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ABSTRACT

Large language models (LLMs) have shown remarkable proficiency in general
language understanding and reasoning. However, they consistently underperform
in spatial reasoning, a crucial cognitive skill that severely limits their applica-
tion, particularly in embodied intelligence. Inspired by the success of hierarchi-
cal learning in reinforcement learning, this paper introduces a novel method for
hierarchical task decomposition in LLM spatial reasoning. Our approach lever-
ages LLMs to break down complex spatial tasks at both the state and environ-
ment levels into more manageable sub-tasks. Specifically, we guide the LLM to
identify a few key intermediate states, which are then used to generate simplified
sub-environments between these key intermediate states. However, we observed
that due to the LLM’s lack of pre-training for spatial reasoning, it struggles to
make optimal decisions during this decomposition process. To address this limi-
tation and enhance its planning capability, we propose a novel algorithm: MCTS-
Guided Group Relative Policy Optimization (M-GRPO). This algorithm integrates
an MCTS-inspired exploration process and a modified, more fine-grained advan-
tage function, enabling the model to learn optimal path planning. Experimental
results demonstrate that our method substantially improves LLM performance on
spatial tasks, including navigation, planning, and strategic games, achieving state-
of-the-art results. This work paves the way for LLMs in real-world applications.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized the landscape of artificial intelligence, achiev-
ing remarkable breakthroughs across various domains, including natural language processing and
scientific reasoning(Zhao et al.,|2023). However, as LLMs transition into the era of embodied Al, a
critical and persistent bottleneck has emerged: their inherent limitations in spatial reasoning. While
Large Language Models (LLMs) excel at manipulating abstract concepts and language, they often
struggle with understanding complex spatial relationships, performing efficient path planning, and
engaging in sequential action reasoning(Ma et al 2025} |Chen et al., |2024). This severely limits
their development and practical deployment in embodied systems.

Existing research has explored several avenues to address this challenge, yet each faces significant
limitations. Prompt engineering methods like CoT(Wei et al., 2022b)), ToT(Yao et al.,[2023b) and
ProgPrompt(Singh et al.| [2023)) aim to elicit reasoning through specialized prompts, but their effec-
tiveness is capped by the model’s often flawed intrinsic spatial capabilities. Fine-tuning approaches
(Dao & Vu, [2025; Deng et al., 2025} |Aghzal et al.l 2024b) show promise but typically demand
vast, expensive task-specific datasets and suffer from poor generalization to novel environments.
Task decomposition strategies like HyperTree (Gui et al [2025) and Plan-and-Act (Erdogan et al.,
2025b) are primarily designed for tasks with clear, language-based "logical breaks", rendering them
ill-suited for spatial reasoning problems like pathfinding that lack such linguistic segmentation. Fi-
nally, offloading planning to external, non-differentiable tools breaks the end-to-end optimization
paradigm, as these tools cannot be jointly trained with the LLM’s representation layer and may not
be universally deployable at test time.

To overcome these limitations, we introduce Hierarchical Spatial Reasoning with LLM (HSRL), a
novel hierarchical spatial reasoning paradigm inspired by Hierarchical Reinforcement Learning. The
core innovation of HSRL lies in its state- and environment-based hierarchical mechanism, which is
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Figure 1: Comparison between CoT Reasoning and our HSRL method. (a) Standard CoT reasoning
fails on complex spatial planning by inefficiently exploring a vast search space amidst distracting
information. (b) In contrast, our HSRL framework succeeds by decomposing the task via key in-
termediate states and constructing focused sub-environments, which enables efficient and optimal
planning.

fundamentally different from prior language-based decomposition methods. The framework em-
ploys a two-level hierarchy. A high-level LLM planner sets a sequence of key intermediate states
(sub-goals) to break down the task. Then, for each state-to-state transition, a low-level LLM actor
assumes two key roles: it first acts as an environment processor to construct a simplified, localized
sub-environment, and then as a low-level LLM to execute the precise steps needed to reach the
next sub-goal within that context. While this hierarchical structure provides a powerful framework
for decomposition, the quality of the generated sub-goals is entirely dependent on the pre-trained
high-level LLM, which often lacks the fine-grained spatial awareness needed for optimal planning.
To address this, we propose an innovative online fine-tuning framework, M-GRPO, designed to
enhance the high-level planner. Our approach improves planning optimality by tackling two fun-
damental challenges: effective exploration of the solution space and precise credit assignment for
training. To achieve robust exploration, we draw inspiration from Monte Carlo Tree Search (MCTYS),
where the high-level LLM generates multiple candidate sequences of intermediate states, building a
search tree to systematically explore diverse planning strategies. For precise credit assignment, we
introduce a fine-grained advantage function, a significant departure from traditional Group Relative
Policy Optimization (GRPO) which evaluates whole-trajectory values without detailed supervision.
Our method calculates the advantage of each intermediate state relative to its “sibling* states (i.e.,
those that share a common prefix state sequence). This provides a focused and accurate training sig-
nal, enabling the LM to learn which specific sub-goals are the most effective. Our method requires
only a small amount of data and can be flexibly applied to multi-level planning tasks. In summary,
this work makes the following key contributions:

* A Novel State- and Environment-Based Hierarchical Reasoning Framework: We in-
troduce HSRL, a framework that presents a novel state- and environment-based decom-
position paradigm for LLM spatial reasoning, departing from prevalent language-based
methods. This paradigm is specifically designed to address continuous spatial problems
where traditional language-based decomposition is ineffective.

* A Novel Fine-Tuning Framework for Planning Optimality: To address the sub-optimal
planning inherent in pre-trained LLMs, we develop M-GRPO, a new fine-tuning algorithm.
By integrating a Monte Carlo Tree Search exploration mechanism with a fine-grained,
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node-level advantage function, our method substantially improves planning optimality with
high data efficiency.

* Comprehensive Empirical Validation of Superiority: Through extensive experiments
on large-scale navigation, object planning, and strategy game benchmarks, we demonstrate
that HSRL achieves state-of-the-art performance. The results validate its significant gains
over existing methods and its strong generalization across diverse task modalities.

2 RELATED WORK

2.1 SPATIAL REASONING IN LARGE LANGUAGE MODELS

Many researchers have pointed out that LLMs have weaknesses in spatial reasoning or spatial plan-
ning(Aghzal et al., 2024ajb). To address these issues, some methods leverage in-context examples
and prompting techniques, such as Chain-of-Thought (CoT)(Wei et al.l[2022a) and Tree-of-Thought
(ToT)(Yao et al., [2023a)), which have demonstrated remarkable reasoning abilities in various tasks.
However, for spatial reasoning tasks, in-context learning often fails because LLMs lack spatial rea-
soning knowledge or their knowledge even conflicts with it.

To overcome this challenge, some studies utilize LLMs for general-purpose reasoning, converting
spatial information into logical forms(Yang et al.l 2023)) or using them as a general pattern machine
for sequence transformation(Mirchandani et al.| |2023}; |Gong et al., |2024). Recently, other works
have evaluated LLMs as a cognitive capability in navigation and planning tasks(Momennejad et al.,
2023)). However, these methods perform poorly in tasks requiring continuous action reasoning.

Another mainstream approach introduces closed-loop feedback mechanisms. Some works, like
(Renze & Guven, 2024)), use self-reflection for self-evaluation and replanning, while others adopt
external feedback for reflection (Kumar et al.| [2024). Furthermore, the Vision-of-Thought (VoT)
method (Wu et al.,2024) materializes intermediate states to assist with reasoning. Nevertheless, this
iterative feedback loop often results in high costs and inefficiency in querying or interactions.

2.2 HIERARCHICAL METHOD

Hierarchical reasoning breaks down decision-making tasks into multiple levels, from high-level
strategic planning to low-level specific control. This decomposition reduces computational complex-
ity by solving several less difficult sub-tasks, thus enabling the handling of tasks more challenging
than direct complex reasoning. Hierarchical reasoning has achieved notable results in many rein-
forcement learning tasks, especially in embodied Al scenarios. For example, (Duan et al.|[2020) has
applied hierarchical methods to autonomous driving, allowing for smooth and safe decision-making
on highways. (Lu et al.| [2023) and (Zhu & Hayashibe, 2023)) separate decision-making tasks into
different layers, such as global path planning and local motion control. These models benefit from
breaking down the decision-making process into simpler, more tractable components, enabling each
layer to focus on a specific task. This enhances computational efficiency and decision accuracy in
complex environments.

In recent years, hierarchical reasoning methods have also been successfully introduced into the plan-
ning tasks of LLMs. For instance, DeAR(Xue et al., 2024)) imitates the human reasoning cycle by
using a tree-based question decomposition approach to organize the reasoning process and break
down problems into simpler sub-questions. HyperTree Planning(Gui et al.,2025)) is a new paradigm
that enhances LLM reasoning with a hypertree structure. It effectively breaks down intricate rea-
soning steps using a flexible divide-and-conquer strategy to handle diverse constraints and manage
multiple distinct sub-tasks, demonstrating superior performance in complex tasks like travel plan-
ning. Plan-and-Act(Erdogan et al., [2025a)) explicitly separates high-level planning from low-level
execution. This framework includes a PLANNER model for generating structured high-level plans
and an EXECUTOR model for translating these plans into environment-specific actions, thereby
improving performance on complex multi-step tasks such as web navigation.

However, these methods only consider high-level, coarse-grained task planning and do not fully
leverage the potential of hierarchical reasoning for low-level tasks that require fine motion control,
such as robotic arm motion planning. Therefore, this study aims to fill this gap by solving the
complex action planning problem.



Under review as a conference paper at ICLR 2026

e

e e e e e =3

Pl (@ == | Cor= S
E> |Subtask3(3,4)->(0,5) l
High-Level Planner

Question: You are in a 6 by 6 world. There are obstacles that you have to avoid at: and . Go from (3,0) to (0,5) ]\
Generation
: Subtaskl Actions: Up right right
(M-GRPO Trained)
\ / Final Actions:
Up right right down right right right up

Prompt: ...Identity two intermediate - -
points in the optimal path... 4 \ Output: [(3,0,2,2].3,4),(0,5)] | High Level Planning |
Subtask2:(2,2)->(3.4)
(LLmP
P . > @ Subtask2 Actions: down right right
Subtask3 Actions: Right up up up
up up

\

Question: You are in a 6 by 6 world. There are obstacles that you have to avoid at: (0,2), (1,0), (1,3), (2,3), (3,2), (4,0), (4,3) and (5,2). Go from (3,0) to (2,2) ]

Prompt: ......Select the obstacles within Prompt: ... Generate the actions from . 5 - Low Level Planning
[ the region... ] [ the start point to the end point... Output: Up right right

If a valid path

cannot be found,
the current

subtask is
g * - _|,r merged with the

A

next one,

Flal [ 777
d 947 J e (5
subtask that is

then re-solved.

)Agent position Obstacle [ Goal location @Anchor Point @ High Level Planner @ Low Level Planner

Figure 2: An overview of the HSRL framework. This framework employs a two-level hierarchical
strategy. An M-GRPO trained high-level planner first identifies key intermediate states, decom-
posing the task into a series of sub-tasks. A low-level planner selects relevant information for the
sub-task and then generates action sequences for each sub-task within a localized sub-environment.
If a sub-task is unsolvable, it is merged with the next one (e.g., from the start of Subtask 1 to the end
of Subtask 2) and replanned.

.

3 METHOD

In this work, we introduce the HSRL framework, as illustrated in Figure@ to address the limitations
of existing LLM-based planning methods. Our approach consists of two key components: a novel
two-level hierarchical framework that decomposes complex tasks into a series of manageable sub-
problems, and an innovative MCTS-guided finetuning method designed to enhance the optimality
of the generated plans.

3.1 HIERARCHICAL PLANNING WITH STATE AND ENVIRONMENT DECOMPOSITION

Our framework leverages a two-level hierarchical decomposition strategy to break down complex
planning tasks. This decomposition is applied at both the state level and the environmental level,
effectively managing the complexity of the problem space.

State-Level Decomposition via LLM. Prior research in LLM-based path planning has shown
promising results by manually decomposing tasks into sub-goals (Aghzal et al., [2024b). We ex-
tend this concept by enabling the LLM to autonomously generate these key intermediate states.
Given a task’s initial and final states, our method prompts the LLM to reason and generate a concise
sequence of critical intermediate states. This process transforms a high-level goal into a series of
state-to-state transitions, effectively simplifying the planning horizon for subsequent steps.

Environmental-Level Decomposition and Dynamic Expansion. After decomposing the task at
the state level, much of the global environmental information becomes irrelevant noise for solving
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a specific sub-task, which can hinder the reasoning process. Following the generation of the state
sequence, we define a sub-task for each consecutive pair of intermediate states. For each sub-
task, we create a corresponding regional environment by identifying information that is relevant to
the current sub-problem (e.g., obstacles or landmarks within a localized area). This hierarchical
representation allows the model to focus on a smaller, more manageable sub-environment, thereby
improving efficiency and reducing the search space. If the model is unable to find a valid path within
the localized environment, the scope of the sub-task is expanded. The end state is extended to the
next intermediate state in the sequence, creating a larger sub-task that encompasses a broader area.
This process is repeated until a solution is found or, in the worst case, the problem reverts to the
original, full-scale task, ensuring robust and complete coverage of the problem space.
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Figure 3: An overview of the M-GRPO algorithm. Starting from the initial state Sy, four simulation
sequences are expanded in parallel. Subsequently, the advantage values of the nodes within these
sequences are calculated, and a model training step is performed based on these advantages. Upon
completion of the training, an optimal intermediate state is selected according to the UCT formula.
This selected state then serves as the starting point for a new round of expansion and training. The
entire process continues until the termination condition of MCTS is met.

3.2 OPTIMIZING PLANNING WITH M-GRPO

Due to an inherent lack of pre-training in spatial reasoning, LL.Ms often struggle to generate optimal
sequences of intermediate states. However, the generation of correct intermediate states is a critical
prerequisite for the success of subsequent environment decomposition and low-level action planning.
To address this, we propose an online learning approach, as illustrated in Figure 3] that integrates
the exploratory power of MCTS with the fine-tuning process of GRPO. This approach enables the
LLM to learn and improve its planning policy during exploration.

MCTS-Guided Exploration for Optimal State Generation The state generation process is framed
as a search problem navigated by MCTS. Within this search tree, each node represents an interme-
diate state, while a full sequence of nodes forms a complete trajectory, known as a completion.
Starting from the initial state, the tree is built iteratively. In each iteration, the MCTS policy tra-
verses the tree to a leaf node. From this state, the LLM is prompted to generate subsequent potential
states (expansion), a reward is evaluated (simulation), and the Q-values along the path are updated
(backpropagation). The selection of an intermediate state during the tree traversal is guided by the
Upper Confidence bound for Trees (UCT) formula:

In N(s)
Spext = argmax | Q(s') + ¢y ——2 (1)
- S’GC%ildren(s) ( ) N(SI)

where s;ex is the selected next state from the set of children of the current state s, Q(s’) is the
estimated value of state s’, N(s) and N (s’) are the visit counts for the respective states, and c is a
constant controlling the level of exploration.
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Algorithm 1 M-GRPO Training Algorithm

Require: High-level planner 7y, initial state sg, max iterations N4z
Ensure: Optimized planner 7y

1: T < InitializeTree(s)

2: iteration < 0

3: while iteration < N, and not IsSufficientlyDeep(7") do

4: L «+ SelectPromisingLeafNode(T')
5: {7} + ExpandAndSimulate(my, L) > Generate a set of new trajectories.
6: for each trajectory 7,,, in {7;} do
7: R, < SimulateToGoal(7,,) > Calculate the reward of each trajectory.
8: T «+ Backpropagate(T, 7, Ry) > Update Q-values based on simulation results.
9: A < ] > Stores the final average advantage for each trajectory.
10: for each trajectory 7,,, in {7;} do
11: A, ] > Stores node advantages for the current trajectory.
12: for each state s in 7,,, do
13: p <+ GetParentNode(s)
14: Gisibiings < GetChildNodes(p)
15: Q + AverageQValue(Gipiings)
16: Ay + GetQValue(s) — Q > Calculate the node’s fine-grained advantage.
17: Append A to A, .
18: A(Tm) < Average(A,, ) > Calculate this trajectory’s average advantage.
19: Append A(7,) to Aay.
20: mo + UpdatePolicy (g, Aan) > Update the planner using the GRPO loss.
21: iteration <— iteration + 1

22: return 7y

Fine-Grained Advantage Function for Precise Policy Updates In standard policy optimization
frameworks like GRPO, the advantage function is typically computed based on the cumulative return
of an entire trajectory. This coarse-grained signal poses a significant credit assignment challenge,
as it fails to disambiguate the individual contributions of intermediate states. Consequently, it is
difficult for the model to pinpoint which specific choices are most critical for achieving success.

To overcome this limitation, we introduce a fine-grained advantage function calculated at the inter-
mediate state level. Our approach is tailored for a tree-search process wherein a LLM generates a
set of M candidate sequences (or completions), {71, ..., 7ar}, for a given planning problem. Each
trajectory 7,,, is composed of a sequence of intermediate states, 7, = (Sm,1, Sm.2 - - - » Sm, T, )-

Let sy, ,, be the n-th intermediate state in the m-th generated sequence. We estimate its correspond-
ing state-value, or Q-value ), ,, as the mean empirical return from all Monte Carlo simulations
that traverse this state. Specifically, if W, ,, is the sum of cumulative rewards from all visits to state
Sm,n and N, ,, is its total visit count, the Q-value is given by:

Wm ,n

Qm n =
' Nm,n

2

We then define the advantage of a specific state, A,, ,, relative to its "sibling" states—i.e., the set of
other candidate states {s; ,, } j]‘il that share a common prefix sequence. The state-level advantage is
formulated as:

Am,n = Qm,n - Mean(Qsiblings) (3)
where the second term represents the mean Q-value across all sibling states at depth n. This for-
mulation directly quantifies how much better the choice leading to s,, , is compared to the average
of alternative choices at that decision point. A deliberate design choice is the omission of reward
normalization. As the LLM often generates identical optimal completions, forgoing normalization
prevents "reward hacking," where the value of a superior path could be artificially deflated due to its
high frequency of generation.

Finally, to align with the GRPO framework, we compute a single advantage value for each trajectory
by averaging the advantages of all its constituent intermediate states. For a trajectory 7,,, of length
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T, its overall advantage A(7,,) is calculated as:

1

This trajectory-level advantage A(7,,) is then used as the training signal within the GRPO loss func-
tion. This fine-grained approach to advantage calculation provides a more precise and informative
signal, enabling the model to learn not only which overall sequences are effective, but also to discern
the value of the specific intermediate states that are most critical for constructing an optimal plan.
We present the full pseudo-code in Algorithm |

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

For our experimental setup, we designated the M-GRPO trained Qwen3-4B-Instruct-2507 as our
high-level planner. The untrained version of the same model served as both the low-level planner
and the environment planning model.

Datasets We evaluate our HSRL framework across three planning benchmarks with increasing
difficulty to test its performance and generalization. First, we use Maze Navigation(Valmeekam!
et al.,[2023)), a classical task on a dataset of 1,090 10 x 10 grids, partitioned into 668 training and
422 testing instances. Second, to assess out-of-distribution (OOD) generalization, we employ the
Blocksworld benchmark(Saha et al., [2025)), whose test set is intentionally more complex, featuring
more blocks and requiring longer plans (7-10 steps) than the training set (1-6 steps). Finally, we val-
idate our framework on the novel and highly challenging GameTraversalBenchmark (GTB)(Nasir,
et al., 2024). This benchmark contains 150 diverse maps with multiple objectives and paths ex-
ceeding 100 steps. As GTB lacks a training set, we evaluate our Maze-trained model in a zero-shot
transfer setting to test its capabilities on complex, unseen tasks.

Baselines We compare HSRL against a diverse set of representative baselines. First, we com-
pare it with foundational reasoning strategies, including the classic Chain-of-Thought (CoT)(Wei
et al.l |2022a) and ReAct(Yao et al.| [2023c), which interleaves reasoning traces with actions for
improved synergy. We also include advanced reasoning and self-reflection methods like Inner
Monologue(Huang et al., [2023)), which enhances internal thought processes, and Reflexion(Shinn
et al.| [2023), which uses iterative self-correction to refine plans. For direct planning, we use Prog-
Prompt(Singh et al.| 2023)) as a strong representative of in-context learning-based approaches. Fur-
thermore, we contrast HSRL with search-based methods like Tree Planner(Hu et al.l [2024) and the
hierarchical planner HyperTree(Gui et al.), the latter of which is known to have limitations on spatial
reasoning tasks. Finally, we include System-1.x(Saha et al.,[2025), a powerful baseline meticulously
fine-tuned on tasks similar to ours, which employs a controller to switch between "fast-thinking" and
"slow-thinking" modes.

Evaluation metrics We evaluate our model’s planning ability using metrics tailored to each bench-
mark. For the classical Maze and Blocksworld tasks, we measure the Completion Rate (CR), which
is the percentage of successfully solved instances, and the Optimal Rate (OR), defined as the per-
centage of completed tasks where the plan length matches the shortest path computed by an A*
search. For the more complex GameTraversalBenchmark (GTB), we adopt its official metrics. The
primary metric is the GTB Score, a composite measure that assesses performance based on goal
proximity, path length, and generation errors (see Appendix [B.I). Additionally, we report Top-5
Accuracy, the fraction of tasks where the agent’s final position is within five tiles of the target, to
evaluate approximate success in large-scale maps.

4.2 IMPLEMENTATION DETAIL

M-GRPO Finetuning. We fine-tuned the Qwen3-4B-Instruct-2507 model with the same hyperpa-
rameters as the GRPO algorithm. The configuration used the AdamW Optimizer with 5; = 0.9 and
Bo = 0.999, and a Learning Rate of 1 x 10~ with Cosine decay scheduling. The Epoch Number
was set to 1 and the Batch Size was 1. For the inference phase, the Temperature was set to 1.0 and
the Num generations was 8.
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Reward Function. We designed a complex reward function based on the degree of length matching
with the A* path and point-wise weighted rewards to guide the training of M-GRPO, as detailed in

Appendix [C.T]

Table 1: Comparison of HSRL against baseline methods across various benchmarks. Performance
is measured by goal achievement, optimality, and other task-specific scores. The best performance
in each column is highlighted in bold.

Method Maze (size 10x10)  Blocksworld (5-7 blocks) GTB
CR(%)T OR(%)T CR(%)7T OR(%) 1 GTB Score T Top 5 Acc. (%) 1
Direct Answer 23.69 23.45 6.50 6.00 23.61 25.96
CoT 43.12 38.39 10.50 8.00 26.58 31.61
Reflexion 45.02 37.91 15.00 8.50 29.34 37.76
ReAct 53.80 26.06 8.00 3.00 20.40 39.85
ProgPrompt 34.60 33.41 9.50 6.00 22.45 26.12
Inner Monologue 54.03 34.60 4.00 0.00 19.18 21.41
System-1.x 54.74 36.02 27.00 14.50 27.73 30.01
HyperTree 37.91 22.98 8.00 3.50 25.81 26.67
Tree Planner 39.10 27.01 7.00 4.00 25.28 25.46
HSRL (Ours) 60.43 46.44 29.50 18.00 30.65 40.29

4.3 RESULTS ANALYSIS

The experiments results, detailed in Table[T} clearly demonstrate the effectiveness of our hierarchical
planning and search framework.

HSRL significantly improves task performance. Our method HSRL achieves state-of-the-art
(SOTA) performance across all metrics on all tasks. For instance, in the Maze (10 x 10) task,
our method achieves a goal completion rate of 60.43%, markedly outperforming other methods
such as System-1.x (54.74%) and ReAct (53.80%). This advantage is even more pronounced in
the more complex Blocksworld task, where our method’s 29.50% completion rate far exceeds all
baselines. This pattern of superiority extends to the challenging GameTraversalBenchmark (GTB),
where HSRL achieves the highest GTB Score of 30.65, surpassing strong competitors like Reflex-
ion (29.34). Furthermore, it also secures the best Top 5 Accuracy at 40.29%, demonstrating its
robustness in complex, large-scale planning environments.

Superior Solution Optimality. Beyond merely completing a task, the ability to generate optimal
(or near-optimal) paths is a crucial measure of a planning model’s intelligence. On the optimal
rate metric for the Maze and Blocksworld tasks, our method achieves optimality rates of 46.44%
and 18.00%, respectively, the highest among all compared methods. This result indicates that by
combining the forward-search capabilities of MCTS with the general knowledge of large models,
our framework can explore the solution space more thoroughly, effectively avoiding local optimal to
devise more efficient and concise solutions.

Table 2: Ablation study on the core components of our HSRL framework. We progressively remove
key modules from our full model, HSRL (Ours), to evaluate their individual contributions across
three distinct benchmarks. Best performance in each column is highlighted in bold.

M . Maze (10x10) Blocksworld (5-7 blocks) GTB
odel Configuration
CR(%)T OR(%)T CR(%)7T OR(%) T GTB Scores T Top 5 Acc.(%) T
State-Hierarchical Only 50.24 13.03 10.00 9.50 26.16 29.85
HSRL (Untrained) 54.50 14.22 12.50 9.50 26.96 32.38
HSRL (w/o MCTS) 55.21 45.97 28.00 15.00 27.80 38.09
HSRL (Ours) 60.43 46.44 29.50 18.00 30.65 40.29

Cross-Task Robustness and Generalization. The value of a general-purpose planning model lies
in its cross-task generalization capability. As shown in the table, our method performs exception-
ally well on the classical spatial reasoning tasks of Maze and Blocksworld, and the complex world
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knowledge required for the Game Travel Benchmark. In contrast, some baselines exhibit strong
task-specific biases; for example, while ReAct performs reasonably well in Maze, its completion
rate plummets to just 3.00% in Blocksworld. This comparison validates the robustness of our hier-
archical framework, which consistently decomposes complex problems into manageable sub-goals
for effective problem-solving, irrespective of the task modality. Moreover, our excellent perfor-
mance in Blocksworld demonstrates strong out-of-distribution generalization capabilities.

4.4 FURTHER ANALYSIS

Ablation Study. To validate the contribution of each component, we conducted a comprehensive
ablation study (Table[2). The results reveal a clear hierarchy of importance. Removing the MCTS
module (HSRL w/o MCTS) leads to a notable decline in both success and optimality, confirming that
its systematic, forward-looking search is crucial for exploring diverse solution pathways and avoid-
ing tempting local optima. Further removing the M-GRPO policy optimization (HSRL Untrained)
causes a precipitous performance collapse, especially in optimality (e.g., Maze optimality plum-
mets from 45.97% to 14.22%). This demonstrates that M-GRPO is the core engine that translates
the rich search experience from MCTS into a refined planning intuition, endowing the LLM with
the ability to generate high-quality, task-aligned sub-goals. Finally, the performance of the State-
Hierarchical Only model also significantly surpasses direct answering methods, and the inclusion of
environment-hierarchical approaches effectively improves task completion.
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Figure 4: Performance degradation as task dif-

ficulty increases. HSRL shows greater robust- ~ Figure 5: Qualitative comparison of a gener-
ness. ated plan before (left) and after (right) M-GRPO

training.

Robustness and Qualitative Insights. Further analysis highlights HSRL’s robustness. As shown
in Figure ] HSRL’s performance degrades far more gracefully with increasing task difficulty com-
pared to baselines, maintaining a substantial and reliable advantage on the most challenging Maze
instances. This resilience is not merely statistical; it stems from a fundamental improvement in
high-level planning quality. A qualitative comparison in Figure 5] illustrates the underlying mecha-
nism: while an untrained model generates ill-conceived sub-goals leading to a failed plan, the M-
GRPO trained HSRL produces a strategic and successful path. This synergy between quantitative
robustness and qualitative intelligence validates our framework’s effectiveness in complex planning
scenarios where long-horizon reasoning is paramount.

5 CONCLUSION

This study introduces HSRL, a novel hierarchical reasoning framework designed to address the
deficiency of LLMs in spatial reasoning. The framework simplifies complex tasks into manageable
sub-tasks through a dual decomposition of state and environment. To optimize planning capabilities,
we designed the M-GRPO algorithm, which integrates the exploratory power of MCTS with a more
fine-grained advantage function, significantly enhancing planning quality. Experiments demonstrate
that HSRL achieves SOTA performance across multiple benchmarks, including navigation, object
planning, and strategic games, substantially surpassing existing methods, particularly in task com-
pletion rates and path optimality. This work opens a new path for the application of LLMs in
complex physical worlds, such as embodied intelligence.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The use of the LLM was strictly limited to polishing the language, correcting grammatical errors
and typos, and assisting with formatting. All core research ideas, experimental design, analysis of
results, and the final conclusions were conceived and executed solely by the authors. The authors
take full responsibility for the entire content of this paper.

B MORE BACKGROUND

B.1 GTB SCORE

min

(R(m) — LMY — e<m>) ~ R™

| M
GTB_Score = —
M mz::l R, — R

min

&)

where:

* M = total number of maps in the dataset.

« R("™) = reward obtained for map m, determined by the final distance d to the objective:

4200, d=0
+100, d=1
R(M) — +50, de€l2,3]
+25, d€]3,5]
—50, de€]5,8]
—100, d>38

LLMgD“z) = path length taken by the LLM agent on map m.

+ £(™) = total generation errors made by the LLM on map m.

. R%ﬁl = 200 — A% (m), the maximum achievable reward (perfect path with no errors),
where A%, (m) is the optimal path length computed by an A* agent.

Rf:fr)l = —100 — A%, (m) — ™) the minimum achievable reward (farthest position,
maximal path cost, and maximal errors).

C MORE IMPLEMENTATION DETAILS

C.1 M-GRPO REWARD

For a sampled completion completion;, we parse its anchor list A; = [a;1, ai2, .- ., ain). If the
anchor list cannot be parsed, we directly assign a fixed penalty; otherwise, the reward score is
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computed by a signed power transformation to enlarge the margin between high- and low-quality
completions:

{PARSE_FAIL_PENALTY, if A; =0,
;= (6)

sign(z;) |z P, otherwise,
where sign(z;) preserves the direction of z;, and p > 1 amplifies its magnitude non-linearly.

The raw score z; aggregates the quality of anchors visited by a trajectory, while discouraging the
use of overly many anchors through a penalty term:

z; = Z 7(a) — a- max(O, |A;| — Aexpmed). @)

acA;

To evaluate each anchor consistently, we first assign each completion an initial reward r; according
to its alignment with the Manhattan distance of the optimal A* path. :

ri = BASIC_QUALITY _SCORE — | > aiy1 —ai| = Y a1 — dil|. (8)
a;€A; a,EA*

Each anchor reward 7(a) is then defined as the average quality of all completions that pass through
it, reflecting a consensus measure across different trajectories:

> T

i:a€A;

O fiTae Ay ?

D PROMPTS AND EXAMPLES
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( High-level Planning Prompt for Maze )
G@# Role \

You are an expert high-level path planner. You must strictly adhere to the requirements outlined in
the system instructions and tasks I have provided to you.

### Instructions

1. Your task is to plan a feasible, obstacle-free path for a single agent in a given 10x1@ grid
environment, from a start to an end point.

2. The path should be defined by a series of key anchor point coordinates.

3. You must identify exactly {{num_anchors}} feasible intermediate anchor points for the given task.
These anchor points should be the key turning points of the path used to navigate around obstacles
or toward the goal.

### Anchor Point Selection Strategy

- The path does not have to be the shortest path. The priority is feasibility and safety (avoiding
all obstacles).

- Explore multiple valid paths and select a reasonable one to define your anchor points.
- Anchor points should be strategically located at important positions around obstacles.

### Output Format

- You must strictly follow the format below to output the list of anchor points.

- Do not provide any explanation or text other than the final trajectory list.

- Directly output the result in the given format:

<trajectory for planning> = [(start_x, start_y), (anchor_1_x, anchor_1_y), ..., (end_x, end_y)]

### Examples

**Example 1:**

Task: You are in a 1@ by 18 world. There are obstacles that you must avoid at: (4,7), (8,6), (3,3),
(9)5)J (8)9)J (151)) (544)5 (1)3)J (9)9)) (4)1)) (557); (1)6)J (919)) (853)) (9)6)5 (7)1); (446))
(5,0), (2,5) and (4,0). Go from (2,1) to (90,2).

<trajectory for planning> = [(2,1),(2,2),(1,2),(0,2)]

**Example 2:**

Task: You are in a 1@ by 10 world. There are obstacles that you must avoid at: (0,7), (3,2), (e,4),
(3,4), (4,6), (7,2), (7,3), (2,0), (3,9), (9,3), (8,2), (9,5), (8,4), (7,5), (4,8), (5,2), (5,5),
(7,8), (6,3) and (9,8). Go from (6,8) to (6,1).

<trajectory for planning> = [(6,0),(6,4),(5,3),(6,1)]

**Example 3:**

Task: You are in a 1@ by 18 world. There are obstacles that you must avoid at: (8,5), (7,2), (1,7),
(219): (312): (SJQ)J (119): (313).! (316)1 (417)1 (9J3)J (517): (513)1 (4.!6)) (218): (413)1 (gJe)J
(7,5), (5,5) and (8,9). Go from (o,8) to (7,1).

<trajectory for planning> = [(e,8),(0,4),(1,1),(7,1)]

### Task to Solve

Task: You are in a 1@ by 10 world. There are obstacles that you must avoid at: (9,6), (1,0), (3,7),
(4,4), (9,1), (4,0), (3,4), (8,9), (7,1), (5,1), (3,6), (4,9), (4,8), (0,1), (6,4) and (9,0). Go

from (4,1) to (6,8).

\\:frajectory for planning> = [(4,1),(5,3),(5,6),(6,8)] Al//
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( Environment Decomposition Prompt for Maze \

Given the following list of coordinate points:
[(9,6), (1,8), (3,7), (4,4), (9,1), (4,0), (3,4), (8,9), (7,1), (5,1), (3,6), (4,9), (4,8), (,1),
(6,4), (9,0)]

Please select all points from the list that satisfy the following condition:
The x-coordinate (x) of the point must be within the closed interval from 4 to 5.

Please strictly follow this format for the output, including only the selected points:
### Output Format
<obstacles> = [ (x1, yl), (x2, y2), ..., (xn, yn)]

<assistant>
<obstacles> = [(4,4),(4,0),(5,1),(4,9),(4,8)]

4 NS v )

r

s 1§ Environment Decomposition Prompt for Maze )

Given the following list of coordinate points:
[(9)6)) (1,@)_, (3)7)) (414)) (9)1)) (4,@)) (3)4)) (819)) (711)) (511).} (3)6)) (419)) (4)8)) (a)l).}
(6,4), (0,0)]

Please select all points from the list that satisfy the following condition:
The y-coordinate (y) of the point must be within the closed interval from 1 to 3.

Please strictly follow this format for the output, including only the selected points:
### Output Format
<obstacles> = [ (x1, yl), (x2, y2), ..., (xn, yn)]

<assistant>
<obstacles> = [(9,1),(7,1),(5,1),(0,1)]

~
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( Low-level Execution Prompt for Maze )
4 )

### Role
You are an low-level path planner located in a 18 by 10 world. You must strictly adhere to the requirements
of the tasks I have provided to you.

### Environment

Provide a sequence of actions to navigate a world to reach a goal. (8,0) is located in the upper-left corner
and (9,9) lies in down-right corner.

### Rules

- <left = (0,-1)>

- <right = (0,+1)>

- <up = (-1,0)>

- <down = (+1,0)>

### Output Format
Actions = [action_© action_1 .. action_n]

Here are some examples:

HH#
Task: You are in a 10 by 1@ world. There are obstacles that you must avoid at: (2,1). Go from (©,1) to (3,4).

Actions = [right right right down down down]

HH#

Task: You are in a 10 by 10 world. There are obstacles that you must avoid at: (1,5) and (1,2). Go from (5,4)
to (0,5).

Actions = [up up up up up right]

HH#

Task: You are in a 10 by 1@ world. There are obstacles that you must avoid at: (o,3), (2,5) and (5,2). Go
from (4,2) to (o,5)

Actions = [up up up right right up right]

### Task to Solve subtask_1

Task: You are in a 10 by 10 world. There are obstacles that you must avoid
at:(4,4),(4,0),(5,1),(4,9),(4,8),(9,1),(7,1),(5,1),(0,1). Go from (4,1) to (5,3).

Q:tions = [right right down] j
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( High-level Planning Prompt for Blocksworld D)
/ (N J \
i

Role
You are a high-level Blocksworld planner. You must strictly adhere to the requirements outlined in
the system instructions and tasks I have provided to you.

### Instructions

1. Plan a feasible sequence of block configurations from an initial state to a goal state.

2. Define the plan with exactly {{num_anchors}} intermediate stack states.

3. Intermediate states should be key subgoals (e.g., clearing a block or forming partial stacks).

### Strategy
- The sequence need not be shortest; feasibility and clarity are the priority.
- Choose anchor states that mark meaningful progress toward the goal.

### Output Format

- You must strictly follow the format below to output the list of anchor states.
- Do not provide any explanation or text other than the final output list.

- Directly output the result in the given format:

Output = [initial_state, anchor_statel, ..., goal_state]

### Examples

**Example 1:**

The initial state:

A is on the table. B is on A. B is clear.
The goal is:

B is on the table. A is on B. A is clear.

Output = ['A is on the table. B is on A. B is clear.','A is on the table. A is clear. B is on the
table. B is clear.','B is on the table. A is on B. A is clear.']

**Example 2:*¥

The initial state:

C is on the table. D is on C.
The goal is:

C is on D. D is on the table. D is clear.

is clear.

o

Output = ['C is on the table. D is on C. D is clear.','C is on the table. C is clear. D is on the
table., D is clear.','C is on D. D is on the table. D is clear.']

**Example 3:**

The initial state:

B is on the table. C is on B. A is on C. A is clear.
The goal is:

B is on the table. B is clear.

C is on B. A is on C. A is clear.

Output = ['B is on the table. C is on B. A is on C. A is clear.','B is on the table. B is clear. C
is on the table. C is clear. A is on the table. A is clear.','B is on the table. C is on B. C is
clear. A is on the table. A is clear.']

### Task to Solve

The initial state:

B is on the table. B is clear.

D is on the table. C is on D. E is on C. A is on E. A is clear.

The goal is:
C is on the table. E is on C. D is on E. B is on D. A is on B. A is clear.

Output = ['The hand is empty. B is on the table. B is clear. D is on the table. C is on the table. C
is clear. E is on the table. E is clear. A is on the table. A is clear.', 'C is on the table. E is
on C. D is on E. B is on the table. B is clear. A is on the table. A is clear.']

- J
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( )

I 1§ Environment Decomposition Prompt for Blocksworld Y, ~

Given the 2 state of the same group of Blocks:

<1>'B is on the table. B is clear. D is on the table. C is on the table. C is clear. E is on the
table. E is clear. A is on the table. A is clear.’

<2>'C is on the table. E is on C. D is on E. B is on the table. B is clear. A is on the table. A is
clear."’

Please select all state pairs (including block-block pairs, block-table pairs, and block-clear
pairs) whose relative positions remain unchanged.

Please strictly follow this format for the output, including only the selected pairs:
### Output Format
<pairs> = [(Objectl,Object2), (Object3,0bject4),...]

<assistant>

<pairs> = [(B,table), (A,table), (C,table)]
\_

Low-level Execution Prompt for Blocksworld

You are a Blocks World action planner. You will be given an initial state and a goal state.

Provide a sequence of actions to move the blocks to reach a goal similarly to the examples below.

Do not include any extra text or explanations.

Here are some examples:

HHH#

The initial state:

The hand is empty.

B is on the table. A is on B. C is on A. C is clear.

The goal is:

B is on the table. A is on B. A is clear.

C is on the table. C is clear.

<Observation>: B is still on table; A is still on B

Actions: Move C from A to table

#i#

The initial state:

The hand is empty.

B is on the table. C is on B. D is on C. A is on D. A is clear.

The goal is:

A is on the table. A is clear.

C is on the table. B is on C. D is on B. D is clear.

<Observation>: A is still clear

Actions: Move A from D to table | Move D from C to table | Move C from B to table | Move B from

table to C | Move D from table to B

Now, here is your task:

HHH#

The initial state:

B is on the table. B is clear.

D is on the table. D is clear.

C is on the table. C is clear.

E is on the table. E is clear.

A is on the table. A is clear.

The goal is:

C is on the table. E is on C. D is on E. D is clear.

B is on the table. B is clear.

A is on the table. A is clear.

<Observation>: B is still on table; A is still on table; C is still on table
\\éftions: Move E from table to C | Move D from table to E A‘/)
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( High-level Planning Prompt for GTB )
G## Role \

You are an expert high-level planner for a 2D-gird game. You must strictly adhere to the
requirements outlined in the system instructions and tasks I have provided to you.

### Instructions

1. Your task is to plan a feasible sequence of moves in a {{world_height}}x{{world_length}} grid
environment, from a start state to a goal state.

2. The plan should be defined by a series of key anchor coordinates.

3. You must identify exactly {{num_anchors}} feasible anchor states for the given task. These
should be important turning points or subgoals used to navigate around obstacles or toward
objectives.

### Anchor State Selection Strategy

- The plan does not need to be the shortest; the priority is feasibility and safety (avoiding all
obstacles).

- Anchor states should be strategically located at key subgoals: clearing an obstacle, moving
around blocking tiles, or forming partial progress toward objectives.

- Explore multiple valid strategies and select one reasonable plan.

### Reward Context
- Rewards are given as follows:
{{reward_design}}
{{reward_feedback}}
- You are also given information about your previous attempt:
- Actions generated: {{total_actions[list(objective_tile_dict.keys())[i]]1}}
- Start position: {{prev_protagonist_position}}
- End position: {{protagonist_position}}
- Distance from objective: {{distance_from_objective}}
Objective location: {{list(objective_tile_dict.values())[i]}}
GTB Reward received: {{reward_this_objective[list(objective_tile_dict.keys())[1]]}}

### Output Format
- Strictly output the result in the following format, without any explanation:
<trajectory for planning> = [(start_x, start_y), (anchor_1_x, anchor_1_y), ..., (end_x, end_y)]

### Examples

**Example 1:**

Task: You are in a 10 by 10 world. There are obstacles that you have to avoid at: (4,7), (8,6),
(313)J (9)5).! (8.!9)) (1J1)J (514)J (113)1 (ng)) (4J1)J (517).! (116)1 (9:6)1 (8.!3)) (9,9), (7.!1))
(4,6), (5,0), (2,5) and (4,0). Go from (2,1) to (0,2).

<trajectory for planning> = [(2,1),(2,2),(8,2)]

**Example 2:**

Task: You are in a 10 by 10 world. There are obstacles that you have to avoid at: (e,7), (3,2),
(8,4), (3,4), (4,8), (7,2), (7,3), (2,0), (3,9), (9,3), (8,2), (9,5), (8,4), (7,5), (4,8), (5,2),
(5,5), (7,8), (6,3) and (9,8). Go from (6,8) to (6,1).

<trajectory for planning> = [(6,@),(6,4),(5,3),(4,2),(6,1)]

**Example 3:**

Task: You are in a 10 by 10 world. There are obstacles that you have to avoid at: (8,5), (7,2),
(1)7): (216): (3:2)) (5:9): (119): (3)3)) (3;6)) (4:7): (613): (5)7)1 (5:3)) (4:6); (2:8): (4:3)1
(9,0), (7,5), (5,5) and (8,9). Go from (0,8) to (7,1).

<trajectory for planning> = [(@,8),(9,4),(1,1),(7,1)]

### Task to Solve

Task: {{task}}

\\:frajectory for planning> = <‘//
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( Environment Decomposition Prompt for GTB )

Given the following list of coordinate points:
[{obstacles_this_object}]

Please select all points from the list that satisfy the following condition:
The x-coordinate (x) of the point must be within the closed interval from {x_this_object_min} to
{x_this_object_max}.

Please strictly follow this format for the output, including only the selected points:
### Output Format
<obstacles> = [ (x1, y1), (x2, y2), ..., (xn, yn)]

<assistant>
<obstacles> =

-

r 1§ Environment Decomposition Prompt for GTB )

Given the following list of coordinate points:
[{obstacles_this_object}]

Please select all points from the list that satisfy the following condition:
The y-coordinate (y) of the point must be within the closed interval from {y_this_object_min} to
{y_this_object_max}.

Please strictly follow this format for the output, including only the selected points:
<obstacles> = [ (x1, y1), (x2, y2), ..., (xn, yn)]

<assistant>
<obstacles> =
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/—( Low-level Execution Prompt for GTB H

### Role
You are an low-level path planner located in a {world_height} by {world_width}world. You must
strictly adhere to the requirements of the tasks I have provided to you.

### Environment
Provide a sequence of actions to navigate a world to reach a goal. (8,0) is located in the upper-
left corner and {(world_height,world_width)} lies in down-right corner.

### Rules

- <left = (0,-1)>
<right = (@,+1)>
- <up = (-1,0)>

- <down = (+1,0)>

### Output Format
Actions = [action_@ action_1 .. action_n]

Here are some examples:

Hit#

Task: You are in a 10 by 10 world. There are obstacles that you must avoid at: (2,1). Go from
(0,1) to (3,4).

Actions = [right right right down down down]

Hit#

Task: You are in a 10 by 10 world. There are obstacles that you must avoid at: (1,5) and (1,2).
Go from (5,4) to (@,5).

Actions = [up up up up up right]

Hi#

Task: You are in a 10 by 10 world. There are obstacles that you must avoid at: (@,3), (2,5) and
(5,2). Go from (4,2) to (0,5)

Actions = [up up up right right up right]

### Task to Solve subtask_1

Task: {GTB_sub_task}

taions = /
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