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Abstract
Pre-trained language models (LMs) have made001
significant advances in various Natural Lan-002
guage Processing (NLP) domains, but it is un-003
clear to what extent they can infer formal se-004
mantics in ontologies, which are often used005
to represent conceptual knowledge and serve006
as the schema of data graphs. To investigate007
an LM’s knowledge of ontologies, we propose008
ONTOLAMA, a set of inference-based prob-009
ing tasks and datasets from ontology subsump-010
tion axioms involving both atomic and complex011
concepts1. We conduct extensive experiments012
on ontologies of different domains and scales,013
and our results demonstrate that LMs encode014
relatively less background knowledge of Sub-015
sumption Inference (SI) than traditional Natural016
Language Inference (NLI) but can improve on017
SI significantly when a small number of sam-018
ples are given. We will open-source our code019
and datasets.2020

1 Introduction021

Ontology is a formal representation of conceptual022

knowledge within a domain (Staab and Studer,023

2010). The Web Ontology Language (OWL)3 is024

a standard language for authoring ontologies rec-025

ommended by the World Wide Web Consortium026

(W3C) (Bechhofer et al., 2004; Grau et al., 2008).027

An OWL ontology can be seen as a description028

logic (DL) knowledge base (KB) with rich built-in029

vocabularies for knowledge representation and var-030

ious reasoning tools supported. It has a wide range031

of applications in many fieleds such as the Seman-032

tic Web, Knowledge Engineering, Bioinformatics,033

and Natural Language Processing (Horrocks, 2008;034

Jiménez-Ruiz et al., 2015; Hoehndorf et al., 2015;035

Witte et al., 2010).036

1An ontology concept is also known as a class. To avoid
confusion with class in machine learning classification, we
stick to use the term concept.

2https://anonymised; see supplementary materials.
3For simplicity, we refer to the second edition OWL 2 as

OWL: https://www.w3.org/TR/owl2-overview/
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Figure 1: ONTOLAMA framework.

The advancements of large pre-trained language 037

models (LMs) have sparked research interest in 038

investigating how much formal and explicit seman- 039

tics they can learn or infer from relational KBs 040

(AlKhamissi et al., 2022). The LAMA (LAnguage 041

Model Analysis) probe (Petroni et al., 2019) is 042

among the first works that adopt prompt-based 043

methods to simulate the process of querying fac- 044

tual knowledge from various KBs such as Con- 045

ceptNet (Speer and Havasi, 2012) and GoogleRE4. 046

Some subsequent studies focus on probing specific 047

types of knowledge from sources like common- 048

sense KBs (Da et al., 2021), biomedical KBs (Sung 049

et al., 2021), temporal KBs (Dhingra et al., 2022), 050

and cross-lingual KBs (Liu et al., 2021a). Another 051

branch of works attempts to improve the prompts 052

used to query (or access) LMs at the discrete level 053

and/or continuous level (Shin et al., 2020; Schick 054

and Schütze, 2021; Gao et al., 2021; Zhong et al., 055

2021). 056

We take a further step along this research line to- 057

wards more formalised semantics by targeting DL 058

KBs and in particular the OWL ontologies. Current 059

works on LMs concerning ontologies are mostly 060

driven by a target application. Liu et al. (2020), 061

He et al. (2022), and Chen et al. (2022) apply lan- 062

guage model fine-tuning to address ontology cura- 063

tion tasks such as concept insertion and matching, 064

4https://code.google.com/archive/p/
relation-extraction-corpus/
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while Ye et al. (2022) transform ontologies into065

KG-like triples for data augmentation for few-shot066

learning. In contrast to these application-driven067

approaches, we investigate a more fundamental068

question: To what extent can LMs infer ontology069

semantics? In this paper, we focus on the subsump-070

tion relationships between ontology concepts. As071

shown in Figure 1, we first extract concept pairs072

(C,D) that are deemed as positive (C and D are in073

a subsumption relationship) and negative (C and074

D are assumed to be disjoint) samples from an on-075

tology, then we apply a verbaliser to translate the076

concepts into natural language texts. We formulate077

the Subsumption Inference (SI) task similarly to the078

Natural Language Inference (NLI) task and treat079

the concept pairs as premise-hypothesis pairs (Padó080

and Dagan, 2022), which will then be wrapped into081

a template to form inputs of LMs.082

We created SI datasets from ontologies of vari-083

ous domains and scales, and conducted extensive084

experiments. Our results demonstrate that LMs085

perform better on a typical NLI task than the con-086

structed SI tasks under the zero-shot setting, indi-087

cating that LMs encode relatively less background088

knowledge of ontology subsumptions. However,089

by providing a small number of samples (K-shot090

settings), the performance on SI is significantly091

improved. This observation is consistent with the092

three LMs we considered in this work.093

2 Background094

2.1 OWL Ontology095

An OWL ontology is a description logic (DL)096

knowledge base that consists of the TBox (termi-097

nological), ABox (assertional), and RBox (rela-098

tional) axioms (Krötzsch et al., 2012). In this work,099

we focus on the TBox axioms which specify the100

subsumption relationships between concepts of a101

domain. A subsumption axiom has the form of102

C ⊑ D where C and D are concept expressions in-103

volving atomic concept, negation (¬), conjunction104

(⊓), disjunction (⊔), existential restriction (∃r.C),105

universal restriction (∀r.C), and so on (see com-106

plete definition in Appendix A). An atomic con-107

cept is a named concept, a top concept ⊤ (a concept108

with every individual as an instance), or a bottom109

concept ⊥ (an empty concept); while a complex110

concept consists of at least one of the available111

logical operators. An equivalence axiom C ≡ D is112

equivalent to C ⊑ D and D ⊑ C.113

Regarding the semantics, in DL we define an114

interpretation I = (∆I , ·I) that consists of an non- 115

empty set ∆I and a function ·I that maps each 116

concept C to CI ⊆ ∆I and each property r to 117

rI ⊆ ∆I ×∆I . We say I is a model of C ⊑ D if 118

CI ⊆ DI holds, and I is a model of an ontology 119

O if I is a model of all axioms in O. If CI ⊆ DI 120

holds for every model I of O, then we can say 121

O |= C ⊑ D. This defines logical entailment w.r.t. 122

an ontology and it is more strictly defined than 123

textual entailment based on human beliefs. 124

An individual a is an instance of a concept C in 125

O if O |= C(a) (aI ∈ CI for every model I of O). 126

C and D are disjoint in O if O |= C ⊓D ⊑ ⊥ (or 127

equivalently O |= C ⊑ ¬D) which means there 128

can be no common instance a of C and D. 129

The Open World Assumption (OWA) underpins 130

OWL ontologies, according to which we cannot 131

say what is not entailed by the ontology is nec- 132

essarily false. For example, if we have an on- 133

tology that contains just one axiom Paella ⊑ 134

∃hasIngredient.Chicken, in OWA we cannot 135

determine if paella can have chorizo as an ingredi- 136

ent or not. To allow reuse and extension, ontologies 137

are often (intentionally) underspecified (Cimiano 138

and Reyle, 2003); this characteristic motivates how 139

we define the negative samples in Section 3.1. 140

2.2 Related Work 141

Recently, the rise of the prompt learning paradigm 142

has shed light on better usage of pre-trained LMs 143

without, or with minor, supervision (Liu et al., 144

2022). However, LMs are typically pre-trained 145

in a stochastic manner, making it challenging to 146

study what knowledge LMs have implicitly en- 147

coded (Petroni et al., 2019) and how to access LMs 148

in an optimal or cotrollable way. (Gao et al., 2021; 149

Li et al., 2022). 150

Our work is informed by the “LMs-as-KBs” lit- 151

erature (AlKhamissi et al., 2022), where different 152

probes have been designed to test LMs’ knowl- 153

edge of relational data. In Petroni et al. (2019), the 154

probing task of world knowledge has been formu- 155

lated as a cloze-style answering task where LMs 156

are required to fill in the <MASK> token given in- 157

put texts wrapped into a manually designed tem- 158

plate. Sung et al. (2021) did a similar work but 159

shift the focus to (biomedical) domain knowledge 160

of domain-specific LMs. Liu et al. (2021a) pre- 161

trained LMs with multi-lingual knowledge graphs 162

(KGs) and test on the cross-lingual tasks. Dhin- 163

gra et al. (2022) proposed datasets with temporal 164
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signals and probed LMs on them with templates165

generated by the text-to-text transformer T5 (Raffel166

et al., 2022).167

However, existing “LMs-as-KBs” works mostly168

focus on relational facts, but omit logical seman-169

tics and conceptual knowledge. In contrast, our170

work focuses on OWL ontologies which represent171

conceptual knowledge with an underlying logical172

formalism. Although there are some recent works173

concerning both LMs and ontologies, they do not174

compare them at the semantic level but rather em-175

phasise on downstream applications. For exam-176

ple, He et al. (2022) adopted LMs as synonym177

classifiers to predict mappings between ontologies;178

whereas Ye et al. (2022) used ontologies to provide179

extra contexts to help LMs to make predictions.180

3 Subsumption Inference181

3.1 Task Definition182

Recall the definitions in Section 2.1, a subsump-183

tion axiom C ⊑ D can be interpreted as: “every184

instance of C is an instance of D”. We can ac-185

cordingly form a premise-hypothesis pair where186

the premise is “x is a C” and the hypothesis is187

“x is a D” for some individual x. Note that there188

are different ways to express the premise and hy-189

pothesis, and we adopt a simple but effective one.190

(see Section 5.1). Next, an ontology verbaliser is191

required for transforming the concept expressions192

C and D into natural language texts. Analogous to193

Natural Language Inference (NLI) or Recognising194

Textual Entailment (RTE) (Poliak, 2020; Padó and195

Dagan, 2022), the task of Subsumption Inference196

(SI) is thus defined as classifying if the premise197

entails or does not entail the hypothesis. Note that198

SI is similar to a two-way RTE task5 where we do199

not consider the neutral6 class.200

Given an ontology O, we extract positive and201

negative subsumptions to probe LMs. The positive202

samples are concept pairs (C,D) with O |= C ⊑203

D. Due to OWA, we cannot determine if (C,D)204

with O ̸|= C ⊑ D really forms a negative sub-205

sumption (see Appendix F for more explanation);206

to generate plausible negative samples, we propose207

the assumed disjointness7 defined as follows:208

5RTE guidelines: https://tac.nist.gov/2008/rte/
rte.08.guidelines.html.

6Neutral essentially means two terms are unrelated. On-
tologies are invariably underspecified, so even if two concepts
have not been entailed as a subsumption or non-subsumption,
they may still be implicitly related in the real world.

7Schlobach (2005) and Solimando et al. (2017) defined a

Definition (Assumed Disjointness). If two con- 209

cepts C and D are satisfiable in O∪{C⊓D ⊑ ⊥} 210

and there is no named atomic concept A in O such 211

that O |= A ⊑ C and O |= A ⊑ D, then C and 212

D are assumed to be disjoint. 213

The first condition ensures that C and D are still 214

satisfiable after adding the disjointness axiom for 215

them into O whereas the second condition ensures 216

that C and D have no common descendants be- 217

cause otherwise the disjointness axiom will make 218

any common descendant unsatisfiable. If two con- 219

cepts C and D satisfy these two conditions, we 220

treat (C,D) as a valid negative subsumption. 221

However, in practice validating the satisfiability 222

for each concept pair (C,D) would be inefficient 223

especially when the ontology is large and complex. 224

Thus, we propose a pragmatical alternative to the 225

satisfiability check in Appendix E. 226

To conduct reasoning to extract entailed posi- 227

tive subsumptions and validate sampled negative 228

subsumptions, we need to adopt a proven sound 229

and complete OWL reasoner, e.g., HermiT (Glimm 230

et al., 2014). 231

In the following sub-sections, we propose two 232

specific SI tasks and their respective subsumption 233

sampling methods. 234

3.2 Atomic Subsumption Inference 235

The first task aims at subsumption axioms that in- 236

volve just named atomic concepts. Such axioms are 237

usually the most prevalent in an ontology and can 238

be easily verbalised by using the concept names. 239

In this work, we use labels (in English) defined 240

by the built-in annotation property rdfs:label as 241

concept names. If there are no such labels, we 242

use synonyms defined by some other annotation 243

properties (see Appendix B). 244

The positive samples are extracted from all en- 245

tailed subsumption axioms of the target ontology. 246

We consider two types of negative samples: (i) 247

soft negative composed of two random concepts, 248

and (ii) hard negative composed of two random 249

sibling concepts. Two sibling concepts lead to a 250

“hard” negative sample because they share a com- 251

mon parent (thus having closer semantics) but are 252

often disjoint. The sampled pairs need to meet the 253

assumed disjointness defined in Section 3.1 to be 254

accepted as valid negatives. We first sample equal 255

numbers of soft and hard negatives and then ran- 256

domly truncate the resulting set into the size of the 257

similar assumption but in different contexts.
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Pattern Verbalisation (V) Example

P1 := A1 ⊓ ... ⊓An

where n ≥ 1 and Ai is a
named atomic concept

“V(A1) and ... and V(An)”
Protein ⊓ V itamin→ “protein and
vitamin”

P2 := ∃r.XP1 where
XP1 is a concept in P1

“something that V(r) V(XP1)”
∃contains.(Protein ⊓ V itamin)→

“something that contains protein and
vitamin”

P3 := Y1 ⊓ ... ⊓ Yn

where n ≥ 1 and Yi is
in P1 or P2

Note: P3 has covered
P1 and P2 when
n = 1.

(i) with atomic concept:
“V(XP1

0 ) that V(r1) V(XP1
1 )

and ... and V(rm) V(XP1
m )”

(ii) without atomic concept:
“something that V(r1) V(XP1

1 )
and ... and V(rm) V(XP1

m )”

Note: m may not be n
because Mis in P2 that have
the same r will be aggregated
to prevent redundancy.

(i) Meat ⊓ ∃contains.Protein ⊓
∃contains.V itamin ⊓
∃derivesFrom.Cattle→ “meat
that contains protein and vitamin and
derives from cattle”

(ii) ∃contains.Protein ⊓
∃contains.V itamin ⊓
∃derivesFrom.Cattle→

“something that contains protein and
vitamin and derives from cattle”

Table 1: Patterns of the complex concept Ccomp considered for equivalence axioms in the form of C ≡ Ccomp,
where P3 is the overall pattern. Note that by definitions of Pi in this table, we can obtain an edge case where Ccomp

is a named atomic concept; we exclude such cases because they have been covered in the Atomic SI task.

positive sample set to keep class balance.258

3.3 Complex Subsumption Inference259

In the second SI task, we consider subsumption260

axioms that involve complex concepts. Particu-261

larly, we choose equivalence axioms of the form262

C ≡ Ccomp
8 (where C and Ccomp are atomic and263

complex concepts, respectively) as anchors as they264

can be equivalently transformed into C ⊑ Ccomp265

and Ccomp ⊑ C such that the complex concepts266

can appear in both the premise and hypothesis267

sides. For simplicity in verbalisation9 and also for268

more efficient negative sampling, we restrict the269

patterns of Ccomp within the ones shown in Table 1,270

where P1 captures the the conjunction of atomic271

concepts, P2 captures the existential restrictions272

with nested expressions in P1, and P3 is the over-273

all pattern that captures the mixed conjunction of274

concepts in P1 or P2. Actually, a very common275

equivalence axiom form C ≡ A ⊓ ∃r.B (where A276

and B are atomic) is captured by P3. For exam-277

ple, the Food Ontology axiom SunflowerSeed ≡278

Seed ⊓ ∃DerivesFrom.HelianthusAnnuus is279

of this form and has the meaning that “A sunflower280

seed is (defined as) a seed that derives from (some)281

8Equivalence axioms of this form are referred to as the
definition of the named concept, and are common in OWL.

9Developing a full-fledged ontology verbalisation tool is
another challenging problem beyond the scope of this study.

helianthus annuus.” In FoodOn, P3 captures 67% 282

of equivalence axioms in the form of C ≡ Ccomp. 283

To verbalise complex concepts, we develop a 284

rule-based parser to translate the complex patterns 285

in Table 1 (first column) into natural language texts 286

with rules in the second column and examples in 287

the third column. Similar to the Atomic SI setting, 288

we verbalise an atomic concept using its name; 289

for the object property r, we curate its name into 290

two forms concerning one or multiple objects. For 291

example, hasSubstance is verbalised as “has a 292

substance of” and “has substances of” for single 293

and multiple objects, respectively (see Appendix C 294

for details). 295

We extract equivalence axioms of the C ≡ 296

Ccomp that occur in the target ontology. Then, we 297

can obtain positive complex subsumption axioms 298

of the form Csub ⊑ Ccomp or Ccomp ⊑ Csuper 299

where Csub and Csuper are a sub-class and a super- 300

class of C, respectively. To derive challenging 301

negative samples, we first randomly replace a con- 302

cept or a property in C ≡ Ccomp to generate either 303

(i) C ′ ≡ Ccomp (if C is replaced by C ′) or (ii) 304

C ≡ C ′
comp (if Ccomp is corrupted). Without loss 305

of generality, we assume the random replacement 306

leads to case (ii). We then check if C and C ′
comp 307

satisfy the assumed disjointness as described in 308

Section 3.1. In the affirmative case, we can have 309
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Source #Concepts #EquivAxioms #Dataset (Train/Dev/Test)

Schema.org 894 - Atomic SI: 808/404/2, 830

DOID 11, 157 - Atomic SI: 90, 500/11, 312/11, 314

FoodOn 30, 995 2, 383
Atomic SI: 768, 486/96, 060/96, 062
Complex SI: 1, 256/628/4, 042

GO 43, 303 11, 456
Atomic SI: 772, 870/96, 608/96, 610
Complex SI: 38, 708/4, 838/4, 840

MNLI - - biMNLI: 235, 622/26, 180/12, 906

Table 2: Statistics for ontologies, SI datasets, and the biMNLI dataset.

either C ⊑ C ′
comp or C ′

comp ⊑ C as the final nega-310

tive subsumption; otherwise, we skip this sample.311

For example, given SunflowerSeed ≡ Seed ⊓312

∃DerivesFrom.HelianthusAnnuus, a possi-313

ble negative subsumption is SunflowerSeed ⊑314

Fruit ⊓ ∃DerivesFrom.HelianthusAnnuus315

if Seed in Ccomp is replaced by Fruit to cre-316

ate C ′
comp.317

4 Datasets318

In this work, we consider ontologies of different319

domains and scales including:320

• Schema.org10 (released on 2022-03-17): a321

general-purpose ontology that maintains a ba-322

sic schema for structured data on the Web;323

• DOID11 (released on 2022-09-29): an ontol-324

ogy for human diseases (Schriml et al., 2012);325

• FoodOn12 (released on 2022-08-12): an on-326

tology specialised in food-related knowledge327

including food products, food sources, food328

nutrition, and so on (Dooley et al., 2018).329

• GO13 (released on 2022-11-03): a very fine-330

grained and widely used biomedical ontology331

specialised in genes and gene functions (Ash-332

burner et al., 2000).333

We used the most updated versions at the time of334

experiment. The details for pre-processing the on-335

tologies are illustrated in Appendix B.336

We construct an Atomic SI dataset for each on-337

tology, but Complex SI datasets are only created338

for FoodOn and GO due to their abundance of equiv-339

alence axioms. To attain class balance, we pur-340

posely keep the number of negative samples the341

10https://schema.org/
11https://disease-ontology.org/
12https://foodon.org/
13http://geneontology.org/

same as the positive samples in each data split. For 342

most of the resulting datasets, we divide each into 343

8 : 1 : 1 for training, development, and testing; for 344

the Atomic SI dataset from Schema.org and the 345

Complex SI dataset from FoodOn, which are rela- 346

tively smaller, we apply a 2 : 1 : 7 division instead. 347

Note that we mainly focus on K-shot settings in 348

the probing study, thus the required training and 349

development sample sets are small. 350

To compare with how LMs perform on tradi- 351

tional NLI, we additionally create biMNLI, a sub- 352

set of the Multi-Genre Natural Language Inference 353

(MNLI) corpus (Williams et al., 2018) where (i) the 354

neutral class and its samples are removed, (ii) the 355

Matched and Mismatched testing sets are merged 356

into one testing set, (iii) 10% of the training data is 357

used as the development set, and (iv) the entailment- 358

contradiction ratio is set to 1 : 1 (by discarding 359

extra samples from the dominant class) for a bal- 360

anced prior. The numbers of named concepts and 361

equivalence axioms in ontologies, and the numbers 362

of samples in (each split of) SI datasets and the 363

biMNLI dataset are reported in Table 2. 364

5 Experiments 365

5.1 Prompt-based Inference 366

To conduct the inference task under the prompt- 367

based settings, we wrap the verbalised subsump- 368

tion axioms and the <MASK> token into a template to 369

serve as inputs of LMs. We opt to use different com- 370

binations of manually designed templates14 (T1 and 371

T2) and label words (L1 to L3) that have achieved 372

promising results on the NLI tasks (Schick and 373

Schütze, 2021; Gao et al., 2021) as follows: 374

14We make slight modifications by adding the prefix “It/it
is <A>” to make premise and hypothesis sentences complete.
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T1 := It is <A> V(C)︸ ︷︷ ︸
premise

? <MASK>, it is <A> V(D)︸ ︷︷ ︸
hypothesis

.375

T2 := “ It is <A> V(C)︸ ︷︷ ︸
premise

”? <MASK>, “ it is <A> V(D)︸ ︷︷ ︸
hypothesis

”.376

377

L1 := {“positive”: [“Yes”], “negative”: [“No”]}378

L2 := {“positive”: [“Right”], “negative”: [“Wrong”]}379

L3 := {“positive”: [“Yes”, “Right”],380

“negative”: [“No”, “Wrong”]}381

where <A> is “a”, “an”, or just blank depending382

on the next word, V(·) is the concept verbalisation383

function defined in Section 3, and <MASK> is the384

token that LMs need to predict. The probability of385

predicting class y (“positive” or “negative”) for an386

input sample x = (C,D) is defined as:387

P (y | x) = P (<MASK> ∈ Lj [y]) | Ti(C,D))388

=

∑
v∈Lj [y]

exp(wv · h<MASK>)∑
w∈Lj [·] exp(ww · h<MASK>)

389

where Lj [·] and Lj [y] denote all the label words de-390

fined in Lj and the label words of class y defined in391

Lj , respectively; Ti(C,D) denotes the transformed392

texts of concepts C and D through the template Ti,393

wv and ww are vectors for the label words v and w,394

respectively; and h<MASK> denotes the hidden vector395

of the masked token. The prediction can be trained396

by minimising the cross-entropy loss.397

For the biMNLI dataset, the premise and hypoth-398

esis are replaced by what was originally given in399

the dataset – except that we have removed trailing400

punctuations.401

In the main experiments concerning language402

models, we consider all the combinations of Ti and403

Lj and additionally consider 3 random seeds (thus404

18 experiments each) for K-shot settings where405

K > 0. The value of K refers to the number of406

samples per class (positive or negative) we ran-407

domly extract from training and development sets,408

respectively. For K = 0 (zero-shot), different ran-409

dom seeds do not affect the results. For the fully410

supervised setting, we consider only one random411

seed and one combination (T1 and L1) because our412

pilot experiments demonstrate that fine-tuning on413

large samples results in low variance brought by414

different random seeds and different combinations415

of templates and label words.416

Our code implementations mainly rely on 417

The OWL API15 for ontology processing and reason- 418

ing, and OpenPrompt16 for prompt learning (Ding 419

et al., 2022). Training of each K-shot (where 420

K > 0) experiment takes 10 epochs, while for 421

the fully supervised setting involving very large 422

training samples, we only train for 1 epoch.17 The 423

best-performing model on the development set (at 424

each epoch) is selected for testing set inference. We 425

use the AdamW optimiser (Loshchilov and Hutter, 426

2019) with the initial learning rate, weight decay, 427

and the number of warm-up steps set to 10−5, 10−2, 428

and 50, respectively. All our experiments are con- 429

ducted on two Quadro RTX 8000 GPUs. 430

5.2 Results and Analysis 431

LMs and Settings We choose LMs from the 432

RoBERTa family (Liu et al., 2019) as they are 433

frequently introduced in cloze-style probing tasks 434

(Liu et al., 2021b; Sung et al., 2021; Kavumba 435

et al., 2022). In Table 3, we present key experi- 436

ment results for roberta-large and roberta-base; 437

we have a further ablation study for a biomedical 438

variant of roberta-large in the latter paragraph. 439

For both LMs in Table 3, we report results of 440

K-shot settings with K ∈ {0, 4, 32, 128}. We ad- 441

ditionally present the results of the fully supervised 442

setting for roberta-large as the oracle. For each 443

setting, we report the averaged accuracy and stan- 444

dard deviation (where applicable). To clearly ob- 445

serve how the performance varies as K increases, 446

we present Figure 2 which visualises the K-shot 447

results for roberta-large with additional values 448

of K ({8, 16, 64}). The complete result table for 449

both language models and the figure that visualises 450

the performance of roberta-base are available in 451

Appendix D. 452

Baselines As aforementioned, we purposely keep 453

class balance in each data split, thus the accuracy 454

scores for majority vote are all 50.0%. Besides, 455

we consider word2vec (Mikolov et al., 2013) pre- 456

trained on GoogleNews18 with a logistic regres- 457

sion classifer as a baseline model, which demon- 458

strates how a classic non-contextual word embed- 459

ding model performs on the SI tasks. For this base- 460

line, we only report results for K ∈ {4, 128} as 461

15https://owlapi.sourceforge.net/
16https://thunlp.github.io/OpenPrompt/
17Since Schema.org’s Atomic SI and FoodOn’s Complex

SI datasets have a small training set, their fully supervised
settings still take 10 epochs.

18https://code.google.com/archive/p/word2vec/
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Atomic SI Complex SI

Setting biMNLI Schema.org DOID FoodOn GO FoodOn GO

majority 50.0 50.0 50.0 50.0 50.0 50.0 50.0
word2vec

K=4 51.5 (0.2) 54.9 (2.9) 64.6 (2.6) 63.5 (1.0) 60.1 (4.1) 48.8 (0.9) 53.2 (8.9)
K=128 52.1 (0.4) 73.0 (0.4) 70.8 (1.7) 71.4 (1.0) 66.3 (0.9) 59.7 (1.4) 65.0 (0.8)

roberta-base
K=0 62.5 (6.5) 56.4 (3.6) 53.3 (4.0) 54.6 (4.4) 49.0 (2.4) 52.9 (3.5) 50.2 (4.5)
K=4 67.6 (5.2) 62.9 (5.2) 61.8 (6.7) 62.1 (4.2) 65.2 (5.0) 56.8 (4.1) 58.0 (6.3)
K=32 78.8 (1.1) 84.3 (2.0) 89.0 (1.4) 85.0 (1.1) 84.6 (2.5) 73.2 (2.3) 79.3 (2.3)
K=128 85.1 (1.0) 91.1 (0.7) 92.4 (0.7) 90.0 (0.7) 89.0 (0.8) 83.5 (1.2) 90.5 (0.7)

roberta-large
K=0 68.7 (6.2) 61.7 (7.2) 59.8 (5.4) 60.1 (8.8) 54.6 (1.9) 57.8 (1.7) 50.3 (0.6)
K=4 78.1 (6.6) 69.4 (5.4) 74.0 (5.5) 71.6 (4.4) 67.6 (3.4) 63.2 (2.9) 62.2 (4.3)
K=32 89.9 (1.2) 87.3 (1.9) 92.3 (0.7) 88.9 (1.6) 87.7 (1.6) 78.0 (1.6) 84.7 (1.8)
K=128 93.0 (0.8) 92.9 (0.8) 93.4 (0.5) 92.2 (0.5) 91.0 (0.7) 86.5 (1.4) 93.2 (0.5)

fully 97.5 95.4 97.8 98.7 98.1 93.0 99.1

Table 3: Results for the biMNLI, Atomic SI, and Complex SI tasks with each cell stating “mean accuracy (standard
deviation)” except for majority vote and the fully supervised settings where standard deviation is not available.
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Figure 2: Visualisation of K-shot results (for roberta-large) on the biMNLI, Atomic SI, and Complex SI tasks,
where the dotted horizontal line indicates majority vote. The order of the bars is the same as in the legend.

the increase of K does not bring significant change462

and results of K = 128 are roughly comparable to463

results of K = 4 for roberta-large. This suggests464

that the SI sample patterns are not easily captured465

with word2vec.466

SI vs biMNLI From the results, we first observe467

that both roberta-large and roberta-base achieve468

better zero-shot results on biMNLI than on all the469

SI datasets by at least 7.0% and 6.1% respectively,470

showing that under our prompt settings, both LMs471

encode better background knowledge on biMNLI472

than SI. However, as K grows, the performances473

on both biMNLI and SI improve consistently and474

significantly (while the standard deviation gener-475

ally reduces), and we can see at K = 32, the mean 476

accuracy scores on the Atomic SI tasks have sur- 477

passed biMNLI for roberta-base. At K = 64 (see 478

Figure 2), the mean accuracy scores on biMNLI 479

and all the Atomic SI tasks (except for FoodOn’s 480

Complex SI) converge to around 90.0%. Moreover, 481

roberta-large consistently attains a better score 482

than roberta-base for every setting. 483

Comparison Among SI Tasks We observe that 484

Complex SI is generally harder than Atomic SI. For 485

example, at K = 0, roberta-large attains 50.3% 486

almost as majority vote on the Complex SI dataset 487

of GO; at K = 128, roberta-large attains 86.5% on 488

the Complex SI dataset of FoodOn while it attains 489
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K DOID GO GO (Comp)

0 49.7 (0.4) 50.1 (0.2) 50.1 (0.2)
4 64.8 (7.9) 66.2 (6.5) 59.4 (7.1)
16 90.1 (3.5) 88.1 (3.2) 86.0 (3.0)
32 94.7 (1.3) 93.5 (1.1) 91.5 (1.7)
128 96.3 (0.4) 95.2 (0.5) 96.4 (0.6)

Table 4: Results for roberta-large-pm-m3-voc on SI
tasks of biomedical ontologies DOID and GO.

more than 90% for the others. We can also observe490

from Figure 2 that the scores on Complex SI tasks491

are generally lower than those on the Atomic SI492

tasks. Among the Atomic SI tasks, we find that493

GO is the most challenging which is as expected494

because GO is a fine-grained expert-level ontology.495

However, it surprises us that at K = 32 the score496

(92.3%) on DOID is better than all other tasks, con-497

sidering that DOID is a domain-specific ontology.498

Ablation for Biomedical SI We conduct fur-499

ther ablation studies for domain-specific LMs on500

domain-specific SI tasks. Specifically, we consider501

the variant roberta-large-pm-m3-voc which has502

been pre-trained on biomedical corpora PubMed503

abstracts, PMC full-text, and MIMIC-III clinical504

notes with an updated sub-word vocabulary learnt505

from PubMed (Lewis et al., 2020). In Table 4, we506

present the K-shot results of roberta-large-pm-507

m3-voc on three SI tasks related to biomedical508

ontologies DOID and GO. The zero-shot scores are509

almost equivalent to majority vote but the perfor-510

mance improves more prominently than roberta-511

large as K increases. At K = 32, the scores512

are all above 90% whereas for roberta-large the513

scores on both Atomic SI (87.7%) and Complex SI514

(84.7%) of GO are lower than 90%.515

Template and Label Words The access to LMs516

is an influential factor of performance especially517

when there are no or fewer training samples. For ex-518

ample, roberta-large attains a standard deviation519

of 8.8% for K = 0 on FoodOn’s Atomic SI task,520

suggesting that there is a significant performance521

fluctuation brought by different combinations of522

templates and label words. Although the standard523

deviation on GO’s Complex SI is just 0.6%, the cor-524

responding accuracy score (50.3%) indicates that525

none of these combinations work. Furthermore,526

effective template or label words are not transfer-527

able from one LM to another, as we can observe528

from the bad performance of roberta-large-pm-529

m3-voc for K = 0 on the SI tasks of biomedical530

ontologies. These observations suggest that either 531

we did not find a generalised template and label 532

words combination, or LMs require customised 533

access for different types of knowledge. 534

6 Conclusion and Discussion 535

As a work that introduces ontologies to the “LMs- 536

as-KBs” collection, this paper emphasises on how 537

to establish a meaningful adaptation from logical 538

expressions to natural language expressions, fol- 539

lowing their formal semantics. To this end, we 540

leverage the Natural Language Inference (NLI) set- 541

ting to define the Subsumption Inference (SI) task 542

with careful considerations to address the differ- 543

ences between textual entailment and logical en- 544

tailment. We demonstrate that with our SI set-ups, 545

LMs can successfully learn to infer both atomic 546

and complex subsumptions when a small number 547

of annotated samples are provided. This paves 548

the way for investigating more complex reasoning 549

tasks with LMs or guiding LMs using ontology 550

semantics with limited training. 551

In fact, the current SI setting is not the only way 552

for probing subsumption knowledge of an ontol- 553

ogy; for example we can directly verbalise C ⊑ D 554

as “V(C) is a kind of V(D)” and formulate the 555

probing task similar to fact-checking or equiva- 556

lently, an inference task with empty premises. How- 557

ever, our pilot experiments demonstrate that such 558

setting is not as effective as the current SI setting. 559

The presented work brings opportunities for fu- 560

ture work as (i) the proposed ontology verbalisa- 561

tion method has not covered all possible patterns of 562

complex concepts (e.g., with disjunction and uni- 563

versal restriction); (ii) we have not fully considered 564

textual information such as synonyms, definitions, 565

and comments, that are potentially available in an 566

ontology; (iii) we considered only TBox (termi- 567

nological) axioms, but ABox (assertional) axioms 568

can be involved in, e.g., the membership prediction 569

task, where the objective is to classify which con- 570

cept an individual belongs to. Therefore, develop- 571

ing a robust tool for verbalising logical expressions 572

and extending the ontology inference settings are 573

potential next tasks. Another interesting line for 574

the near future is to train an LM on ontology ax- 575

ioms with their logical semantics considered. The 576

resulting LM is expected to be applicable to dif- 577

ferent downstream ontology curation tasks such as 578

ontology matching and entity linking, with fewer 579

samples necessary for fine-tuning. 580
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Ethical Considerations581

In this work, we construct new datasets for the582

proposed Subsumption Inference (SI) task from583

publicly available ontologies: Schema.org, DOID,584

FoodOn, and GO, with their download links spec-585

ified in Section 4. The biMNLI dataset is con-586

structed from the existing open-source MNLI587

dataset. We have confirmed that there is no pri-588

vacy or license issue in all these datasets.589
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A OWL Ontology Concept Expression815

The Description Logic SROIQ underlies the se-816

mantics of OWL 2 ontologies. Given the top con-817

cept ⊤, the bottom concept ⊥, the named concept818

A, an individual a, a role (or property) r and a non-819

negative integer n, SROIQ concept expressions820

are constructed as:821

C,D ::=⊤|⊥|A|(C ⊓D)|(C ⊔D)|¬C|∃r.C|822

∀r.C| ≥ n r.C| ≤ n r.C|∃r.Self |{a}823

Recall the definition of interpretation I = (∆I , ·I),824

where ∆I is a non-empty set (the domain) and ·I825

maps each concept C to CI ⊆ ∆I , a each property826

r to rI ⊆ ∆I × ∆I and each individual a to an827

element aI ∈ ∆I . We present the semantics of the828

concept constructors in Table 5.829

B Ontology Preprocessing830

In case that some of the ontologies we use in this831

work contain meaningless (e.g., obsolete) concepts832

regarding subsumption sampling and/or contain833

concept names (or aliases) that are apparently un-834

natural, we apply a general preprocessing proce-835

dure to all the ontologies, and then conduct indi-836

vidual preprocessing for each ontology.837

General Preprocessing838

• Remove obsolete concepts (which are in-839

dicated by the built-in annotation property840

owl:deprecated) and apparently redundant841

concepts such as foodOn:stupidType.842

• Use rdfs:label as the main annotation prop-843

erty to extract concept names except when its844

literal value is not available. The extracted845

Constructor Semantics

A AI

C ⊓D CI ∩DI

C ⊔D CI ∪DI

¬C ∆I \ CI

⊤ ∆I

⊥ ∅
∃r.C {x | some rI-successor of x is in CI}
∀r.C {x | all rI-successors of x are in CI}

≥ n r.C {x | at least n rI-successors of x are in CI}
≤ n r.C {x | at most n rI-successors of x are in CI}
∃r.Self {x | ⟨x, x⟩ ∈ rI}
{a} {aI}

Table 5: Semantics of the OWL Ontology concept con-
structors.

concept names are lower-cased and any under- 846

scores “_” in them are removed. 847

Individual Preprocessing 848

• Schema.org: concept names (defined in this 849

ontology are in the Java-identifier style; thus, 850

they are parsed into natural expressions, e.g., 851

“APIReference” to “API Reference”. 852

• DOID: remove the concept doid:Disease be- 853

cause it is a general concept just below the 854

root concept owl:Thing which will lead to 855

too many simple subsumptions in the form of 856

C ⊑ Disease. 857

• FoodOn: reconstruct label strings containing 858

non-natural-language texts of three regular 859

expression patterns (note that (.*) captures 860

what to be preserved): 861

(a) [0-9]+ - (.*) \(.+\) 862

(b) \('(.*)\(gs1', 'gpc\)'\) 863

(c) \('(.*)\(efsa', 'foodex2\)'\) 864

followed by removal of leading and trail- 865

ing whitespaces. Note that concepts in this 866

ontology sometimes have an empty literal 867

given by rdf:label; in these cases, the 868

annotation properties obo:hasSynonym and 869

obo:hasExactSynonym are used instead. 870

• GO: no individual processing. 871

C Object Property Verbalisation 872

Different from verbalising an atomic concept where 873

we simply use its name (or alias), we enforce some 874
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Atomic SI Complex SI

Setting biMNLI Schema.org DOID FoodOn GO FoodOn GO

roberta-base
K=0 62.5 (6.5) 56.4 (3.6) 53.3 (4.0) 54.6 (4.4) 49.0 (2.4) 52.9 (3.5) 50.2 (4.5)
K=4 67.6 (5.2) 62.9 (5.2) 61.8 (6.7) 62.1 (4.2) 65.2 (5.0) 56.8 (4.1) 58.0 (6.3)
K=8 70.7 (4.5) 71.2 (4.5) 72.9 (5.7) 69.0 (5.2) 70.4 (5.1) 62.5 (3.9) 68.7 (6.6)
K=16 74.3 (3.3) 79.7 (4.2) 83.4 (2.5) 79.8 (3.0) 78.3 (3.0) 69.0 (3.3) 74.6 (3.7)
K=32 78.8 (1.1) 84.3 (2.0) 89.0 (1.4) 85.0 (1.1) 84.6 (2.5) 73.2 (2.3) 79.3 (2.3)
K=64 80.9 (1.5) 88.3 (1.5) 91.2 (0.7) 88.2 (0.7) 87.3 (0.8) 79.9 (1.3) 85.7 (1.5)
K=128 85.1 (1.0) 91.1 (0.7) 92.4 (0.7) 90.0 (0.7) 89.0 (0.8) 83.5 (1.2) 90.5 (0.7)

roberta-large
K=0 68.7 (6.2) 61.7 (7.2) 59.8 (5.4) 60.1 (8.8) 54.6 (1.9) 57.8 (1.7) 50.3 (0.6)
K=4 78.1 (6.6) 69.4 (5.4) 74.0 (5.5) 71.6 (4.4) 67.6 (3.4) 63.2 (2.9) 62.2 (4.3)
K=8 83.0 (5.2) 78.5 (3.0) 84.4 (3.8) 77.0 (6.0) 75.3 (3.2) 68.2 (5.0) 71.1 (3.1)
K=16 87.5 (2.4) 84.4 (2.4) 87.6 (2.3) 83.4 (3.5) 82.8 (1.9) 74.9 (1.8) 77.2 (2.5)
K=32 89.9 (1.2) 87.3 (1.9) 92.3 (0.7) 88.9 (1.6) 87.7 (1.6) 78.0 (1.6) 84.7 (1.8)
K=64 90.8 (1.4) 90.4 (0.8) 92.6 (0.7) 90.9 (1.2) 90.1 (0.7) 83.9 (1.5) 89.8 (1.5)
K=128 93.0 (0.8) 92.9 (0.8) 93.4 (0.5) 92.2 (0.5) 91.0 (0.7) 86.5 (1.4) 93.2 (0.5)

fully 97.5 95.4 97.8 98.7 98.1 93.0 99.1

Table 6: Full results of roberta-base and roberta-large on the biMNLI, Atomic SI, and Complex SI tasks with each cell
stating “mean accuracy (standard deviation)” except for the majority vote and fully supervised settings where standard deviation
is not available.
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Figure 3: Visualisation of K-shot results (for roberta-base) on the biMNLI, Atomic SI, and Complex SI tasks where the dotted
horizontal line indicates majority vote. The order of the bars is the same as in the legend.

rules to verbalise an object property for relatively875

more intuitive expressions.876

• Add “is” to the head of labels that start with877

a passive word or preposition. E.g., “realised878

in” → “is realised in”; “in taxon” → “is in879

the taxon of”.880

• Add “of” to the tail of labels that end with881

a noun. E.g., “has ingredient” → “has an882

ingredient of”.883

• Construct two forms for single and multiple884

objects, respectively. E.g., “has ingredient” 885

→ “has an ingredient of” for a single object; 886

“has ingredient” → “has ingredients of” for 887

multiple objects. 888

D Complementary Results and Figures 889

In the main body of the paper, we report par- 890

tial results (accuracy scores and standard devia- 891

tions) of roberta-large and roberta-base for K ∈ 892

{0, 4, 32, 128}. In Table 6, we present full results 893
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of both LMs for K ∈ {0, 4, 8, 16, 32, 64, 128}.894

Besides, we provide the visualisation of K-shot895

results for roberta-base in Figure 3. The observa-896

tions are consistent with those for roberta-large897

in Figure 2.898

E Implementation Choices for Assumed899

Disjointness900

As mentioned in Section 3.1, validating the dis-901

jointness axiom for each concept pair (C,D) we902

have sampled as a potential negative subsumption903

would be time-consuming because we need to itera-904

tively add the disjointness axiom into the ontology905

O, conduct reasoning, and remove the axiom after-906

wards. Therefore, in practice we can use the follow-907

ing conditions to replace the satisfiability check:908

(i) No subsumption relationship: O ̸|= C ⊑ D909

and O ̸|= D ⊑ C;910

(ii) No common instance: there is no named911

instance a in O such that O |= C(a) and912

O |= D(a).913

If C and D satisfy these two conditions, they are914

likely to be satisfiable after adding the disjointness915

axiom C ⊓D ⊑ ⊥ into O. Since these two condi-916

tions involve no extra reasoning for a new axiom,917

they are much more efficient than iteratively con-918

ducting satisfiability check for candidate samples.919

It is important to notice that we still need the no920

common descendant check to prevent foreseeable921

unsatisfiability. This is because if there is a named922

atomic concept A that is an inferred sub-class (i.e.,923

descendant) of C and D, then it is possible that C924

and D are satisfiable in O ∪ {C ⊓D ⊑ ⊥}, but A925

is certainly unsatisfiable (equivalent to ⊥).926

F Set-based Interpretations of927

Subsumption Samples928

In this section, we provide more explanation for929

how we define positive and negative samples in the930

Subsumption Inference (SI) task.931

Recall the definitions in Section 2.1, an ontology932

O entails a subsumption axiom C ⊑ D if it holds933

for every interpretation I of O. In terms of set-934

based semantics, this refers to case (a) in Figure 4.935

In the (b), (c), or (d) cases, there exists at least one936

interpretation I , such that we can find an individual937

x that xI ∈ CI and xI ̸∈ DI ; hence O does938

not entail the subsumption axiom C ⊑ D. Non-939

subsumption is entailed only when (a) does not940

hold for every interpretation of O.941

D

C

DC

C

D

DC

(a) 𝐶 ⊑ 𝐷

(d) 𝐶 ⊓ 𝐷 ⋢	⊥
but not (a) or (b)

(c) 𝐶 ⊓ 𝐷 ⊑⊥

(b) 𝐷 ⊑ 𝐶

Figure 4: Set-based semantics for relationships between
two ontology concepts.

Disjointness corresponds to (c) in Figure 4 where 942

the set of C and the set of D have no overlap for ev- 943

ery interpretation. Non-subsumptions an ontology 944

typically entails come from the disjointness axioms 945

(but disjointness ∀x.C(x) → ¬D(x) is stricter 946

than non-subsumption ∃x.C(x) ∧ ¬D(x)). Nev- 947

ertheless, ontologies are typically underspecified 948

in terms of disjointness, and thus getting enough 949

negative samples is unfeasible. To find a middle 950

ground, it is reasonable to adopt heuristics. The as- 951

sumed disjointness we follow in Section 3.1 in the 952

main body of the paper serves this purpose. In the 953

ideal setting where we check the satisfiability of C 954

and D after adding the disjointness axiom and no 955

common descendant of C and D, cases (a) and (b) 956

in Figure 4 will be prevented and the chance of (d) 957

reduced. Even in the practical alternative proposed 958

in this Appendix E, the no subsumption relation- 959

ship condition also ensures that (a) and (b) are not 960

entailed and the no common descendant and no 961

common instance conditions reduce the chance 962

of (d). Thus, the assumed disjointness is a reason- 963

able approach to approximate non-subsumptions. 964
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