
HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic
Encryption

Seewoo Lee 1 † Garam Lee 2 Jung Woo Kim 2 Junbum Shin 2 Mun-Kyu Lee 3

Abstract
Transfer learning is a de facto standard method for
efficiently training machine learning models for
data-scarce problems by adding and fine-tuning
new classification layers to a model pre-trained
on large datasets. Although numerous previous
studies proposed to use homomorphic encryption
to resolve the data privacy issue in transfer learn-
ing in the machine learning as a service setting,
most of them only focused on encrypted infer-
ence. In this study, we present HETAL, an effi-
cient Homomorphic Encryption based Transfer
Learning algorithm, that protects the client’s pri-
vacy in training tasks by encrypting the client
data using the CKKS homomorphic encryption
scheme. HETAL is the first practical scheme
that strictly provides encrypted training, adopting
validation-based early stopping and achieving the
accuracy of nonencrypted training. We propose
an efficient encrypted matrix multiplication algo-
rithm, which is 1.8 to 323 times faster than prior
methods, and a highly precise softmax approxima-
tion algorithm with increased coverage. The ex-
perimental results for five well-known benchmark
datasets show total training times of 567–3442
seconds, which is less than an hour. *

1. Introduction
Transfer learning (TL) (Pan & Yang, 2010) is a de facto
standard method used to enhance the model performance by
adding and fine-tuning new client-specific classification lay-
ers to a generic model pre-trained on large datasets. In the
machine learning as a service (MLaaS) setting, a server may

†This work was done when the first author was at CryptoLab
Inc. 1University of California, Berkeley, US 2CryptoLab Inc.,
Seoul, South Korea 3Inha University, Incheon, South Korea . Cor-
respondence to: Mun-Kyu Lee <mklee@inha.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

*Our codes for the experiments are available at
https://github.com/CryptoLabInc/HETAL.

grant a client (data owner) access to a pre-trained model to
extract features, and the client can then send the extracted
features to the server for fine-tuning. Here, however, sen-
sitive client data can be leaked to the server because the
extracted features may contain significant information about
the original raw data. For example, it is well-known that a fa-
cial image can be reconstructed from its feature vector (Mai
et al., 2019). There exist other recent studies demonstrating
that feature reversion attacks pose severe threats against
neural network-based face image recognition. For example,
even SOTA face recognition systems, such as ArcFace and
ElasticFace, are vulnerable to reversion attacks (Shahreza
et al., 2022). A recent study achieved a successful attack
rate of 99.33% against ArcFace features (Dong et al., 2023).
In natural language processing (NLP), BERT embeddings
can be inverted to recover up to 50–70% of the original
input words because of their semantic richness (Song &
Raghunathan, 2020). Therefore, a method to protect the
transmitted features is critical to protect the client’s private
data. Data privacy has become a worldwide concern (Walch
et al., 2022), with many countries having enacted privacy
laws, such as the EU General Data Protection Regulation
(GDPR) (EU, 2016).

To address this data privacy issue, extensive research has
been conducted on privacy-preserving machine learning,
some of which can be applied to TL. Most studies used
cryptographic primitives such as secure multi-party compu-
tation (SMPC) (Kantarcioglu & Clifton, 2004; Wan et al.,
2007; Nikolaenko et al., 2013; Wagh et al., 2018; Liu et al.,
2020), differential privacy (DP) (Wang et al., 2019; Zhu
et al., 2022), and homomorphic encryption (HE) (Walch
et al., 2022; van Elsloo et al., 2019; Jin et al., 2020). Some
previous studies have combined SMPC and HE (Nikolaenko
et al., 2013; Mohassel & Zhang, 2017; Lehmkuhl et al.,
2021; Chandran et al., 2022; Hao et al., 2022). However,
SMPC-based solutions require significant communication
between the client and server and DP-based solutions can
reduce the accuracy. Although HE-based approaches can
address these issues, they require extensive computations.
Therefore, it is crucial to optimize HE operations to achieve
practical performance.

SecureML (Mohassel & Zhang, 2017) was the first efficient

1

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

privacy-preserving protocol for neural network training. It
effectively combined SMPC and linear HE but required
two noncolluding servers for secure computation. Elsloo
et al. (van Elsloo et al., 2019) proposed SEALion, a HE-
based solution for TL with a pre-trained VAE. CryptoTL
(Walch et al., 2022) also used HE to secure TL. However,
in SEALion and CryptoTL, training for fine-tuning was not
performed on the ciphertexts. To be precise, the server owns
a private pre-trained model and the client sends encrypted
queries to the server. The server then performs inference
on the encrypted input and produces encrypted output fea-
tures, which can be decrypted by the client. Fine-tuning is
performed on these decrypted features by the client. Since
fine-tuning must be conducted on the client side, the client
is expected to possess certain level of knowledge in machine
learning, but this is not always the case. PrivGD (Jin et al.,
2020) is the first HE-based MLaaS solution that supports
encrypted fine-tuning of TL. In this scenario, the client ex-
tracts features from its data using a shared feature extractor,
encrypts the features using HE, and sends the encrypted
features to the server to fine-tune the classifier. However,
PrivGD is designed for a small-scale sensor dataset with an
input feature dimension of 32. The matrix multiplication
algorithm in (Jin et al., 2020) could not be implemented
using a typical GPU for a dataset with many features owing
to their high memory requirements. For example, it requires
more than 100GB for MNIST.

In this paper, we aim to protect the client’s privacy in train-
ing tasks for TL when the client does not have the expertise
in actual fine-tuning. Therefore, we consider the same sce-
nario as that of PrivGD (Jin et al., 2020). We assume that
the server is honest-but-curious (HBC). In other words, it
does not deviate from the defined protocol but will attempt
to learn all possible information from legitimately received
messages (Goldreich, 2004). Although the server fine-tunes
the classifier, it does not obtain the final model in plaintext
because the model is encrypted with the client’s key. The
server’s training expertise is protected against a client as all
training tasks are performed on the server side.

We propose HETAL, an efficient Homomorphic Encryption
based Transfer Learning algorithm for privacy-preserving
TL. HETAL is the first practical scheme that strictly pro-
vides HE-based encrypted training. We applied the optimiza-
tion techniques used in non-encrypted training and achieved
almost the same accuracy as nonencrypted training for five
well-known benchmark datasets. We adopted validation-
based early stopping, the most commonly used regulariza-
tion method in deep learning (Goodfellow et al., 2016) to
determine when to terminate the training. To the best of our
knowledge, none of the previous HE-based training methods
have applied this because of performance issues. For exam-
ple, PrivGD (Jin et al., 2020) fixed the number of training
epochs before starting the fine-tuning process, considering

the balance between the estimated multiplication depth in
HE and accuracy, where the balance was experimentally
found in advance. Our proposal for HETAL was achieved
based on the significant acceleration of encrypted matrix
multiplication, which is a dominant operation in the training
task, and a highly precise approximation algorithm for the
softmax function. Our key contributions are as follows:

• We propose HETAL. HETAL protects the client’s pri-
vacy in training tasks for TL by encrypting the client
data using HE before sending it to the server. HETAL
utilizes the CKKS scheme (Cheon et al., 2017) be-
cause CKKS supports encrypted arithmetic over real
numbers.

• We implemented and evaluated HETAL using five
well-known benchmark datasets (MNIST (Deng,
2012), CIFAR-10 (Krizhevsky et al., 2009), Face Mask
Detection (Larxel, 2020), DermaMNIST (Yang et al.,
2023), and SNIPS (Coucke et al., 2018)), in addition
to two pre-trained models (ViT (Dosovitskiy et al.,
2021) and MPNet (Song et al., 2020)). Our experi-
mental results showed training times of 4.29 to 15.72
seconds per iteration and total training times of 567 to
3442 seconds (less than an hour), with almost the same
classification accuracy as nonencrypted training. The
accuracy loss by encrypted training was 0.5% at most.

• For HETAL, we propose a new softmax approximation
algorithm, which covers a significantly wider range
than the previous works with high precision. We sub-
stantially expand the domain of softmax approxima-
tion to [−128, 128], enabling us to train models for
several hundred steps, which was impossible with rea-
sonable approximation error using previous approxima-
tion methods. For example, PrivGD (Jin et al., 2020)
could not cover [−8, 8]. It was also impossible with
direct application of the domain extension technique
proposed in (Cheon et al., 2022a). We also provide
a rigorous proof for the error bound of the proposed
approximation algorithm.

• We also propose optimized matrix multiplication al-
gorithms, DiagABT and DiagATB, that compute ma-
trix multiplications of the form AB⊺ and A⊺B for
encrypted matrices A and B. The outstanding speed of
HETAL was aided by our optimization of matrix mul-
tiplication because it costs 18% to 55% of the overall
training. Our proposed algorithms are more efficient
in both memory and computation than previous algo-
rithms (Jin et al., 2020; Crockett, 2020) and show a
performance improvement of 1.8 to 323 times.

2

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

2. Preliminaries
2.1. Transfer learning

In this study, we focus on a multiclass classification task.
We adopted the most common approach for TL, using a
pre-trained model as a feature extractor and fine-tuning a
classification layer. For fine-tuning, the layer is trained using
Nesterov’s accelerated gradient (NAG, (Nesterov, 1983))
method to minimize the cross-entropy loss LCE, which guar-
antees faster convergence than the vanilla SGD and is also
HE-friendly (see (Kim et al., 2018a;b; Crockett, 2020)).
More specifically, let N , f , and c denote the mini-batch
size, number of features, and number of classes, respectively.
The number of features equals the output dimension of the
pre-trained feature extractor. Let X = (xij) ∈ RN×(f+1)

and Y = (yik) ∈ RN×c be matrices representing the in-
put features and one-hot encoded labels of the data in the
mini-batch, respectively. Let W = (wkj) ∈ Rc×(f+1) be
the parameter matrix. We assume that the last column of W
is the bias column and that the corresponding column of X
is filled with ones. The probability that the i-th data belongs
to the k-th class is modeled using the softmax function as
follows:

prob(X;W)ik = Softmax(XiW
⊺)k,

where Xi ∈ Rf+1 denotes the ith row of X. We denote
P = (prob(X;W)ik) ∈ RN×c. Subsequently, the gradient
∇WLCE of Cross-Entropy Loss LCE with respect to W has
the simple form of

∇WLCE =
1

N
(P−Y)⊺X.

We use it to update the layer’s parameter W with NAG: For
each step t,

Wt+1 = Vt − α∇VtLCE,

Vt+1 = (1− γt)Wt+1 + γtWt,

where Vt are auxiliary parameters with randomly initialized
V1 = W1, α denotes the learning rate, and γt = (1 −
λt)/λt+1 where λ0 = 0 and λt+1 = (1 +

√
1 + 4λ2

t)/2.

2.2. Homomorphic Encryption: CKKS Scheme

Homomorphic Encryption (HE) is a cryptographic primitive
that can support computations on encrypted data without
decryption. Particularly, the CKKS scheme (Cheon et al.,
2017) is an HE scheme, supporting approximate arithmetic
operations over encrypted real and complex numbers. It
encrypts multiple complex numbers into a single ciphertext
and supports single instruction multiple data (SIMD) opera-
tions that perform the same operation simultaneously. The
following operations are available for ciphertexts:

• Addition: Element-wise addition of two ciphertexts.

• Multiplication: Element-wise multiplication of two
ciphertexts. We denote Mult for ciphertext-ciphertext
multiplication and CMult for plaintext-ciphertext mul-
tiplication (constant multiplication). We also denote
x⊙ y for the multiplication of x and y, irrespective of
whether x and y are encrypted. The CKKS scheme is
a leveled HE scheme; therefore, we can compute mul-
tivariate polynomials of bounded multiplicative depth.
It is worth noting that multiplying an arbitrary complex
constant also consumes a depth.

• Rotation: For a given plaintext m = (z0, . . . , zs−1) ∈
Cs and its ciphertext ct, we can compute ctrot =
Lrot(ct, r) for 0 ≤ r < s, whose decryption is ap-
proximately (zr, . . . , zs−1, z0, . . . , zr−1).

• Complex conjugation: Element-wise complex conju-
gation of a ciphertext.

• Bootstrapping: Bootstrapping (Cheon et al., 2018a)
is a unique operation that allows us to compute multi-
variate polynomials of arbitrary degrees. Since boot-
strapping is the most expensive computation among all
the basic operations in homomorphic encryption, it is
crucial to reduce the multiplicative depths of circuits
to reduce the number of bootstrapping operations.

2.3. Threat Model

We assume an AutoML-like service, in which a client can
outsource model training to a server. The proposed sys-
tem comprises two parties: one is a client who owns the
data and the other is a server that provides ML training ser-
vices. The protocol aims to allow clients to outsource model
training to a server while preserving the privacy of their
data. We assume that the server and client can share a pre-
trained generic model as a feature extractor, because there
are many publicly available pre-trained models, including
Vision Transformer (ViT) used in our experiments. During
the training task, the client extracts features from its private
data using the feature extractor and sends the HE-encrypted
features to the server. The server performs fine-tuning for
TL on the ciphertext domain and produces an encrypted
model.

We assume that the server is honest-but-curious (HBC),
where an HBC adversary is a legitimate participant in a
communication protocol who will not deviate from the de-
fined protocol but will attempt to learn all possible informa-
tion from legitimately received messages (Goldreich, 2004).
Note that HE provides a good defense to protect the data
against an HBC server because the server performs compu-
tation over encrypted data without knowing the decryption
key.

3

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Fine-tuned Layer
encrypted

Encrypt

Server Client

Fine-tuned Layer
decrypted

Decrypt

Train
Data

Features
not encrypted

Pre-trained
Feature

Extractor

Features
encrypted

Encrypted early-stopping

Encrypted
Fine-Tuning

Figure 1. Our privacy-preserving transfer learning protocol (HETAL)

3. Protocol
3.1. HETAL Protocol

Protocol 1 describes HETAL, which is our privacy-
preserving transfer learning protocol. We use superscript
ct (resp. pt) when the matrix is encrypted (resp. not en-
crypted). Note that the client’s data are encrypted using
the client’s key, so the server cannot decrypt it, while the
server can perform computations using public operation
keys. The client extracts features from the input data us-
ing a pre-trained model (step 1) and sends the encrypted
features to the server (step 2). Then the server fine-tunes a
classification layer with encrypted data using NAG, which
results in an encrypted fine-tuned layer (step 3). The server
sends the encrypted final model to the client and lets the
client decrypt and use it for inference (step 4). The server
can early-stop the training by computing logits of a valida-
tion set and communicating with the client (step 3 (b)-(d)).
The client computes the validation loss with the (decrypted)
logit and labels and then sends a signal to stop the training
if needed, which can prevent overfitting. The client’s data
are not revealed to the server because they remain encrypted
during the training. Figure 1 shows the overall procedure of
HETAL.

We remark that as an alternative to step 4 of our protocol,
it is also possible to store the encrypted layer in the server
for encrypted inference: the client may send the encrypted
features to be classified to the server, receive the encrypted
result and decrypt it.

Protocol 1 Protocol of HETAL

1. Using a pre-trained model, the client extracts features
from training and validation data.

2. The client encrypts the extracted features and labels of
the training set as Bct

train = {(Xct
train,Y

ct
train)} and sends

them to the server. The client also sends the encrypted
features Xct

val of the validation set to the server.

3. For each epoch, repeat the following:

(a) For (Xct,Yct) ← Bct
train, server updates parame-

ters with NAG:

Wct
t+1 = Vct

t −
α

N
(Pct −Yct)⊺Xct

Vct
t+1 = (1− γt)W

ct
t+1 + γtW

ct
t

where α is the learning rate, N is the batch size,
Pct = ASoftmax(Xct(Vct

t)
⊺) with (row-wise)

softmax approximation ASoftmax, and {γt}t≥0

is defined in Section 2.1.
(b) With the last weight Wct in the epoch, the server

computes logits ℓct
val = Xct

val(W
ct)⊺ and sends

them to the client.
(c) The client decrypts the logits and computes the

validation loss LCE with ℓpt
val and Ypt

val.
(d) If a loss is not decreased for a fixed number of

epochs (patience), then the client sends a signal to
the server to stop training. Otherwise, the current
best weight Wct

∗ is replaced with the new weight
Wct.

4. The server sends Wct
∗ to the client, and the client de-

crypts the parameter and obtains the fine-tuned layer
Wpt

∗ .

4

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

3.2. Security Analysis

We will demonstrate that HETAL protects the client’s data
against an HBC server. If the number of training epochs
is fixed, the only information a server can see is encrypted
features. Therefore, HETAL protects client’s data against
HBC server owing to the security of HE. Even when a
validation-based early stopping (Step 2 (b) – (d)) is used,
only one additional information, i.e., a signal to let the server
stop training, is sent to the server, which does not seem to
be useful for the server to recover the client’s private data.
Additionally, HETAL protects the fine-tuned model from
the server because only a client can see it.

In practice, when HETAL is used in AutoML-like MLaaS,
the client software may be provided by the server because
MLaaS should be available to a non-expert in ML. The
client can simply run the software, which applies a pre-
trained model to its own data, and then encrypt the extracted
features using HE before sending them. However, in this
scenario, the client’s data can be secured only if the software
is trustworthy. If the source code of the client software can
be open to the public, we can apply an approach such as
code verification by third parties: for example, see Section
3.1 of (Knauth et al., 2018), stating, “interested parties can
inspect the source code to convince themselves.” Therefore,
we can ensure the trustworthiness of the HETAL client SW
by making them publicly verifiable: it is not harmful for
a server to open the source code to public because it con-
sists of a known pre-trained model and encryption function,
which are not the server’s secrets.

Finally, we mention that HETAL protects the server’s ex-
pertise, such as hyper-parameters and optimized software
for training because all training tasks are performed on the
server side.

4. Algorithm
In this section, we propose a new softmax approximation
algorithm with a much wider range than those in previous
studies. In addition, we propose two novel encrypted matrix
multiplication algorithms, denoted DiagABT and DiagATB,
which compute matrix multiplications of the forms AB⊺

and A⊺B.

4.1. Softmax Approximation

There are several works on the approximation of softmax
function with polynomials (Lee et al., 2022b; Hong et al.,
2022; Jin et al., 2020). However, all of these methods have
low precision (See the Table 3 in the Appendix) and permit
only a small domain of approximation, which is not desir-
able for training with many epochs. We remark that both
(Lee et al., 2022b) and (Hong et al., 2022) have been used
for inference rather than training.

Regarding the domain of approximation, we experimentally
found that the input values of the softmax function increase
as training proceeds and easily deviate from the domain that
the previous methods can handle. For example, the maxi-
mum input value of softmax varies from 0.38 to over 100
on MNIST dataset (Figure 3), which cannot be controlled
by the previous approximation methods. Consequently, it is
essential to expand the domain of approximation to perform
as many training epochs as we want.

To approximate the softmax function on a large interval effi-
ciently, we apply the domain extension technique by (Cheon
et al., 2022a). The authors introduced domain extension
functions (DEFs) and domain extension polynomials (DEPs)
and provided an algorithm to approximate a sigmoid-like
functions on exponentially large intervals. More precisely,
they provided an algorithm to approximate a DEF that clips
an input into a fixed interval as a composition of low-degree
polynomials, and applied it to obtain a polynomial that ap-
proximates the sigmoid function σ(x) = 1/(1 + e−x) on a
large interval of scale [−7683, 7683]. In general, we can ap-
proximate a polynomial on a range [−R,R] with O(logR)
complexity.

However, directly applying the domain extension algorithm
in (Cheon et al., 2022a) does not constantly work. For
example, assume that we have an approximation of a 3-
variable softmax on a 3-dimensional box [−8, 8]3, and an
input is given by (8, 10, 13). Here, the actual value of soft-
max is Softmax(8, 10, 13) = (0.006, 0.047, 0.946). How-
ever, the naive application of the DEF clips the input as
(8, 8, 8) and produces (0.333, 0.333, 0.333) as an output. A
naive application of the method can lead to identical out-
puts and result in considerable errors. To address the issue,
we first normalize input by subtracting maximum value.
More precisely, we first compute approximate maximum
m = Amax(x) and set x′ = Norm(x) = (x′

1, . . . , x
′
j) ∈

Rc as x′
j = xj − m for 1 ≤ j ≤ c. We use the homo-

morphic comparison algorithm proposed in (Cheon et al.,
2020) to compute Amax homomorphically as Amax(a, b) =
a ·Acomp(a, b)+b · (1−Acomp(a, b)), with O(log c) com-
parisons and rotations, where Acomp approximates a func-
tion comp(a, b) that returns 1 if a ≥ b and 0 otherwise.
Then we can easily see that Softmax(x′) = Softmax(x).
Now let Dn : [−LnR,LnR]c → [−R,R]c be a DEP ob-
tained by Algorithm 1 of (Cheon et al., 2022a) with n-
iterations, where L is a domain extension ratio. The follow-
ing theorem tells us that, if p is an approximation of the soft-
max on a small domain, then ASoftmax := p ◦Dn ◦ Norm
gives an approximation of softmax on a large domain. For
example, when R = 8, L = 2, and n = 5, ASoftmax may
cover [−128, 128], which can handle all steps in Figure 3.

Theorem. Let p : Rc → Rc be an approximation of the

5

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

RotUp(B,0)

RotUp(B,1)

RotUp(B,2)

RotUp(B,3)

B

B
Mask

ABT ABT

SumCols

SumCols

SumCols

A

SumCols

Mask

Mask

Mask

Figure 2. Demonstration of DiagABT algorithm when A ∈ R8×8

and B ∈ R4×8. We do not include the complexification optimiza-
tion in the figure for simplicity.

softmax on [−R,R]c satisfying

∥Softmax(x)− p(x)∥∞ < ϵ.

Then for x ∈ [− 1
2L

nR, 1
2L

nR]c, we have

∥Softmax(x)− p(Dn(Norm(x)))∥∞ < β + ϵ,

where β = β(δ, c, r, L, d) is a constant that depends only
on δ, c, r, L, d.

The proof is stated in Appendix A with a formal version of
the theorem. (See Theorem A.6.) The theorem implies that
we can approximate softmax on a given domain [−R0, R0]

c

with O(logR0) operations. The precise algorithm can be
found in Algorithm 1 in the Appendix.

4.2. Encrypted Matrix Multiplication

We first explain how to encode a matrix into ciphertext(s)
and how to perform encrypted matrix multiplications of
the forms AB⊺ and A⊺B to compute logits and gradients
in HETAL. The main goal of our algorithm is to reduce
the number of rotations and multiplications used, which
occupy most of the algorithm runtime (see Section 5.1 for
the costs of each operation in HE). Note that including a
transpose in multiplication is more efficient than computing
matrix multiplication of the form AB directly as in (Jiang
et al., 2018; Huang et al., 2021), since we need to perform
transpose for each iteration of training, which is a costly
operation and requires additional multiplicative depth.

4.2.1. ENCODING

We used the same encoding method as in (Crockett, 2020),
dividing a given matrix as submatrices of a fixed shape s0×
s1 and encode each submatrix in the row-major order. Here,
each submatrix corresponds to a single ciphertext so that the
number of entries in each submatrix equals the number of

slots in a single ciphertext, i.e., s0s1 = s. For convenience,
we assume that all matrices are sufficiently small to fit into
a single ciphertext. We also assume that the number of
rows and columns of the matrices are powers of two by
applying zero padding when required. The algorithms can
be easily extended to larger matrices (composed of multiple
ciphertexts). The details can be found in the Appendix.

4.2.2. COMPUTATION OF AB⊺

Let A ∈ Ra×b and B ∈ Rc×b be two matrices. Our goal is
to compute AB⊺ ∈ Ra×c using basic HE operations such
as addition, multiplication, and rotation. For this, we use
tiling, off-diagonal masking and complexification to reduce
the computational complexity.

First, we define some operations and notations. For a given
matrix B, we define RotUp(B, k) as a matrix B′ obtained
by rotating the rows of B in the upper direction by k, i.e.,

B′
i,j = B(i+k)mod c,j .

When B is encoded in a row-wise manner, RotUp(B, k)
can be obtained from B by simply applying the left rotation
of index kb, i.e., RotUp(B, k) = Lrot(B, kb).

Next, for an s0 × s1 matrix X , we define SumCols(X) as a
matrix with entries

SumCols(X)i,j =
∑

0≤k<s1

Xi,k.

In other words, each column of SumCols(X) is the sum
of the columns in X . This can be computed with 2 log s1
rotations and one constant multiplication: see Algorithm 2
in (Crockett, 2020) for more detail.

We also define matrix B as an s0 × b matrix, where (s0/c)
copies of B are tiled in the vertical direction. Finally, we
define Bcplx, complexification of B, as

Bcplx = B +
√
−1RotUp(B, c/2).

Note that multiplying i =
√
−1 does not consume a multi-

plicative depth.

Using the operations defined above, we compute AB
⊺

as
follows. Note that AB

⊺
is a matrix containing (s1/c) copies

of AB⊺ in the horizontal direction.

Proposition 4.1. Let A and B be defined as above. We have
AB

⊺
= X + Conj(X), where

X =
∑

0≤k<c/2

SumCols(A⊙ RotUp(Bcplx, k))⊙M
(k,c)
cplx .

Here M (k,c) is an off-diagonal masking matrix with entries

M
(k,c)
i,j =

{
1 j ≡ i+ k (mod c)

0 otherwise

6

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

and M
(k,c)
cplx is a complexified version of the mask given by

M
(k,c)
cplx =

1

2
M (k,c) −

√
−1
2

M (k+c/2,c).

Figure 2 illustrates the proposed multiplication method
based on Proposition 4.1. The detailed procedure for the
proposed algorithm, DiagABT, is presented as Algorithm 2
in the Appendix. Note that the number of rotations is a
bottleneck for matrix multiplication, and tiling reduces it
from O(s0 log s1) to O(c log s1). This also fits into our case
for computing XW⊺, because the number of rows of W
equals the number of classes for the dataset, which is often
small compared to s0 or s1. In addition, complexification
reduces the complexity by half (a similar idea was used in
(Hong et al., 2022)). Finally, we can extend the algorithm to
compute tAB⊺ for t ∈ R without additional multiplicative
depth consumption by replacing the diagonal mask M

(k,c)
cplx

with tM
(k,c)
cplx . Algorithm 2 adopts this optimization.

4.2.3. COMPUTATION OF A⊺B

We use similar ideas as AB⊺ for efficient computation of
A⊺B. In addition, we propose a new operation, i.e., partial
rotation, to reduce multiplicative depth. Let A ∈ Ra×c and
B ∈ Ra×b. We can similarly compute A⊺B. First, we
define RotLeft(A, k) as a matrix A′ obtained by rotating
the columns of A in the left direction by k, i.e.,

A′
i,j = Ai,(j+k)mod c.

Unlike RotUp, this consumes a multiplication depth.

Similar to SumCols, we can also define SumRows(X) for
an s0 × s1 matrix X as

SumRows(X)i,j =
∑

0≤k<s0

Xk,j .

In other words, each row of SumRows(X) is the sum of the
rows in X . This can be achieved using with log s0 rotations
without additional depth consumption.

As in the case of AB⊺, we can apply tiling and complexifi-
cation to reduce the computational complexity. We denote
A for an a× s1 matrix where (s1/c) copies of A are tiled
in the horizontal direction. We also define complexification
Acplx of A as

Acplx = A+
√
−1RotLeft(A, c/2).

However, since RotLeft consumes a multiplicative depth,
the level of Acplx is smaller than that of A by one. This
may increase the multiplicative depth of A⊺B by one when
the level of A is smaller than that of B. To address this
issue, we propose an algorithm that eventually consumes

B’s level instead of A’s. We first define a new operation
PRotUp(−, k). For a matrix B, PRotUp(B, k) is defined
as a matrix that the last k columns are rotated upwards by
one position. For example, the following figure shows its
effect on a matrix of shape 4× 8 with k = 3.

s0

s1

k

We can compute this homomorphically with a single CMult
and Lrot, consuming a multiplicative depth (see Algorithm
4 in Appendix). Using this new operation PRotUp, A⊺B
can be expressed as follows:

Proposition 4.2. A⊺B = X + Conj(X), where

X =
∑

0≤k<c/2

SumRows(Lrot(Acplx, k) ⊙ PRotUp(B, k)) ⊙ M
(−k,a)
cplx .

Like AB⊺, tiling and complexification has an effect of
reducing the number of rotations from O(s1 log s0) to
O(c log s0). Algorithm 5 of Appendix adopts this optimiza-
tion.

5. Experimental results
5.1. Experimental setup

We used HEaaN (CryptoLab), a homomorphic encryption
library based on the RNS version of the CKKS scheme
(Cheon et al., 2018b), which supports bootstrapping (Cheon
et al., 2018a) and GPU acceleration. We take 216 as a
cyclotomic ring dimension (so that each ciphertext has s =
216−1 = 32768 slots) and ciphertext modulus q ≈ 21555,
which ensures a 128-bit security level under the SparseLWE
estimator (Cheon et al., 2022b).

We used an Intel Xeon Gold 6248 CPU at 2.50GHz, running
with 64 threads, and a single Nvidia Ampere A40 GPU.
Each operation’s execution time is measured as follows:
Add: 0.085 ms, Rotate: 1.2 ms, CMult: 0.9 ms, Mult: 1.6
ms, and Bootstrap: 159 ms.

5.2. Transfer learning

We used five benchmark datasets for image classification
and sentiment analysis: MNIST (Deng, 2012), CIFAR-10
(Krizhevsky et al., 2009), Face Mask Detection (Larxel,
2020), DermaMNIST (Yang et al., 2023), and SNIPS
(Coucke et al., 2018). These benchmarks are widely used
or private. In addition, We used the pre-trained ViT (Doso-
vitskiy et al., 2021) (ViT-Base) and MPNet (Song et al.,
2020) (MPNet-Base) as feature extractors for image and
natural language data, respectively. Both models embed a
data point into a single 768-dimensional vector.

7

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

dataset
encrypted not encrypted

Running time ACC (a) ACC (b) ACC loss ((b) - (a))
Total (s) Time / Iter (s)

MNIST 3442.29 9.46 96.73% 97.24% 0.51%
CIFAR-10 3114.30 15.72 96.57% 96.62% 0.05%

Face Mask Detection 566.72 4.29 95.46% 95.46% 0.00%
DermaMNIST 1136.99 7.06 76.06% 76.01% -0.05%

SNIPS 1264.27 6.95 95.00% 94.43% -0.57%

Table 1. Transfer learning results on 5 benchmark datasets.

The results are shown in Table 1. For early stopping, we
set the patience to 3. Table 1 shows that we fine-tuned the
encrypted models on all benchmark datasets within an hour.
In addition, the accuracy drops of the encrypted models
were at most 0.51%, compared to the unencrypted models
with the same hyperparameters. (See Table 5 in the Ap-
pendix for hyperparameters and the number of epochs for
early-stopping.). The time required to transmit logits on the
validation datasets is negligible compared to the total execu-
tion time, because the total size of ciphertexts for encrypting
logits is at most 8.8 MB for each epoch.

We also note that our method scales robustly with larger
models, such as ViT-Large that embeds a datapoint into
a 1024-dimensional vector (see Appendix C.4 and Table 8).

5.3. Softmax Approximation

In the above experiments, we used our new softmax approx-
imation that covers inputs in the range [−128, 128] (See
the Appendix for the detailed parameters). To estimate
the approximation error, we used Monte Carlo simulation,
because it is computationally intractable to find the exact
maximum error of functions with many variables. To be
precise, we sampled 300 M points on the domain and found
that the maximum error was 0.0037–0.0224 and the average
error was 0.0022–0.0046 depending on the input dimen-
sion. Table 3 in Appendix A.3 shows that these errors are
significantly smaller than those of the previous methods.

Figure 3 explains the reason for this improvement. It shows
how the minimum and maximum values of input of softmax
vary as the training proceeds. The value increases in the
order of two, which cannot be handled by previous approxi-
mation methods (Lee et al., 2022b; Hong et al., 2022; Jin
et al., 2020). This shows that, with the previous approxi-
mation methods, it is hard to train a model as much as we
want.

5.4. Encrypted Matrix Multiplication

Matrix multiplication accounted for a large portion of the
total training time. For example, when we fine-tuned the
model on the CIFAR-10 dataset, the total running time for

0 50 100 150 200 250 300 350
−64

−32

−8
8

32

64

128
MNIST

CIFAR-10
Facial Mask Detection

DermaMNIST
SNIPS

Figure 3. Maximum and minimum value of input of softmax at
each step (minibatch) for each dataset.

matrix multiplication took approximately 1712 seconds,
which was more than 55% of the total training time. This
explains the motivation to develop efficient matrix multipli-
cation algorithms.

We compared our matrix multiplication algorithms with
those in (Jin et al., 2020) and (Crockett, 2020), and the re-
sults are listed in Table 2. Owing to the memory limitation
of the GPU, we could not measure the cost of the algorithms
in (Jin et al., 2020), therefore, we report the estimated costs
by counting the number of multiplications and rotations.
The last three rows correspond to the shapes of the data
and parameter matrices in our transfer learning experiments.
The table shows that our matrix multiplication algorithms
are substantially faster than the baseline algorithms, by 1.8
to 323 times. We emphasize the importance of minimizing
both the number of rotations and multiplications in algo-
rithms, even though a single multiplication takes longer than
a single rotation. To illustrate this point, consider the com-
putation of AB⊺ with matrices of sizes A ∈ R2048×769 and
B ∈ R16×769. With the ColMajor algorithm, this operation
requires 784 multiplications but 8703 rotations; hence, the
rotation accounts for approximately 90% of the total cost.

8

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

(a, b, c)
AB⊺ (A ∈ Ra×b, B ∈ Rc×b) A⊺B (A ∈ Ra×c, B ∈ Ra×b)

(Jin et al., 2020)∗ ColMajor† DiagABT Speedup (Jin et al., 2020)∗ RowMajor† DiagATB Speedup

(128, 128, 4) 0.8192 0.1104 0.0601 13.63 1.84 10.0352 0.1171 0.0415 241.81 2.82
(256, 256, 8) 3.2768 0.3203 0.1211 27.06 2.64 40.1408 0.3167 0.1239 323.98 2.56
(512, 769, 4) 4.9216 0.7609 0.1223 40.24 6.22 60.2896 0.7176 0.3343 180.35 2.15
(1024, 769, 8) 9.8432 3.0428 0.3710 26.53 8.20 120.5792 2.8546 1.2558 96.02 2.27
(2048, 769, 16) 19.6864 12.6251 1.2376 15.91 10.20 241.1584 11.8220 4.9970 48.26 2.37

Table 2. Comparison of matrix multiplication algorithms (running time in seconds). ∗For (Jin et al., 2020), we report estimated running
times due to memory issues. The actual number of (constant) multiplications and rotations can be found in Appendix. †(Crockett, 2020).

Our algorithm DiagABT significantly reduces the number
of operations to 392 multiplications and 456 rotations and
yields a speed increase by a factor of 10.2. Table 7 in Ap-
pendix C.3 reports the actual numbers of each operation
with various input matrix sizes.

6. Related Work
Softmax Approximation It is challenging to approximate
the softmax function using polynomials in HE. Most previ-
ous works could not directly target the softmax but suggest
alternative functions. The authors of (Al Badawi et al., 2020)
used a quadratic polynomial approximation using the Mini-
max approximation algorithm. For the exponential function
approximation, there was no difference in accuracy between
Minimax and L2-approximations. The authors of (Lee et al.,
2022b) used the Gumbel softmax function instead of the
original softmax function to make the input be in the approx-
imation region. In (Hong et al., 2022), the authors used the
approximation AEr,L(x) = ((2r + x)/L)2

r

for the scaled
exponential function and combined it with Goldschmidt’s
algorithm to obtain an approximation of softmax. How-
ever, one must carefully select the scaling factor L, which
is generally difficult. PrivGD (Jin et al., 2020) trained a
model with encrypted data but used one-vs-each softmax
(Titsias, 2016) instead and approximated it with a product
of degree-3 L2-approximations of the sigmoid function.

Encrypted Matrix Multiplication The algorithms pro-
posed in (Crockett, 2020; Jin et al., 2020) for computing
encrypted matrix multiplications of the forms AB⊺ and
A⊺B are different from ours. The authors of (Jin et al.,
2020) used three different types of packing; Row-majored
packing (RP), Column-majored packing (CP), and Repli-
cated packing (REP). A weight matrix was packed with
REP, and the input/label matrices were packed with CP.
Although the algorithms in (Jin et al., 2020) only consume
one multiplicative depth, their computational complexity
is significantly higher than that of ours. In addition, their
method required many blocks to pack a matrix. In (Crock-
ett, 2020), the author introduced ColMajor and RowMajor

algorithms to compute AB⊺ and A⊺B, respectively. These
algorithms aim to extract and replicate rows/columns and
view them as matrix-vector/vector-matrix multiplications.
We experimentally showed that the execution times of our
algorithms are significantly smaller than that of (Crockett,
2020).

Some encrypted matrix multiplication algorithms (Jiang
et al., 2018; Huang et al., 2021) are of the form AB, that
is, they do not include transpose. As mentioned previously,
these are unsuitable for our purpose because they add trans-
pose operations for each training iteration. In addition, we
cannot use (Jiang et al., 2018) since the input and weight
matrices cannot be packed into a single block.

7. Conclusion
In this study, we proposed HETAL, an efficient HE-based
transfer learning algorithm that protects data privacy. We
demonstrated its practicality through extensive experiments
on five benchmark datasets. We believe that HETAL can
be applied to other domains such as speech classification.
In addition, our matrix multiplication and softmax approx-
imation can be used for various other purposes, such as
the encrypted inference of neural networks with softmax
activations.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. This work was
supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) [No.2022-0-01047, Devel-
opment of statistical analysis algorithm and module using
homomorphic encryption based on real number operation].
Mun-Kyu Lee was also supported by IITP grant funded
by the Korea government (MSIT) [No.RS-2022-00155915,
Artificial Intelligence Convergence Innovation Human Re-
sources Development (Inha University)].

9

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

References
Al Badawi, A., Hoang, L., Mun, C. F., Laine, K., and

Aung, K. M. M. Privft: Private and fast text classifi-
cation with homomorphic encryption. IEEE Access, 8:
226544–226556, 2020.

Chandran, N., Gupta, D., Obbattu, S. L. B., and Shah, A.
SIMC: ML inference secure against malicious clients at
semi-honest cost. In 31st USENIX Security Symposium,
USENIX Security 2022, pp. 1361–1378. USENIX Asso-
ciation, 2022.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomor-
phic encryption for arithmetic of approximate numbers.
In International conference on the theory and applica-
tion of cryptology and information security, pp. 409–437.
Springer, 2017.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y.
Bootstrapping for approximate homomorphic encryption.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 360–384.
Springer, 2018a.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. A
full RNS variant of approximate homomorphic encryp-
tion. In International Conference on Selected Areas in
Cryptography, pp. 347–368. Springer, 2018b.

Cheon, J. H., Kim, D., and Kim, D. Efficient homomor-
phic comparison methods with optimal complexity. In
International Conference on the Theory and Application
of Cryptology and Information Security, pp. 221–256.
Springer, 2020.

Cheon, J. H., Kim, W., and Park, J. H. Efficient homomor-
phic evaluation on large intervals. IEEE Transactions
on Information Forensics and Security, 17:2553–2568,
2022a.

Cheon, J. H., Son, Y., and Yhee, D. Practical FHE pa-
rameters against lattice attacks. Journal of the Korean
Mathematical Society, 59(1):35–51, 2022b.

Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A.,
Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone,
F., Lavril, T., et al. Snips voice platform: an embedded
spoken language understanding system for private-by-
design voice interfaces. arXiv preprint arXiv:1805.10190,
2018.

Crockett, E. A low-depth homomorphic circuit for logistic
regression model training. Cryptology ePrint Archive,
2020.

CryptoLab. HEaaN. http://heaan.it/. Accessed:
2022.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Dong, X., Miao, Z., Ma, L., Shen, J., Jin, Z., Guo, Z., and
Teoh, A. B. J. Reconstruct face from features based on
genetic algorithm using GAN generator as a distribution
constraint. Computers & Security, 125:103026, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

EU. Regulation (eu) 2016/679 of the european parlia-
ment and of the council on the protection of natu-
ral persons with regard to the processing of personal
data and on the free movement of such data, and re-
pealing directive 95/46/ec (general data protection reg-
ulation). https://https://eur-lex.europa.
eu/legal-content/EN/TXT/, 2016.

Goldreich, O. Foundations of Cryptography, Volume 2.
Cambridge university press Cambridge, 2004.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Hao, M., Li, H., Chen, H., Xing, P., Xu, G., and Zhang, T.
Iron: Private inference on transformers. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020. doi: 10.
1038/s41586-020-2649-2. URL https://doi.org/
10.1038/s41586-020-2649-2.

Hong, S., Park, J. H., Cho, W., Choe, H., and Cheon, J. H.
Secure tumor classification by shallow neural network
using homomorphic encryption. BMC genomics, 23(1):
1–19, 2022.

Huang, Z., Hong, C., Lu, W.-j., Weng, C., and Qu, H. More
efficient secure matrix multiplication for unbalanced rec-
ommender systems. IEEE Transactions on Dependable
and Secure Computing, 2021.

10

http://heaan.it/
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://https://eur-lex.europa.eu/legal-content/EN/TXT/
https://https://eur-lex.europa.eu/legal-content/EN/TXT/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Jiang, X., Kim, M., Lauter, K., and Song, Y. Secure out-
sourced matrix computation and application to neural
networks. In Proceedings of the 2018 ACM SIGSAC con-
ference on computer and communications security, pp.
1209–1222, 2018.

Jin, C., Ragab, M., and Aung, K. M. M. Secure transfer
learning for machine fault diagnosis under different oper-
ating conditions. In International Conference on Provable
Security, pp. 278–297. Springer, 2020.

Kantarcioglu, M. and Clifton, C. Privacy-preserving dis-
tributed mining of association rules on horizontally par-
titioned data. IEEE Transactions on Knowledge and
Data Engineering, 16(9):1026–1037, 2004. doi: 10.1109/
TKDE.2004.45.

Kim, A., Song, Y., Kim, M., Lee, K., and Cheon, J. H. Lo-
gistic regression model training based on the approximate
homomorphic encryption. BMC medical genomics, 11
(4):23–31, 2018a.

Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X., et al. Secure
logistic regression based on homomorphic encryption:
Design and evaluation. JMIR medical informatics, 6(2):
e8805, 2018b.

Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing, C.,
and Vij, M. Integrating remote attestation with transport
layer security. arXiv preprint arXiv:1801.05863, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Larxel. Face mask detection. https://
www.kaggle.com/datasets/andrewmvd/
face-mask-detection, 2020.

Lee, G., Kim, M., Park, J. H., Hwang, S.-w., and Cheon,
J. H. Privacy-preserving text classification on BERT em-
beddings with homomorphic encryption. In Proceedings
of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 3169–3175, Seattle,
United States, July 2022a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.naacl-main.
231. URL https://aclanthology.org/2022.
xfnaacl-main.231.

Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin,
M., Lee, E., Lee, J., Yoo, D., Kim, Y.-S., et al. Privacy-
preserving machine learning with fully homomorphic
encryption for deep neural network. IEEE Access, 10:
30039–30054, 2022b.

Lehmkuhl, R., Mishra, P., Srinivasan, A., and Popa, R. A.
Muse: Secure inference resilient to malicious clients.
In 30th USENIX Security Symposium, USENIX Security
2021, pp. 2201–2218. USENIX Association, 2021.

Liu, Y., Kang, Y., Xing, C., Chen, T., and Yang, Q. A secure
federated transfer learning framework. IEEE Intelligent
Systems, 35(4):70–82, 2020. doi: 10.1109/MIS.2020.
2988525.

Mai, G., Cao, K., Yuen, P. C., and Jain, A. K. On the re-
construction of face images from deep face templates.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 41(5):1188–1202, 2019.

Mohassel, P. and Zhang, Y. SecureML: A system for scal-
able privacy-preserving machine learning. In 2017 IEEE
Symposium on Security and Privacy (SP), pp. 19–38,
2017. doi: 10.1109/SP.2017.12.

Nesterov, Y. E. A method for solving the convex program-
ming problem with convergence rate o(1/k2). In Dokl.
akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M.,
Boneh, D., and Taft, N. Privacy-preserving ridge regres-
sion on hundreds of millions of records. In 2013 IEEE
Symposium on Security and Privacy, pp. 334–348, 2013.
doi: 10.1109/SP.2013.30.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22
(10):1345–1359, 2010.

Shahreza, H. O., Hahn, V. K., and Marcel, S. Face re-
construction from deep facial embeddings using a con-
volutional neural network. In 2022 IEEE International
Conference on Image Processing (ICIP), pp. 1211–1215,
2022.

Song, C. and Raghunathan, A. Information leakage in
embedding models. In Proceedings of the 2020 ACM
SIGSAC conference on computer and communications
security, pp. 377–390, 2020.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. Mpnet:
Masked and permuted pre-training for language under-
standing. Advances in Neural Information Processing
Systems, 33:16857–16867, 2020.

Titsias, M. K. One-vs-each approximation to softmax for
scalable estimation of probabilities. Advances in Neural
Information Processing Systems, 29, 2016.

Tschandl, P., Rosendahl, C., and Kittler, H. The HAM10000
dataset, a large collection of multi-source dermatoscopic
images of common pigmented skin lesions. Scientific
data, 5(1):1–9, 2018.

van Elsloo, T., Patrini, G., and Ivey-Law, H. SEALion: A
framework for neural network inference on encrypted
data. arXiv preprint arXiv:1904.12840, 2019.

11

https://www.kaggle.com/datasets/andrewmvd/face-mask-detection
https://www.kaggle.com/datasets/andrewmvd/face-mask-detection
https://www.kaggle.com/datasets/andrewmvd/face-mask-detection
https://aclanthology.org/2022.xfnaacl-main.231
https://aclanthology.org/2022.xfnaacl-main.231

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Wagh, S., Gupta, D., and Chandran, N. Securenn: Effi-
cient and private neural network training. Cryptology
ePrint Archive, Paper 2018/442, 2018. URL https:
//eprint.iacr.org/2018/442. https://
eprint.iacr.org/2018/442.

Walch, R., Sousa, S., Helminger, L., Lindstaedt, S., Rech-
berger, C., and Trügler, A. CryptoTL: Private, ef-
ficient and secure transfer learning. arXiv preprint
arXiv:2205.11935, 2022.

Wan, L., Ng, W. K., Han, S., and Lee, V. C. S. Privacy-
preservation for gradient descent methods. In Proceed-
ings of the 13th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD
’07, pp. 775–783, New York, NY, USA, 2007. Associa-
tion for Computing Machinery. ISBN 9781595936097.
doi: 10.1145/1281192.1281275. URL https://doi.
org/10.1145/1281192.1281275.

Wang, Y., Gu, Q., and Brown, D. Differentially private
hypothesis transfer learning. In Berlingerio, M., Bonchi,
F., Gärtner, T., Hurley, N., and Ifrim, G. (eds.), Machine
Learning and Knowledge Discovery in Databases, pp.
811–826, Cham, 2019. Springer International Publishing.
ISBN 978-3-030-10928-8.

Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister,
H., and Ni, B. Medmnist v2-a large-scale lightweight
benchmark for 2d and 3d biomedical image classification.
Scientific Data, 10(1):41, 2023.

Zhu, T., Ye, D., Wang, W., Zhou, W., and Yu, P. S. More
than privacy: Applying differential privacy in key areas of
artificial intelligence. IEEE Transactions on Knowledge
and Data Engineering, 34(6):2824–2843, 2022. doi: 10.
1109/TKDE.2020.3014246.

12

https://eprint.iacr.org/2018/442
https://eprint.iacr.org/2018/442
https://eprint.iacr.org/2018/442
https://eprint.iacr.org/2018/442
https://doi.org/10.1145/1281192.1281275
https://doi.org/10.1145/1281192.1281275

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

A. Softmax approximation
A.1. Theoretical error analysis

Lemma A.1. Let x = (x1, . . . , xc) ∈ Rc be a vector with max1≤j≤c xj = m ≥ 0. Assume that xi ≤ −r. Then the i-th
entry of the output of the softmax is bounded as

0 < Softmax(x)i ≤
1

1 + er
.

Proof. It is clear that the output is positive. For the second inequality, we have

Softmax(x1, . . . , xc) =
exi

ex1 + · · ·+ exi + · · ·+ exc

≤ exi

ex1 + · · ·+ exi−1 + exi

≤ e−r

ex1 + · · ·+ exi−1 + e−r
· · · (1)

≤ e−r

1 + e−r
=

1

1 + er
.

(When we fix x1, . . . , xi−1, then the function xi 7→ exi/(ex1 + · · ·+ exi) is increasing and this proves (1).)

Lemma A.2. For any x,y ∈ Rc, we have

∥Softmax(x)− Softmax(y)∥∞ ≤
1

2
∥x− y∥∞

Proof. Let gi(t) := Softmax((1− t)x+ ty)i for t ∈ R and 1 ≤ i ≤ c. By the mean value theorem, for each i there exists
ti ∈ (0, 1) such that

Softmax(y)i − Softmax(x)i =
gi(1)− gi(0)

1− 0
= g′i(ti) = (JSoftmax(zi)(y − x)⊺)i

where JSoftmax is a Jacobian matrix of softmax and zi := (1− ti)x+ tiy. By direct computation, one can check that the
Jacobian is given by

JSoftmax(zi) =


s1 − s21 −s1s2 · · · −s1sc
−s2s1 s2 − s22 · · · −s2sc

...
...

. . .
...

−scs1 −scs2 · · · sc − s2c


where (s1, . . . , sc) = Softmax(zi). Then we have

|Softmax(y)i − Softmax(x)i| = |⟨(−sis1,−sis2, . . . , si − s2i , . . . ,−sisc),y − x⟩|
≤ ∥(−sis1,−sis2, . . . , si − s2i , . . . ,−sisc)∥1∥y − x∥∞

=

 c∑
j=1

sisj + (si − 2s2i)

 ∥y − x∥∞

= 2(si − s2i)∥y − x∥∞ ≤
1

2
∥y − x∥∞

where the last inequality follows from
∑c

j=1 sj = 1 and 2(si−s2i) = 1
2−2(si−

1
2)

2. This proves the desired inequality.

Lemma A.3. Let x ∈ Rc with x1 ≥ x2 ≥ · · · ≥ xc and x1 ≥ 0. For 1 ≤ k ≤ c, define x:k ∈ Rk as x:k = (x1, . . . , xk). If
xk+1 < −r ≤ xk, for 1 ≤ i ≤ k we have

0 ≤ Softmax(x:k)i − Softmax(x)i ≤
c− k

i(c− 1 + er)
.

In particular, we have 0 ≤ Softmax(x:k)i − Softmax(x)i ≤ (c− 1)/(c− 1 + er).

13

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Proof. The left inequality is clear. For the right one, we have

Softmax(x:k)i − Softmax(x)i ≤
exi

ex1 + · · ·+ exk
− exi

ex1 + · · ·+ exk + (c− k)e−r

=
exi

ex1 + · · ·+ exk
· (c− k)e−r

ex1 + · · ·+ exk + (c− k)e−r
.

The first term can be bounded as

Softmax(x:k)i ≤ Softmax(xi, xi, . . . , xi,−r, . . . ,−r)i <
1

i
,

and the second term can be bounded as

(c− k)e−r

ex1 + · · ·+ exk + (c− k)e−r
≤ (c− k)e−r

1 + (c− 1)e−r
=

c− k

c− 1 + er
.

(Here we use x1 ≥ 0 and x2, . . . , xk ≥ −r.) This proves the inequality.

From now, we assume that d(·) ∈ D(δ, r, R, LR) for some δ, r, R, L with L > 0 and for i ≥ 1,

d0(x) := d(x)

di(x) := Lid
(x

Li

)
Di(x) := (d0 ◦ d1 ◦ · · · ◦ di−1)(x).

Lemma A.4. Let d(·) ∈ D(δ, r, R, LR). For all i ≥ 1 and x ∈ [−r, r], we have 0 ≤ D′
i(x) ≤ 1.

Proof. Use induction on i. It is true for i = 1 by definition (D1(x) = d(x)). Assume that we have 0 ≤ Di−1(x) ≤ 1 for
x ∈ [−r, r]. Since Di(x) = Di−1(di−1(x)), we have

D′
i(x) = D′

i−1(di−1(x)) · d′i−1(x) = D′
i−1(di−1(x)) · d′

(x

Li−1

)
.

Now combining the induction hypothesis with di−1(x) ∈ [−r, r] and x/Li−1 ∈ [−r, r] results that the above expression
lies between 0 and 1.

The following lemma gives a lower bound of Dn(x) for x ∈ [−r, r] that does not depend on n.

Lemma A.5. For all n ≥ 1 and x ∈ [0, r], we have

Dn(x) ≥ x− δL2

L2 − 1
x3.

Proof. By mean value theorem, for each i ≥ 2, we have

Di−1(x)−Di(x) = Di−1(x)−Di−1(di−1(x))

= D′
i−1(c)(x− di−1(x)) (for some di−1(x) < c < x)

≤ x− di−1(x)

= Li−1
(x

Li−1
− d

(x

Li−1

))
≤ Li−1 · δ

(x

Li−1

)3

=
δ

L2(i−1)

14

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

where the first inequality follows from Lemma A.4. Hence we get

Dn(x) = x− (x−D1(x))− (D1(x)−D2(x))− · · · − (Dn−1(x)−Dn(x))

≥ x−
(
δx3 +

δ

L2
x3 + · · ·+ δ

L2(n−1)
x3

)
= x− δ

1− L−2n

1− L−2
x3

≥ x− δL2

L2 − 1
x3.

Now we prove our main theorem.

Theorem A.6. Let d(·) ∈ D(δ, r, R, LR) be a DEP and abuse a notation so that d : Rc → Rc is a function that
applies d : R → R component-wise. Let p : [−R,R]c → [−R,R]c be a polynomial approximation of Softmax with
minimax error ∥Softmax(x) − p(x)∥∞ < ϵ. Let Amax : [−LnR,LnR]c → [−LnR,LnR]c be a given polynomial
appproximation of max function satisfying Amax(x) ≤ max(x) and ∥Amax(x) −max(x)∥∞ ≤ r. Define a normalized
vector x′ = Norm(x) = (x′

1, . . . , x
′
c) ∈ Rc as x′

j = xj −m for 1 ≤ j ≤ c, where m = Amax(x). For pn := p ◦Dn with
Dn := d0 ◦ · · · ◦ dn−1 and di(x) := Lid(x/Li), if x ∈ [− 1

2L
nR, 1

2L
nR]c, we have

∥Softmax(x)− pn(x
′)∥∞ < β(c, δ, r, L, d) + ϵ

where

β(c, δ, r, L, d) :=
1

1 + er

c−1

+
1

1 + er−δL2r3/(L2−1)

c−1

+
δr3L2

2(L2 − 1)
.

Note that the upper bound does not depend on n.

Proof. One can assume that x1 ≥ x2 ≥ · · · ≥ xc. By the assumption on ApproxMax, xc ≤ m ≤ x1 and r ≥ x′
1 =

x1 −m ≥ 0. In other words, x′ ∈ [−LnR, r]c. Since Softmax(x′) = Softmax(x), we have. We have

∥Softmax(x)− pn(x
′)∥∞ = ∥Softmax(x′)− pn(x

′)∥∞
≤ ∥Softmax(x′)− Softmax ◦Dn(x

′)∥∞ + ∥Softmax ◦Dn(x
′)− p ◦Dn(x

′)∥∞

For 1 ≤ i ≤ c, if x′
i ≤ −r, then by Lemma A.1, we have

0 < Softmax(x′)i ≤
1

1 + er
, 0 < Softmax(Dn(x

′))i ≤
1

1 + eDn(r)
.

(Second inequality follows from Dn(x
′
1) ≥ 0 and Dn(x

′
i) ≤ −Dn(r).) If x′

i ≥ −r, let k ∈ {1, . . . , c} be a minimal
number such that x′

k ≥ −r, so that x′
c ≤ · · · ≤ x′

k+1 < −r ≤ x′
k ≤ · · · ≤ x′

1. Let x′
:k := (x′

1, . . . , x
′
k) ∈ Rk. Then

|Softmax(x′)i − Softmax(Dn(x
′))i| ≤ |Softmax(x′)i − Softmax(x′

:k)i|
+ |Softmax(x′

:k)i − Softmax(Dn(x
′
:k))i|

+ |Softmax(Dn(x
′
:k))i − Softmax(Dn(x

′))i|.

By Lemma A.3, the first and third terms are bounded above by (c−1)/(c−1+er) and (c−1)/(c−1+eDn(r)), respectively.
The second term can be bounded using Lemma A.2 and Theorem 1 of (Cheon et al., 2022a) as

|Softmax(x′
:k)i − Softmax(Dn(x

′
:k))i| ≤

1

2
∥x′

:k −Dn(x
′
:k)∥∞ ≤

δr3L2

2(L2 − 1)
.

Hence we get
|Softmax(x′)i − Softmax(Dn(x

′))i| ≤ β(c, δ, r, L, d).

15

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Since 1/(1 + er) ≤ 1/(1 + er/(c − 1)) < β(c, δ, r, L, d) and 1/(1 + eDn(r)) ≤ 1/(1 + eDn(r)/(c − 1)) ≤
1/(1 + er−δL2r3/(L2−1)/(c− 1)) < β(c, δ, r, L, d), we get

∥Softmax(x′)− Softmax(Dn(x
′))∥∞ ≤ β(c, δ, r, L, d).

For the other term, since Dn(x
′) ∈ [−R,R]c, we have ∥Softmax(Dn(x

′))−p(Dn(x
′))∥∞,[−LnR,LnR]c < ϵ. By combining

these, we get the inequality.

A.2. Algorithm

Based on our softmax approximation, Algorithm 1 computes the row-wise softmax of a matrix M ∈ Ra×c, which gives
P ∈ Ra×c when given M = XW⊺, the probability matrix for each input in a minibatch. Here AExp and AInv are
approximated exponential and inverse functions with the algorithms in (Lee et al., 2022b), with our modified parameters.
Also ⟨M⟩ stands for the encoding of a matrix M with submatrices of size s0 × s1 - see Appendix B for the details. Note
that the XW⊺ is tiled horizontally (assuming that the matrix W is zero-padded and tiled vertically), and we also want
that the result of softmax is tiled horizontally, to apply our matrix multiplication algorithm. Line 1–19 corresponds to the
normalization of input that computes a row-wise max and subtracts it from the input. The loop in line 21–27 is the domain
extension step, where line 24–27 yields a high accuracy. After computing the softmax (line 28–32), line 33–35 make the
result matrix tiled horizontally. For the comparison function, we followed the algorithm in (Cheon et al., 2020). More
precisely, we approximate x 7→ (sgn(x) + 1)/2 on [−1, 1] as a polynomial f(g(g(x))) where

f(x) = − 5

16

(
x7 − 21

5
x5 + 7x3 − 7x

)
, g(x) = −12860

1024

(
x7 − 25614

12860
x5 +

16577

12860
x3 − 4589

12860
x

)
,

and get an approximation for comp(a, b) := (sgn(a− b) + 1)/2 with −1/2 ≤ a, b ≤ 1/2. Note that increasing the number
of compositions of f and g gives a better approximation of the comparison. However, we have experimentally found that
f(g(g(x)) is enough for our experiments.

A.3. Comparison with previous approaches

The following Table 3 shows the maximum and average errors of the softmax approximations including (Lee et al., 2022b;
Hong et al., 2022; Jin et al., 2020) and ours, for each input dimension c and range R. Since it is computationally intractable to
find the exact maximum error of functions in several variables, we randomly sample points on each domain of approximation
instead and report its maximum. More precisely, according to the value of R, we sample as

• R = 4: sample 100M points uniformly on [−4, 4]c,

• R = 8: sample 100M points on [−4, 4]c and [−8, 8]c uniformly, total 200M points,

• R = 32: sample 100M points on [−4, 4]c, [−8, 8]c, and [−32, 32]c uniformly, total 300M points.

• R = 128: sample 100M points on [−4, 4]c, [−8, 8]c, [−32, 32]c, and [−128, 128]c uniformly, total 400M points.

(we sample the points in such an accumulative way since uniformly randomly sampled points become more sparse as R
increases, so we additionally sample points on smaller intervals to consider possible large error on small intervals, too.)
We can see that our approximation could cover the widest range with smallest error. When the error is too large (e.g.
Goldschmidt’s algorithm fail to converge due to large input value), we filled up the corresponding entry with -.

For the comparison, we use the following parameters.

• (Lee et al., 2022b): We use the same parameters given in the paper. In particular, we use degree 12 L2-approximation
of the exponential function on [−1, 1] with B = 64, R = 10000 and n = 8 for inverse approximation, and Gumbel
softmax function is used with λ = 4.

• (Hong et al., 2022): We use the same parameters given in the paper. In particular, we use (r, L) = (4, 32) for AExpr,L
and M = 80 and d = 30 for inverse (which are the same as R = 80 and d = 30 if we use the notations from (Lee
et al., 2022b)).

16

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Algorithm 1 Row-wise softmax approximation

Input: ⟨M⟩, for M ∈ Ra×c, c ≤ s1, c′ = 2⌈log2 c⌉, Rorig (original approximation range), L (domain extension ratio), n
(domain extension index), Acomp(·, ·) (homomorphic approximate comparison function), precise (boolean).
Output: ⟨ASoftmax(M)⟩

1: Rmax = ⌈Rorig · Ln⌉
2: Dc = (dij) where

dij =

{
1 0 ≤ j < c

0 otherwise

3: ⟨M ′⟩ = ⟨M⟩ ×
(

1
2Rmax

)
4: if c ̸= c′ then
5: Dpadmask = (mij) where

mij =

{
0 0 ≤ j < c

1/2 otherwise

6: ⟨M ′⟩ = ⟨M ′⟩ − ⟨Dpadmask⟩
7: end if
8: Dfirstcol = (m′

ij) where

m′
ij =

{
1 j = 0

0 otherwise

9: for j = 0 to log2(c
′) do

10: ⟨Mrot⟩ = Lrot(⟨Mmax⟩, 2j)
11: ⟨Mcomp⟩ = Acomp(⟨Mmax⟩, ⟨Mrot⟩)
12: ⟨Mmax⟩ = ⟨Mmax⟩ ⊙ ⟨Mcomp⟩+ ⟨Mrot⟩ ⊙ (1− ⟨Mcomp⟩)
13: end for
14: ⟨Mmax⟩ = ⟨Mmax⟩ · ⟨Dfirstcol⟩
15: for j = 0 to log2(s1) do
16: ⟨Mmax⟩ = ⟨Mmax⟩+ Rrot(⟨Mmax⟩, 2i · s1)
17: end for
18: ⟨Mmax⟩ = ⟨Mmax⟩ × (2Rmax)
19: ⟨Mnorm⟩ = (⟨M⟩ − ⟨Mmax⟩)⊙ ⟨Dc⟩
20: B(x) := x− 4x3

27R2
orig

21: for i = n− 1 to 0 do
22: ⟨Mnorm⟩ = Li ⊙B(⟨Mnorm⟩ ⊙ L−i)
23: end for
24: if precise then
25: Binv(x) := x− 4

27
L2(L2n−1)
L2n(L2−1)

(
x3

R2
orig
− x5

R4
orig

)
26: ⟨Mnorm⟩ = Binv(⟨Mnorm⟩)
27: end if
28: Mexp = AExp(⟨Mnorm⟩)
29: Mexp = Mexp ⊙ ⟨Dc⟩
30: Mexpsum = SumRows(Mexp)
31: MZ = AInv(Mexpsum)
32: MSoftmax = Mexpsum ⊙MZ

33: for j = 0 to log2(s1/c
′) do

34: MSoftmax = MSoftmax + Rrot(MSoftmax, 2
j · s1 · c′)

35: end for
36: ⟨ASoftmax(M)⟩ = MSoftmax

17

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

• (Jin et al., 2020): They used degree 3 L2-approximation of sigmoid on [−8, 8] (that is y = 0.5+0.15012x−0.00159x3,
used in (Kim et al., 2018b)) which has a minimax error of 0.0098 on [−8, 8]. So we have observed the resulting
one-vs-each softmax approximation error on [−4, 4]c. (Since we take differences between inputs for each class, the
actual input of each sigmoid could fit into [−8, 8] when the input themselves are in [−4, 4].)

• Ours: Our initial softmax approximation is based on (Lee et al., 2022b), but with different parameters. We use B = 8
for exponential (approximation on [−8, 8]) and R = 100 and n = 16 for inverse. Since normalization subtracts
(approximate) maximum value from inputs, the possible range of the resulting normalized input becomes twice; hence
our softmax can only cover [−4, 4]c without domain extension. For domain extension, we set the domain extension
ratio as L = 2 and domain extension index as 5, so that the new domain of approximation becomes [−128, 128]c.
Also, we can increase precision by applying Algorithm 2 of (Cheon et al., 2020) which applies an additional degree 5
polynomial which approximates the inverse of DEP.

c R (Lee et al., 2022b) (Hong et al., 2022) (Jin et al., 2020) Ours (norm) Ours (norm+extn) Ours (norm+extn+prec)

3

4 0.9243 0.6957 0.0755 0.0162 0.1841 0.0910 3.7e-7 4.3e-8 0.0037 0.0015 0.0013 0.0003
8 0.9651 0.7131 0.6041 0.0199 - - - - 0.0037 0.0015 0.0013 0.0004
32 0.9997 0.5812 - - - - - - 0.0037 0.0015 0.0022 0.0006

128 - - - - - - - - 0.0037 0.0014 0.0022 0.0006

5

4 0.9138 0.5784 0.0965 0.0239 0.3093 0.1148 7.2e-7 7.4e-8 0.0071 0.0029 0.0026 0.0004
8 0.9591 0.5320 0.4121 0.0313 - - - - 0.0071 0.0029 0.0026 0.0005
32 0.9996 0.4806 - - - - - - 0.0071 0.0024 0.0044 0.0008

128 - - - - - - - - 0.0116 0.0023 0.0044 0.0010

7

4 0.9051 0.4926 0.1030 0.0297 0.4930 0.1296 1.0e-6 9.1e-8 0.0065 0.0031 0.0026 0.0003
8 0.9522 0.5320 0.2095 0.0416 - - - - 0.0073 0.0029 0.0030 0.0005
32 0.9992 0.4252 - - - - - - 0.0087 0.0029 0.0065 0.0010

128 - - - - - - - - 0.0089 0.0029 0.0066 0.0013

10

4 0.8942 0.3992 0.0948 0.0339 0.8018 0.1501 1.4e-6 1.0e-7 0.0153 0.0046 0.0040 0.0006
8 0.9438 0.4476 0.2167 0.0516 - - - - 0.0153 0.0042 0.0050 0.0014
32 0.9985 0.3768 - - - - - - 0.0153 0.0039 0.0094 0.0012

128 - - - - - - - - 0.0224 0.0039 0.0097 0.0016

Table 3. Maximum and average errors of softmax approximation with 100–300M sampled points. Ours (norm+extn+prec) represents our
approach combined with Algorithm 2 of (Cheon et al., 2022a).

The errors of previous works are fairly large, considering that softmax values lie between 0 and 1, and one can ask if it is
possible to use these approximations in practice. The authors of (Lee et al., 2022a). (resp. (Hong et al., 2022)) proposed a
softmax approximation and showed it is useful for ResNet-20 inference (resp. shallow neural network), where it is sufficient
to identify the largest of many values rather than to calculate the exact values. This explains why their approximation works
well for their purpose. However, for training, we need a softmax approximation that works well uniformly on large intervals;
therefore, previous algorithms are not exactly suitable for training. Although the one-vs-rest softmax is used for training in
(Jin et al., 2020), the input range is limited to [−4, 4].

A.4. Softmax input with vanilla SGD training

Figure 4 shows how the minimum and maximum values of input of softmax vary as training proceeds when we use vanilla
SGD instead of NAG. Although the input values increase slower than that with NAG, the values are still significant and
cannot be covered by the previous softmax approximation methods. (Note that it took about 10 times longer than NAG to
train models.)

18

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

0 1,000 2,000 3,000 4,000
−32

−8
−4

4
8

40
MNIST

CIFAR-10
Facial Mask Detection

DermaMNIST
SNIPS

Figure 4. Maximum and minimum value of input of softmax at each step (minibatch) for each dataset, where the model is trained with
vanilla SGD.

B. Encrypted matrix multiplication
B.1. Matrix composed of multiple blocks

In the main article, we assumed that each matrix could fit into a single block (message or ciphertext) to simplify explanations.
Now we give a detailed description of the matrix multiplication algorithms for matrices whose encodings are composed of
multiple blocks.

Let A ∈ Ra×b be a matrix. Fix a unit matrix shape s0× s1, where s = s0s1 equals the number of slots in a single ciphertext.
When a ≤ s0 and b ≤ s1, we apply zero-padding to the right end and bottom of A and encode it into a single block in a
row-major manner. ⟨A⟩ denotes this encoding. For example, if a = b = 3 and s0 = s1 = 4, the matrix A = (aij)0≤i,j<3 is
encoded as

⟨A⟩ = (a00, a01, a02, 0, a10, a11, a12, 0, a20, a21, a22, 0, 0, 0, 0, 0).

If a > s0 or b > s1, we first zero-pad A so that the number of rows and columns are multiples of s0 and s1, respectively,
and then split A into submatrices of shape s0 × s1. Then encoding each submatrix gives an encoding ⟨A⟩ of A,

⟨A⟩ = {⟨A⟩i,j}0≤i<⌈a/s0⌉,0≤j<⌈b/s1⌉,

where ⟨A⟩i,j is the encoding of (i, j)-th submatrix. (See also Figure 5.) As explained in (Crockett, 2020), we can extend the
SumRows and SumCols algorithm for large matrices.

s0

s1 s1 s1

s0

A
A00 A01 A02

A10 A11 A12

Figure 5. Encoding of a matrix A ∈ R13×21 into 6 blocks where each encoded matrix of unit shape 8× 8.

B.2. Proofs

Here we give proofs for the propositions on encrypted matrix multiplication algorithms.
Proposition B.1. Let A,B as above. We have AB

⊺
= X + Conj(X) where

X =
∑

0≤k<c/2

SumCols(A⊙ RotUp(Bcplx, k))⊙M
(k,c)
cplx . (1)

19

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Here M (k,d) is an off-diagonal masking matrix with entries

M
(k,d)
i,j =

{
1 j ≡ i+ k (mod d)

0 otherwise

and M
(k,c)
cplx is a complexified version of the mask, which is

M
(k,c)
cplx =

1

2
M (k,c) −

√
−1
2

M (k+c/2,c)

Proof. We will first show that

AB
⊺
=

∑
0≤k<c

SumCols(A⊙ RotUp(B, k))⊙M (k,c). (2)

It is enough to show that the (i, j)-th entry of the right-hand side equals aib
⊺
j , where ai (resp. bj) is i-th (resp. j-th) row of

A (resp. B). Choose 0 ≤ k0 < c such that j − i ≡ k0 (mod c). Then all the (i, j)-th entries of summands of the right hand
side vanishes except for the summand with index k = k0 because of the masking. For k = k0, the (i, j)-th entry equals the
dot product of the i-th row of A and the i-th row of RotUp(B, k0), and the latter is i+ k0 ≡ j-th row of B.

Now, we can see that

RotUp(Bcplx, k) = RotUp(B, k) +
√
−1RotUp(B, k + c/2)

and by the linearity of SumCols and bi-linearity of ⊙, we get

SumCols(A⊙ RotUp(Bcplx, k)) = SumCols(A⊙ RotUp(B, k)) +
√
−1 SumCols(A⊙ RotUp(B, k + c/2)).

Now, combining this with equation,

ℜ((x+ zi)(y − wi)) = xy + zw, x, y, z, w ∈ R,

we get

2ℜ(SumCols(A⊙ RotUp(Bcplx, k))⊙M
(k,c)
cplx)

= SumCols(A⊙ RotUp(B, k))⊙M (k,c)

+ SumCols(A⊙ RotUp(B, k + c/2))⊙M (k+c/2,c).

In other words, the k-th summand of Equation (1) equals to the sum of the k-th and (k+ c/2)-th summands of Equation (2),
and this completes the proof.

Proposition B.2. A⊺B = X + conj(X), where

X =
∑

0≤k<c/2

SumRows(Lrot(Acplx, k)⊙ PRotUp(B, k))⊙M
(−k,c)
cplx .

Proof. Once we show the following identity

SumRows(Lrot(Acplx, k)⊙ PRotUp(B, k)) = SumRows(RotLeft(Acplx, k)⊙B),

our equation is equivalent to

X =
∑

0≤k<c/2

SumRows(RotLeft(Acplx, k)⊙B)⊙M
(−k,c)
cplx .

20

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

which can be proved in a similar way as Proposition 2. We can check that the first (b− k) columns of RotLeft∗(Acplx, k)
coincide with them of RotLeft(Acplx, k), and same thing holds for PRotUp(B, k) and B. The last k columns of
RotLeft∗(Acplx, k)⊙ PRotUp(B, k) are 

x2,1 · y2,b−k+1 . . . x2,k · y2,b
x3,1 · y3,b−k+1 . . . x3,k · y3,b

...
. . .

...
x1,1 · y1,b−k+1 . . . x1,k · y1,b


where Acplx = (xi,j) and B = (yi,j), and the sums of entries in each column equal to them of RotLeft(Acplx)⊙B.

B.3. Algorithms

We give detailed algorithms that we used for computing encrypted matrix multiplications. It is worth noting that there
are some restrictions on the shape of matrices and unit matrices for encoding. For example, Algorithm 2 requires that the
number of rows c of B should satisfy 1 < c ≤ s0. Hence we set the unit matrix shape s0, s1 to satisfy the restriction for the
actual implementation.

We first briefly explain how the operations like addition, multiplication, SumRows, SumCols, Lrot, and Rrot are extended
to encodings composed of several blocks, i.e. when

⟨A⟩ = {⟨A⟩i,j}0≤i<m,0≤j<n.

Addition and multiplication are simple. Let ⟨A1⟩ = {⟨A1⟩i,j}0≤i<m1,0≤j<n1
and ⟨A2⟩ = {⟨A2⟩i,j}0≤i<m2,0≤j<n1

. If
m1 = m2 and n1 = n2, we define addition and multiplication as

⟨A1⟩+ ⟨A2⟩ = {⟨A1⟩i,j + ⟨A2⟩i,j}0≤i<m1,0≤j<n1
,

⟨A1⟩ ⊙ ⟨A2⟩ = {⟨A1⟩i,j ⊙ ⟨A2⟩i,j}0≤i<m1,0≤j<n1
.

We can also define addition and multiplication when m1 = 1 (or m2 = 1) and n1 = n2, or m1 = m2 and n1 = 1 (or
n2 = 1) by duplicating sub-encodings.

To compute SumRows(⟨A⟩), we first add the sub-encodings vertically and apply SumRows to each block to get

SumRows(⟨A⟩) = {SumRows(
∑

0≤i<m

⟨A⟩i,j)}0≤j<n.

Similarly, we define SumCols(⟨A⟩) as

SumCols(⟨A⟩) = {SumCols(
∑

0≤j<n

⟨A⟩i,j)}0≤i<m.

Finally, we define Lrot and Rrot for ⟨A⟩ = {⟨A⟩i,j} as

Lrot(⟨A⟩, k) = {Lrot(⟨A⟩i,j , k)},
Rrot(⟨A⟩, k) = {Rrot(⟨A⟩i,j , k)},

and we extend RotUp,RotLeft,PRotUp similarly.

The following algorithms (Algorithms 1 to 4) are the actual algorithms we use for implementation.

C. Experiments
C.1. Dataset description

• MNIST (Deng, 2012) is one of the most widely used image classification dataset, consisting of 70k images of
handwritten digits, from 0 to 9.

21

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Algorithm 2 DiagABT: Homomorphic evaluation of tAB⊺

Input: ⟨A⟩, ⟨B⟩, for A ∈ Ra×b, B ∈ Rc×b, 1 < c ≤ s0, and t ∈ R
Output: ⟨tAB

⊺⟩
1: Bcplx = ⟨B⟩+

√
−1RotUp(⟨B⟩, c/2)

2: for 0 ≤ k < c
2 do

3: Bk = RotUp(Bcplx, k)
4: Rk = ⟨A⟩ ⊙Bk

5: Rk = SumCols(Rk)

6: Rk = Rk ⊙ tM
(k,c)
cplx

7: end for
8: X =

∑
0≤k<c/2 Rk

9: ⟨tAB
⊺⟩ = X + Conj(X)

Algorithm 3 RotLeft(⟨A⟩, k)
Input: ⟨A⟩ where A ∈ Ra×s1 , 0 ≤ k < s1
Output: RotLeft(⟨A⟩, k)

1: Dk = (dij) where

dij =

{
1 0 ≤ j < s1 − k

0 otherwise

2: A1 = Lrot(⟨A⟩, k)
3: A2 = A1 ⊙ ⟨Dk⟩
4: RotLeft(⟨A⟩, k) = A2 + Rrot(A1 −A2, s1)

Algorithm 4 PRotUp(B, k)

Input: ⟨B⟩ for B ∈ Ra×b, 0 ≤ k < s1
Output: PRotUp(B, k)

1: Dk = (dij) where

dij =

{
1 0 ≤ j < s1 − k

0 otherwise

2: B′ = ⟨B⟩ ⊙ ⟨Dk⟩
3: PRotUp(B, k) = B′ + RotUp(⟨B⟩ −B′, 1)

22

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Algorithm 5 DiagATB: Homomorphic evaluation of tA⊺B

Input: ⟨A⟩, ⟨B⟩, for A ∈ Ra×c, B ∈ Ra×b, and t ∈ R
Output: ⟨tA⊺

B⟩
1: Acplx = ⟨A⟩+

√
−1RotLeft(⟨A⟩, c/2)

2: for 0 ≤ k < c
2 do

3: if level(A) < level(B) then
4: Ak = Lrot(Acplx, k)
5: Bk = PRotUp(⟨B⟩, k)
6: Rk = Ak ⊙Bk

7: else
8: Ak = RotLeft(Acplx, k)
9: Rk = Ak ⊙ ⟨B⟩

10: end if
11: Rk = SumRows(Rk)

12: Rk = Rk ⊙ tM
(−k,a)
cplx

13: end for
14: X =

∑
0≤k<b/2 Rk

15: ⟨tA⊺
B⟩ = X + Conj(X)

• CIFAR-10 (Krizhevsky et al., 2009) is another famous image classification dataset, consisting of 60k color images of
10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, sheep, truck.

• Face Mask Detection (Larxel, 2020) is a dataset from Kaggle that contains 853 images with several peoples. Each
face is classified as one of the following three: wearing a mask correctly, wearing a mask incorrectly, and not wearing a
mask. With given metadata on each image, we crop faces and make them into single images, which results in total
4072 images.

• DermaMNIST (Yang et al., 2023) is one of the MedMNIST collection, which is a medical dataset of 10015 common
pigmented skin lesions images based on the HAM10000 dataset (Tschandl et al., 2018), where each image is labeled as
one of the 7 diseases.

• SNIPS (Coucke et al., 2018) is a dataset of crowd-sourced queries collected from Snips Voice Platform, distributed
along 7 user intents.

Table 4 describes the number of samples in each split (train, validation, test) for each benchmark. The splits are already
given for DermaMNIST and SNIPS datasets, and we randomly split original train sets into train and validation sets for the
other datasets of the ratio 7:1. We used these splits to find hyperparameters and report the final performances (execution
time and model accuracy) in Table 2 of the main article.

Dataset Train Validation Test Total

MNIST 52500 7500 10000 70000
CIFAR-10 43750 6250 10000 60000

Face Mask Detection 2849 408 815 4072
DermaMNIST 7007 1003 2005 10015

SNIPS 13084 700 700 14484

Table 4. Number of samples in each benchmark dataset.

C.2. Hyperparameters

Table 5 shows a list of hyperparameters (minibatch sizes and learning rates) that are used for experiments. For early-stopping,
we set patience as 3 so that the server trains until the validation loss does not decrease further for 3 epochs.

23

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Dataset total epochs best epoch batch size learning rate

MNIST 7 4 1024 2.0
CIFAR-10 9 6 2048 1.0

Face Mask Detection 22 19 512 0.5
DermaMNIST 23 20 1024 0.3

SNIPS 14 11 1024 1.0

Table 5. Batch size, learning rate, and number of epochs (early-stopped and best) for each benchmark dataset.

C.3. Encrypted matrix multiplication

First of all, for the comparison of encrypted matrix multiplication algorithms (Table 4 of the main article), we set s0 = a
for all experiments (our DiagABT,DiagATB algorithms and ColMajor,RowMajor of (Crockett, 2020)). The Table 6
shows the computational complexity of each algorithm, and Table 7 shows the actual number of constant multiplications,
multiplications, and rotations used for each encrypted matrix multiplication algorithm.

Ops AB⊺ (A ∈ Ra×b, B ∈ Rc×b) A⊺B (A ∈ Ra×c, B ∈ Ra×b)
(Jin et al., 2020)∗ ColMajor DiagABT (Jin et al., 2020)∗ RowMajor DiagATB

CMult 0 O(c(a
s0

+ b
s1
)) O(ac

2s0
) 0 O(c(a

s0
+ b

s1
)) O(abc2s)

Mult O(bc) O(abcs) O(abc2s) O(bc) O(abcs) O(abc2s)

Rot 0 O(c(a
s0

log s1 +
b
s1

log s0)) O(c(a
s0

log s1 +
b

2s1
)) O(bc log s) O(c(a

s0
log s1 +

b
s1

log s0)) O(c(ab2s + b
2s1

log s0))

Table 6. Complexity of matrix multiplication algorithms. Note that s = s0s1.

C.4. Using larger pre-trained models

We also conducted experiments with larger pre-trained models. Especially, we replace the ViT-Base model for the image
dataset with the ViT-Large model and see how the performance changes. The hidden dimensions of the models are 768
and 1024, respectively, and the other information on the architectures of the models can be found in (Dosovitskiy et al.,
2021). The overall results with these larger models can be found in Table 8, which shows that we can still apply HETAL and
fine-tune the models with encrypted data in a reasonable amount of time (in 1.2 hours). The results from these experiments
illustrate that HETAL is flexible and scales well with larger models.

We used the same minibatch sizes as in Table 5, and also set patience as 3 for early-stopping. The list of learning rates and
number of epochs for each experiment can be found in Table 9.

C.5. Comparison between encrypted and unencrypted training

We ran HETAL on the unencrypted datasets and compared the runtimes with those for encrypted datasets in Table 10. It is
important to note that we implemented the fine-tuning module of HETAL for unencrypted data using NumPy (Harris et al.,
2020) from scratch for a fair comparison, and the results are obtained without using a GPU.

Though the runtimes for encrypted training are longer, it is crucial to highlight that we have achieved practical performance
levels with our homomorphic encryption implementation. The experimental results demonstrate that the training was
completed in less than an hour for all five datasets with a dimension of 768, reinforcing the practical feasibility of HETAL.

We remark that both the unencrypted and encrypted versions could be further improved if additional optimizations were
implemented.

24

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

(a, b, c)
AB⊺ (A ∈ Ra×b, B ∈ Rc×b) A⊺B (A ∈ Ra×c, B ∈ Ra×b)

(Jin et al., 2020)∗ ColMajor DiagABT (Jin et al., 2020)∗ RowMajor DiagATB

(128, 128, 4)

0 4 0 0 4 2
512 4 2 512 4 0

0 63 34 7680 63 18

(256, 256, 8)

0 16 0 0 8 4
2048 16 8 2048 16 0

0 191 64 30720 191 72

(512, 769, 4)

0 52 0 0 4 2
3076 52 26 3076 52 0

0 495 50 46140 495 238

(1024, 769, 8)

0 200 0 0 8 4
6152 200 100 6152 200 0

0 2047 140 92280 2047 1008

(2048, 769, 16)

0 784 0 0 16 8
12304 784 392 12304 784 0

0 8703 456 184560 8703 4328

Table 7. The number of constant multiplications (CMult, first rows), multiplications (Mult, second rows), and rotations (Rot, third rows).

dataset model
encrypted unencrypted

Running time ACC (a) ACC (b) ACC loss ((b) - (a))
Total (s) Time / Iter (s)

MNIST Base 3442.29 9.46 96.73% 97.24% 0.51%
Large 4159.60 11.43 97.46% 98.13% 0.67%

CIFAR-10 Base 3114.30 15.72 96.57% 96.62% 0.05%
Large 3073.06 19.95 97.36% 97.39% 0.03%

Face Mask Detection Base 566.72 4.29 95.46% 95.46% 0.00%
Large 347.94 5.80 95.34% 95.34% 0.00%

DermaMNIST Base 1136.99 7.06 76.06% 76.01% -0.05%
Large 879.27 8.37 76.86% 76.76% -0.10%

Table 8. HETAL with different sizes of ViTs.

25

HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Dataset model total epochs best epoch batch size learning rate

MNIST Base 7 4 1024 2.0
Large 7 4 0.05

CIFAR-10 Base 9 6 2048 1.0
Large 7 4 0.1

Face Mask Detection Base 22 19 512 0.5
Large 10 7 0.1

DermaMNIST Base 23 20 1024 0.3
Large 15 12 0.03

Table 9. Batch size, learning rate, and number of epochs (early-stopped and best) for each benchmark dataset and model size.

Dataset encrypted (s) epochs unencrypted (s)

MNIST 3442 14 194
CIFAR-10 3114 10 113
Face Mask Detection 567 22 22
DermaMNIST 1137 23 41
SNIPS 1264 25 84

Table 10. Comparison of total runtime for encrypted and unencrypted training across various datasets.

26

