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ABSTRACT

To let robots be able to manipulate objects, they have to sense the location of ob-
jects. With the development of visual data collecting and processing technology,
robots are gradually evolving to localize objects in a greater field of view rather
than being limited to a small space where the object could appear. To train such
a robot vision system, pictures of all the objects need to be taken under various
orientations and illumination. In the traditional manufacturing environment, this
is applicable since objects involved in the production process does not change fre-
quently. However, in the vision of smart manufacturing and high-mix-low-volume
production, parts and products for robots to handle may change frequently. Thus,
it is unrealistic to re-training the vision system for new products and tasks. Un-
der this situation, we discovered the necessity to introduce a hot concept which is
zero-shot object detection. Zero-shot object detection is a subset of unsupervised
learning, and it aims to detect novel objects in the image with the knowledge
learned from and only from seen objects. With zero-shot object detection algo-
rithm, time can be greatly saved from collecting training data and training the
vision system. Previous works focus on detecting objects in outdoor scenes, such
as bikes, car, people, and dogs. The detection of daily objects is actually more
challenging since the knowledge can be learned from each object is very limited.
In this work, we explore the zero-shot detection of daily objects in indoor scenes
since the objects’ size and environment are closely related to the manufacturing
setup. The YCB Video Dataset is used in this work, which contains 21 objects in
various categories. To the best of our knowledge, no previous work has explored
zero-shot detection in this object size level and on this dataset.

1 INTRODUCTION

Industrial robots have received more and more attention in the manufacturing industry due to the
rising cost of human labour and decreasing cost of industrial robots (Carlisle, 2017). Since robots
can handle heavy and repetitive jobs better than human, many manufacturing planets have replaced
human labours on the production line with robots (Robla-Gómez et al., 2017). In today’s manufac-
turing pattern of mass production, an industrial robot is only in charge of a certain processing step
with dedicated parts. This manufacturing scenario does not require the robot to change target ob-
jects to work with frequently. However, with the recent development of control and communication
technologies, the manufacturing industry is gradually evolving to high-mix-low-volume production
that provides personalized product for customers (Lu et al., 2020). This is also known as smart man-
ufacturing, in this scenario, the manufacturing system will become more flexible. Instead of tied to a
specific task, robots will be allocated to various tasks depend on demand. Which requires the robots
to be able to recognize a wide range of objects that could be involved during production.

With the development over years, today’s object detection and recognition algorithms such as Faster-
RCNN (Ren et al., 2015), SSD (Liu et al., 2016), YOLO (Redmon et al., 2016) and EfficientDet(Tan
et al., 2020) have reached a high performance. With enough collected training data, those off-
the-shelf algorithms can be easily applied to the robots’ vision system to recognize and localize
objects involved in the production process. However, the data collection, labelling and training of a
neural network is a time-consuming process and requires expertise in the machine vision filed. Even
there are data generation method that can generate synthetic images and labels from CAD models
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(Wohlhart & Lepetit, 2015), training a new neural network for additional new parts frequently is still
not realistic in personalized production.

Zero-shot learning (ZSL) is a learning paradigm that learns knowledge from seen categories and
apply the knowledge to new categories in order to recognize objects that is never seen before. In the
work carried out by Zhang & Saligrama (2015) and Zhang & Saligrama (2016), zero-shot learning
algorithms have already achieved a reasonable accuracy on classifying unseen objects. While zero-
shot learning only aim to recognize unseen categories, a more realistic problem called generalized
zero-shot detection (gZSL) is proposed by Xian et al. (2017), which aims to recognize both seen
and unseen categories. However, gZSL still have flaws and cannot be directly applied to solve the
previously mentioned issues. For both ZSL and gZSL, they only focus on recognizing the object
in an image. Thus, a big assumption is made before applying those algorithms, which is only one
object is appearing in the image and it is always located in the middle of the image. In this setting,
ZSL and gZSL algorithms only need to analysis the categorical information in the image but not
the location information. In other word, it takes the whole image as one object proposal. In real
life, cameras attached on robots are always moving with the robot and cannot make sure the target
object is always located in the middle of the camera’s view. Thus, generalized zero-shot detection
(gZSD) and gZSL have to be combined to achieve a vision system that can detect and recognize
unseen objects. Where gZSD oversees localize seen and unseen objects in the field of view and
gZSL oversees the recognition and categorization of seen and unseen objects.

They are existing works in this field try to solve gZSD and gZSL at the same time to make the
whole scenario completed. For example, Rahman et al. (2018) tried to combine Faster RCNN
with gZSL module to generate object proposals and class predictions. Zhu et al. (2019) worked
on YOLOv2, using a single stage detector to generate object proposals. Previous works have all
worked on outdoor datasets such as MS COCO (Lin et al., 2014) and Pascal VOC(Everingham
et al., 2010). Different objects in those datasets are categorized in categories. For example, man,
woman and children are very different in term of their visual appearance but they are all allocated
into the ‘people’ category. The varieties of objects in one category can increase the generality of the
trained algorithm. In the case of detecting daily objects, datasets such as YCB Video (Xiang et al.,
2017) is chosen. 3D objects in this dataset is similar to the size and characteristics of the objects
could appear in production pipeline. However, each object is unique and cannot be categorized into
categories in 3D object datasets. Which brings the challenge of harder generalization to unseen
objects.

Regarding the problems and challenges we found in future manufacturing environment and gZSD,
we propose to modify the base version of YOLOv5 (Jocher et al., 2021) to perform gZSL on the
YCB Video dataset. Compare to two stage detectors such as Faster RCNN, one stage detectors
such as YOLO and SSD are much faster to process. YOLOv5 as the latest version of YOLO series
detectors, has been proved to be faster and better than previous versions. Compare to the work done
by Zhu et al. (2019) which used a modified YOLOv2 (Redmon & Farhadi, 2017) to perform gZSD,
YOLOv5 can output objects proposals in three different levels, thus have better coverage on object
sizes. For training and testing our algorithm, four objects out of 21 objects in YCB Video dataset
are picked as unseen objects. Any image that contains these four unseen objects will never appear
during training but will be used during testing. For every object, their class labeling is translated
into attribute vectors that’s contains the colour and shape information of each object. Thus, we
transformed the classical single label problem into a multi-label problem to let the neural network
learn attribute labels and apply it to unseen objects. It needs to be notice that, in this work, we only
work on the gZSD problem but not gZSL. Which mean we only aim to localize seen and unseen
object in the images by bounding boxes but not define the class label of the objects.

Our contributions in this paper are in three folds: 1.A novel neural network structure that based on
YOLOv5 and able to perform generalized zero-shot detection. The output bounding boxes can be
further combined with other gZSL algorithm to achieve full zero-shot object detection and recogni-
tion. 2.A novel splitting method for YCB Video dataset that splits the dataset by seen and unseen
objects. This splitting can be used for both gZSD and gZSL research that related to daily objects.
3.A novel attribute labelling method for objects in YCB Video dataset. Covert the class labelling
to 16 attributes that represents colour and shape information of an object for the neural network to
learn.

2



Under review as a conference paper at ICLR 2022

2 RELATED WORK

2.1 OBJECT DETECTION

Researches on object detection and recognition have been developing rapidly in the past decade.
The earliest image classification algorithm can be traced to the work published by Krizhevsky et al.
(2012). Since then, the recognition speed and accuracy of image classification algorithms have been
improving continuously. These algorithms can be divided into two categories: two-stage detectors
and one-stage detectors. Two-stage detectors such as Faster RCNN Ren et al. (2015)and R-FCN
Dai et al. (2016)generate object proposals by Region Proposal Network (RPN), then perform object
classification based on these proposals. One-stage detectors like (Liu et al., 2016), YOLO (Redmon
et al., 2016) and EfficientDet(Tan et al., 2020) generate object proposals and classify objects at the
same time by dividing the image into grids. Thus, one-stage detectors’ processing speed is faster
than two-stage detectors’ and gained more attention recently.

YOLOv5 (Jocher et al., 2021) used in this paper is the fifth version of the classical YOLO detec-
tor. However, there is still an argument in this field about whether this algorithm is qualified to
be considered as the fifth version. The maintainer of YOLOv5 also has not published a paper to
justify the algorithm’s ability. However, it is tested that on the MS COCO dataset (Lin et al., 2014),
YOLOv5’s speed and accuracy both outperformed the state-of-the-art algorithm, which is Google’s
EfficientDet. YOLOv5 is composed of three parts: Backbone, Neck and Head. When an image is
passed into the network, it is first processed by the DarkNet (Bochkovskiy et al., 2020) backbone.
Then passed into the PANet (Wang et al., 2019) neck, which processes and split the feature map into
three different feature levels to have better coverage on objects in different sizes. Finally, the YOLO
detector head will output predictions in three levels base on the feature maps. In this work, we will
use YOLOv5 as the base algorithm, modify the detectors in the head part of the neural network,
enable it to detect both seen and unseen objects.

2.2 ZERO-SHOT LEARNING

Given images with class labels, zero-shot learning (ZSL) aims to classify an unseen class based on
knowledge learned from seen classes (Fu et al., 2018). ZSL works by learning semantic informa-
tion from seen classes and reassemble the semantic attributes to predict unseen classes (Zhang &
Saligrama, 2016)(Rahman et al., 2018). In other words, the algorithm learns the mapping from the
visual domain to the semantic domain during learning and make predictions by mapping from the se-
mantic domain to the visual domain. However, ZSL algorithms are designed for recognizing unseen
classes, their performance degrades when both seen and unseen classes need to be recognized.Xian
et al. (2017) proposed generalized ZSL (gZSL), which released the constraint of recognition targets
and included seen classes as well. However, ZSL and gZSL both assume that only one target exists
in an image and it is located right in the middle of the image. They still lack the ability to isolate an
object from the background or the occlusion of other objects.

2.3 ZERO-SHOT DETECTION AND RECOGNITION

There are several methods proposed recently to solve the zero-shot detection and recognition prob-
lem. These algorithms can not only detect the location of seen and unseen objects in an image but
can also classify them. Most of them took the approach with two-stage detectors. In the research
carried out by Bansal et al. (2018), Edge-Box was used to generate regional proposals, and Re-
gional Proposal Network (RPN) was used in work done by Rahman et al. (2018). Using two-stage
detectors is an easier way to achieve generalized zero-shot detection (gZSL) since these proposal
generators do not need to be trained to work with unseen objects. They will generate proposals re-
gardless of the content inside the bounding box. The confidence and class prediction are handled by
following gZSL network. However, these methods are inevitably slow due to the workload of class
evaluation that comes with a large number of regional proposals. Zhu et al. (2019) proposed to use
YOLOv2 as the backbone to detect and classify unseen objects. The use of one-stage detector made
an improvement in terms of detection speed compared to two-stage detectors.

The mentioned methods above have all focused on outdoor scenes, and their commonly used datasets
are MS COCO (Lin et al., 2014) and Pascal VOC (Everingham et al., 2010). The objects inside these
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two datasets have a high variability within each class. For a robot that works in an indoor environ-
ment, recognizing objects at class level is not good enough since objects belong to the same category
may have very different usage. For example, a housekeeping robot should be able to differentiate
the blue cup and the pink cup and hand them to a boy and a girl, respectively, rather than recognize
them both as cups. Abdalwhab & Liu (2019) have tried to use SUN RGB-D dataset (Song et al.,
2015) to perform gZSD in an indoor environment. However, objects in the SUN RGB-D dataset
is labelled by class and in furniture size. In this work, we will use the YCB Video dataset (Xiang
et al., 2017), which includes 21 distinctive objects in desktop size. The object size and environ-
ment in YCB Video dataset are closer related to the setup we may encounter in the manufacturing
environment.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Assuming we have n objects labelled as gi = {bi,ai}ni . Where the 4-dimensional vector bi =
{xi, yi, wi, hi} denotes the ground truth bounding boxes’center point location x, y, width and height
w, h. ai is a 16-dimensional vector describes the feature attribute of the object gi. In the training
dataset, all objects are all seen objects, represented by gi ∈ Oseen. The valadation dataset is also
composed by seen objects only. In the test dataset, both seen Oseen objects and unseen objects
Ounseen are present, Oseen∩Ounseen = ∅. The goal of this work is to predict {bpred, cpred,apred}
for gpred ∈ Oseen ∪Ounseen. The extra term cpred represents the confidence level of the existance
of an object within bounding box bpred.

3.2 NETWORK ARCHITECTURE

Figure 1: Simplified structure of our YOLOv5-ZS network

The simplified architecture of our YOLOv5-ZS network is shown in Figure 1. The network takes
an RGB image as input and output predictions in three feature levels. The input image size is
640*640*3 in our network since all images in the YCB Video dataset are 640*480 pixels. They are
padded with grey pixels on top and bottom to become a square shape. The image is first processed
by the Backbone (DarkNet) and Neck (PANet). The size of DarkNet and PANet is changeable in
YOLOv5. By changing the number of convolutional layers and feature map depth, four versions of
YOLOv5can be created, and they are YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large)
and YOLOv5x (extra-large). As the network becomes bigger and deeper, their detection accuracy
will increase, but the detection speed decreases. In our work, we chose to use YOLOv5s. Tensor Tf

represents the block of are extracted features in three levels, they are passed to the following blocks:
bounding box and attribute prediction (Tb), feature concatenation (Tc), objectness prediction (Tp)
and output concatenation (To). They are detailly explained in the following sections.
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3.2.1 FEATURE EXTRACTION

The Tf block is composed of three tensors, and its structure is inherited from PANet. Path Aggre-
gation Network (PANet) proposed by Wang et al. (2019) is a network that has both top-down and
bottom-up dataflow. The bi-directional data flow ensures the image features are kept better in the
later convolutional layers. By using PANet, we can also get image features in three levels. As Figure
1 shows, the feature tensors are in size 80*80*128, 40*40*256, 20*20*512. As the network goes
deeper, the feature map gets smaller and deeper. From this block, each data block will consist of
three tensors. However, for easier representation and clearer graph, we represent each later block as
a tensor T.

3.2.2 OBJECT LOCALIZATION

The location of bounding boxes is predicted in block Tb. Each tensor in this block has the same
depth of 60. In YOLO series detectors, the width and height of the detection layer represent the
number of grids on the image. For example, 80*80 means the image is evenly divided into 6400
grids, and each grid is responsible for predicting bounding boxes that the center point falls on this
grid. As the grid number becomes smaller, the size of each grid becomes bigger and hence have a
better focus on bigger objects. The three different grid sizes thus allow the network to detect objects
in various sizes. Each tensor’s depth in this block is 60 since the network needs to make three
predictions with anchors in different width/height ratios for each grid. For each prediction, bp is 4
digits and apred is 16 digits. Thus the tensor has 3*(4+16) = 60 channels. It needs to be notice that
the bounding box prediction bp = {tx, ty, tw, th} are relative to the location of the grid and size of
the anchor. The actual location and size of the bounding box bpred need to be calculated with the
following equations.

x = 2 ∗ σ(tx)− 0.5 + cx y = 2 ∗ σ(ty)− 0.5 + cy
w = pw ∗ (2 ∗ σ(tw))2 h = ph ∗ (2 ∗ σ(th))2

Where cx, cy indicate the location of the top-left corner of a grid cell and pw, ph indicate the width
and height of the anchor.

3.2.3 ATTRIBUTE PREDICTION

As mentioned in the previous section, block Tb also needs to predict the 16-dimensional attribute
vector for each object. Unlike other works describing objects with semantic vectors that learn by
Word2Vec or FastText, our attribute vector is carried out by human eye evaluation. The elements in
the attribute vector are some common colors and shapes that appear in all objects. There are two
reasons that we took a different approach. (1) Class names such as “people” in previous works can
be easily translated into semantic vectors using existing algorithms. While object names in YCB
Video dataset are instance-specific, such as “master chef can”, cannot be directly translated. (2)
There is no visual variation for each object, and we can determine the attributes an object contains
by human evaluation. The 16-dimensional attribute vector contains: white, blue, red, yellow, silver,
black, brown, bottle, cup, can, clamp, slim, circle, cylinder, box, rectangular. Each object gi will
be described by several attributes in the form of one-hot embedding. For example, object ‘red cup’
has the attributes of red, cup, circle, cylinder will have the attribute vector [0 0 1 0 0 0 0 0 1 0 0
0 1 1 0 0]. The corresponding location of red, cup, circle, cylinder is labelled ‘1’ and the rest are
labelled ‘0’. The predicted output apred is a 16-dimensional vector of floating-point numbers. Each
number’s value is between 0 and 1, indicate the confidence level of an attribute.

3.2.4 CONFIDENCE PREDICTION

After bounding box and attribute prediction, block Tf and block Tb are concatenated together to
form block Tc. Our objectness prediction layer is learned from the concatenated layer Tc. In the
original YOLOv5 detection layer, objectness confidence is learned in the same block as Tb. How-
ever, learning objectness confidence only from the feature layer will cause the network to only
recognize seen objects and treat all unseen objects as background. Thus, we concatenate the Tf

block and Tb block together to let the network also learns from the bounding box and attribute pre-
dictions. In this case, the network will be able to recognize unseen objects by the attributes they
have. Detectors in Tp only have three channels, each channel of a grid cell is the confidence score
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of the corresponding bounding box. The network will make (80*80+40*40+20*20) *3 = 25200
predictions in total. In the end, the output block To is the concatenation of bounding box, attributes
and objectness prediction.

3.3 LOSS FUNCTION DESIGN

The total loss in our algorithm is composed of three parts: localization loss, attribute loss and ob-
jectness loss. In the following sections, we will show how the loss functions are designed and
implemented.

3.3.1 LOCALIZATION LOSS

In YOLOV5, the localization loss is calculated by cIoU loss proposed by Zheng et al. (2021). Com-
pare to the original IoU loss, cIoU loss is more precise and converges much faster. To calculate the
cIoU loss, we need to calculate some parameters first:

IoU =
Areapred ∩Areagt
Areapred ∪Areagt

α =
υ

(1− IoU) + υ

υ =
4

π2
∗ (arctanwgt

hgt
− arctan

wpred

hpred
)2

When the loss is calculated, not all bounding box predictions are used. A predicted bounding box is
used only when its center point falls into the same grid cell as the ground truth bounding box’s center
point and has the highest IoU among three predictions in the same grid cell. We denote the selection
of bounding box predictions using λi, it is set to 1 when selected otherwise 0. Since our output has
three different feature levels, we define n as the level number. The total number of predictions m
is equal to 80*80*3=19200, 40*40*3=4800, 20*20*3=1200 when n is equal to 1, 2, 3 respectively.
The formal localization loss is defined as the summation of mean cIoU loss in each layer, shown in
the following function. Where d is the distance between two boxes’ center and c is the diagonal
length of the minimum enclosing box of two boxes.

Lloc =

n∑
j=1

(
1

m

m∑
i=1

λi(1− IoUi +
d2i
c2i

+ αiυi))

3.3.2 ATTRIBUTE LOSS

For calculating the attribute loss, we used Binary Cross Entropy (BCE) loss with sigmoid function (
σ). Since the ground-truth value of an attribute egt is either 0 or 1, the predicted attribute value epred

need to be passed into a sigmoid function first to regulate the number to between 0 and 1. A new
term z is introduced in this function, and it represents the total number of attributes in the vector,
which is 16. A bounding box’s attribute loss is the summation of BCE loss on every attribute term.
All other symbols remain the same meaning as in section 3.3.1.

Latt =

n∑
j=1

(
1

m

m∑
i=1

z∑
k=1

λi(e
gt
i,k(− log(σ(epredi,k )) + (1− egti,k)(− log(1− σ(epredi,k ))))

3.3.3 OBJECTNESS LOSS

Different from localization loss and attribute loss, the objectness loss is calculated from all predic-
tions rather than positive predictions only. Thus, the term λi is dropped in the objectness calculation.
BCE loss with sigmoid function is also used in the objectness loss calculation. pgt is the ground
truth probability of the presence of an object in the bounding box, which equals 1 when an object is
present and 0 otherwise. ppred is the predicted confidence score, regulated between 0 and 1 with the
sigmoid function.

6



Under review as a conference paper at ICLR 2022

Lobj =

n∑
j=1

(
1

m

m∑
i=1

pgti (− log(σ(ppredi )) + (1− pgti )(− log(1− σ(ppredi )))

4 EXPERIMENTS

4.1 DATASET SETTING

In the following Table 1 we show how the original YCB Video dataset is splitted to our train, val-
idation and test dataset. The YCB Video dataset is consist of 92 videos, and each has thousands of
frames. 21 daily objects are included in the dataset, and some of them are placed in the scene of a
video. Since during the video taking, the setup of objects does not change, objects in a video record
remain constant. Thus, once the unseen objects is picked from all objects, all images that contain
any of these four objects need to be allocated to the test dataset. We picked four objects as unseen
objects in our split, they are gelatin box, mustard bottle, pitcher base and power drill, labelled with
bold text in Table 1. In terms of detection difficulty, gelating box and mustard bottle are easy, pitcher
base is harder, and power drill is hardest. This conclusion is carried out based on the attributes they
have compared to all the seen objects, it is also proved later with the detecting score.

After four unseen objects are picked, 31 videos that only contain seen objects are selected to be used
in the train and validation dataset. The rest 61 videos that contain at least one unseen object are
allocated to the test dataset. The 31 videos only contain seen objects have 45272 frames in total. We
randomly picked 20% of them (9040 images) and put them into the validation dataset, the rest 80%
(36232 images) are placed in the train dataset. For test dataset, all frames in the 61 videos (88664
images) are used. In Table 1, we also show the number of labels for each object in each dataset.

Table 1: Number of images and labels for each object in each set

Number Object name Train labels Validation labels Test labels
36232 images 9040 images 88664 images

0 master chef can 8919 2252 18088
1 cracker box 10073 2552 19771
2 sugar box 12393 3055 16965
3 tomato soup can 13342 3213 23206
4 mustard bottle 0 0 32321
5 tuna fish can 7534 1868 21234
6 pudding box 5214 1384 26334
7 gelatin box 0 0 33786
8 potted meat can 10247 2549 19354
9 banana 10060 2493 20275

10 pitcher base 0 0 26478
11 bleach cleanser 11918 2933 15755
12 bowl 7808 1945 4898
13 mug 11051 2797 12858
14 power drill 0 0 27883
15 wood block 6649 1669 12782
16 scissors 12463 3210 11710
17 large marker 9211 2277 19305
18 large clamp 7342 1804 16661
19 extra large clamp 12841 3186 9575
20 foam brick 7268 1745 19413

4.2 TESTING RESULT

During testing, all images in the test dataset were used. Since this work focus on detection only, we
will only evaluate the recall rate of the algorithm. We define that if an object’s ground truth bounding
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box (GT) and the predicted bounding box’s IoU is bigger than 0.5, the object is successfully detected,
noted as True Positive (TP). The recall rate is defined as:

Recall =
TP

GT

In the following table, the recall for each object is shown.

Table 2: Recall for each object

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Recall 0.88 0.72 0.83 0.85 0.73 0.75 0.61 0.46 0.86 0.73 0.05 0.51 0.63 0.90 0.07 0.21 0.44 0.26 0.42 0.21 0.72

4.3 DISCUSSION

Base on the testing result, we can say that the algorithm works well when there are similar seen
objects, but not for onjects that very different from seen objects. From Table 2, the first thing we
notice is that the recall rates for different objects have a large variation. Some seen objects even have
a lower recall rate than unseen objects. The main reason causing this is the unbalanced number of
labels in the train dataset and the test dataset. For example, the number of train labels for sugar box
is 0.75 times of the number of test labels, and its recall reached 0.83. For wood block, its number of
train labels is only half the number of test labels, and its recall rate is only 0.21. Another reason that
affects the recall rate is the variation of illumination. Since YCB Video dataset is consists of videos,
images in the train dataset can only cover a very limited range of illumination conditions. Thus, the
algorithm will perform worse on the test images with illumination conditions that have never been
met before.

For the four unseen objects, the recall rate for object number 4 and 7 is higher than object number
10 and 14, which is similar to what we expected. Especially for object numer 4, its recall rate is
even higher than many seen objects. Object number 4 has the highest recall rate among all unseen
objects because its color and shape have commonly appeared on seen objects. However, attributes
contained in object number 10 and 14 are hardly seen in the train dataset. Thus, we can conclude
that seen objects with similar color or shape to unseen objects can increase the detection rate of
unseen objects.

5 CONCLUSION

In this paper, we proposed to use a modified YOLOv5 neural network to perform generalized zero-
shot detection on seen and unseen objects. We also proposed a novel splitting method for YCB
Video dataset to train and test gZSD algorithms. By changing the final detection layers of YOLOv5,
we have significantly improved its gZSD performance on the YCB Video dataset split with our
proposal. For industrial robots that works in a flexible and dynamic manufacturing environment,
our gZSD algorithm for detecting daily objects is a more feasible solution than the traditional vision
algorithm that requires training for every object. In our experiment, we found that our algorithm is
more sensitive to color rather than shapes. Thus, in the future, we can experiment on RGB-D images
rather than RGB images to evaluate the improvement brought by the extra depth channel.
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