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ABSTRACT

Integrating Spiking Neural Networks (SNNs) with Transformer architectures of-
fers a promising pathway to balance energy efficiency and performance, particu-
larly for edge vision applications. However, existing Spiking Transformers face
two critical challenges: i) a substantial performance gap relative to their Artificial
Neural Network (ANN) counterparts, and ii) considerable memory overhead. Our
theoretical analysis and empirical evidence indicate that these limitations arise
from the unfocused global attention paradigm of Spiking Self Attention (SSA)
and the storage cost of large attention matrices. Inspired by the localized re-
ceptive fields and membrane potential dynamics of biological visual neurons, we
propose LRF-Dyn, which enables attention computation via spiking neurons en-
dowed with localized receptive fields. Specifically, we integrate a LRF mechanism
into SSA, enabling the model to allocate greater attention to neighboring regions
and thereby enhance local modeling capacity. Moreover, LRF-Dyn approximates
the charge–fire–reset dynamics of spiking neurons within the LRF-SSA, substan-
tially reducing memory requirements during inference. Extensive experiments on
visual tasks confirm that our method lowers memory overhead while delivering
significant performance improvements. These results establish LRF-Dyn as a key
component for achieving energy-efficient Spiking Transformers.

1 INTRODUCTION

Vision Transformers (ViTs) (Vaswani et al., 2017; Liu et al., 2021; Yu et al., 2022) have achieved re-
markable breakthroughs in computer vision tasks, including image classification (Chen et al., 2021;
Deng et al., 2009), object detection (Carion et al., 2020; Li et al., 2022), and semantic segmenta-
tion (Zhou et al., 2017; Xie et al., 2021; Yu et al., 2018). As the core of ViTs, the self-attention mech-
anism computes query–key similarity through dot-product operation followed by softmax operation,
incurring quadratic computational and memory costs with respect to the sequence length N (Yang
et al., 2023). To address this issue, recent methods such as Linear attention (Katharopoulos et al.,
2020; Zhang et al., 2024b) approximate or eliminate the softmax operation to explicitly compute
the entire N2 attention matrix, thus reducing memory usage and achieving linear-time complexity.
However, these methods still rely on full-precision matrix multiplications, which incur substantial
energy overhead and ultimately hinder their deployment on resource-constrained devices.

Spiking Neural Networks (SNNs) (Maass, 1997; Gerstner & Kistler, 2002; Masquelier et al., 2008)
have attracted increasing attention due to their biological plausibility and potential for low-power
computing. As the fundamental computational units, spiking neurons fire spikes only upon acti-
vation and remain silent otherwise, thereby enabling event-driven computation (Deng et al., 2020).
This mechanism ensures sparse information transmission and effectively avoids redundant multiply-
accumulate (MAC) operations, leading to reduced energy consumption and lower computational
overhead (Caviglia et al., 2014; Roy et al., 2019). Moreover, several studies (Fang et al., 2021a;
Hu et al., 2024) demonstrate that CNN-based SNNs can achieve performance comparable to that
of their ANN counterparts while delivering substantial gains in energy efficiency. The combination
of SNNs and Transformer architectures offers a potential pathway to balance energy efficiency and
high performance (Zhou et al., 2023b; Huang et al., 2024b; Yao et al., 2025).

In recent years, several SNN-based Transformer architectures have been proposed, including Spik-
former (Zhou et al., 2023b), QKFormer (Zhou et al., 2024), and Spike-Driven-v3 (Yao et al., 2025),
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which significantly improve the performance of SNNs. Nevertheless, SNN-based Transformers still
suffer from a performance gap and substantial memory overhead. As shown in Fig. 1(a), we com-
pare the attention distributions of vanilla self-attention (VSA) and SSA: SSA exhibits discrete and
global patterns, whereas VSA shows localized and sparse ones. This mismatch hinders SNNs from
focusing on specific regions of information. Moreover, as illustrated in Fig. 1(b), SNNs can exploit
matrix aggregation and flexibly adapt their computational paradigms to different application scenar-
ios. Nevertheless, they still necessitate the explicit storage of large attention matrices, such as QK
matrices of size N2 or KV attention matrices of size d2, which severely constrains their deployment
on resource-limited devices. Thus, balancing the low-energy advantage of SNNs with the demands
for low memory overhead and high performance remains a critical open challenge.

Figure 1: (a) Limited Local Modeling Capability: For a given n-th query (blue), VSA captures
only limited and local relations, whereas SSA exhibits an almost global attention scope. (b) High
Memory Requirements: SSA requires explicit storage of Queries (Q), Keys (K), Values (V), and
their associated attention scores (QK or KV), leading to substantial computational overhead.

Inspired by local receptive fields (Olshausen & Field, 1996; Gaynes et al., 2022) and membrane po-
tential dynamics (Azouz & Gray, 2000) in biological vision, we propose LRF-Dyn, which enables
attention computation via spiking neurons endowed with localized receptive fields. First, we theo-
retically and empirically compare VSA and SSA, showing that the lack of local modeling capacity
in SSA accounts for its performance gap relative to VSA. To address this, we propose a Local Re-
ceptive Field SSA (LRF-SSA) method that introduces an LRF module into SSA, assigning higher
weights to spatial neighbors to strengthen locality. Building on this, we introduce LRF-Dyn, which
establishes an approximate correspondence between normalized self-attention aggregation and the
charge–fire–reset process of spiking neurons, thus eliminating explicit attention-matrix storage. Ex-
tensive experiments across image classification and semantic segmentation tasks show that both
LRF-SSA and LRF-Dyn significantly improve model performance, with LRF-Dyn further reducing
memory consumption during inference. The main contributions are as follows:

• We identify two major challenges in the integration of SNNs and Transformer architectures,
particularly in the context of SSA mechanisms: i) the performance gap caused by sparse
and uniform attention distributions resulting from the removal of the softmax operation,
and ii) the high memory overhead incurred due to the necessity of storing attention scores.
These limitations hinder the balance between performance and computational resources.

• We propose LRF-Dyn to address these limitations. First, we introduce LRF-SSA by inte-
grating LRF modules into SSA, assigning higher weights to spatially adjacent positions.
Building on this, we propose LRF-Dyn, which establishes an approximate correspondence
between neuronal membrane-potential dynamics and LRF-SSA, thereby eliminating the
need for explicit attention-matrix storage and reducing memory overhead.

• Extensive experiments across diverse SNN architectures and visual tasks demonstrate that
both LRF-SSA and LRF-Dyn enhance performance. Moreover, LRF-Dyn achieves lower
memory requirements while preserving these performance gains, offering a practical solu-
tion for deployment in resource-constrained environments.
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2 RELATED WORK

Vision Transformer: ViT (Dosovitskiy et al., 2020; Liu et al., 2022b) converts images into patch-
based tokens and utilizes self-attention to establish global contextual relationships, facilitating the
selective aggregation of informative features (Naseer et al., 2021; Yang et al., 2021). However, these
models suffer from O(N2) computational complexity and substantial memory overhead, which hin-
der scalability to large-scale visual tasks (Yang et al., 2023; Zhang et al., 2024a). To address these
limitations, several studies (Choromanski et al., 2020; Guo et al., 2024) explore linear attention,
which replaces the softmax operation with kernel-based approximations to reduce the complexity
from O(N2) to O(N). These methods significantly reduce both computational and memory require-
ments, making them more suitable for high-resolution images (Shen et al., 2021; Guo et al., 2022b).
However, existing models still rely on full-precision matrix multiplications, potentially increasing
the model’s energy consumption (Wang et al., 2020; Liu et al., 2022a).

Spiking Transformer: In recent years, researchers (Wang et al., 2023; Yao et al., 2023; Zhou
et al., 2023a) have explored combining SNNs with Transformers to achieve a trade-off between
energy efficiency and performance (Yao et al., 2024). Spikformer (Zhou et al., 2023b) introduces
the SSA mechanism, which preserves spike-friendly properties while significantly improving the
performance of SNNs. SpikingResformer (Shi et al., 2024) integrates ResNet with Transformer
architectures to further reduce the model parameters. Furthermore, Spike-Driven-V3 (Yao et al.,
2025) incorporates the Spike Frequency Approximation (SFA) mechanism into Spiking Transform-
ers, enhancing their performance advantages. Although these models significantly reduce energy
consumption, the inference process of SNN-based Transformers exhibits higher memory demands,
limiting their deployment on resource-constrained devices (Aguirre et al., 2024).

3 PRELIMINARY

3.1 SPIKING NEURON MODEL

As the fundamental units of SNNs, spiking neurons (Izhikevich, 2003; Maass, 1997) receive presy-
naptic inputs and integrate them into the membrane potential, which is compared with the threshold
to determine whether a spike is generated. Among them, the Leaky Integrate-and-Fire (LIF) neuron
is the widely used model, whose dynamics are defined as follows:

U[t+ 1] = H[t] +WS[t+ 1], (1)
S[t+ 1] = Θ(U[t+ 1]−Vth), (2)
H[t+ 1] = VresetS[t+ 1] + τU[t+ 1](1− S[t+ 1]). (3)

Here, H[t] and U [t] denote the pre-synaptic and post-synaptic membrane potentials, respectively,
while S[t] indicates the input spike at timestep t. W denotes the synaptic weight matrix. Spike
generation is defined by the Heaviside function Θ(·): if a spike occurs (S[t+ 1] = 1), H[t] is reset
to Vreset; otherwise, U [t + 1] decays with time constant τ and updates H[t + 1]. For clarity, we
denote the above process as SN{·}, which represents the dynamics of spiking neurons.

3.2 SPIKING SELF-ATTENTION MECHANISMS

As the core component of the Spiking Transformer, the SSA mechanism captures spatio-temporal
dependencies among tokens from spike trains and adaptively allocates importance across different
regions. Given an input sequence X ∈ RT×B×N×D, it is projected through convolutional layers
with distinct parameter matrices to obtain the Query Q, Key K, and Value V representations:

Q = SN{BN(ConvQ(X))}, K = SN{BN(ConvK(X))}, V = SN{BN(ConvV(X))}, (4)

where Conv(·) is the convolution operation, and BN(·) represents batch normalization. Inspired by
VSA mechanism, SSA computes the similarity via the dot product of Q and K, and employs the
resulting weights to aggregate V. Specifically, the process of SSA is defined as follows:

Score = s ·Q×K⊤, Attn′ = Score×V, Attn = SN{Attn′}, (5)

s denotes the scaling factor. The attention output Attn′ is processed by spiking neurons to ensure
event-driven characteristics. Unlike VSA, SSA omits the softmax operation, thereby preserving the
event-driven and spike-friendly characteristics of the attention mechanism.
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4 PROBLEM ANALYSIS IN SPIKING TRANSFORMER

This section examines two main limitations of applying self-attention in SNNs: i) the omission of
the softmax operation leads SSA to produce attention score distributions that deviate from those
in VSA and ii) compared to other softmax-free attention variants, SSA introduces higher memory
usage and inference overhead. Further details are provided in the following sections.

4.1 LIMITED LOCAL MODELING CAPABILITY

As the core mechanism of ViT, the VSA mechanism computes attention scores through the dot-
product operation followed by the softmax operation. Specifically, given Query Q ∈ RN×C and
K ∈ RN×C , the attention score Attnvit can be defined as follows:

Attnvit = softmax

(
Q×KT

√
d

)
, attnvit[i] =

exp{qiki}∑n
j=1 exp{qikj}

, (6)

d denotes the features dimension, and attnvit[i] ∈ R1×N represents the attention score correspond-
ing to between the i-th query qi and remaining tokens. When q and k are more similar, the attention
score is higher. Since neighboring tokens usually exhibit stronger similarity, ViT demonstrates su-
perior local modeling ability (Yang et al., 2021). As shown in Fig. 2, 76.8% of the attention scores
in ViT are concentrated at short Manhattan distances. In contrast, SSA produces an almost uniform
distribution of attention scores. This mismatch constrains the local modeling capacity of SSA and
hinders its ability to capture spatial similarities among neighboring regions.

Figure 2: Mismatch between VSA and SSA attention scores: (a) and (b) show the average attention
scores at different Manhattan distances, with VSA demonstrating stronger local modeling capabili-
ties. (c) and (d) illustrate the distribution of attention scores, with VSA exhibiting lower entropy.

Furthermore, we compare the attention score distributions of SSA and VSA. As shown in Fig. 2,
SSA exhibits a more uniform distribution, which hinders the model’s ability to emphasize the relative
importance of different regions. In contrast, VSA yields a lower-entropy distribution that focuses
attention on a few critical regions, thereby enhancing feature extraction effectiveness.

4.2 HIGH MEMORY REQUIREMENTS DURING INFERENCE

Similar to other softmax-free models (Wang et al., 2020), SSA leverages the associative property of
matrix operations to reduce computational complexity to O(Nd2). Nevertheless, this computational
benefit is accompanied by a pronounced increase in memory overhead during inference. Specifically,
for the query qn[t] at timestep t, the attention score attnn

′[t] can be defined as follows:

attn′n[t] =
( N∑
j=1

qn[t]kj [t]
T eTj

)
×v[t] = qn[t]×

N∑
j=1

kj [t]
T vj [t], (7)

N denotes the total number of tokens, and ej is a column vector of length N with the j-th entry set
to 1 and all others set to 0. As shown in Eq. 7, for the n-th token, it is necessary to store not only the
Q, K, and V matrices at each timestep, but also the intermediate results of the KV multiplication,
leading to an additional O(d2) memory overhead. Notably, when d = 512, SSA incurs substantial
memory demands. These limitations substantially hinder its deployment on resource-constrained
devices, particularly on neuromorphic chips (Davies et al., 2018; Pei et al., 2019).
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5 METHOD

In this section, we propose the LRF-SSA method, which directly incorporates the LRF mechanism
into SSA to enhance model performance. Furthermore, we restructure it from the perspective of
neuron modeling, reducing memory overhead while preserving performance.

5.1 SPIKING SELF-ATTENTION WITH LOCAL RECEPTIVE FIELDS

To address the limitation of insufficient local receptive fields in the spiking self-attention paradigm,
we introduce a local convolution module that enhances the mechanism’s sensitivity to neighboring
positions. Specifically, for the n-th token, its self-attention output sattn′n[t] can be expressed as:

sattn′n[t] = qn[t]×
N∑
j=1

kj [t]
T vj [t]︸ ︷︷ ︸

Global Receptive Fields

+
∑
d

∑
i,j∈Ωd

rdijV
ρk

︸ ︷︷ ︸
Local Receptive Fields

, (8)

Ωd = {(i, j)|i, j ∈ {−d, 0, d}} represents the positional information of the neighboring region.
To further reduce model complexity, we introduce multi-scale dilated convolutions to model local
receptive fields. Specifically, two 3 × 3 depth-wise convolution kernels with dilation factors d = 3
and d = 5 are employed, where rij denotes the convolutional parameter at position (i, j).
Theorem 1 Let i ∈ N = {1, · · · , n} denotes the token position and defined the Manhattan distance
between two elements as ∆ = d(i, j) = |i − j|. The normalized attention weight of VSA is αvsa

ij ∝
exp(−β∆). For SSA, the weight satisfies αssa

ij ∝ (α − β∆)+. The LRF-SSA is defined as αlrf-ssa
ij =

(1− λ)αssa
ij + λrij . Specifically, the expected receptive fields of LRF-SSA are defined:

E[∆lrf-ssa] = (1− λ)µssa + λµr, where µssa = Ej∼pssa
i
[∆ssa], µr = Ej∼pr

i
(∆r), (9)

Since µr represents the receptive field around each token, it naturally satisfies that µr ≤ µssa. The-
orem 1 demonstrates that LRF-SSA preserves the local attention characteristics similar to those of
VSA, whereas SSA exhibits uniformly distributed attention weights. This difference arises because
SSA removes the softmax operation, resulting in a linear decay of attention scores and diminishing
its ability to distinguish between neighboring positions. In contrast, LRF-SSA incorporates addi-
tional learnable weights within the spatial domain, allowing the model to concentrate more effec-
tively on information captured by the local receptive field. We need to further evaluate whether this
operation can effectively preserve the low-entropy distribution property of the softmax operation.
Theorem 2 For a given attention weights x = (x1, . . . , xN ), the information entropy is defined
as H(x). In particular, the entropy of VSA is expressed as H

(
exp(−β∆)

)
, while SSA satisfies

H
(
(α− β∆)+

)
. LRF-SSA satisfies H

(
(1− λ)pssa

ij + λrij
)
. These entropies satisfy the ordering:

H(plrf-ssa
i ) ≤ h(αi) + αiH(pssa

i ) + (1− αi)H(ri) ≤ H(pssa
i ) where 0 ≤ αi ≤ 1, (10)

Theorem 2 demonstrates that LRF-SSA exhibits a lower-entropy distribution more closely aligned
with VSA. This effect arises primarily from the presence of local receptive field modules, which
amplify the differences among attention scores. A detailed proof is provided in the Appendix B
and Appendix C. Compared with VSA, our method eliminates the need for the softmax operation,
thereby achieving performance comparable to SSA while reducing computational cost.

In summary, our method effectively preserves the local receptive field and low-entropy distribution
characteristics of VSA. Compared with SSA, it demonstrates stronger local receptive field capabil-
ity while introducing only minimal additional overhead (two 3×3 convolution kernels and an extra
O(d2) computational cost). The effectiveness will be further validated in the experimental section.

5.2 IMPLEMENTING SELF-ATTENTION THROUGH NEURONAL DYNAMICS

To further reduce the memory footprint and computational latency of SSA during inference, we
restructure the LRF-SSA approach. As previously noted, the SSA module must store the Q, K, and
V matrices at each timestep, along with their corresponding attention scores. Specifically, when
the model applies the SSA Version 2 illustrated in Fig. 1(b), LRF-SSA reduces the computational
complexity to O(Nd2), while requiring the additional storage of an attention matrix of size d2.
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Figure 3: (a) Cognitive processes in biological vision, which exhibit local receptive field properties
realized through multi-dendritic neurons. (b) The proposed LRF method together with the dynamic
processes of dendritic neurons. (c) The implementation of LRF-SSA and LRF-Dyn.

Inspired by other softmax-free attention (Yang et al., 2023; Zhang et al., 2024b; Shen et al., 2021),
LRF-SSA can be reformulated through causal inference to significantly reduce memory consump-
tion. Specifically, Eq. 8 can be rewritten as follows:

sattnn[t]
′ = qn[t]×

n−1∑
j=1

kj [t]
T vj [t]︸ ︷︷ ︸

Memory Potential

+ kn[t]
T vn[t] +

∑
d

∑
i,j∈Ωd

rdijvρk
[t]︸ ︷︷ ︸

Presynaptic Input

, (11)

In this manner, LRF-SSA method only needs to store
∑n−1

j=1 k⊤j v
⊤
j , thereby reducing the computa-

tional complexity to O(d2). The attention output is then multiplied by the current query vector qn
and transformed into a spike sequence through the SN layer. It closely parallels the charge–fire-reset
dynamics of spiking neurons, where the first term represents membrane potential information and
the second term represents presynaptic input. Additional implementation details of multi-dendritic
neurons are described in Appendix D.

Therefore, we propose LRF-Dyn which leverages neuronal dynamics to formulate a novel paradigm
for self-attention computation, whose dynamical process can be defined as follows:

Xn[t] = A⊙Xn−1[t] + ΓTokenn[t], sattn′n[t] = Xn[t] +
∑
d

∑
i,j∈Ωd

rdij ·Xρk
[t], (12)

Here, Tokenn[t] denotes the token input at position n. A ∈ Rd denotes the decay factor, and
Γ ∈ Rd is defined as the membrane capacitance constant. Inspired by the multi-timescale behavior
of photoreceptor neurons (Zheng et al., 2024; Chen et al., 2024), we define A and Γ in a dendritic
form with local receptive fields to better allocate attention scores across tokens:

A =


c1,
c2,
...

cn−1,
cn


︸ ︷︷ ︸

C

T

×


− 1

τ1
β2,1 0 · · · 0

β1,2 − 1
τ2

β3,2 · · · 0
...

...
. . . . . .

...
0 0 · · · − 1

τn−1
βn,n−1

0 0 · · · βn−1,n − 1
τn

 , γ =


γ1,
γ2,
...

γn−1,
γn

 , (13)

Here, dn denotes the number of dendrites, and C ∈ R represents the weights assigned to different
dendrites. As shown in Fig. 3(b), for the n-th token, different dendritic branches produce distinct
responses, which are further integrated by the soma through a specific mechanism to enhance spatial
interactions and transform them into spike trains. Owing to the time-invariant property of the A
matrix, the neuron can be trained efficiently following the (Chen et al., 2024). Compared with LRF-
SSA, our model eliminates the SSA computation and only requires storing the membrane potential
at each position, thereby substantially reducing memory usage during inference. We will further
validate the effectiveness of this method in the experimental section.
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5.3 OVERALL ARCHITECTURE

By integrating local receptive fields with SSA, we propose the LRF-SSA method, which can be
implemented through LRF-SSA and LRF-Dyn. Specifically, for an input spike train x ∈ RT×N×d,
the computation of LRF-SSA is defined as follows:

Q,K,V = SN{BN(Conv(X))}, Score = SN{s · (Q×KT +
∑

i,j∈Ωd

rdij)×V}. (14)

Compared with SSA, LRF-SSA introduces almost no additional parameters, yet it significantly en-
hances the local modeling. Building on this, LRF-Dyn further reduces the memory requirements
during model inference. The dynamics of LRF-Dyn are defined as follows:

H = F−1{F(K) ∗ F(X)}, Score = SN{
∑∑

i,j∈Ωd

rdij · αkHpk(t)}, (15)

where F−1 denotes the forward and inverse Fourier transforms, respectively, and ∗ represents the
convolution operation. K(t) is the convolution kernel, defined as C

∑n−m
m=1 A. As shown in Fig. 3(c),

both methods can be integrated into existing Transformer frameworks without any additional modi-
fications. We further demonstrate the advantages of our approach in terms of both performance and
memory efficiency in the experimental section.

6 EXPERIMENT

In this section, we compare with advanced SNN models on image classification (Deng et al., 2009)
and semantic segmentation (Zhou et al., 2017) tasks. Additionally, we conduct ablation studies
to validate the effectiveness of the proposed method, demonstrating its improved performance and
reduced memory consumption. Detailed experimental results are provided below.

6.1 IMAGE CLASSIFICATION & SEMANTIC SEGMENTATION

Image Classification Tasks: we evaluate both LRF-SSA and LRF-Dyn on the ImageNet-1k dataset.
Specifically, we substitute the SSA mechanism in existing Spiking Transformers, including Spik-
former (Zhou et al., 2023b), QKFormer (Zhou et al., 2024), and Spike-Driven-V3 (Yao et al., 2025),
with the proposed LRF-SSA and LRF-Dyn. Furthermore, we compare our approach with recently
advanced SNN models (Fang et al., 2021a; Hu et al., 2024; Yao et al., 2023; 2024).

Figure 4: Visual results for image recognition and semantic segmentation. Both LRF-SSA and LRF-
Dyn produce sparser attention scores and achieve finer-grained segmentation results.

As shown in Table 4, the proposed LRF-SSA method consistently delivers performance improve-
ments across multiple architectures, with its two instantiations emphasizing different aspects. LRF-
SSA primarily focuses on accuracy enhancement. On Spikformer, it improves accuracy by 1.24%
and 0.85% at different parameter scales, while introducing fewer than 0.2M additional parameters.
For QKFormer, LRF-SSA achieves an accuracy gain of 0.44% and 0.48% under the dim=384 and
dim=512 configurations, respectively. Within the SDT-V3 architecture, LRF-SSA further demon-
strates a favorable balance between efficiency and accuracy, attaining 76.22% recognition accuracy
with only 5.24M parameters, substantially outperforming models of comparable size.

In contrast, LRF-Dyn preserves recognition performance while reducing storage complexity to
O(kd), where k denotes the number of dendrites. For instance, on SDT-V3, LRF-Dyn achieves

7
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a gain of 0.82% and 0.44% while requiring significantly less inference memory. Moreover, com-
pared with CNN-based SNN models (Fang et al., 2021a; Hu et al., 2024), LRF-Dyn further delivers
substantial performance gains without relying on attention mechanisms. As illustrated in Fig. 4(a),
both LRF-SSA and LRF-Dyn exhibit ViT-like attention patterns but with sparser distributions, en-
abling the models to focus more effectively on salient regions. These results further demonstrate the
superior performance and reduced memory requirements of our LRF-SSA framework.

Table 1: Comparison with Similar Methods on ImageNet-1K.
Method Architecture SR. Param.(M) Acc.(%)

SEWResNet (Fang et al., 2021a) SEW-ResNet-34 - 21.79 67.04
MSResNet (Hu et al., 2024) MS-ResNet-34 - 21.80 69.42
SDT-V1 (Yao et al., 2023) Spike-driven-8-512 O(Nd) 29.68 74.57

SDT-V2 (Yao et al., 2024) Meta-SpikeFormer-384 O(d2) 15.08 74.10
Meta-SpikeFormer-512 O(d2) 55.35 79.70

Spikformer (Zhou et al., 2023b) Spikformer-8-512 O(d2) 29.68 73.38
Spikformer-8-768 O(d2) 66.34 74.81

Spikformer + LRF-SSA Spikformer-8-512 O(d2) 29.71 74.62 (↑1.24)
Spikformer-8-768 O(d2) 66.53 75.66 (↑0.85)

Spikformer + LRF-Dyn Spikformer-8-512 O(kd) 29.71 74.51 (↑1.13)
Spikformer-8-768 O(kd) 66.53 75.58 (↑0.77)

QKFormer (Zhou et al., 2024) HST-10-384 O(d2) 16.47 78.80
HST-10-512 O(d2) 29.08 82.04

QKFormer + LRF-SSA HST-10-384 O(d2) 16.55 79.24 (↑0.44)
HST-10-512 O(d2) 29.18 82.52 (↑0.48)

QKFormer + LRF-Dyn HST-10-384 O(kd) 16.44 79.21 (↑0.41)
HST-10-512 O(kd) 29.18 82.48 (↑0.44)

SDT-V3 (Yao et al., 2025) Efficient-Transformer-S O(d2) 5.11 75.30
Efficient-Transformer-L O(d2) 18.99 79.80

SDT-V3 + LRF-SSA Efficient-Transformer-S O(d2) 5.24 76.22 (↑0.92)
Efficient-Transformer-L O(d2) 19.25 80.31 (↑0.51)

SDT-V3 + LRF-Dyn Efficient-Transformer-S O(kd) 5.24 76.12 (↑0.82)
Efficient-Transformer-L O(kd) 19.25 80.24 (↑0.44)

* SR represents the storage complexity requirements during inference.
Semantic Segmentation: To evaluate the effectiveness of our methods, we further con-
ducted experiments on more challenging segmentation tasks. In particular, we evaluate on the
ADE20K dataset (Zhou et al., 2017), which consists of 20K training images and 2K validation

Table 2: Performance of segmentation.
Model Para. (M) Attn T MIoU(%)

ResNet 15.5 % 1 32.9
(Yu et al., 2022) 28.5 % 1 36.7

PVT 28.2 ! 1 39.8
(Wang et al., 2021) 48.0 ! 1 41.6

SDT-V3 5.1 + 1.4 ! 4 33.6
(Yao et al., 2025) 18.99 + 1.4† ! 4 41.3

SDT-V3 5.1 + 1.4 ! 4 36.2 (↑2.6)
+ LRF-SSA 10.0 + 1.4 ! 4 43.5 (↑2.2)

SDT-V3 5.24 + 1.4 % 4 36.3 (↑2.7)
+ LRF-Dyn 19.25 + 1.4 % 4 43.1 (↑1.8)

† Results reproduced by ourselves.

images across 150 semantic categories.
Following the experimental protocol of
SDT-V3 (Yao et al., 2025), we evaluate
our method on models with 5M and 19M
parameters. As shown in Table 2, our
approach achieves notable performance
gains, improving by 2.6% and 2.2%, re-
spectively. In addition, compared with
ResNet (Yu et al., 2022) without atten-
tion modules, LRF-Dyn achieves higher
performance (36.3% and 43.1%) while re-
quiring fewer model parameters. As il-
lustrated in Fig. 4, we further provide
qualitative comparisons on selected exam-
ples. The proposed method produces more
fine-grained segmentation results, whereas
SSA tends to yield only localized segmen-
tations. This observation provides additional evidence of the effectiveness of LRF-SSA.
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6.2 ENHANCED LOCAL MODELING ABILITY WITH LOWER MEMORY REQUIREMENTS

To further validate the effectiveness of our method, we follow (Guo et al., 2022a; Ding et al., 2022)
to visualize the receptive fields. As shown in Fig. 5(a), LRF-SSA significantly enhances the local
receptive field of SSA and exhibits ViT-like local modeling capability. Similarly, LRF-Dyn also
demonstrates a strong local modeling capacity. These results show the effectiveness of our method.

Figure 5: (a) Visualization of effective receptive field for different methods, where both LRF-SSA
and LRF-Dyn demonstrate strong locality. (b) Comparative analysis of memory usage, accuracy,
and parameter efficiency. The results show that LRF-Dyn maintains performance comparable to
LRF-SSA while substantially reducing memory requirements during inference.

Furthermore, to compare the memory requirements of LRF-Dyn during inference, we visualize
model accuracy and storage consumption at different scales. As illustrated in Fig. 5(b), Under
the Spikformer-8-512 architecture, our method achieves a 1.13% increase in accuracy while simul-
taneously reducing memory usage by 49.4%. These results further confirm the effectiveness of our
approach based on local receptive field enhancement and neuro-dynamics–inspired modeling.

6.3 ABLATION EXPERIMENT

To further substantiate the effectiveness of the proposed approach, we conduct comprehensive ex-
periments on the CIFAR-100 dataset. Specifically, we investigate the respective contributions of
local capability modeling and neurodynamics-inspired self-attention to both model performance and
memory consumption, using the Spikformer architecture as the evaluation framework.

Table 3: Ablation Experiment.
Method w/o LRF Ω ≤ 1 Ω ≤ 3 Ω ≤ 5

LRF-SSA 77.86 78.26 78.52 78.64
LRF-Dyn 77.78 78.16 78.50 78.57

Caused SSA† 74.30 75.30 76.20 76.50
† Results reproduced by ourselves.

For the LRF module, we systematically exam-
ine the impact of varying the number of convo-
lution kernels on the results. Notably, without
the LRF module, LRF-SSA is equivalent to the
SSA method. As shown in Table 3, increasing
the kernel count consistently improves recogni-
tion accuracy, demonstrating that the introduc-
tion of local receptive fields enhances the per-
formance of both LRF-SSA and LRF-Dyn. Furthermore, by comparing the LRF-Dyn approach with
a causal SSA model, we observe that LRF-Dyn consistently demonstrates improved performance
under the same conditions. This further supports the effectiveness of our method.

7 CONCLUSION

In this paper, we analyze the challenges of integrating SSA into SNNs, focusing on two key limi-
tations: the distinct attention distribution form compared to VSA, which limits further performance
improvements, and the substantial memory overhead caused by the self-attention mechanism, which
requires storing large attention weight matrices. To address these challenges, we propose LRF-Dyn,
achieving an effective balance between performance and memory efficiency. First, we provide the-
oretical and empirical evidence for the importance of local modeling in self-attention, leading us to
propose LRF-SSA, which incorporates a LRF module into SSA to enhance its local modeling capac-
ity. Building on this, we approximate LRF-SSA with neuronal dynamics to remove the dependency
on storing explicit attention matrices. This approach provides new theoretical insights and practical
potential for deploying high-performance SNN models in resource-constrained edge environments.
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A USE OF LARGE LANGUAGE MODEL

In the preparation of this manuscript, we employ a Large Language Model (LLM) solely to aid and
polish the writing. The LLM is used exclusively for language polishing, grammar correction, and
improving the clarity and readability of the text. All technical ideas, methods, experiments, and
conclusions presented in this paper are original contributions of the authors.

B PROOF OF THEOREM 1

In this section, we analyze the problem from the perspective of expected distance. Under an identical
distance-bias assumption, SSA exhibits an expected distance that is almost global when compared
with VSA. The LRF-SSA method partially alleviates the impact of this global receptive field.

B.1 DEFINITION OF EXPECTED RECEPTIVE RADIUS

Given a sequence x = {x1, x2, . . . , xN} of length N , we compute the expected receptive radius to
measure the receptive field size under different attention paradigms, which is defined as follows:

µ = E[∆] =

N∑
j=1

α̂ij∆, ∆ = d(i, j) = |i− j|, (1)

where α̂ij denotes the normalized attention weight from position i to position j, and ∆ represents
the distance between i and j. Considering the spatial continuity of image sequences, we adopt the
Manhattan distance as the metric. In this way, the expected receptive radius µ provides an effective
measure of the receptive field across different attention paradigms. A larger value of µ indicates a
larger effective receptive radius, corresponding to a more global receptive field.

B.2 COMPARISON OF VSA, SSA AND LRF-SSA

Empirical studies in natural image statistics have demonstrated that patch similarity decreases as
spatial distance increases (Zontak & Irani, 2011). For simplicity, we model this property as a linear
decay with respect to distance. Specifically, for a given pair (qi, kj), their similarity can be defined:

q⊤i kj ≈ a− β∆, (2)

Accordingly, for SSA, the expected receptive radius can be represented as follows:

αvsa
ij =

q⊤i kj∑N
j=1 q

⊤
i kj

∝ exp{−β|i− j|}, E[∆] =
∑

∆αij = ∆
exp{−β∆}∑N
t=0 exp{−βt}

, (3)

As n → ∞, the expected receptive radius of VSA can be defined as follows:

µvsa
∞ =

exp(−β)

1− exp(−β)
= Θ(1). (4)

Therefore, VSA exhibits a localized receptive field. In contrast, for SSA, since the softmax operation
is omitted, its attention weight αij and the corresponding expected receptive radius can be defined
as:

αssa
ij ∝ (a− β∆)+, E[∆] =

∑
∆αij =

(α− β∆)+∑N
t=0(α− β∆)+

(5)

As n → ∞, the expected receptive radius of VSA can be defined as follows:

µssa
∞ =

(N − 1)(3α− β(2N − 1))

3(2α− β(N − 1))
= Θ(N). (6)

Therefore, SSA exhibits a broader receptive radius than VSA.

As an SSA variant with local receptive fields, the attention weight of SSA is not only determined by
αij , but also incorporates an additional contribution from rij . Hence, the LRF-SSA attention weight
can be expressed as a convex combination:

αlra-ssa
ij = (1− λ)αssa

ij + λ rij , E[∆lra-ssa] = (1− λ)µssa + λµr, (7)
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where rij > 0 denotes the local weights within the neighborhood Ωd = {j : |i − j| ≤ d}, and
µr ≤ µssa. Therefore, LRF-SSA exhibits an effective receptive field no larger than that of SSA, and
this receptive field becomes increasingly local as λ increases. In the extreme case where λ > 1,
LRF-SSA tends toward a highly localized receptive field. Therefore, the receptive field radii of the
three methods follow the relation:

µVSA ≤ µLRF-SSA ≤ µSSA (8)

Therefore, the proposed method exhibits local modeling capabilities more similar to SSA, while
avoiding the use of the softmax operation.

C PROOF OF THEOREM 2

In this appendix, we provide a detailed theoretical analysis of the entropy properties of different
self-attention mechanisms. Benefiting from the softmax operation, VSA exhibits a sharp and low-
entropy distribution, concentrating most of the attention mass on a few neighboring positions. In
contrast, SSA produces a more dispersed distribution, leading to higher entropy.

C.1 INFORMATION ENTROPY

From an information-theoretic perspective, the entropy of the attention distribution provides a nat-
ural measure of its uncertainty and sharpness. Specifically, for a given attention weight vector
x = (x1, . . . , xn), the entropy is defined as:

H(x) = −
n∑

i=1

xi log xi, (9)

where we use natural logarithms. A larger entropy indicates a more uniform and smoother distribu-
tion of attention scores, whereas a smaller entropy corresponds to a more concentrated and sharper
allocation of attention.

C.2 ENTROPY OF VSA, SSA AND LRF-SSA

As shown in Eq. 17, the similarity decays linearly with distance ∆. Therefore, for VSA, the induced
truncated geometric distribution over distances (ignoring multiplicity) is:

Pvsa(∆) =
exp{−β∆}∑N−1
t=0 exp{−βt}

=
(1− r) r∆

1− rN
, r = exp{−β} ∈ (0, 1), (10)

discretized over ∆ = 0, . . . , N − 1. The corresponding entropy admits the closed form:

Hvsa(N, r) = log
1− rN

1− r
− r

1− r
· 1−NrN−1 + (N − 1)rN

1− rN
log r, (11)

and in the infinite-length limit, we obtain:

Hvsa(∞, r) = − log(1− r)− r

1− r
log r = O(1). (12)

Thus VSA yields a bounded, low-entropy distribution independent of N .

In contrast to the truncated geometric distribution of VSA, SSA employs linearly decaying weights
without softmax normalization. Specifically, the unnormalized score is modeled as:

w(∆) = α− β∆, 0 ≤ β ≤ α
N−1 , (13)

where the constraint ensures non-negativity across all positions. After normalization, the distance
distribution becomes:

Pssa(∆) =
α− β∆

αN − βN(N−1)
2

, ∆ = 0, . . . , N − 1, (14)
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which leads to the entropy:

Hssa(N,α, β) = −
N−1∑
∆=0

α− β∆

S0
[log(α− β∆)− logS0] , S0 = αN − βN(N−1)

2 . (15)

For the special case β = 0, Pssa reduces to the uniform distribution and the entropy attains its
maximum Hssa = logN . At the other extreme, when β = α/(N − 1), the distribution becomes
triangular and the entropy satisfies Hssa = logN + O(1). Therefore, unlike VSA, the entropy of
SSA scales as:

Hssa = Θ(logN), (16)

indicating a high-entropy distribution that spreads broadly across the sequence and corresponds to a
nearly global receptive field.

Finally, we analyze the entropy of LRF-SSA. LRF-SSA can be formulated as a convex combination
of SSA and a more concentrated local distribution Ri:

P lra-ssa
i (∆) = (1− λi)P

ssa
i (∆) + λiRi(∆), λi ∈ [0, 1]. (17)

The entropy of LRF-SSA is thus:

H
(
P lra-ssa
i

)
= −

N−1∑
∆=0

[
(1− λi)P

ssa
i (∆) + λiRi(∆)

]
log

[
(1− λi)P

ssa
i (∆) + λiRi(∆)

]
. (18)

Although a closed-form solution is difficult to obtain, we can derive an information-theoretic upper
bound by introducing an auxiliary Bernoulli variable Z ∼ Bernoulli(λi) and applying the chain
rule of entropy:

H
(
P lra-ssa
i

)
≤ h(λi) + (1− λi)H(P ssa

i ) + λiH(Ri), (19)

where h(·) denotes the binary entropy. Since Ri is designed to be more localized, we typically have
H(Ri) ≤ H(P ssa

i ), which implies:

H
(
P lra-ssa
i

)
≤ H(P ssa

i ) . (20)

Therefore, LRF-SSA consistently produces lower entropy than SSA, and the degree of reduction is
controlled by the mixing coefficient λi; in other words, LRF-SSA interpolates between the global
high-entropy behavior of SSA and the localized low-entropy property of VSA, providing a flexible
trade-off between global coverage and local sharpness.

D MULTI-DENDRITIC NEURON MODELING

This section provides an overview of multi-dendritic neuron models, highlighting their dynamics
and categorizing them into two main types based on how the soma integrates dendritic inputs. We
then describe the details of the aggregated model used in this work, as well as the mathematical
formalization of its dynamics. Finally, we present the training process and inference process.

D.1 DYNAMICS OF DENDRITIC NEURON

Dendritic neurons (Zheng et al., 2024; Chen et al., 2024; Wang et al., 2025; Pagkalos et al., 2023)
possess strong temporal computation abilities and nonlinear expressive power, offering clear advan-
tages in sequential tasks. In contrast to conventional point neurons (e.g., LIF neurons (Izhikevich,
2003; Maass, 1997)), multi-dendritic neurons consist of two main components: the dendrites and the
soma. The dendritic structure introduces heterogeneous temporal factors, allowing the extraction of
temporal features across multiple scales. The dynamics of i-th dendrite can be defined as follows:

Cm
dvi
dt

= −ILeak(vi) + gi−1,i(vi−1 − vi) + gi,i+1(vi+1 − vi) + I, (21)

Cm denotes the membrane capacitance, Ileak represents the leak current of the membrane potential
vi, and gi,j(·) characterizes the coupling relationship between compartment i and j. Subsequently,
the soma integrates the outputs from the dendrites and converts them into spike signals.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 OVERVIEW OF TWO TYPES OF DENDRITIC NEURON

Based on the manner in which somatic input is processed, multi-dendritic neurons can be classified
into two primary types. One type accumulates the output of only the last dendrite (Wang et al., 2025;
Chen et al., 2024). This approach assumes that information transmission occurs only between adja-
cent dendrites. The other type integrates the outputs of all dendrites (Zheng et al., 2024), allowing
the soma to store and process all temporal heterogeneity information. The somatic neural dynamics
for these two types can be modeled as follows:

Cm
dvn
dt

= −ILeak(vn) + gn−1,n(vn−1 − vn) + I, (22)

Cm
dvn
dt

= −
n∑
i

γiILeak(vi) + I, (23)

Eq.22 processes the output from only the n-th dendrite, assuming that information transmission
occurs between adjacent dendrites. In contrast, Eq.23 integrates the outputs of all dendrites, ensuring
that the soma can store and process all temporal heterogeneity information. In this work, we adopt
the second type of neuron to achieve temporal modeling across multiple timescales.

D.3 FORMALIZATION OF MULTI-DENDRITIC NEURON DYNAMICS

To facilitate mathematical analysis, we formalize these two approaches as follows. Specifically, the
neural dynamics of multi-dendritic neurons can be equivalently expressed as:

dVd

dt
= τVd[t] + ΓI[t],

dVs

dt
= − 1

τs
(Vs[t]− vrest) + CVd, (24)

Here, Γ ∈ R1×n denotes the membrane capacitance constant, vd ∈ Rn×n represents the membrane
potential accumulation process of dendritic components, and vs ∈ R represents the accumulation
process of the somatic membrane potential. When vs exceeds the threshold, the dendritic neuron
generates a spike and resets the somatic membrane potential. The parameters τd ∈ Rn×n and τs ∈ R
denote the decay factors of dendritic and somatic components, respectively.

Different dendritic neuron models correspond to distinct forms of τd and Γ. Specifically, τd de-
termines the computational form of dendrites, while Γ represents the manner in which the soma
integrates dendritic inputs. In this work, τd and Γ can be further formalized as:

τd =


− 1

τ1
β2,1 0 · · · 0

β1,2 − 1
τ2

β3,2 · · · 0
...

...
. . . . . .

...
0 0 · · · − 1

τn−1
βn,n−1

0 0 · · · βn−1,n − 1
τn

 , Γ =


γ1,
γ2,
...

γn−1,
γn

 , (25)

n denotes the number of dendrites. To achieve efficient inference, we can discretize Eq. 25. Specif-
ically, the neural dynamics of multi-dendritic neurons can be defined as follows:

Vd[t] = exp{δτd}Vd[t− 1] + ΓI, Vs[t] = − exp{δτs}Vd[t− 1] + CVt[t], (26)

δ denotes the discrete time step. In this work, the output of the soma is fed into the SN layer to
enable effective interaction along the temporal dimension.

D.4 TRAINING PROCESS OF LRF-DYN

Unlike typical sequential tasks such as LRA benchmark (Tay et al., 2020), in static image tasks,
SNNs employ frequency coding (Wu et al., 2018; Fang et al., 2021b) to approximate the continuous
activation values of ANNs. Specifically, the input is represented as x ∈ RT×N×C . In this work,
our LRF-Dyn model primarily operates along the spatial dimension N . For clarity of exposition, we
focus on the case T = 1, which provides a clearer explanation of the training process.

Given the high resolution of image-related tasks, where n ≥ 196, the complexity of training den-
dritic neurons increases substantially. Consequently, achieving efficient training while preserving a

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

sequential inference paradigm remains a central challenge. To address this, some researchers (Chen
et al., 2024; Shen et al., 2025; Wang et al., 2025; Huang et al., 2024a) employ Fourier transforms to
markedly reduce training costs, thereby enabling models to handle long-sequence tasks. In partic-
ular, for the n-th token[n] ∈ R1×C , the cumulative membrane potential Vd[n] of its corresponding
dendritic component can be defined as follows:

Vd[n] =

n∑
i=0

Γ exp{i · δτd} · token[n− i]. (27)

Since τd is time-invariant, Eq. 27 can be reformulated as a convolution between the input signal X
and the kernel K, thereby reducing the training complexity of the model from O(N2) to O(N).

Vd = (K ∗ Token) = F−1 {F{K} · F{Token}} , K =
[
exp{1· δτd}, . . . , exp{nτd}

]
, (28)

F(·) and F−1(·) denote the forward and inverse Fourier transform operations. Subsequently, the
soma integrates inputs from different dendrites and stores them in the form of a membrane potential.
Specifically, the dynamics of dendritic neurons can be expressed as:

X[n] = CVd[n], Vs[n] = X[n] +
∑
d

∑
i,j∈Ωd

rdij ·X[ρk], S = SN(Vs), (29)

Vs defines the presynaptic input of the soma, which integrates both the information from the current
patch and the interactions among neighboring tokens. It is passed to the SN layer, where it is
converted into spike trains: when the membrane potential exceeds the threshold, the neuron emits
a spike; otherwise, it is accumulated with the membrane potential from the previous timestep. This
mechanism effectively enables interaction across both spatial and temporal dimensions.

D.5 INFERENCE PROCESS OF LRF-DYN

For the inference process, as discussed earlier, LRF-Dyn achieves lower memory requirements.
Specifically, given Token ∈ RT×N×d, the inference procedure of LRF-Dyn can be described:

Xn[t] = A⊙Xn−1[t] + ΓTokenn[t], sattn′n[t] = Xn[t] +
∑
d

∑
i,j∈Ωd

rdij ·Xρk
[t], (30)

A ∈ Rd denotes the decay factor, and Γ ∈ Rd is defined as the membrane capacitance constant. It
only requires storing sattn′ ∈ RT×N×d, thereby avoiding the need to store the attention matrix with
high spatial complexity. As a result, the memory cost during computation is significantly reduced.

E DESIGN OF HYPERPARAMETERS

Table 4: Comparison of Hyperparameters for Different Model Architectures
Hyper-parameter Spikformer QKformer Spike-Driven V3
Timestep 4 4 4
Epochs 100 200 200
Resolution 224 224 224
Batch size 64 100 600
Optimizer AdamW AdamW LAMB
Base Learning rate 7e-6 6e-4 6e-4
Learning rate decay Cosine Layer-wise 1.0 Layer-wise 1.0
Warmup epochs 5 5 10
Weight decay 5e-2 5e-2 0.05
Rand Augment rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1
Mixup 0.8 0 0
Cutmix 1.0 0 0
Label smoothing 0.1 0.1 0.1

All experiments are conducted on the ImageNet-1K dataset using the PyTorch framework. Training
is carried out on four NVIDIA A800 GPUs with distributed data parallelism, while inference-time

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

memory evaluations were performed on an NVIDIA GeForce RTX 4090 GPU with a batch size of
16. The detailed hyperparameter configurations for each architecture are provided in Table 4.

To ensure fair comparison across architectures, we adopt the open-source implementations of Spik-
former, QKformer, and Spike-driven V3. In each case, only the self-attention modules are replaced,
while all other components (e.g., patch embedding, MLP layers, normalization layers) remain un-
changed. In addition, the number of dendrites is fixed at eight to maintain parameter consistency
between LRF-SSA and LRF-Dyn. This controlled design allows us to isolate the impact of different
attention mechanisms on model performance.

F IMAGE CLASSIFICATION

To further demonstrate the effectiveness of our method, we visualized the heatmaps on the Ima-
geNet dataset and compared our approach with the SSA method. We selected the first layer for
visualization. In addition, since LRF-Dyn does not involve an explicit attention mechanism, it is
not feasible to generate its attention heatmaps. Therefore, in this section, we mainly compare the
attention results of LRF-SSA. The visualization results are shown in Fig. 6.

Figure 6: Attention heatmaps of LRF-SSA (Ours) with the SDT-V3 architecture on ImageNet. Our
method demonstrates more consistent and sparse attention across diverse samples.

G SEMANTIC SEGMENTATION

In this study, we utilize the ADE20K semantic segmentation dataset (Zhou et al., 2017; 2019; 2022;
Zheng et al., 2021), which contains more than 20,000 training images and 2,000 validation im-
ages with fine-grained pixel-level annotations for both objects and their components. The dataset
is characterized by extensive semantic diversity, covering 150 categories that include environmental
elements (e.g., sky, road, grass) as well as distinct objects (e.g., people, vehicles, furniture).

We adopt SDT-V3 (Yao et al., 2025), pretrained on ImageNet-1K, as the backbone and couple it with
the Pyramid Vision Transformer (PVT)(Xie et al., 2021; Wang et al., 2021) for semantic segmenta-
tion. The additional parameters are initialized using the Xavier scheme. Training is conducted with
a batch size of 20 over 160,000 iterations, employing the AdamW optimizer with an initial learning
rate of 1× 10−4 and a polynomial decay schedule (power 0.9). To ensure stable convergence, a lin-
ear warmup is applied during the first 150,000 iterations. Compared with the vanilla V3 model, our
approach yields clear improvements on both 19m and 5m metrics. Furthermore, LRF-Dyn achieves
substantially better performance than CNNs of comparable scale, even without relying on attention
mechanisms. This result further underscores the effectiveness of our approach.
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Figure 7: Results on additional segmentation samples with LRF-Dyn and LRF-SSA

Additionally, we visualized the qualitative results of our model on the ADE20K dataset. As shown in
Fig.7, our segmentation results exhibit remarkable effectiveness, with precise boundary delineation
and enhanced semantic coherence across diverse scene contexts.

H VISUALIZATION OF EFFECTIVE RECEPTIVE FIELDS

We compare the Effective Receptive Field (ERF) (Luo et al., 2016) of the center pixel on popular
backbone networks before and after training, as shown in Fig. 8. The ERF distribution represents the
contributions of every pixel on the input space to the central pixel in the final output feature maps.
For visualization, we randomly select 50 images from the ImageNet-1K validation set, resize them
to a resolution of 224×224, and then calculate the ERF values with the auto-grad mechanism.

Figure 8: Comparison of Effective Receptive Field (ERF) among various architectures.
Before training, both the SSA method and the LRF-SSA method exhibit similar local receptive
fields due to the presence of attention mechanisms. However, as training progresses, SSA gradually
develops an almost global receptive field, whereas LRF-SSA retains a more local property. This
behavior can be attributed to the LRF module, which enables the model to capture richer local
information. In addition, LRF-Dyn also demonstrates a certain degree of local modeling ability,
which contributes to improving the overall performance of the model. The effective receptive field
visualizations further validate the effectiveness of our proposed approach.
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