M ™ = M, or from an anomalous MDP,
M~ =T'(M). Following the same argumentation as above, the problem of AD in RL reduces to

A={zeX|ppm+(z) <€} (2)

Data in Reinforcement Learning. Data in RL is fundamentally contextual and collective. Follow-
ing some policy 7y : S — A on the MDP M for T' € N steps, trajectories are generated:

TTI',M :{SO)GO)"'aSTaa/T}v (3)

where a; ~ 7(+|s¢) and syy1 ~ T (-|st, ar). Observations and actions within a trajectory are tempo-
rally correlated and dependent on the policy and the MDP. Hence, anomalies in RL must be under-
stood within this context. They can occur as individual, contextual, or group events, requiring con-
sideration of anomalies at different levels: single states z = s, individual transitions = = (s, a, s’),
or entire trajectories x = 7.

Data Paradigm. Training RL agents requires interaction data with the normal MDP. Hence, access
to data generated under normal, non-anomalous conditions can be assumed. This does not hold
true for anomalous data, as anomalies are, by definition, rare, unpredictable, and, most importantly,
unknown during the training phase. This scenario corresponds to an unsupervised setting with a
contamination rate n = 0, i.e., the train data is assumed to consist entirely of normal samples
(Aggarwal, [2017). While settings with 17 > 0 are possible, we do not consider them in this work.

4 EVALUATING ANOMALY DETECTION IN RL
Following the aspects above, we propose a general framework that embeds AD into RL settings.

4.1 FRAMEWORK FOR ANOMALY DETECTION IN REINFORCEMENT LEARNING

We motivate our evaluation framework by practical considerations. Reinforcement learning agents
are typically trained with data that is representative of the deployment MDP under normal condi-
tions. However, during deployment, agents can encounter substantially different inputs. To address
this, we aim to monitor interactions during deployment and identify samples that deviate signifi-
cantly from the learned model of normality, allowing for adjustments to the mode of operation, i.e.,
hand over to human operator or transition to safe stateE] Hence, this framework consists of 4 stages:

Stage 1) - Agent Training. The RL agent interacts with the environment to learn a policy through
trial and error. Data from early stages of training can differ drastically from later stages and is thus
not stored for purposes other than training the agent. The policy will be fixed after this stage.

Stage 2) - Data Generation. Training data is generated by applying the policy to the normal MDP.
This is equivalent to storing data during the final stages of agent training.

Stage 3) - Detector Training. Anomaly detectors are trained on normal data (model of normality).

Stage 4) - Evaluation/Deployment. The policy interacts with a potentially anomalous MDP.
Anomalies can emerge at random time points (random onset). The goal of the detector is to identify
anomalous samples as soon as they occur.

3We presume that the MDP itself - and consequently all data generated by interacting with it - can be subject
to anomalies, but not the policy. While the policy could also change, we do not consider this case, as we believe
it is less common in practice.

*This work focuses on the detection of anomalies; mitigation strategies are out of scope.
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In settings that require online policy adaptation, the same data that is used to update the policy, can
be used to update the detector online. This is equivalent to applying this framework iteratively:

1) Train agent — 2) collect data — 3) train policy & detector — 2) collect data — 3) (re)-train ...

Connection to Sequential Decision Making: More general, any policy/controller (e.g. offline RL
policy, classic controller) can be plugged into this framework - the framework itself is policy agnos-
tic. In this work we concentrate on RL. More details are provided in the discussion.

4.2 DESIDERATA TOWARDS EVALUATION DATA

Following our framework from Section[.T] anomalous data emerge from perturbations to the normal
MDP. To generate datasets for AD in RL, the normal environment and perturbations to this MDP
(anomalous versions of the normal environment) are required. In the following, we define a series of
essential desiderata towards both. Following these criteria should result in comprehensive datasets
that can be used to analyze and compare different approaches for AD in RL scenarios.

Environment Desiderata

* ED1-Diversity. Environments should cover a wide range of scenarios and complexities to test
the general applicability of AD methods. This includes diverse sensor and actuator modalities.

* ED2-Scalability. Environments should cover varying sizes to test the scalability of methods.

¢ ED3-Realism. Environments should incorporate realistic settings to ensure that detection meth-
ods are applicable in real-world scenarios. This includes continuous observations and actions.

¢ ED4-Solvability. Environments should allow RL systems to achieve (partial) success. This
ensures that meaningful and non-trivial regions of the state space are reached.

* EDS5-Reproducibility. Environments should be reproducible for consistent evaluation results.

* ED6-Configurability. Environments should allow customization of parameters.

Anomaly Desiderata

* AD1-Diversity. Anomalies should encompass different types to broadly evaluate detection ca-
pabilities across different failure modalities.

¢ AD2-Realism. Anomalies should mimic realistic faults or unexpected behaviors within the en-
vironment to ensure applicability in realistic settings.

e AD3-Impact. Anomalies should have varying levels of impact on the environment to evaluate
detection capabilities across a spectrum of disruptions.

e AD4-Difficulty. Anomalies should be non-trivial to detect, exhibiting characteristics similar
to normal operation. For instance, extreme sensor values or shutdown (e.g., a full black/white
image) would be trivial to detect.

5 ANOMALY-GYM

We present Anomaly-Gym, a suite of sequential decision-making problems specifically designed to
evaluate AD in RL. To satisfy the above-described desiderata, Anomaly-Gym includes and imple-
ments the following environments and anomalies.

5.1 ENVIRONMENTS

MuJoCo Control (MJC) The robotics control tasks fromBrockman|(2016)) serve as widely adopted
benchmark for RL algorithms. We include Cartpole-Swingup, Reacher3D, and HalfCheetah.

Single Agent Particle Env (SAP) is a set of three simple navigation environments, where the agent
controls a particle to reach a goal while avoiding collisions with obstacles. The idea behind this is to
mimic existing Grid-world scenarios but with more complex, vector-based (lidar) observations and
continuous actions. We developed three levels of difficulty, called Sape-Goal-{0,1,2}.

Universal Robots MuJoCo (URM) is a set of two different robotic manipulation tasks based on a
model of the Universal Robots UR3 in MuJoCo (Todorov et al.| 2012). We implemented a simpler
Reach task and a more complex Pick-And-Place(PnP) task.
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Universal Robots Rtde (URRtde) is a robotic manipulation environment using a real-world Uni-
versal Robots UR3 and an RTDE interface (Lindvig et al., [2025)). We implemented a simple Reach
task with this environment, that mimics the mujoco simulation.

Carla Lanekeep (CAR) is an autonomous driving environment, where the agent controls a vehicle
such that it stays in its lane, keeps a safe distance from other vehicles, and drives at a target speed
on a highway. We implemented this environment using CARLA (Dosovitskiy et al., 2017).

5.2 ANOMALIES

Observation Anomalies are perturbations to the observations emitted by the environment. We
implement the following observation anomalies:

Noise: o), = o; + €4 Scaling: o} = oy - 8 Offset: o} = oy + 8
Drift: a} = a; + 8t Quantization: o} = 3 - {%’—‘ Temporal Noise: 0} = oy + Bns—1 + ¢

where g, ~ N(0,5%), mng=-¢epand f € RT.

Action Anomalies are perturbations to the actions before they are applied to the environment. We
implemented the same types of anomalies as those used for observations but instead of quantization,
we add action delay: o} = o;_g where 3 € N

Dynamics Anomalies refer to perturbations in the underlying dynamics function of an MDP, which
makes them environment-specific. For example, we implemented moving objects for SAP, changed
friction parameters in MJC, or applied disturbance forces in URM.

All environments and anomalies are described in more detail in Appendix [A.T and Appendix [A.2]
An overview of how these satisfy the above desiderata is given in Appendix

5.3 ANOMALY STRENGTHS

What constitutes a light anomaly and what a strong anomaly is not trivial to define. For instance,
multiplying the mass of a robot joint by some factor can lead to an entirely different effect than
multiplying the policy action by the same factor. Vice versa, the exact same anomaly can lead
to vastly different results in two different environments. To enable a quantitative comparison of
different anomalies in different environments we propose the following process.

Let Jp+(m9) = E[ZtTZO ;] be the average cumulative reward of policy 7y in the normal MDP,
where 7; is the reward received at time step ¢ and T is the time horizon. Let Jy+(7g) be the
average cumulative reward of a random policy, and J - () the reward in the anomalous MDP. To
this end, we define policy degradation through the normalized score

- Im-(m9) — I+ (TR)
J - e ) = .
M) = e (7) — T ()
Using this normalized score, we can tune the magnitude of all anomalies and define different strength

levels with respect to the degree of degradation of the rollout policy. We set four different levels of
anomaly strength, namely tiny (J - (g) = 0.99), medium (0.9), strong (0.75), and extreme (0.50).

“4)

To find the respective parameters, we conducted a grid search for each anomaly, strength and envi-
ronment combination. Since this is an inherently noisy process, we collected 500 episodes for each
grid pointﬂ More details are available in Appendix

5.4 PRE-GENERATED DATASETS

We also provide a set of pre-generated data, which we collected by following the presented frame-
work from Section For this, we first trained a policy using TQC (Kuznetsov et al., [2020) until
a success rate > 95% is achieved. This heuristic is environment-specific (e.g target speed without
collision in CAR, place object on target in URM-PnP). To reach this success level, we performed a
hyperparameter optimization, searching along the most important parameters (learning rate, network
size, batch size). More details on agent training and hyperparameters are provided in Appendix[A.6

>For some anomalies not all strength levels can be reached. We omit those settings during evaluation.
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The final policy is used to generate train and test data for AD. Train data consists of /N normal
episodes, containing only transitions generated with the normal MDP: Dy = {Tm M+ }2’:1.
Test data consists of normal and anomalous episodes: Dyt = {7 p+ }A—1 U {7 m- }A 1.
Anomalous episodes are generated by introducing a perturbation after a randomized number of steps
ta € (to,tm) (random onset). The timesteps [to, ..., ta—1] are labeled as normal, whereas [tq, ..., t ]
are anomalous. The resulting dataset is balanced in expectation. For Carla and URRtde, we collect
N = 50 episodes in each setting, for all other environments N = 100, with different random seeds.

6 EXPERIMENTS

To assess our benchmarks utility and the importance of its different aspects, we perform an empirical
study with relevant baseline and state-of-the art anomaly detectors for RL.

6.1 DETECTION METHODS & BASELINES

We compare the following methods for vector observations: IF Isolation Forest (Liu et al.| 2008]),
KNN k-Nearest Neighbor (Cover & Hart, [1967), OCSVM One-Class Support Vector Machine
(Scholkopf et al.L 2001), RIQN Recurrent implicit quantile network (Danesh & Fern|,2021)), MLP-
DM Dynamics model (DM) with an MLP as backbone, LSTM-DM DM with LTSM as backbone,
and PE-DM Probabilistic ensemble DM (Haider et al., [2023).

For image observations we consider: AE Auto-Encoder reconstructing the current frame, PredAE
Auto-Encoder predicting the next frame, KNN-AE KNN on latent features of an AE, KNN-ResNet,
deep-KNN on latent features of a ResNet pre-trained on classification, similar to Sun et al.| (2022),
PredNet (Lotter et al.||2016) predicting future frames, LDM based on a latent DM similar to/Haider
et al.| (2023)), but with an AE, Dino-PatchCore Dino Patches with max. distance to NN, a simplified
version of Roth et al.| (2022), and ClipKnn: KNN search on CLIP embeddings, similar to|Sun et al.
(2022) but with CLIP embeddings (Radford et al., [ 2021)).

Note that we focus on external, policy agnostic methods. Techniques such as|Sedlmeier et al.|(2019)
are thus not considered here. More details on all available methods can be found in Appendix

6.2 METRICS

We employ established metrics for anomaly detection, namely, AU-ROC, AU-PR and FPR95. More
recently, VUS-ROC and VUS-PR (Paparrizos et al.l 2022) have been proposed to address impact
of time lags in time series AD. We study timing separately and hence we only report the AU-ROC
scores in our main results. Detailed results including all metrics, are available in Appendix [A.TT]

6.3 EVALUATION

Overall detection performance. To asses overall detection performance we consider the distribu-
tion of AUROC scores across all environments, anomaly types and strength levels. As reported in
Figure[2]a), DM based approaches lead the ranking for vector observations. KNN, achieves the high-
est scores among all classic baselines and even outperforms one neural-network-based approach. For
image observations, overall detection performance is significantly lower, as reported in Figure [2[d).
KNN on CLIP embeddings achieves the highest scores but differences between individual detectors
are relatively marginal. This suggests that AD from images is a largely unsolved problem.

Analysis on Anomaly Types. Figure[2]b) and e) show detection performance for action and obser-
vation anomalies respectively. For action anomalies, dynamics-model based approaches dominate
all other baselines. This suggests that is important to differentiate AD in RL from other related areas,
as the aspects that are specific to RL (actions, dynamics) play an important role. For observation
anomalies however, KNN achieves near perfect scores, slightly outperforming all other methods,
showing that method choice can be tailored to failure modality.

Analysis on Anomaly Strengths. Figure 2] c) and f) show the influence of anomaly strength on
detection performance. In general we observe that detection performance strongly correlates with
anomaly strength. Interestingly, even the best performing detectors exhibit high variance for tiny
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Figure 2: Distribution of AUROC 1 scores for different detectors. Overall: all environments, anoma-
lies and strengths. Other: all environments but only subgroup of anomaly type/strength. Detectors
are ordered from left to right by average AUROC (dashed line).

Table 2: Influence of Rollout Policy - Comparison of SAC, TD3 and TQC

(a) Norm. Score: strong anomalies (b) AUROC: Vec. Observations (c) AUROC: Img. Observations

env SAC TD3 TQC detector SAC TD3 TQC detector SAC TD3 TQC
MIC-Cartpole 0.894 0.893 0.967 MLP-DM 0.867 0.859 0.866 AE 0.634 0.655 0.613
SAP-Goal0 0.948 0.897 0.957 LSTM-DM 0.899 0.902 0.887 RES-KNN 0.659 0.657 0.623
URM-Reach 0.840 0.810 0.940 PEDM 0.918 0.926 0.910 CLIP-KNN 0.663 0.663 0.635

anomalies. For strong anomalies, this spread is significantly smaller. This demonstrates that the
calibration on policy degradation results in meaningful difficulty levels, rather than idiosyncratic
parameter choices as done in previous works.

Influence of Rollout Policy. To analyze the influence of the rollout policy on anomaly detection
performance, we conducted additional experiments with different RL policies. We trained two addi-
tional policies (SAC, TD3) for 3 different environments until they reach a comparable success rate
(normalized score =~ 1). We then created datasets and evaluated detectors on these new datasets
(strength levels remain those tuned with TQC). Table|2|a) shows that RL policies with similar suc-
cess rates in nominal environments respond differently to anomalies, with TQC being the most ro-
bust. Tables Table|2|a) & b) present detection performance (AUROC) of the three best detectors for
vec./img observations, showing that while results depend on the rollout policy, the relative ranking
of detection performance remains consistent.

Analyisis of Detection Timing. Beyond aggregated detection metrics such as AUROC, the timely
detection of anomalies is important. To showcase how our benchmark can be utilized to study
detection times, we plot detection-delay distributions across thresholds and detectors. We select
thresholds exclusively from a small normal-only validation split using three common rules with
different operating characteristics (see Figure [3] and details in Appendix [A.8). We define detection
delay as At = t*—t, where t, is the ground-truth of anomaly onset and ¢* the earliest time a detector
identifies an anomaly. Generally, detectors for both vector and image observations show long tails
in the distribution of detection times, highlighting the difficulty of threshold selection. We also see
again, that AD from images is significantly harder, with wider, more off-centered distributions.

Sim-to-real alignment: Trends observed in the real-world URRtde-Reach task qualitatively match
its simulated counterpart URM-Reach (see Appendix [A.9). While verification on more real-world
environments is needed to show the general applicability of our findings, this is a promising finding,
suggesting that insights from Anomaly-Gym transfer beyond simulators.
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Figure 3: Timing Results: Distribution of detection delays. Dotted lines: 25"/ 75" percentile,
dashed line: 50" percentile. Positive indicates delayed detection, negative values early detection.

7 CONCLUSION, LIMITATIONS, AND OUTLOOKS

In this work, we introduced Anomaly-Gym, the first large-scale benchmark for AD in RL. Anomaly-
Gym offers a diverse suite of environments, anomaly types, strength levels, observation modalities,
and data from both simulated and real-world tasks. In a series of experiments, we analyzed the
importance of these different aspects and compared various detection methods. Our analysis reveals
the significant impact of anomaly strength and type on detection performance and underscores the
challenges posed by image-based observations and threshold selection.

Given its interdisciplinary scope (RL, time-series, CV, ...) and the combinatorial space of design
choices (environments, anomalies, onset schemes, ...), several limitations are inherent to this work.

Limitations (of our evaluations)

(i) We do not consider cross-policy transfer settings, where a detector is trained on data from one
policy, and evaluated on data from another policy. This a deliberate choice reflecting realistic de-
ployments. Nonetheless, this setting is possible with Anomaly-Gym.

(ii) We focus on radom onset schemes where anomalies persist until the episode ends. Single-point
and group events with recovery require further study. Anomaly-Gym already supports these features.
However, not all environments might allow recovery after failure, causing potential label ambiguity.
(iii) Due to a lack of established methods for image observations, we only compared a limited
number of and baselines. Future research should expand these evaluations with a broader range of
methods from related fields. Our contribution is the benchmark itself, not the detection methods.
(iv) We treat anomaly detection and robustness as disentangled. However, many real-world applica-
tions demand both robustness to minor perturbations and the ability to detect severe anomalies. An
important direction for future research is therefore the joint study of these two problems, including
how to determine detection thresholds from normal data while accounting for policy robustness. Our
work already offers the necessary tools to explore these questions.

(v) While the framework we introduce in this work is policy agnostic, we focus on data induced
by RL policies. Deep RL’s reliance on neural networks requires external monitoring, as white-box
techniques are not available. This makes AD especially relevant for RL policies.

Outlook (future benchmark extensions)

(i) Anomaly-Gym currently only includes one real-world environment. Although the results from
this real-world environment are comparable with the simulated data, verification in a broader variety
of real-world applications remains crucial. However, collecting anomalous real-world data is inher-
ently difficult because anomalies are rare and often unsafe to induce: in robotics they risk hardware
damage, and in healthcare they can be unethical due to potential harm to subjects.

(ii) We currently omit semantic visual shifts (e.g. weather, novel objects). Such shifts are highly
environment specific and often irrelevant to the policy (e.g. background objects). This limits tun-
ability and cross-task comparability, and potentially adds label ambiguity (is a background-only
shift an anomaly?). We believe this topic deserves a dedicated study which we leave to future work.
Anomaly-Gym allows easy implementation of such anomalies.

Ultimately, Anomaly-Gym provides an important foundation that enables researchers to systemati-
cally evaluate and compare novel AD methods and drive the development of robust and reliable RL
agents for real-world applications.
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A APPENDIX

A.1 DESCRIPTIONS OF ENVIRONMENTS IN ANOMALY-GYM

See Figure [I] for a visualization of all envs. Table 3] provides a detailed overview of all environ-
ments. For even more detail, we refer to the implementation available at: https://anonymous.

4open.science/r/iclr-18811.

Table 3: List of Environments

Env.id Description ObservationTypes Action Anomaly Types
Carla-LaneKeep Follow the lane at target speed and - vector: (9,) (2,), acceleration and steering angle - brake fail
don’t collide with other vehicles — current speed - steer fail

— target speed

— current accell.

— current heading

— dist. to lane center
—dist to veh. ahead

— delta vel. to veh. ahead
— last accel.

— last steering angle

- img: (3x256x256)

- slippery road

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

Mujoco-CartpoleSwingup

Swingup the Pole by moving the
cart

- vector: (4,)

— car pos.

— cart vel.

— pole angle

— pole vel.

—img: (3x128x128)

(1,) move the cart left/righ

- Mass Factor

- Force Vector

- joint friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

Mujoco-Reacher3D

Move Robot EE (o goal

- vector: (17,)

— joint pos.

— joint vel.

~img: (3x128x128)

(7,) Torque applied on the robot
joints

- Mass Factor

- Force Vector

- joint friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

Mujoco-HalfCheetah

Control the HalfCheetah to move as
fast as possible

- vector: (18,)

— linear vel.

— joint pos.

— joint vel.

—img: (3x128x128)

(6,) Torque applied on the robot
joints

- Mass Factor

- Force Vector

- joint friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

Sape-GoalQ

Move to goal while avoiding colli-
sions with obstacle between agent
and goal

- vector: (26,)

— agent pos

—agent vel

— goal pos

— object lidar

— hazard lidar

- img: (3x128x128)

(2,) acceleration in x-/y direction

- Force Agent

- Moving Objects

- Moving Friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

Sape-Goall

Move to goal while avoiding col-
lisions with multiple obstacles &
hazards spwaned around the goal

- vector: (26,)

— agent pos

—agent vel

— goal pos

— object lidar

— hazard lidar

- img: (3x128x128)

(2,) acceleration in x-/y direction

- Force Agent

- Moving Objects

- Moving Friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

Sape-Goal2

Move to goal while avoiding col-
lisions with multiple obstacles &
hazards spwaned around the goal

- vector: (26,)

— agent pos

— agent vel

— goal pos

— object lidar

— hazard lidar

- img: (3x128x128)

(2,) acceleration in x-/y direction

- Force Agent

- Moving Objects

- Moving Friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

‘URMujoco-Reach

Move end-effector to target

- vector: (13,)

—ee pos

— ee orientation (rpy)
—goal pos

—goal orientation (quat)
—img: (3x128x128)

(3,) displacement of robot end-
effector in cartesian space

- Robot Speed

- Moving Goal

- Robot Friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

URMujoco-PrP

Pick up box and move (o target

- vector: (13,)

— ee pos

— ee orientation (rpy)
—goal pos

—goal orientation (quat)
—gipper state

—block position

—block orientation
—img: (3x128x128)

(4,) displacement of robot end-
effector in cartesian space, gripper
distance target

- Robot Speed

- Moving Goal

- Robot Friction

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Noise/
Temp. Noise/Quantization/Drift/

URRtde-Reach

Move end-effector to target

- vector: (13,)

— ee pos

— ec orientation (rpy)
—goal pos

—goal orientation (quat)
—img: (3x256x256)

(3,) displacement of robot end-
effector in cartesian space

- Control Latency

- Moving Goal

- Control Smoothing

- Action Factor/Offset/Noise/ De-
lay/Temp. Noise/Drift

- Observation Factor/Offset/Temp.
Noise/Quantization/Drift/

A.2 DESCRIPTIONS OF ANOMALIES

In the following we describe all anomalies in more detail.

Observation Anomalies are perturbations to the observations emitted by the environment. We
implement the following observation anomalies:
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* Noise: 0} = o; + &

* Scaling: 0}, = 0; -

* Offset: o} = 0, + 3

* Drift: 0; = 0y + [ x ¢

» Temporal Noise: o} = o; + Sni—1 + e+

* Quantization: o, = (3 - L%—‘

where & ~ N(0,02), ng=c¢pand f € R

Action Anomalies are perturbations to the actions before they are applied to the environment. We
implemented the same types of anomalies as those used for observations but instead of quantization,
we add action delay: a; = a;—3 where 5 € N*.

Dynamics Anomalies are perturbations to the dynamics operator 7 : S x A — S of the environ-
ment. We implement the following dynamics anomalies.

* Body Mass: Body mass is multiplied by a constant factor

» Force Vector: Constant force vector applied to center of a single robot joint (MJC, URM) or to
the center of Agent (SAP)

e Friction: of robot joints changed

* Damping: Inertia of agent is reduced by factor 3 in each timestep

* Moving Object: Objects moving in uniformly random directions with increasing speed

* Brake Fail: Braking force reduced

e Steer Fail: Steering effect reduced

* Slippery Road: Friction parameters of wheel to road surface is reduced

* Moving Goal: Moving Goal on back and forth on a straight line

* Control Smoothing: Increased control smoothing of low-level Robot Controllers

* Control Latency: Increased latency of low-level Robot Controllers

* Robot Speed: Max moving speed of robot joints reduced

For more details we refer to the implementation of each environment’s anomalies.
A.3 SATISFACTION OF DESIDERATA
A.4 DETAILS ON ANOMALY STRENGTH TUNING

As outlined in Section [5.3] tune the magnitude of all anomalies and define different strength levels
w.r.t. the degree of degradation of the rollout policy. Let

IJm(m) =E
=0

£

be the average cumulative reward of some policy m on some MDP M, where r; is the reward
received at time step ¢ and T is the time horizon. Let J 4+ (7y), be the average cumulative reward
of the trained policy, J+ (7r) be the average cumulative reward of a random policy, and J - (79)
be the average cumulative reward of the trained policy on the anomalous MDP.

We define policy degradation via the normalized score:

T () — Jae ()
T (mo) = G e) — Tir ()

(&)
and set the different levels of anomaly strength at

o tiny: Jpy(—(mg) ~ 0.99,
o medium: J g () = 0.90
o strong: Jyq—(mg) =~ 0.75

o extreme: J - (mg) ~ 0.50
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Table 4: Satisfaction of Desiderata in anomaly-gym

desiderata Satisfaction

ED1-Diversity. Anomaly-Gym includes 10 different environments from 4 differ-
ent fields: Autonomous Driving(Carla), Robotics Manipulation (UR-
Envs), Robotics Control (Mujoco-Control) and navigation (Sape).
ED2-Scalability. Environment observation sizes range from O € R* to O € R?S for vec-
tor observations or R3¥2562256 for image observations. Action spaces
range from A € R? to A € R7 respectively.

ED3-Realism. URRtde is a real world Environment.

ED4-Solvability. We train a policy until a success rate of ;90 % is reached in each envi-
ronment. Sucess is defined as follows.

Sape-Goal{1,2,3}: Reach the goal without collision.

Carla-LaneKeep: target speed without collision at end of episode.
URM-PnP: box at target.

Mujoco-Reacher3d, URMujoco-Reach, URRted-Reach: End-effector
at target.

Cartpole-Swingup: End-effector displacement smaller than trheshold.
Mujoco-HalfCheetah: Final ground-speed larger than threshold.
EDS5-Reproducibility. | Initial conditions are controlled by consitend random seeding.
ED6-Configurability. | All environment parameters can be adjusted in all be the real-world

environment.
AD1-Diversity. Anomaly-Gym covers a range of 19 different anomalies.
AD2-Realism. Observation anomalies can occur in real world in the form of sensor

variations or failure. Action anomalies can occur in the real world in
form of actuator variations or failure. Dynamics anomalies can occur
in the real world as external influences on the environment/agent.

AD3-Impact. We show that all but two anomaly types (moving objects, moving goal)
can decrease agent normalized scores by as least as much as 50%.
AD4-Difficulty. We exclude anomalies such as sensor/actuator shutdown or failure. All

anomalies (especially tiny) minimally alter the original MDP.

To do this, we ran a fine grid search for each anomaly, strength and environment combination.
Since this is a noisy process, we used 500 episodes for each sample. For most anomaly types,
there is strong correlation between anomaly strength and policy performance. For some anomalies
however, increasing the strength parameter does not lead to any further degradation of the policy
after some point. This is exemplified in Figure ] for three different anomaly types in the Sape-
Goall environment. A force on the agent as well as an offset of the action leads to decreasing policy
performance with increasing anomaly strenght. Moving objects with higher speeds on the other
hand do not continue to influence policy performance after a certain point. The same behavior can
be observed for all moving-objects anomalies in SAP and for the moving goal anomaly in URM-
PnP. We thus exclude Sape-Goal-1,2,3 moving objects (strong, extreme) and URM-PnP moving
goal (extreme) during our evaluation. We also had to omit noise and temp-noise anomalies for
URRtde-Reach due to potential hardware damage caused by oscillating control commands.

Nonetheless, this process allows us to compare all different types of anomalies along the same
strength levels and to compare the same anomaly types along different environments. .
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Figure 4: Example of anomaly strength tuning process in Sape-Goall.

A.5 EXACT ANOMALY PARAMETERS

See Table

A.6 DETAILS ON AGENT TRAINING

We train a TQC agent [Kuznetsov et al.| (2020) for each base environment, using an implementation
from[Raffin et al.| (2021) and hyper-parameters presented in Table[6] Hyper-parameters were selected
with a TPE (Tree-structured Parzen Estimator) sweep over learning rate, replay-buffer-size, batch-
size, network size, gamme and Ir-schedule.

A.7 DETAILS ON DETECTION MODELS

All detectors return anomaly labels:

mm={1ﬁw”>ﬁ ©)

0 otherwise
where 1 represents anomalous samples, and 0 normal samples. The score function and additional

hyper-parameters are displayed in Table[7} Hyper-parameters were selected with a coarse grid search
over the first 5 parameters for each method in this table.
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Table 5: Exact Anomaly Parameters

anomaly medium strong tiny extreme
Carla-LaneKeep action scaling 291 4.18 1.73 591
action noise 0.86 1.04 0.31 1.41
action offset 0.55 0.65 0.35 0.86
brake fail 0.11 0.08 0.40 0.04
observation scaling 1.41 2.06 1.00 3.61
observation noise 0.09 0.17 0.01 0.32
observation offset 0.04 0.05 0.01 0.31
slippery road 0.11 0.09 0.22 0.06
steer fail 0.24 0.10 0.32 0.05
Mujoco-CartpoleSwingup action scaling 2.19 321 1.38 4.58
action noise 1.11 1.44 0.40 1.74
action offset 0.82 0.90 0.49 0.96
observation scaling 1.03 1.04 1.01 1.05
observation noise 0.09 0.11 0.02 0.15
observation offset 0.06 0.09 0.02 0.14
robot force 9.77 14.58 3.46 21.54
robot friction 1.58 2.00 0.60 2.18
robot mass 1.63 2.72 1.26 3.29
Mujoco-HalfCheetah action scaling 1.16 1.26 1.09 1.59
action noise 0.09 0.15 0.03 0.27
action offset 0.08 0.11 0.03 0.16
observation scaling 1.08 1.14 1.03 1.31
observation noise 0.01 0.01 0.00 0.03
observation offset 0.01 0.01 0.00 0.04
robot force 10.38 22.44 1.19 32.55
robot friction 421 8.96 0.48 14.79
robot mass 1.13 1.21 1.02 1.40
Mujoco-Reacher3D action scaling 2.28 2.50 1.36 2.50
action noise 0.69 1.18 0.19 1.80
action offset 0.41 0.65 0.10 0.82
observation scaling 1.35 1.70 1.10 2.51
observation noise 0.44 1.49 0.07 5.00
observation offset 0.20 0.41 0.06 0.62
robot force 7.27 10.00 3.15 10.00
robot friction 0.40 0.62 0.10 0.82
robot mass 9.60 33.48 1.74 75.00
Sape-GoalQ action scaling 0.22 0.11 0.62 0.03
action noise 1.02 2.00 0.29 4.50
action offset 0.69 0.89 0.12 1.00
force agent 345 4.46 0.60 5.01
mass agent 4.46 8.92 1.61 20.00
moving objects 4.87 - 0.91 -
observation scaling 2.57 4.08 141 9.93
observation noise 0.47 0.84 0.04 1.53
observation offset 0.30 0.40 0.10 0.47
Sape-Goall action scaling 0.22 0.11 0.55 0.03
action noise 1.55 2.40 0.67 5.00
action offset 0.78 0.88 0.50 0.99
force agent 3.88 4.42 2.49 4.97
mass agent 4.50 8.92 1.80 19.92
moving objects 13.44 - 347 -
observation scaling 322 4.88 1.63 10.00
observation noise 0.51 0.79 0.22 1.53
observation offset 0.26 0.36 0.13 0.43
Sape-Goal2 action scaling 0.21 0.10 0.55 0.01
action noise 1.22 1.89 0.54 3.59
action offset 0.67 0.84 0.37 0.95
force agent 3.35 4.19 1.85 4.74
mass agent 4.69 9.61 191 20.00
moving objects 34.07 - 3.01 -
observation scaling 1.61 243 1.16 9.95
observation noise 0.29 0.45 0.10 0.74
observation offset 0.14 0.24 0.06 0.60
URMujoco-Reach action factor 0.915 0.795 0.590 0.301
action noise 0.376 0.667 0.929 1.341
action offset 0.295 0.501 0.657 0.794
moving goal 0.003 0.004 0.004 0.004
obs factor 1.032 1.087 1.095 1.107
obs noise 0.002 0.006 0.016 0.026
obs offset 0.018 0.023 0.024 0.026
robot friction 13.026 80.160 190.381 468.938
robot speed 0.009 0.003 0.003 0.002
URRtde-Reach action factor 0.935 0.782 0.596 0.313
action noise 0.263 0.566 0.990 1.394
action offset 0.364 0.545 0.687 0.788
control smoothing 0.061 0.077 0.104 0.173
control latency 0.007 0.020 0.042 0.098
moving goal 0.001 0.003 0.003 0.004
obs factor 1.039 1.082 1.094 1.103
obs noise 0.002 0.008 0.016 0.024
obs offset 0.016 0.023 0.025 0.025
URMujoco-PnP action factor 0.871 0.709 0.491 0.305
action noise 0.295 0.402 0.492 0.742
action offset 0.091 0.242 0.447 0.561
moving goal 0.003 0.006 0.042 -
obs factor 1.227 1.439 1.712 2.091
obs noise 0.002 0.005 0.008 0.011
obs offset 0.006 0.012 0.017 0.022
robot friction 0.000 8.838 46.717 121.212
robot speed 0.004 0.003 0.002 0.001
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Figure 5: Simulated vs real-world data (vector observations)

A.8 THRESHOLD SELECTION

While overall discriminative performance is an important measure of effective anomaly detectors,
the timeliness of detection is also a critical aspect. To quantify this, we analyze the detection delay.
We define detection delay as:

At =t —t, 7)

where t, is the ground-truth of anomaly onset and ¢* the earliest time a detector identifies an
anomaly. A positive At indicates delayed detection (implies false negatives); a negative value means
early detection (implies false positives).

For this, detection method require a fixed operating point, i.e. a specific threshold, beyond which
samples are identified as anomalous. In the absence of labeled anomalies, a common approach is to
fit a model to the normal data and select a threshold based on the distribution of anomaly scores on
normal inputs of a validation set|Aggarwal (2016):

1. Three-sigma rule: ¥ = p + 30, where i and o are the mean and standard deviation of
scores under normal data

2. Quantile threshold: ¥ = Qg.95(d(z)|x € Dyuin), the 95th percentile of anomaly scores on
normal data.

3. Max-validation threshold: ¥ = max,¢p,,, d(z), the maximum anomaly score on normal
data.

A.9 REAL WORLD EXPERIMENTS

To validate empirical findings with simulated data, Anomaly-Gym also includes one real-world
environment. URRtde-Reach is in its core a replica of its simulated version URM-Reach. Instead of
relying on the mujoco physics simulator Todorov et al.|(2012)), URRtde-Reach employs a real-time
RTDELindvig et al.| (2025) interface to a physical UR3CB robotic manipulator, as well as an Intel
RealSense camera-interface for obtaining image observations. Apart from these interfaces, both
environments are identical. We can thus compare both environments on a 1-to-1 basis.

To gather data with URRtde-Reach, we use a policy trained in mujoco, and apply it zero-shot to the
real-world task. Since real-world interaction is time-consuming and expensive, we only collect 50
episodes for each train/test/val/anomly setting instead of 100.

Figure [5| compares the distribution of AUROC scores of different detectors in both environments.
Although there is a visible difference, the general trend and order stays the same. More fine-grained
results are provided in Appendix
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Table 6: Hyper parameters

Parameter CAR/SAP MJC UR-*
learning rate 0.0003 0.001 0.005
replay buffer size le6 le6 le6
learning starts 100 1le3 le3
batch size 256 512 512

tau 0.005 0.005 0.005
gamma 0.99 0.98 0.98
train freq 1 1 1
gradient steps 1 1 1

top quantiles to drop per net 2 2 2
Network size 256-256 512-512-512 | 512-512-512
n critics 2 2 2

Ir schedule none linear anneal. | linear anneal.

Table 7: Details on detection-model parameters and score functions

model parameters score function
E(h(s
IF n-estimators=100 P(s) = —2_%
KNN k=1 P(s) = ||s — zr=1]|2
OCSVM kernel="rbf’, degree=3, Y(x) =N, oK (x,2:) — p
gamma="scale’, coef0=0.0,
t0]=0.001m, nu=0.5
rign gru-units=64, quantile- U(s,s') = |f(s) — &
embedding-dim=128, num-
quantile-sample=64, num-tau-
sample=1, 1r=0.001, train-
epochs=250
MLP-DM network-size: 512-256-128, W(s,a,s") =|f(s,a) — sz
weight-decay=0.0001, 1r=0.001,
train-epochs=250
LSTM-DM hidden-dim=256, num-layers=1, W(s,a,s") =|f(s,a) —s'||2
fully-connected-dim=128,
weight-decay=0.0001, 1r=0.001,
train-epochs=250
PE-DM network-size: 512-256-128, U(s,a,8") = £{lf(s,a)" — &[]2}"
weight-decay=0.0001, ens-
size=5, n-samples=1000,
Ir=0.001, train-epochs=250
AE channel-sizes=32-64-128-256, (o) = ||f(o) — o2
feature-size=128, 1r=0.0005,
train-epochs=250
PredAE channel-sizes=32-64-128-256, ¥(0,0") = || f(o) — |2
feature-size=128, 1r=0.0001,
train-epochs=250
KNN-AE channel-sizes=32-64-128-256, ¥(0,0") = ||f(0) — flok=1)|l2
feature-size=128, 1r=0.0005,
train-epochs=250
KNN-ResNet | network-architecture: Resnetl8, ¥(0,0") = ||f(0) = fok=1)|l2
k=1
PredNet A-channels=(3, 48, 96, 192), R- P(01t—10:4,0") = || f(0pt=10:)) — 0'[|2
channels=(3, 48, 96, 192), num-
layers=3, nt=10, Ir=0.001, train-
epochs=100
LDM channel-sizes=32-64-128-256, ¥(0,a,0") = || f(0,a) — 0|2
feature-size=128, Ir=0.0005,
train-epochs=250
DINO-Patch | model name = vit-small-patch16- | 1 (0) = max,ep(o) minyepo) | f(P) — F(P)|2
224
CLIP-Knn model name = ViT-B/32 ¥(0,0") = ||f(0) — flok=1)|l2
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A.10 COMPUTE RESOURCES

We performed all but one of our experiments on a single node of a local compute cluster with the
following configuration:

- GPU NVIDIA L40 (46068MiB) - RAM 64GB - CPU AMD EPYC 9334 32-Core

All experiments with vector observations consumed <5GB of GPU Memory peak. Experiments
with image observations were more memory intensive. GPU Memory consumption was however
still moderate (j 10GB), apart from one excepetion: Experiments with Carla-LaneKeep, wich due to
its long episode length required between 5 GB for Knn-ResNet (the most memory efficient model)
and 72GB for PredNet (the most memory extensive model). For the latter we had run on a NVIDIA
H100.

A.11 DETAILED RESULTS

Table 8: Detailed results for all detectors and environments on vector observations. The mean and
standard deviation are reported for each detector, environment, and anomaly strength. The results
are grouped by environment and detector name.

AUROC AUPR FPR95 VUSPR VUSROC
mean std mean std mean std mean std mean std
env anomaly detector
strength
Carla- strong AE 0.51 0.06 0.54 0.05 0.81 0.04 0.54 0.05 0.53 0.06
LaneKeep
AE-KNN 0.54 0.07 0.54 0.05 0.75 0.05 0.55 0.05 0.55 0.07
CLIP-KNN 0.53 0.07 0.52 0.05 0.84 0.05 0.53 0.05 0.54 0.07
Dino-Patch 0.52 0.02 0.52 0.03 0.88 0.02 0.52 0.02 0.54 0.02
L-DM 0.57 0.13 0.58 0.09 0.75 0.10 0.59 0.09 0.59 0.13
PredAE 0.68 0.15 0.64 0.13 0.68 0.14 0.64 0.13 0.69 0.14
PredNet 0.58 0.08 0.55 0.06 0.76 0.07 0.56 0.06 0.60 0.08
RES-KNN 0.46 0.07 0.48 0.05 0.83 0.05 0.49 0.05 0.48 0.07
tiny AE 0.43 0.02 0.51 0.01 0.85 0.02 0.51 0.01 0.45 0.02
AE-KNN 0.44 0.02 0.51 0.01 0.81 0.02 0.51 0.01 0.46 0.02
CLIP-KNN 0.41 0.03 0.48 0.01 0.90 0.01 0.48 0.01 0.42 0.03
Dino-Patch 0.50 0.01 0.53 0.01 0.88 0.01 0.53 0.01 0.51 0.01
L-DM 0.41 0.03 0.50 0.02 0.86 0.02 0.50 0.02 0.42 0.03
PredAE 0.55 0.04 0.54 0.02 0.76 0.04 0.54 0.02 0.56 0.04
PredNet 0.52 0.02 0.53 0.01 0.82 0.01 0.54 0.01 0.53 0.02
RES-KNN 0.36 0.02 0.46 0.02 0.89 0.02 0.46 0.02 0.38 0.02
Mujoco- strong AE 0.73 0.13 0.71 0.12 0.72 0.20 0.72 0.12 0.75 0.12
CartpoleSwingup
AE-KNN 0.76 0.13 0.76 0.12 0.73 0.20 0.76 0.12 0.78 0.13
CLIP-KNN 0.75 0.12 0.73 0.11 0.71 0.20 0.74 0.11 0.77 0.11
Dino-Patch 0.63 0.08 0.57 0.06 0.66 0.09 0.58 0.06 0.65 0.08
L-DM 0.84 0.14 0.82 0.14 0.50 0.31 0.82 0.14 0.85 0.13
PredAE 0.81 0.15 0.80 0.14 0.53 0.31 0.80 0.14 0.82 0.15
PredNet 0.68 0.14 0.63 0.12 0.60 0.13 0.63 0.12 0.69 0.14
RES-KNN 0.79 0.10 0.75 0.12 0.64 0.21 0.75 0.12 0.80 0.10
tiny AE 0.52 0.17 0.54 0.08 0.83 0.16 0.55 0.08 0.54 0.16
AE-KNN 0.55 0.17 0.58 0.10 0.85 0.13 0.59 0.10 0.57 0.16
CLIP-KNN 0.57 0.19 0.57 0.11 0.78 0.19 0.58 0.11 0.59 0.18
Dino-Patch 0.72 0.08 0.63 0.09 0.52 0.08 0.64 0.09 0.74 0.08
L-DM 0.59 0.21 0.62 0.15 0.78 0.22 0.62 0.14 0.61 0.21
PredAE 0.48 0.24 0.56 0.14 0.81 0.23 0.57 0.14 0.51 0.23
PredNet 0.52 0.11 0.49 0.05 0.72 0.07 0.50 0.05 0.54 0.11
RES-KNN 0.61 0.16 0.57 0.09 0.73 0.19 0.58 0.09 0.63 0.15
Mujoco- strong AE 0.42 0.02 0.51 0.03 0.98 0.01 0.52 0.03 0.45 0.02
HalfCheetah
AE-KNN 0.51 0.01 0.56 0.02 0.95 0.01 0.57 0.02 0.53 0.01
CLIP-KNN 0.61 0.03 0.61 0.03 0.86 0.03 0.62 0.03 0.63 0.03
Dino-Patch 0.53 0.02 0.57 0.03 0.94 0.01 0.58 0.03 0.55 0.01
L-DM 0.23 0.04 0.42 0.02 0.95 0.03 0.43 0.02 0.27 0.04
PredAE 0.86 0.04 0.74 0.06 0.30 0.07 0.76 0.06 0.88 0.04
PredNet 0.58 0.05 0.59 0.04 0.83 0.03 0.60 0.04 0.61 0.05
RES-KNN 0.66 0.02 0.66 0.03 0.86 0.01 0.67 0.03 0.69 0.02
tiny AE 0.47 0.01 0.55 0.01 0.95 0.01 0.55 0.01 0.50 0.01
AE-KNN 0.49 0.01 0.56 0.01 0.94 0.01 0.57 0.01 0.52 0.01
CLIP-KNN 0.57 0.01 0.57 0.01 0.86 0.02 0.58 0.01 0.60 0.01
Dino-Patch 0.50 0.01 0.56 0.01 0.94 0.00 0.57 0.01 0.53 0.01
L-DM 0.34 0.01 0.46 0.01 0.84 0.01 0.47 0.01 0.38 0.01
PredAE 0.96 0.01 0.87 0.02 0.12 0.01 0.88 0.02 0.97 0.00
PredNet 0.46 0.03 0.50 0.02 0.84 0.02 0.51 0.02 0.49 0.03
RES-KNN 0.61 0.01 0.62 0.01 0.88 0.01 0.63 0.01 0.64 0.01
Mujoco- strong AE 0.38 0.07 0.43 0.04 0.75 0.02 0.44 0.04 0.40 0.07
Reacher3D
AE-KNN 0.47 0.03 0.46 0.02 0.82 0.02 0.47 0.02 0.49 0.03
CLIP-KNN 0.84 0.06 0.74 0.07 0.41 0.06 0.75 0.07 0.85 0.06

Continued on next page
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Table 8: Detailed results for all detectors and environments on img observations. The mean and
standard deviation are reported for each detector, environment, and anomaly strength. The results
are grouped by environment and detector id.

AUROC AUPR FPR95 VUSPR VUSROC
mean std mean std mean std mean std mean std
env anomaly detector
strength
Dino-Patch 0.53 0.08 0.53 0.06 0.74 0.03 0.53 0.06 0.55 0.08
L-DM 0.86 0.05 0.76 0.08 0.31 0.03 0.76 0.08 0.86 0.05
PredAE 0.49 0.13 0.51 0.09 0.83 0.05 0.51 0.09 0.51 0.13
PredNet 0.63 0.11 0.59 0.09 0.73 0.06 0.60 0.09 0.64 0.11
RES-KNN 0.82 0.06 0.71 0.07 0.47 0.07 0.72 0.07 0.83 0.06
tiny AE 0.34 0.01 0.41 0.01 0.74 0.01 0.41 0.01 0.35 0.01
AE-KNN 0.45 0.01 0.45 0.01 0.81 0.01 0.46 0.01 0.48 0.01
CLIP-KNN 0.75 0.02 0.66 0.02 0.50 0.02 0.67 0.02 0.77 0.02
Dino-Patch 0.43 0.02 0.47 0.01 0.78 0.02 0.48 0.01 0.45 0.02
L-DM 0.79 0.02 0.67 0.02 0.37 0.02 0.68 0.02 0.80 0.02
PredAE 0.33 0.02 0.41 0.01 0.90 0.01 0.42 0.02 0.36 0.02
PredNet 0.53 0.02 0.49 0.02 0.76 0.01 0.50 0.01 0.55 0.02
RES-KNN 0.73 0.02 0.62 0.02 0.57 0.02 0.64 0.02 0.75 0.02
Sape-Goal( strong  AE 0.73 0.06 0.81 0.06 0.71 0.07 0.89 0.03 0.85 0.03
AE-KNN 0.58 0.03 0.74 0.05 0.70 0.04 0.82 0.03 0.73 0.03
CLIP-KNN 0.71 0.03 0.82 0.05 0.64 0.03 0.89 0.03 0.83 0.01
Dino-Patch 0.63 0.04 0.79 0.06 0.74 0.04 0.87 0.04 0.78 0.02
L-DM 0.62 0.10 0.75 0.09 0.82 0.11 0.83 0.05 0.78 0.05
PredAE 0.62 0.08 0.74 0.08 0.77 0.07 0.80 0.06 0.76 0.05
PredNet 0.49 0.07 0.65 0.09 0.85 0.05 0.71 0.07 0.65 0.04
RES-KNN 0.68 0.09 0.77 0.08 0.65 0.10 0.83 0.05 0.80 0.05
tiny AE 0.64 0.02 0.72 0.02 0.75 0.03 0.83 0.02 0.81 0.02
AE-KNN 0.61 0.03 0.67 0.01 0.63 0.03 0.78 0.01 0.77 0.02
CLIP-KNN 0.67 0.01 0.74 0.01 0.65 0.02 0.85 0.01 0.82 0.01
Dino-Patch 0.56 0.02 0.67 0.02 0.78 0.03 0.79 0.01 0.74 0.01
L-DM 0.45 0.03 0.61 0.02 0.95 0.02 0.75 0.01 0.70 0.02
PredAE 0.48 0.03 0.59 0.02 0.81 0.02 0.70 0.02 0.68 0.02
PredNet 0.38 0.05 0.50 0.02 0.86 0.07 0.61 0.01 0.60 0.03
RES-KNN 0.52 0.02 0.62 0.02 0.76 0.03 0.74 0.01 0.71 0.02
Sape-Goall strong  AE 0.73 0.06 0.80 0.08 0.71 0.04 0.87 0.05 0.85 0.03
AE-KNN 0.50 0.02 0.78 0.05 0.74 0.03 0.83 0.03 0.66 0.02
CLIP-KNN 0.66 0.02 0.83 0.04 0.72 0.04 0.88 0.03 0.78 0.02
Dino-Patch 0.58 0.02 0.81 0.05 0.78 0.03 0.86 0.03 0.73 0.02
L-DM 0.57 0.07 0.75 0.08 0.80 0.09 0.82 0.06 0.73 0.04
PredAE 0.39 0.15 0.69 0.08 0.96 0.04 0.78 0.06 0.62 0.11
PredNet 0.51 0.05 0.70 0.09 0.87 0.01 0.75 0.07 0.67 0.02
RES-KNN 0.53 0.02 0.74 0.06 0.78 0.02 0.81 0.04 0.68 0.01
tiny AE 0.63 0.04 0.68 0.02 0.78 0.02 0.79 0.02 0.79 0.03
AE-KNN 0.52 0.02 0.70 0.02 0.74 0.02 0.77 0.01 0.68 0.01
CLIP-KNN 0.66 0.02 0.75 0.02 0.69 0.01 0.83 0.02 0.79 0.01
Dino-Patch 0.58 0.01 0.72 0.03 0.77 0.02 0.80 0.02 0.73 0.01
L-DM 0.49 0.02 0.64 0.02 0.87 0.03 0.74 0.02 0.69 0.02
PredAE 0.45 0.03 0.60 0.02 0.94 0.03 0.73 0.02 0.69 0.03
PredNet 0.42 0.06 0.55 0.03 0.88 0.01 0.64 0.03 0.62 0.04
RES-KNN 0.52 0.02 0.65 0.03 0.78 0.02 0.74 0.02 0.69 0.02
Sape-Goal2 strong  AE 0.84 0.03 0.86 0.04 0.52 0.03 0.92 0.03 0.91 0.02
AE-KNN 0.54 0.03 0.70 0.06 0.81 0.05 0.78 0.04 0.69 0.02
CLIP-KNN 0.62 0.02 0.76 0.05 0.75 0.03 0.83 0.03 0.76 0.02
Dino-Patch 0.49 0.03 0.70 0.06 0.84 0.02 0.77 0.04 0.65 0.02
L-DM 0.61 0.05 0.73 0.06 0.75 0.05 0.81 0.04 0.75 0.03
PredAE 0.37 0.16 0.64 0.07 0.95 0.04 0.73 0.05 0.59 0.12
PredNet 0.46 0.03 0.64 0.07 0.89 0.02 0.70 0.05 0.62 0.02
RES-KNN 0.49 0.02 0.66 0.06 0.77 0.03 0.74 0.05 0.65 0.02
tiny AE 0.80 0.10 0.79 0.06 0.53 0.08 0.87 0.06 0.89 0.08
AE-KNN 0.53 0.02 0.61 0.01 0.80 0.03 0.71 0.01 0.69 0.01
CLIP-KNN 0.62 0.01 0.68 0.01 0.73 0.02 0.78 0.01 0.77 0.00
Dino-Patch 0.49 0.05 0.62 0.03 0.81 0.05 0.71 0.03 0.66 0.04
L-DM 0.55 0.06 0.63 0.03 0.79 0.04 0.74 0.03 0.73 0.05
PredAE 0.46 0.04 0.56 0.02 0.92 0.05 0.68 0.01 0.68 0.02
PredNet 0.44 0.05 0.52 0.02 0.85 0.10 0.61 0.02 0.61 0.04
RES-KNN 0.47 0.05 0.56 0.03 0.76 0.03 0.67 0.03 0.65 0.04
URMujoco- strong  AE 0.50 0.05 0.54 0.04 0.73 0.06 0.55 0.04 0.52 0.05
PnP
AE-KNN 0.45 0.06 0.53 0.05 0.78 0.06 0.53 0.05 0.47 0.06
CLIP-KNN 0.44 0.05 0.51 0.04 0.84 0.04 0.51 0.04 0.46 0.05
Dino-Patch 0.43 0.04 0.51 0.03 0.84 0.04 0.51 0.03 0.46 0.04
L-DM 0.52 0.05 0.56 0.05 0.72 0.07 0.57 0.05 0.53 0.05
PredAE 0.32 0.22 0.46 0.14 0.86 0.22 0.47 0.14 0.33 0.21
PredNet 0.48 0.13 0.55 0.10 0.71 0.07 0.55 0.10 0.50 0.13
RES-KNN 0.46 0.08 0.51 0.07 0.83 0.05 0.52 0.07 0.48 0.08
tiny AE 0.42 0.03 0.50 0.03 0.74 0.04 0.50 0.03 0.44 0.03
AE-KNN 0.40 0.03 0.50 0.02 0.76 0.04 0.50 0.02 0.42 0.03
CLIP-KNN 0.36 0.03 0.47 0.03 0.84 0.03 0.48 0.02 0.39 0.03
Dino-Patch 0.40 0.01 0.49 0.01 0.84 0.04 0.50 0.01 0.43 0.01
L-DM 0.43 0.03 0.52 0.03 0.73 0.04 0.52 0.03 0.45 0.03
PredAE 0.21 0.15 0.42 0.07 0.93 0.08 0.42 0.07 0.24 0.15
PredNet 0.39 0.08 0.49 0.05 0.75 0.03 0.50 0.05 0.42 0.07
RES-KNN 0.38 0.03 0.46 0.02 0.84 0.03 0.47 0.02 0.40 0.03
URMujoco- strong  AE 0.57 0.09 0.61 0.05 0.75 0.10 0.62 0.05 0.59 0.09
Reach

Continued on next page
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Table 8: Detailed results for all detectors and environments on img observations. The mean and
standard deviation are reported for each detector, environment, and anomaly strength. The results
are grouped by environment and detector id.

AUROC AUPR FPR95 VUSPR VUSROC
mean std mean std mean std mean std mean std
env anomaly detector
strength
AE-KNN 0.52 0.05 0.58 0.03 0.81 0.05 0.59 0.03 0.54 0.05
CLIP-KNN 0.59 0.06 0.61 0.04 0.79 0.08 0.61 0.03 0.61 0.06
Dino-Patch 0.46 0.02 0.54 0.02 0.87 0.03 0.55 0.02 0.48 0.02
L-DM 0.61 0.08 0.63 0.05 0.73 0.10 0.64 0.05 0.62 0.08
PredAE 0.66 0.13 0.64 0.08 0.71 0.18 0.65 0.08 0.68 0.13
PredNet 0.55 0.07 0.58 0.04 0.75 0.06 0.59 0.04 0.57 0.07
RES-KNN 0.61 0.06 0.60 0.04 0.76 0.09 0.61 0.04 0.63 0.06
tiny AE 0.49 0.05 0.57 0.03 0.82 0.05 0.58 0.02 0.51 0.05
AE-KNN 0.48 0.01 0.56 0.01 0.83 0.03 0.57 0.01 0.50 0.01
CLIP-KNN 0.52 0.04 0.57 0.02 0.84 0.04 0.58 0.02 0.55 0.04
Dino-Patch 0.45 0.02 0.53 0.02 0.86 0.02 0.54 0.02 0.48 0.02
L-DM 0.51 0.04 0.58 0.02 0.81 0.04 0.59 0.02 0.53 0.04
PredAE 0.57 0.10 0.59 0.05 0.80 0.13 0.60 0.05 0.59 0.09
PredNet 0.47 0.05 0.54 0.03 0.81 0.05 0.55 0.03 0.49 0.05
RES-KNN 0.54 0.03 0.57 0.02 0.82 0.05 0.58 0.02 0.56 0.03
URRtde- strong AE 0.47 0.08 0.55 0.06 0.75 0.07 0.56 0.05 0.49 0.08
Reach
AE-KNN 0.44 0.05 0.51 0.03 0.81 0.03 0.52 0.03 0.46 0.05
CLIP-KNN 0.55 0.02 0.53 0.02 0.81 0.02 0.53 0.02 0.57 0.02
Dino-Patch 0.49 0.04 0.51 0.02 0.84 0.02 0.52 0.02 0.51 0.04
L-DM 0.64 0.06 0.61 0.04 0.64 0.09 0.62 0.04 0.65 0.06
PredAE 0.43 0.09 0.48 0.05 0.87 0.06 0.49 0.04 0.45 0.09
RES-KNN 0.54 0.05 0.54 0.04 0.84 0.04 0.55 0.04 0.56 0.05
tiny AE 0.49 0.04 0.56 0.03 0.75 0.04 0.57 0.03 0.51 0.04
AE-KNN 0.47 0.02 0.52 0.02 0.79 0.01 0.53 0.02 0.49 0.02
CLIP-KNN 0.57 0.04 0.54 0.03 0.80 0.04 0.55 0.03 0.59 0.03
Dino-Patch 0.50 0.04 0.52 0.03 0.85 0.02 0.53 0.03 0.52 0.04
L-DM 0.63 0.06 0.60 0.03 0.66 0.08 0.61 0.03 0.64 0.06
PredAE 0.42 0.03 0.48 0.01 0.90 0.04 0.49 0.01 0.44 0.03
RES-KNN 0.55 0.04 0.55 0.03 0.84 0.04 0.56 0.03 0.57 0.03

Table 9: Detailed results for all detectors and environments on img observations. The mean and
standard deviation are reported for each detector, environment, and anomaly strength. The results
are grouped by environment and detector name.

AUROC AUPR FPR95 VUSPR VUSROC
mean std mean std mean std mean std mean std
env anomaly detector
strength
Carla- strong AE 0.51 0.06 0.54 0.05 0.81 0.04 0.54 0.05 0.53 0.06
LaneKeep
AE-KNN 0.54 0.07 0.54 0.05 0.75 0.05 0.55 0.05 0.55 0.07
CLIP-KNN 0.53 0.07 0.52 0.05 0.84 0.05 0.53 0.05 0.54 0.07
Dino-Patch 0.52 0.02 0.52 0.03 0.88 0.02 0.52 0.02 0.54 0.02
L-DM 0.57 0.13 0.58 0.09 0.75 0.10 0.59 0.09 0.59 0.13
PredAE 0.68 0.15 0.64 0.13 0.68 0.14 0.64 0.13 0.69 0.14
PredNet 0.58 0.08 0.55 0.06 0.76 0.07 0.56 0.06 0.60 0.08
RES-KNN 0.46 0.07 0.48 0.05 0.83 0.05 0.49 0.05 0.48 0.07
tiny AE 0.43 0.02 0.51 0.01 0.85 0.02 0.51 0.01 0.45 0.02
AE-KNN 0.44 0.02 0.51 0.01 0.81 0.02 0.51 0.01 0.46 0.02
CLIP-KNN 0.41 0.03 0.48 0.01 0.90 0.01 0.48 0.01 0.42 0.03
Dino-Patch 0.50 0.01 0.53 0.01 0.88 0.01 0.53 0.01 0.51 0.01
L-DM 0.41 0.03 0.50 0.02 0.86 0.02 0.50 0.02 0.42 0.03
PredAE 0.55 0.04 0.54 0.02 0.76 0.04 0.54 0.02 0.56 0.04
PredNet 0.52 0.02 0.53 0.01 0.82 0.01 0.54 0.01 0.53 0.02
RES-KNN 0.36 0.02 0.46 0.02 0.89 0.02 0.46 0.02 0.38 0.02
Mujoco- strong AE 0.73 0.13 0.71 0.12 0.72 0.20 0.72 0.12 0.75 0.12
CartpoleSwingup
AE-KNN 0.76 0.13 0.76 0.12 0.73 0.20 0.76 0.12 0.78 0.13
CLIP-KNN 0.75 0.12 0.73 0.11 0.71 0.20 0.74 0.11 0.77 0.11
Dino-Patch 0.63 0.08 0.57 0.06 0.66 0.09 0.58 0.06 0.65 0.08
L-DM 0.84 0.14 0.82 0.14 0.50 0.31 0.82 0.14 0.85 0.13
PredAE 0.81 0.15 0.80 0.14 0.53 0.31 0.80 0.14 0.82 0.15
PredNet 0.68 0.14 0.63 0.12 0.60 0.13 0.63 0.12 0.69 0.14
RES-KNN 0.79 0.10 0.75 0.12 0.64 0.21 0.75 0.12 0.80 0.10
tiny AE 0.52 0.17 0.54 0.08 0.83 0.16 0.55 0.08 0.54 0.16
AE-KNN 0.55 0.17 0.58 0.10 0.85 0.13 0.59 0.10 0.57 0.16
CLIP-KNN 0.57 0.19 0.57 0.11 0.78 0.19 0.58 0.11 0.59 0.18
Dino-Patch 0.72 0.08 0.63 0.09 0.52 0.08 0.64 0.09 0.74 0.08
L-DM 0.59 0.21 0.62 0.15 0.78 0.22 0.62 0.14 0.61 0.21
PredAE 0.48 0.24 0.56 0.14 0.81 0.23 0.57 0.14 0.51 0.23
PredNet 0.52 0.11 0.49 0.05 0.72 0.07 0.50 0.05 0.54 0.11
RES-KNN 0.61 0.16 0.57 0.09 0.73 0.19 0.58 0.09 0.63 0.15
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Table 9: Detailed results for all detectors and environments on img observations. The mean and
standard deviation are reported for each detector, environment, and anomaly strength. The results
are grouped by environment and detector.

AUROC AUPR FPR95 VUSPR VUSROC
mean std mean std mean std mean std mean std
env anomaly detector
strength
Mujoco- strong  AE 0.42 0.02 0.51 0.03 0.98 0.01 0.52 0.03 0.45 0.02
HalfCheetah
AE-KNN 0.51 0.01 0.56 0.02 0.95 0.01 0.57 0.02 0.53 0.01
CLIP-KNN 0.61 0.03 0.61 0.03 0.86 0.03 0.62 0.03 0.63 0.03
Dino-Patch 0.53 0.02 0.57 0.03 0.94 0.01 0.58 0.03 0.55 0.01
L-DM 0.23 0.04 0.42 0.02 0.95 0.03 0.43 0.02 0.27 0.04
PredAE 0.86 0.04 0.74 0.06 0.30 0.07 0.76 0.06 0.88 0.04
PredNet 0.58 0.05 0.59 0.04 0.83 0.03 0.60 0.04 0.61 0.05
RES-KNN 0.66 0.02 0.66 0.03 0.86 0.01 0.67 0.03 0.69 0.02
tiny AE 0.47 0.01 0.55 0.01 0.95 0.01 0.55 0.01 0.50 0.01
AE-KNN 0.49 0.01 0.56 0.01 0.94 0.01 0.57 0.01 0.52 0.01
CLIP-KNN 0.57 0.01 0.57 0.01 0.86 0.02 0.58 0.01 0.60 0.01
Dino-Patch 0.50 0.01 0.56 0.01 0.94 0.00 0.57 0.01 0.53 0.01
L-DM 0.34 0.01 0.46 0.01 0.84 0.01 0.47 0.01 0.38 0.01
PredAE 0.96 0.01 0.87 0.02 0.12 0.01 0.88 0.02 0.97 0.00
PredNet 0.46 0.03 0.50 0.02 0.84 0.02 0.51 0.02 0.49 0.03
RES-KNN 0.61 0.01 0.62 0.01 0.88 0.01 0.63 0.01 0.64 0.01
Mujoco- strong  AE 0.38 0.07 0.43 0.04 0.75 0.02 0.44 0.04 0.40 0.07
Reacher3D
AE-KNN 0.47 0.03 0.46 0.02 0.82 0.02 0.47 0.02 0.49 0.03
CLIP-KNN 0.84 0.06 0.74 0.07 0.41 0.06 0.75 0.07 0.85 0.06
Dino-Patch 0.53 0.08 0.53 0.06 0.74 0.03 0.53 0.06 0.55 0.08
L-DM 0.86 0.05 0.76 0.08 0.31 0.03 0.76 0.08 0.86 0.05
PredAE 0.49 0.13 0.51 0.09 0.83 0.05 0.51 0.09 0.51 0.13
PredNet 0.63 0.11 0.59 0.09 0.73 0.06 0.60 0.09 0.64 0.11
RES-KNN 0.82 0.06 0.71 0.07 0.47 0.07 0.72 0.07 0.83 0.06
tiny AE 0.34 0.01 0.41 0.01 0.74 0.01 0.41 0.01 0.35 0.01
AE-KNN 045 0.01 0.45 0.01 0.81 0.01 0.46 0.01 0.48 0.01
CLIP-KNN 0.75 0.02 0.66 0.02 0.50 0.02 0.67 0.02 0.77 0.02
Dino-Patch 043 0.02 0.47 0.01 0.78 0.02 0.48 0.01 0.45 0.02
L-DM 0.79 0.02 0.67 0.02 0.37 0.02 0.68 0.02 0.80 0.02
PredAE 0.33 0.02 0.41 0.01 0.90 0.01 0.42 0.02 0.36 0.02
PredNet 0.53 0.02 0.49 0.02 0.76 0.01 0.50 0.01 0.55 0.02
RES-KNN 0.73 0.02 0.62 0.02 0.57 0.02 0.64 0.02 0.75 0.02
Sape-Goal0 strong  AE 0.73 0.06 0.81 0.06 0.71 0.07 0.89 0.03 0.85 0.03
AE-KNN 0.58 0.03 0.74 0.05 0.70 0.04 0.82 0.03 0.73 0.03
CLIP-KNN 0.71 0.03 0.82 0.05 0.64 0.03 0.89 0.03 0.83 0.01
Dino-Patch 0.63 0.04 0.79 0.06 0.74 0.04 0.87 0.04 0.78 0.02
L-DM 0.62 0.10 0.75 0.09 0.82 0.11 0.83 0.05 0.78 0.05
PredAE 0.62 0.08 0.74 0.08 0.77 0.07 0.80 0.06 0.76 0.05
PredNet 0.49 0.07 0.65 0.09 0.85 0.05 0.71 0.07 0.65 0.04
RES-KNN 0.68 0.09 0.77 0.08 0.65 0.10 0.83 0.05 0.80 0.05
tiny AE 0.64 0.02 0.72 0.02 0.75 0.03 0.83 0.02 0.81 0.02
AE-KNN 0.61 0.03 0.67 0.01 0.63 0.03 0.78 0.01 0.77 0.02
CLIP-KNN 0.67 0.01 0.74 0.01 0.65 0.02 0.85 0.01 0.82 0.01
Dino-Patch 0.56 0.02 0.67 0.02 0.78 0.03 0.79 0.01 0.74 0.01
L-DM 045 0.03 0.61 0.02 0.95 0.02 0.75 0.01 0.70 0.02
PredAE 0.48 0.03 0.59 0.02 0.81 0.02 0.70 0.02 0.68 0.02
PredNet 0.38 0.05 0.50 0.02 0.86 0.07 0.61 0.01 0.60 0.03
RES-KNN 0.52 0.02 0.62 0.02 0.76 0.03 0.74 0.01 0.71 0.02
Sape-Goall strong AE 0.73 0.06 0.80 0.08 0.71 0.04 0.87 0.05 0.85 0.03
AE-KNN 0.50 0.02 0.78 0.05 0.74 0.03 0.83 0.03 0.66 0.02
CLIP-KNN 0.66 0.02 0.83 0.04 0.72 0.04 0.88 0.03 0.78 0.02
Dino-Patch 0.58 0.02 0.81 0.05 0.78 0.03 0.86 0.03 0.73 0.02
L-DM 0.57 0.07 0.75 0.08 0.80 0.09 0.82 0.06 0.73 0.04
PredAE 0.39 0.15 0.69 0.08 0.96 0.04 0.78 0.06 0.62 0.11
PredNet 0.51 0.05 0.70 0.09 0.87 0.01 0.75 0.07 0.67 0.02
RES-KNN 0.53 0.02 0.74 0.06 0.78 0.02 0.81 0.04 0.68 0.01
tiny AE 0.63 0.04 0.68 0.02 0.78 0.02 0.79 0.02 0.79 0.03
AE-KNN 0.52 0.02 0.70 0.02 0.74 0.02 0.77 0.01 0.68 0.01
CLIP-KNN 0.66 0.02 0.75 0.02 0.69 0.01 0.83 0.02 0.79 0.01
Dino-Patch 0.58 0.01 0.72 0.03 0.77 0.02 0.80 0.02 0.73 0.01
L-DM 0.49 0.02 0.64 0.02 0.87 0.03 0.74 0.02 0.69 0.02
PredAE 0.45 0.03 0.60 0.02 0.94 0.03 0.73 0.02 0.69 0.03
PredNet 0.42 0.06 0.55 0.03 0.88 0.01 0.64 0.03 0.62 0.04
RES-KNN 0.52 0.02 0.65 0.03 0.78 0.02 0.74 0.02 0.69 0.02
Sape-Goal2 strong AE 0.84 0.03 0.86 0.04 0.52 0.03 0.92 0.03 0.91 0.02
AE-KNN 0.54 0.03 0.70 0.06 0.81 0.05 0.78 0.04 0.69 0.02
CLIP-KNN 0.62 0.02 0.76 0.05 0.75 0.03 0.83 0.03 0.76 0.02
Dino-Patch 0.49 0.03 0.70 0.06 0.84 0.02 0.77 0.04 0.65 0.02
L-DM 0.61 0.05 0.73 0.06 0.75 0.05 0.81 0.04 0.75 0.03
PredAE 0.37 0.16 0.64 0.07 0.95 0.04 0.73 0.05 0.59 0.12
PredNet 0.46 0.03 0.64 0.07 0.89 0.02 0.70 0.05 0.62 0.02
RES-KNN 0.49 0.02 0.66 0.06 0.77 0.03 0.74 0.05 0.65 0.02
tiny AE 0.80 0.10 0.79 0.06 0.53 0.08 0.87 0.06 0.89 0.08
AE-KNN 0.53 0.02 0.61 0.01 0.80 0.03 0.71 0.01 0.69 0.01
CLIP-KNN 0.62 0.01 0.68 0.01 0.73 0.02 0.78 0.01 0.77 0.00
Dino-Patch 0.49 0.05 0.62 0.03 0.81 0.05 0.71 0.03 0.66 0.04
L-DM 0.55 0.06 0.63 0.03 0.79 0.04 0.74 0.03 0.73 0.05
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Table 9: Detailed results for all detectors and environments on img observations. The mean and
standard deviation are reported for each detector, environment, and anomaly strength. The results
are grouped by environment and detector.

AUROC AUPR FPR95 VUSPR VUSROC
mean std mean std mean std mean std mean std
env anomaly detector
strength
PredAE 0.46 0.04 0.56 0.02 0.92 0.05 0.68 0.01 0.68 0.02
PredNet 0.44 0.05 0.52 0.02 0.85 0.10 0.61 0.02 0.61 0.04
RES-KNN 0.47 0.05 0.56 0.03 0.76 0.03 0.67 0.03 0.65 0.04
URMujoco- strong  AE 0.50 0.05 0.54 0.04 0.73 0.06 0.55 0.04 0.52 0.05
PnP
AE-KNN 0.45 0.06 0.53 0.05 0.78 0.06 0.53 0.05 0.47 0.06
CLIP-KNN 0.44 0.05 0.51 0.04 0.84 0.04 0.51 0.04 0.46 0.05
Dino-Patch 0.43 0.04 0.51 0.03 0.84 0.04 0.51 0.03 0.46 0.04
L-DM 0.52 0.05 0.56 0.05 0.72 0.07 0.57 0.05 0.53 0.05
PredAE 0.32 0.22 0.46 0.14 0.86 0.22 0.47 0.14 0.33 0.21
PredNet 0.48 0.13 0.55 0.10 0.71 0.07 0.55 0.10 0.50 0.13
RES-KNN 0.46 0.08 0.51 0.07 0.83 0.05 0.52 0.07 0.48 0.08
tiny AE 0.42 0.03 0.50 0.03 0.74 0.04 0.50 0.03 0.44 0.03
AE-KNN 0.40 0.03 0.50 0.02 0.76 0.04 0.50 0.02 0.42 0.03
CLIP-KNN 0.36 0.03 0.47 0.03 0.84 0.03 0.48 0.02 0.39 0.03
Dino-Patch 0.40 0.01 0.49 0.01 0.84 0.04 0.50 0.01 0.43 0.01
L-DM 0.43 0.03 0.52 0.03 0.73 0.04 0.52 0.03 0.45 0.03
PredAE 0.21 0.15 0.42 0.07 0.93 0.08 0.42 0.07 0.24 0.15
PredNet 0.39 0.08 0.49 0.05 0.75 0.03 0.50 0.05 0.42 0.07
RES-KNN 0.38 0.03 0.46 0.02 0.84 0.03 0.47 0.02 0.40 0.03
URMujoco- strong  AE 0.57 0.09 0.61 0.05 0.75 0.10 0.62 0.05 0.59 0.09
Reach
AE-KNN 0.52 0.05 0.58 0.03 0.81 0.05 0.59 0.03 0.54 0.05
CLIP-KNN 0.59 0.06 0.61 0.04 0.79 0.08 0.61 0.03 0.61 0.06
Dino-Patch 0.46 0.02 0.54 0.02 0.87 0.03 0.55 0.02 0.48 0.02
L-DM 0.61 0.08 0.63 0.05 0.73 0.10 0.64 0.05 0.62 0.08
PredAE 0.66 0.13 0.64 0.08 0.71 0.18 0.65 0.08 0.68 0.13
PredNet 0.55 0.07 0.58 0.04 0.75 0.06 0.59 0.04 0.57 0.07
RES-KNN 0.61 0.06 0.60 0.04 0.76 0.09 0.61 0.04 0.63 0.06
tiny AE 0.49 0.05 0.57 0.03 0.82 0.05 0.58 0.02 0.51 0.05
AE-KNN 0.48 0.01 0.56 0.01 0.83 0.03 0.57 0.01 0.50 0.01
CLIP-KNN 0.52 0.04 0.57 0.02 0.84 0.04 0.58 0.02 0.55 0.04
Dino-Patch 0.45 0.02 0.53 0.02 0.86 0.02 0.54 0.02 0.48 0.02
L-DM 0.51 0.04 0.58 0.02 0.81 0.04 0.59 0.02 0.53 0.04
PredAE 0.57 0.10 0.59 0.05 0.80 0.13 0.60 0.05 0.59 0.09
PredNet 0.47 0.05 0.54 0.03 0.81 0.05 0.55 0.03 0.49 0.05
RES-KNN 0.54 0.03 0.57 0.02 0.82 0.05 0.58 0.02 0.56 0.03
URRtde- strong  AE 0.47 0.08 0.55 0.06 0.75 0.07 0.56 0.05 0.49 0.08
Reach
AE-KNN 0.44 0.05 0.51 0.03 0.81 0.03 0.52 0.03 0.46 0.05
CLIP-KNN 0.55 0.02 0.53 0.02 0.81 0.02 0.53 0.02 0.57 0.02
Dino-Patch 0.49 0.04 0.51 0.02 0.84 0.02 0.52 0.02 0.51 0.04
L-DM 0.64 0.06 0.61 0.04 0.64 0.09 0.62 0.04 0.65 0.06
PredAE 0.43 0.09 0.48 0.05 0.87 0.06 0.49 0.04 0.45 0.09
RES-KNN 0.54 0.05 0.54 0.04 0.84 0.04 0.55 0.04 0.56 0.05
tiny AE 0.49 0.04 0.56 0.03 0.75 0.04 0.57 0.03 0.51 0.04
AE-KNN 0.47 0.02 0.52 0.02 0.79 0.01 0.53 0.02 0.49 0.02
CLIP-KNN 0.57 0.04 0.54 0.03 0.80 0.04 0.55 0.03 0.59 0.03
Dino-Patch 0.50 0.04 0.52 0.03 0.85 0.02 0.53 0.03 0.52 0.04
L-DM 0.63 0.06 0.60 0.03 0.66 0.08 0.61 0.03 0.64 0.06
PredAE 0.42 0.03 0.48 0.01 0.90 0.04 0.49 0.01 0.44 0.03
RES-KNN 0.55 0.04 0.55 0.03 0.84 0.04 0.56 0.03 0.57 0.03
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