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ABSTRACT

Positive-unlabeled (PU) learning aims at learning a binary classifier from only
positive and unlabeled training data. Recent approaches addressed this problem
via cost-sensitive learning by developing unbiased loss functions, and their perfor-
mance was later improved by iterative pseudo-labeling solutions. However, such
two-step procedures are vulnerable to incorrectly estimated pseudo-labels, as er-
rors are propagated in later iterations when a new model is trained on erroneous
predictions. To mitigate this issue we propose PUUPL, a new loss-agnostic train-
ing procedure for PU learning that incorporates epistemic uncertainty in pseudo-
labeling. Using an ensemble of neural networks and assigning pseudo-labels
based on high confidence predictions improves the reliability of pseudo-labels,
increasing the predictive performance of our method and leading to new state-of-
the-art results in PU learning. With extensive experiments, we show the effec-
tiveness of our method over different datasets, modalities, and learning tasks, as
well as improved robustness over misspecifications of hyperparameters and biased
positive data. The source code of the method and all the experiments are available
in the supplementary material.

1 INTRODUCTION

Many real-world applications involve positive and unlabeled (PU) datasets in which only some of
the data is labeled positive while the majority is unlabeled and contains both positives and nega-
tives. PU learning aims to learn a binary classifier in this challenging setting without any labeled
negative examples. Learning from PU data can reduce deployment costs in many deep learning
applications that otherwise require annotations from experts such as medical image diagnosis (Ar-
menian and Lilienfeld, 1974) and protein function prediction (Gligorijević et al., 2021), and it can
even enable applications in settings where the measurement technology itself can not detect negative
examples (Purcell et al., 2019).

Some recent approaches such as unbiased PU (Du Plessis et al., 2014, uPU) and non-negative PU
(Kiryo et al., 2017, nnPU) formulate this problem as cost-sensitive learning. Others approach PU
learning as a two-step procedure first identifying and labeling some reliable negative examples,
and then re-training the model based on this newly constructed labeled dataset (Bekker and Davis,
2020). These approaches show similarities with pseudo-labeling in semi-supervised classification
settings (Lee, 2013).

Such pseudo-labeling techniques are however especially vulnerable to incorrectly assigned labels of
the selected examples as these errors will propagate and magnify in the retrained model, resulting
in a negative feedback loop. Worse yet, since the true labels are unavailable in PU learning, this
situation is hard to detect by any metrics computed on the training set. This erroneous selection of
unreliable pseudo-labels occurs when wrong model predictions are associated with excessive model
confidence. Such poor model calibration is accompanied by a distortion of the signal for the pseudo
label selection (Van Engelen and Hoos, 2020).

In recent literature on pseudo-labeling, this problem is recognized and successfully addressed by
explicitly estimating the prediction uncertainty (Abdar et al., 2021; Rizve et al., 2021; Arazo et al.,
2020). While this is the case for semi-supervised classification, there does not yet exist a method
that explores the use of uncertainty quantification for pseudo-labeling in a PU learning context.
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Figure 1: PUUPL is a pseudo-labeling framework for PU learning that uses the epistemic uncertainty of
an ensemble to select confident examples to pseudo-label. The ensemble can be trained with any PU loss for
PU data while minimizing the cross-entropy loss on the previously assigned pseudo-labels. On a toy example,
a single network is not very confident on most of the unlabeled data (a), resulting in many high-confidence
incorrect predictions and many low-confidence correct ones (c). The epistemic uncertainty of an ensemble
is, on the other hand, very low on most of the the unlabeled data (b), resulting in most correct predictions
having low uncertainty and most incorrect predictions having high uncertainty (d). Thus, the uncertainty of an
ensemble can be used more reliably to rank predictions and select correct ones (e).

Contributions: Motivated by this, we propose a novel, uncertainty-aware pseudo-labeling frame-
work for PU learning that uses established uncertainty quantification techniques to identify reliable
examples to pseudo-label (Fig. 1). In particular, our contributions are: (1) We introduce PUUPL
(Positive-Unlabeled, Uncertainty-Aware Pseudo-Labeling), a simple uncertainty-aware pseudo-
labeling framework for PU learning. (2) PUUPL can use any loss function for PU learning, im-
proving model performance while being robust to the specific data biases that the respective loss
considers. (3) We evaluate our methods on a wide range of benchmarks and PU datasets, achieving
state-of-the-art performance in PU learning. (4) Our extensive ablation studies provide new insights
into uncertainty-aware pseudo-labeling for PU learning. Further, they show that our method is ro-
bust to the choices of hyperparameters, with 1% or less variability in test accuracy among different
choices as well as distribution shifts between labeled positives in the train and test datasets. To the
best of our knowledge, PUUPL is the first framework for PU learning which leverages uncertainty
information during pseudo-labeling.

2 RELATED WORK

PU Learning PUL was introduced as a variant of binary classification (Liu et al., 2003) and is
related to one-class learning (Ruff et al., 2018; Li et al., 2010), multi-positive learning (Xu et al.,
2017), multi-task learning (Kaji et al., 2018), and semi-supervised learning (Chapelle et al., 2009).
There exist three main research branches for PUL: two-step techniques, class prior incorporation,
and biased PUL (Bekker and Davis, 2020). In this work, we combine Pseudo-Labeling which has
similarities to two-step techniques, with biased PUL, also coined as reweighting methods, and refer
to Bekker and Davis (2020) for a comprehensive overview of the field. In this context, Du Plessis
et al. (2014) introduced the unbiased risk estimator uPU. Kiryo et al. (2017) showed this loss func-
tion is prone to overfitting in deep learning contexts as it lacks a lower bound and proposed the
non-negative risk estimator nnPU as a remedy. Follow-up work on loss functions for PUL has fo-
cused on robustness w.r.t biases in the sampling process such as PUSB (Kato et al., 2019), PUbN
(Hsieh et al., 2019) or PULNS (Luo et al., 2021).
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Uncertainty-aware Pseudo-Labeling Pseudo-labeling follows the rationale that the model lever-
ages its own predictions on unlabeled data as pseudo training targets to enable iterative semi-
supervised model training. The first such approach for deep learning was introduced by Lee (2013),
simply selecting the class with the highest predicted probability as a pseudo label. One weakness of
pseudo-labeling is that erroneously selected pseudo-labels can amplify for training, potentially lead-
ing to model degradation. This is grounded in poor model calibration distorting the signal for the
pseudo label selection (Van Engelen and Hoos, 2020). Iscen et al. (2019) try to mitigate this issue
using confidence and class weights. Shi et al. (2018) use confident scores based on the geometric
neighborhood of the unlabeled samples while Arazo et al. (2020) effectively tackle this confirmation
bias using Mixup (Zhang et al., 2017), Label Noise (Tanaka et al., 2018), and Entropy Regulariza-
tion (Grandvalet et al., 2005). Rizve et al. (2021) introduced a pseudo-labeling framework using a
weighting scheme for class balancing and MC dropout (Gal and Ghahramani, 2016) for calibration,
while Beluch et al. (2018) found deep ensembles (Lakshminarayanan et al., 2017a) to yield the best
model calibration in an active learning context, especially in low-label regimes. The commonality
of these works is the explicit consideration of model uncertainty to improve pseudo-label selection,
which motivates us to apply this in the context of PU learning.

Pseudo-Labeling for PU Learning Two-step approaches in PU learning first identify negative sam-
ples from the unlabeled dataset, and then train a binary classification model on the original dataset
augmented with the newly identified negatives (Bekker and Davis, 2020). These approaches share
similarities with pseudo-labeling but lack an iterative feedback loop after the completion of the
second step.

A first attempt to combine pseudo-labeling with PU learning was made with Self-PU (Chen et al.,
2020b), where self-paced learning, a confidence-weighting scheme based on the model predictions
and a teacher-student distillation approach are combined. Via this complex training scheme, Self-PU
was shown to marginally outperform recent baselines. With PUUPL, we propose an alternative PL
strategy for PU learning that performs better in a simpler and more principled way using implicitly
well-calibrated models to improve the pseudo-label selection.

Uncertainty-aware pseudo-labeling for PU learning To the best of our knowledge, we are the first
to introduce an uncertainty-aware pseudo-labeling paradigm to PU learning. Although our method
shares the same motivation as that from Rizve et al. (2021) for semi-supervised classification, we
differ in several important aspects: (1) we specifically target PU data with a PU loss, (2) we quantify
uncertainty with an ensemble instead of Monte Carlo dropout, (3) we use epistemic uncertainty
instead of the predicted class probabilities for the selection, (4) we do not use temperature scaling,
and (5) we use soft labels.

3 METHOD

We propose PUUPL (Positive Unlabeled, Uncertainty-aware Pseudo-Labeling), an iterative pseudo-
labeling procedure to progressively select and label the most confident examples from unlabeled
data. The pseudo-code for PUUPL is shown as Algorithm 1. Our method separates the training set
Xtr into the sets P , U , and L which contain the initial positives, the currently unlabeled, and the
pseudo-labeled samples respectively. The set L is initially empty. At each pseudo-labeling iteration,
we first train our model using all samples in P , U , and L until some convergence condition is met
(Section 3.2). Then, samples in U are predicted and ranked w.r.t their predictive uncertainty (Section
3.3) and samples with the most confident score are assigned the predicted label and moved into the
set L (Section 3.4). Similarly, samples in L are also predicted and the most uncertain samples are
moved back to the unlabeled set U (Section 3.5). Next, the model is re-initialized to the same initial
weights and a new pseudo-labeling iteration starts.

In the following, we first describe the notation used in this paper and then explain in detail the
training procedure of PUUPL.

3.1 NOTATION

Consider input samples X with label y and superscripts ·tr, ·va and ·te for training, validation, and
test data respectively. The initial training labels ytr are set to one for all samples in P and zero for
all others in U . We group the indices of original positives, unlabeled, and pseudo-labeled samples
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Algorithm 1 Pseudocode for the PUUPL Training Procedure
Input

• Train, validation and test data Xtr, ytr, Xva, yva, Xte, yte

• Number K of networks in the ensemble (suggested K = 2)

• Maximum number T of pseudo-labels to assign at each round (suggested T = 1000)

• Maximum uncertainty threshold tl to assign pseudo-labels (suggested tl = 0.05)

• Minimum uncertainty threshold tu to remove pseudo-labels (suggested tu = 0.35)

Output Model parameters θ∗

1: P ← indices of positive samples in Xtr

2: U ← indices of unlabeled samples in Xtr

3: L← ∅ . Indices of pseudo-labeled samples
4: θ0 ← Random weight initialization
5: while not converged do
6: Initialize model weights to θ0 . Training
7: Train an ensemble of K networks on Xtr, ytr using the loss in Eq. 1
8: Validate on Xva, yva and update weights θ∗ if accuracy improved
9: f̂ ← ensemble predictions for Xtr . Uncertainty

10: Compute epistemic uncertainty ûe with f̂ via Eq. 6
11: Lnew ← Balanced set of examples to pseudo-label via Eq. 7 using ûe

U , T and tl . Pseudo-labeling
12: U new ← Examples to pseudo-unlabel via Eq. 10 using ûe

L and tu
13: L← L ∪ Lnew

b \ U new . Update indices
14: U ← U \ Lnew

b ∪ U new

15: yLnew ← p̂Lnew . Update pseudo-labels
16: yUnew ← 0
17: end while
18: Restore the weights θ∗ that scored highest on the validation set
19: Compute accuracy on the held-out test set Xte, yte

20: return θ∗

in Xtr into the sets P , U , and L respectively. Our proposed model is an ensemble of K deep
neural networks whose random initial weights are collectively denoted as θ0. The predictions of
the k-th network for sample i are indicated with p̂ik = σ(f̂ik), with σ(·) the logistic function and
f̂ik the predicted logits. The logits and predictions for a sample averaged across the networks in
the ensemble are denoted by f̂i and p̂i respectively. We subscript data and predictions with i to
index individual samples, and use an index set in the subscript to index all samples in the set (e.g.,
Xtr

U = {Xtr
i |i ∈ U} denotes the features of all unlabeled samples). We denote the total, epistemic

and aleatoric uncertainty of sample i as ûti, û
e
i , and ûai , respectively.

3.2 LOSS FUNCTION

We train our proposed model with a loss function L that is a convex combination of a loss LPU

for the samples in the positive and unlabeled set (P ∪ U ) and a loss LL for the samples in the
pseudo-labeled set (L):

L = λ · LL + (1− λ) · LPU (1)
with λ ∈ (0, 1). The loss LL is the binary cross-entropy computed w.r.t the assigned pseudo-labels
y. Our model is agnostic to the specific PU loss LPU used. This allows our method to be easily
adapted to different scenarios for which a PU loss was proposed and improve over its performance,
for example when coping with a selection bias in the positive examples (Kato et al., 2019) or the
availability of a biased negative set (Hsieh et al., 2019). For the standard setting of PU learning, we
use the non-negative correction nnPU of the PU loss (Kiryo et al., 2017):

LPU = π · `(P, 1) + max {0, `(U,−1)− π · `(P,−1)} (2)

With π the prior probability of a sample being positive, which we assume known and can be esti-
mated from PU data (du Plessis et al., 2016), and `(S, y) the expected sigmoid loss of samples in
the set S with label y:

`(S, y) =
1

|S|
∑
i∈S

1

1 + exp(y · p̂i)
(3)
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3.3 MODEL UNCERTAINTY

To quantify the predictive uncertainty, we utilize a deep ensemble with K networks with the same
architecture, each trained on the full training dataset (Lakshminarayanan et al., 2017b). Given the
predictions p̂i1, . . . , p̂iK for a sample xi, we associate three types of uncertainties to xi’s predictions
(Hüllermeier and Waegeman, 2021): the aleatoric uncertainty as the mean of the entropy of the
predictions (Eq. 4), the total uncertainty as the entropy of the mean prediction (Eq. 5), and the
epistemic uncertainty formulated as the difference between the two (Eq. 6).

ûai = − 1

K

K∑
k=1

[p̂ik log p̂ik + (1− p̂ik) log(1− p̂ik)] (4)

ûti = −p̂i log p̂i − (1− p̂i) log(1− p̂i) (5)

ûei = ûti − ûai (6)

Epistemic uncertainty corresponds to the mutual information between the parameters of the model
and the true label of the sample. Low epistemic uncertainty thus means that that the model param-
eters would not change significantly if trained on the true label, suggesting that the prediction is
indeed correct. Using such a prediction as target in the cross entropy loss would in turn provide
a stronger, more explicit learning signal to the model, so that a correctly pseudo-labeled example
provides a larger decrease in risk compared to using the same example without any label within the
positive-unlabeled loss.

3.4 PSEUDO-LABELING

The estimated epistemic uncertainty (Eq. 6) is used to rank samples of the unlabeled set U and to
select reliable samples for pseudo-labeling. Next, the predictions of the unlabeled samples U are
ranked according to their epistemic uncertainty (Eq. 6). Let ρ(i) denote the rank of sample i, then the
set Lnew of newly pseudo-labeled samples is formed by taking the T samples with lowest uncertainty
from U , ensuring that it is lower than the threshold tl:

Lnew = {i ∈ U |ρ(i) ≤ T ∧ uei ≤ tl} (7)

Previous works have shown that balancing the pseudo-label selection between the two classes, i.e.,
ensuring that the ratio of newly labeled positives and negatives is close to a given target ratio r,
is beneficial (Rizve et al., 2021). In this case, the set Lnew should be partitioned according to the
model’s predictions into a set Lnew

+ of predicted positives and Lnew
− of predicted negatives, and the

most uncertain samples in the larger set should be discarded to reach the desired ratio r, which we
fix to 1. We then assign soft pseudo-labels, i.e., the average prediction in the open interval (0, 1), to
these samples:

yi = p̂i ∀i ∈ Lnew
− ∪ Lnew

+ (8)

3.5 PSEUDO-UNLABELING

Similar to the way that low uncertainty on an unlabeled example indicates that the prediction can
be trusted, high uncertainty on a pseudo-labeled example indicates that the assigned pseudo-label
might not be correct after all. To avoid training on such possibly incorrect pseudo-labels, we move
the pseudo-labeled examples with uncertainty above a threshold tu back into the unlabeled set:

U new = {i ∈ L|ûei ≥ tu} (9)
yi = 0 ∀i ∈ U new (10)
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Figure 2: Validation accuracy (left, blue) and expected calibration error (ECE, right, green) for a run on
CIFAR-10. The ensemble is trained for a fixed number of 100 epochs before pseudo-labeling, visible as the
periodic spikes in both curves. Note the substantial reduction in ECE in the second and third pseudo-labeling
iterations, when the ensemble is trained on soft labels. The best validation accuracy of 90.76% is indicated by
the orange dot and corresponds to a test accuracy of 90.35%.

4 EXPERIMENTS

4.1 EXPERIMENTAL PROTOCOL

To empirically compare our proposed framework to existing state-of-the-art losses and models, we
followed standard protocols for PU learning (Chen et al., 2020b; Kiryo et al., 2017; Kato et al.,
2019).

Datasets: We evaluated our method in the standard setting of MNIST (Deng, 2012) and CIFAR-
10 (Krizhevsky et al., 2009) datasets, as well as Fashion MNIST (F-MNIST) (Xiao et al., 2017),
STL-10 (Coates et al., 2011) and IMDb (Maas et al., 2011) datasets to show the applicability to
different data modalities. Similar to previous studies (Chen et al., 2020b; Kiryo et al., 2017; Kato
et al., 2019), positives were defined as odd digits in MNIST, vehicles in CIFAR-10 and STL-10,
and we used trousers, dress, sandals, sneaker, and ankle boots for F-MNIST and positive reviews
for IMDb. For STL-10 we used all available labeled and unlabeled data and the official ten cross-
validation folds. For all other datasets, we reserved a validation set of 5,000 samples and use all
other samples for training with 1,000 randomly chosen labeled positives, as is common practice,
and evaluated on the canonical test set of each dataset. More details are provided in Appendix B

Network architectures: To ensure a fair comparison with other works in PU learning (Chen et al.,
2020b; Kiryo et al., 2017) we used the same architectures on the same datasets, namely a 13-layers
convolutional neural network for the experiments on CIFAR-10 (Table A.3) and a MLP with four
fully connected hidden layers of 300 neurons each and ReLU activation for MNIST and F-MNIST.
For IMDb we used a bidirectional LSTM network with a MLP head whose architecture was opti-
mized as part of the hyperparameter search.

Training: We trained all models with the Adam optimizer (Kingma and Ba, 2015) with β1 = 0.9
and β2 = 0.999, and an exponential learning rate decay with γ = 0.99. We further used the nnPU
loss (Kiryo et al., 2017) as LPU (Eq. 1) unless otherwise stated. As is common in the pseudo-
labeling literature (Chen et al., 2020b; Rizve et al., 2021; Kato et al., 2019; Tanaka et al., 2018; Hu
et al., 2021), we assume that a positive and negative labeled validation set is available and use this
validation set for early stopping, i.e., stop the pseudo-labeling loop when the model’s accuracy on
this set has stopped improving, and use the parameters that achieved the highest validation accuracy
to compute the test performance. An experiment will show how this requirement can be relaxed in
practice.

Hyperparameter tuning: We used the Hyperband algorithm (Li et al., 2017) to optimize all hy-
perparameters on the CIFAR-10 dataset with η = 3 and S = 4, using the validation accuracy as
the criterion to be optimized. The configuration that achieved the highest validation accuracy was
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MNIST F-MNIST CIFAR-10 CIFAR-10 IMDb STL-10
(1,000 Lab.) (3,000 Lab.)

nnPU∗ 93.41 (0.20) - 88.60 (0.40) - - -
SelfPU∗ 94.21 (0.54) - 89.68 (0.22) 90.77 (0.21) - -

DAN∗ - - - 89.70 - -
PAN∗ - - 89.70 - 78.84 -
nnPU 95.26 (0.55) 95.70 (0.18) 89.20 (0.29) 90.91 (0.24) 78.57 (0.68) 93.09 (0.54)

+PL 95.78 (0.30) 95.84 (0.16) 89.74 (0.46) 91.01 (0.18) 80.64 (0.99) -
+PUUPL 96.01 (0.29) 95.91 (0.20) 90.18 (0.15) 91.44 (0.29) 81.83 (0.24) 93.30 (0.42)

Table 1: Test accuracy and standard deviation over five (ten for STL-10) runs in brackets on various datasets
of recent methods for PU learning. The row ”+PL” refers to an uncertainty-unaware pseudo-labeling baseline
that uses the average prediction of an ensemble of networks as selection criterion, while the bottom row refers
to our uncertainty-aware solution. We used 1,000 labeled positives for training except for CIFAR-10, where
we also report the performance with 3,000 labeled positives, and STL-10, where we used the official ten cross-
validation folds. Bold font indicates highest performance. ∗scores as reported by Chen et al. (2020b) and Hu
et al. (2021) due to unavailability of source code.

then used as a basis for the ablation studies and fine-tuned on the remaining datasets to show that
the pseudo-labeling hyperparameters (Table A.1) do not require tuning when transferred to other
datasets and data modalities. Specifically, on the other datasets we only tuned hyperparameters re-
lated to network training such batch size, learning rate, weight decay, number of training epochs,
dropout probability and other details of the network architecture by running only the first bracket of
Hyperband with η = 3 and S = 3.

Evaluation: the best configuration found by Hyperband was trained five times with different random
training/validation splits and evaluated on the test set to produce the final results, except for STL-10
where we used the official ten cross-validation folds.

4.2 RESULTS

The best performance achieved by our method is shown in Table 1 and compared with SelfPU (Chen
et al., 2020b), DAN (Liu et al., 2019) and PAN (Hu et al., 2021). PUUPL was always able to improve
over the baseline nnPU loss, with larger gap for more difficult datasets such as CIFAR-10 (+0.98%)
and IMDb (+1.89%) as well as over SelfPU (Chen et al., 2020b) and DAN (Liu et al., 2019), setting
a new state-of-the-art for PU learning. Moreover, PUUPL is naturally very well calibrated despite
the absence of explicit calibration on labeled data (Fig. 2), making its predictions inherently reliable.
The best pseudo-labeling hyperparameters constitute the defaults we suggested in Algorithm 1 and
are K = 2, T = 1000, tl = 0.05 and tu = 0.35. Note that the baseline nnPU scores reported
in Table 1 were also obtained by training an ensemble of two networks with the nnPU loss, thus
possibly explaining the discrepancy observed with SelfPU. The best network architecture for IMDb
is shown in Table A.2.

4.3 ABLATION STUDIES

We performed ablation studies on the CIFAR-10 dataset by changing one parameter at a time of
the best configuration found by Hyperband, training and evaluating with five different splits and
reporting the test accuracy corresponding to the best validation score for each run. To limit the
computational resources needed, we used at most 15 pseudo-labeling iterations.

Weights initialization: We confirmed the observation that it is beneficial to re-initialize the weights
after each pseudo-labeling step (Arazo et al., 2020), with slightly better performance (+0.052%)
achieved when the weights are re-initialized to the same values before every pseudo-labeling itera-
tion (Fig. 3a). We believe this encourages the model to be consistent across pseudo-labeling rounds.

Pseudo-label assignment: Soft pseudo-labels were preferred over hard ones (+0.75%). We found
that our model was very well calibrated with ECEs as low as 0.05 on the labeled validation data
(Fig. 2), indicating that the soft pseudo-labels they estimated were reliable training targets and that
post hoc calibration was not necessary. Contrary to expectation, however, re-assigning all pseudo-
labels at every iteration harmed performance (−0.12%); instead, pseudo-labels should be kept fixed
after being assigned for the first time. A possible explanation is that fixed pseudo-labels prevent the
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model’s predictions from drifting too far away from the initial pseudo-labeling towards an incorrect
assignment. It was also beneficial to assign the same number of positive and negative pseudo-labels
(Fig. 3b) compared to keeping the same ratio π of positives and negatives found in the whole dataset
(−0.20%) or not balancing the selection at all (−0.55%).

Uncertainty: Ranking predictions by aleatoric performance was almost as good as ranking by epis-
temic uncertainty (−0.08%), while total uncertainty produced moderately worse rankings (−0.37%,
Fig. 3c). An ensemble with only two networks achieved the best performance, while larger en-
sembles performed worse, and Monte Carlo dropout (−0.85%) was better than ensembles of five
(−1.00%) and ten networks (−1.58%).

Early stopping: Finally, performing early stopping on the validation PU loss resulted in worse
accuracy (−1.12%) compared to using the accuracy on positive-negative labels (Fig. 3d). Although
considerable when compared to the impact of other algorithmic choices, such performance drop
indicates that PUUPL can be used effectively in real-world scenarios with no labeled validation data
available.

4.4 ROBUSTNESS

Following the same protocol as the ablation studies in Section 4.3, we tested the robustness of our
method with respect to misspecifications of the continuous hyperparameters (Fig. 4).

Pseudo-labeling: Our method was fairly robust to the maximum number T of assigned pseudo-
labels and the maximum uncertainty threshold tl for the pseudo-labels, with almost constant per-
formance up to T = 1000 and tl = 0.1. The best performance was achieved by the combination
having T = 1000 and tl = 0.05, but both of these experiments were performed while disabling the
other constraint (i.e., setting T = inf when testing tl and vice-versa). Using only a constraint on T
resulted in a reduction of −0.11%, while constraining tl alone resulted in a reduction of −1.04%.
The results for tu were less conclusive as for the general trend, possibly because values lower than
0.35 require more than the 15 pseudo-labeling iterations we used for the experiment, and values
above 0.4 did not show significant differences.

Misspecification of the class prior: The performance of our framework slowly degraded as the
prior π moved further from the true value of 0.4 with a performance reduction of less than 2.5% in
the range [0.3, 0.6] (Fig. 4a). Furthermore, the performance gap between PUUPL and nnPU widens
as π is more severly misspecified. Modern losses for PU learning such as uPU and nnPU rely on the
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nnPU nnPUSB
Only PU loss 87.05 (0.71) 87.31 (0.60)

PU loss+PUUPL 87.70 (0.69) 87.91 (0.71)

Table 2: Test accuracy of our framework on the CIFAR-10 dataset with a selection bias on the positive labels
when using the nnPU and nnPUSB losses. Our framework improves over the base PU loss in both cases; in
particular, PUUPL with nnPU loss achieved better performance than the nnPUSB loss alone.

correct estimation of the positive class prior π from domain knowledge or a priori estimation of π,
which constitutes a whole research branch in PU learning (Chen et al., 2020a) and is a significant
challenge in any practical PU application (Bekker and Davis, 2020; Chen et al., 2020a). We believe
that the inclusion of epistemic uncertainty, the usage of soft labels and the convex combination of
two losses enables PUUPL to be considerably more robust to significant misspecification of the
class prior π.

Loss combination: The best performing combination had λ = 0.15, with modest performance re-
duction until λ = 0.5 (−0.25%, Fig. 4b). Values of 0.05 and below resulted in the same performance
reduction of -0.5%, similarly to λ = 0.75, and performance was 1.09% worst at λ = 0.9. Too large
λ might facilitate the emergence of a harmful confirmation bias, but it is nonetheless important to
train on the pseudo-labels, too, to avoid losing the information contained therein.

Number of training labeled positives: The performance of our method steadily increased and
seemed to plateau at 91.4% between 3,000 and 6,000 labeled positives. The gap between nnPU and
PUUPL is largest in the low labeled data region with a 1.44% gap at 250 labels, where we achieved
87.59% accuracy, shrinking to a gap of 0.52% with 3,000 labels, where our performance was 91.44%
(Fig. 4c). This supports our intuition about the importance of uncertainty because, as the amount of
labeled data decreases, uncertainty becomes more important to detect overfitting and to prevent the
model from assigning incorrect pseudo-labels.

Positive bias: The most general assumption of PU learning is that the labeled examples are a biased
sample from the positive distribution (Bekker and Davis, 2020). We tested PUUPL in such a biased
setting where positives in the training and validation sets were with 50% chance an airplane, 30%
chance an automobile, 15% chance ship and 5% chance truck, while in previous experiments the
positives were evenly composed of airplanes, automobiles, ships and trucks. The test distribution
was unchanged, meaning that test samples are half as likely to be airplanes compared to the training
set, and five times more likely to be to be truck images. We also fixed all hyperparameters to the
values identified previously, except for the loss LPU where we used the nnPUSB loss (Kato et al.,
2019) to handle the positive bias. The baseline with nnPUSB loss performed better than the nnPU
loss (+0.26%), but worse than PUUPL with the nnPU loss (-0.39%), highlighting the benefit of
our uncertainty-aware approach. The best performance was however achieved with PUUPL on top
of the nnPUSB loss (+0.21% compared to nnPU and -2.27% compared to the unbiased setting),
showing that PUUPL can leverage the advantages of different PU losses and further improve on
them (Table 2).

5 CONCLUSIONS

In this paper, we proposed an uncertainty-aware pseudo-labeling framework for PU learning which
quantifies the epistemic uncertainty of an ensemble of networks and selects which examples to
pseudo-label based on their predictive uncertainty. We demonstrated the benefits of our approach
on different data modalities and biased settings, achieving state-of-the-art performance in all our
benchmarks. We further conducted extensive ablation studies and investigated the robustness of our
approach, showing it to be reliable in settings that are likely to be encountered in the real world,
such as a bias in the positive data, the unavailability of labeled negatives as validation data and the
misspecification of the class prior π.

Ethics statement: Most of the ethical concerns stem from the specific application and dataset. Here
we have shown a certain robustness towards biased positive labels without providing a comprehen-
sive assessment, therefore practitioners should always ensure, insofar as possible, that the obtained
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predictions are ”fair” (with ”fairness” defined appropriately w.r.t. the target application) and do not
systematically affect particular subsets of the population of interest.

Reproducibility statement: The source code for the framework is available in the supplementary
material.
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for active learning in image classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9368–9377, 2018.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle, o.
et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

Hui Chen, Fangqing Liu, Yin Wang, Liyue Zhao, and Hao Wu. A variational approach for learning
from positive and unlabeled data. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 14844–
14854. Curran Associates, Inc., 2020a.

Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen, and Zhangyang
Wang. Self-pu: Self boosted and calibrated positive-unlabeled training. In International Confer-
ence on Machine Learning, pages 1510–1519. PMLR, 2020b.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudı́k, editors, Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 215–223, Fort Lauderdale, FL, USA, 11–13
Apr 2011. PMLR. URL https://proceedings.mlr.press/v15/coates11a.html.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama. Analysis of learning from positive and
unlabeled data. Advances in neural information processing systems, 27:703–711, 2014.

Marthinus C. du Plessis, Gang Niu, and Masashi Sugiyama. Class-prior estimation for learning from
positive and unlabeled data. 106(4):463–492, nov 2016. doi: 10.1007/s10994-016-5604-6.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.
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Hyper-parameter Value range
Estimator Ensemble or MC Dropout

Number of samples [2, 25]
Uncertainty type Aleatoric, epistemic, total

Max. new labels T [100, 5000]
Max. new label uncertainty tl [0,− log 2]

Min. unlabel uncertainty tu [0,− log 2]
Reassign all pseudo-labels Yes or no

Re-initialize to same weights Yes or no
Cross-entropy weight λ [0, 1]

Table A.1: Pseudo-labeling hyperparameters

Layer type Layer parameters
LSTM inpus size=200, hidden size=128, num layers=2, dropout=0.25, bidirectional=True

Dropout p=0.2
Linear in features=256, out features=196, bias=True

Batch Norm. eps=1e-05, momentum=0.1
ReLU

Dropout p=0.2
Linear in features=196, out features=196, bias=True

Batch Norm. eps=1e-05, momentum=0.1
ReLU
Linear in features=196, out features=1, bias=True

Table A.2: Network architecture used for the IMDb experiments

APPENDIX

A NETWORK ARCHITECTURE AND HYPERPARAMETERS

Table A.1 reports the hyperparameters related to pseudo-labeling and their ranges. Table A.2 reports
the network architecture used in the IMDb experiments, while Table A.3 reports the network used
with CIFAR-10.

B DATASET INFORMATION

Table B.1 reports the number of samples for each split and each dataset. For the image datasets,
we subtracted the mean pixel intensity in the training set and divided by the standard deviation. For
IMDb we used pre-trained GloVe embeddings of size 200 on a corpus of six billion tokens.

13



Under review as a conference paper at ICLR 2022

Layer type Layer parameters
Conv. 2D in channels=3, out channels=96, kernel size=3 stride=1, padding=1

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=96, out channels=96, kernel size=3, stride=1, padding=1

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=96, out channels=96, kernel size=3, stride=2, padding=1

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=96, out channels=192, kernel size=3, stride=1, padding=1

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=192, out channels=192, kernel size=3, stride=1, padding=1

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=192, out channels=192, kernel size=3, stride=2, padding=1

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=192, out channels=192, kernel size=3, stride=1, padding=1

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=192, out channels=192, kernel size=1, stride=1, padding=0

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Conv. 2D in channels=192, out channels=10, kernel size=1, stride=1, padding=0

Dropout p=0.15
Batch Norm. eps=1e-05, momentum=0.1

ReLU
Flatten
Linear in features=640, out features=1000, bias=True
ReLU
Linear in features=1000, out features=1000, bias=True
ReLU
Linear in features=1000, out features=1, bias=True

Table A.3: Network architecture used for the CIFAR-10 experiments

Dataset Tot. Pos. Tot. Neg. Train Lab. Train Unlab. Val. size Test Size
MNIST 30,508 29,492 1,000 54,000 5,000 10,000

F-MNIST 30,000 30,000 1,000 54,000 5,000 10,000
CIFAR-10 20,000 30,000 1,000 44,000 5,000 10,000

STL-10 ? ? 3,600 105,400 5,000 8,000
IMDb 12,500 12,500 1,000 19,000 5,000 25,000

Table B.1: Total size of the datasets and the data splits. As for STL-10, we used the entire set of
examples, incuding the truly unlabeled ones.
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