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Abstract
In this paper, we first present an explanation re-
garding the common occurrence of spikes in the
training loss when neural networks are trained
with stochastic gradient descent (SGD). We pro-
vide evidence that the spikes in the training
loss of SGD are “catapults”, an optimization
phenomenon originally observed in GD with
large learning rates in (Lewkowycz et al., 2020).
We empirically show that these catapults occur
in a low-dimensional subspace spanned by the
top eigenvectors of the tangent kernel, for both
GD and SGD. Second, we posit an explanation
for how catapults lead to better generalization
by demonstrating that catapults promote feature
learning by increasing alignment with the Average
Gradient Outer Product (AGOP) of the true predic-
tor. Furthermore, we demonstrate that a smaller
batch size in SGD induces a larger number of cat-
apults, thereby improving AGOP alignment and
test performance.

1. Introduction
Training algorithms are a key ingredient to the success of
deep learning. Stochastic gradient descent (SGD) (Rob-
bins & Monro, 1951), a stochastic variant of gradient de-
scent (GD), has been effective in finding parameters that
yield good test performance despite the complicated non-
linear nature of neural networks. Empirical evidence sug-
gests that training networks using SGD with a larger learn-
ing rate results in better predictors (Frankle et al., 2020;
Smith & Topin, 2019; Gilmer et al., 2021). In such set-
tings, it is common to observe significant spikes in the
training loss (LeCun et al., 2015; Ruder, 2016; Keskar &
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Socher, 2017; Xing et al., 2018) (see Fig. 1 as an example).
One may not a priori expect the training loss to decrease

Figure 1. Spikes in training loss
when optimized using SGD
(x-axis: iteration). (Source:
Wikipedia)

back to its “pre-spike”
level after a large spike.
Yet, this is what is
commonly observed in
training. Furthermore,
the resulting “post-spike”
model can yield im-
proved generalization
performance (He et al.,
2016; Zagoruyko & Ko-
modakis, 2016; Huang
et al., 2017).

Why do spikes occur during training, and how do the spikes
relate to generalization?

In this work, we answer these questions by connecting three
common but seemingly unrelated phenomena in deep learn-
ing:

1. Spikes in the training loss of SGD,

2. Catapult dynamics in GD (Lewkowycz et al., 2020),

3. Better generalization when training networks with
small batch SGD as opposed to larger batch size or
GD.

In particular, we show that spikes in the training loss of
SGD are caused by catapult dynamics, which were origi-
nally characterized in (Lewkowycz et al., 2020) as a single
spike in the loss when training with GD and large learning
rate. We then show that smaller batch size in SGD results in
a greater number of catapults. We connect the optimization
phenomena of catapults to generalization by showing that
catapults improve generalization through increasing feature
learning, which is quantified by the alignment between the
Average Gradient Outer Product (AGOP) of the trained net-
work and the true AGOP (Härdle & Stoker, 1989; Hristache
et al., 2001; Xia et al., 2002; Trivedi et al., 2014; Radhakr-
ishnan et al., 2024a). Since decreasing batch size in SGD
leads to more catapults, our result implies that SGD with
small batch size yields improved generalization (see Table 1
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Batch size AGOP alignment Test loss

2000 (GD) 0.81 0.74

50 0.84 0.71

10 0.89 0.59

5 0.95 0.42

Table 1. Smaller SGD batch size leads to a higher (better) AGOP
alignment and smaller (better) test loss. The results correspond to
Fig. 9a (a synthetic dataset).

for an example). We outline our specific contributions in
the context of optimization and generalization below.

Optimization. We demonstrate that spikes in the training
loss, specifically measured by Mean Squared Error, occur
in the top eigenspace of the Neural Tangent Kernel, a kernel
resulting from the linearization of a neural network (Jacot
et al., 2018). Namely, we project the residual (i.e., the dif-
ference between the predicted output and the target output)
to the top eigenspace of the tangent kernel and show that
spikes in the total loss function correspond to the spikes
in the components of the loss in this low-dimensional sub-
space (see Section 3.1). In contrast, the components of the
loss in the space spanned by the remaining eigendirections
decrease monotonically. Thus, the catapult phenomenon
occurs in the span of the top eigenvectors while the remain-
ing eigendirections are not affected. This explains why the
loss drops quickly to pre-spike levels, namely the loss value
right before the spike, from the peak of the spike. We fur-
ther show that multiple catapults can be generated in GD by
increasing the learning rate during training (see Section 3.2).
While prior work (Lewkowycz et al., 2020) observed that
the spectral norm of the tangent kernel decreased for one
catapult, we extend that observation by showing that the
norm decreases after each catapult.
We further provide evidence for catapults in SGD with large
learning rates (see Section 3.3). Namely, we demonstrate
that spikes in the loss when training with SGD correspond
to catapults by showing that similarly to GD:

1. The spikes occur in the top eigenspace of the tangent
kernel,

2. Each spike results in a decrease in the spectral norm of
the tangent kernel.

We corroborate our findings across several network archi-
tectures including Wide ResNet (Zagoruyko & Komodakis,
2016) and ViT (Dosovitskiy et al., 2021) and datasets includ-
ing CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer
et al., 2011).

Moreover, as small batch size leads to higher variance in the
eigenvalues of the tangent kernel for any given batch, small

batch size results in an increased number of catapults.

Generalization. We posit that catapults improve the gen-
eralization performance by alignment between the AGOP of
the trained network with that of the true model1. The AGOP
identifies the features that lead to greatest change in predic-
tor output when perturbed and has been recently posited as
the mechanism through which neural networks learn fea-
tures (Radhakrishnan et al., 2024a; Beaglehole et al., 2023).
We use AGOP alignment to provide an explanation for prior
empirical results from (Lewkowycz et al., 2020; Zhu et al.,
2024) showing that a single catapult can lead to better test
performance in GD. Moreover, we extend these prior results
to show that test performance continues to improve as the
number of catapults increases in GD. Thus, we show that
decreasing batch size with SGD can lead to better test per-
formance due to an increase in the number of catapults. We
further demonstrate that AGOP alignment is an effective
measure of generalization by showing that test error is highly
correlated with the AGOP alignment when training on the
same task across different optimization algorithms including
Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012) and
Adam (Kingma & Ba, 2015) etc. We corroborate our find-
ings on CelebA (Liu et al., 2015) and SVHN (Netzer et al.,
2011) datasets and architectures including fully-connected
and convolutional neural networks. See Section 4.

1.1. Related works

Linear dynamics and catapult phase phenomenon. Re-
cent studies have shown that (stochastic) GD for wide neu-
ral networks provably converges to global minima with
an appropriately small learning rate (Du et al., 2019; Zou
& Gu, 2019; Liu et al., 2022a). These works leveraged
the fact that neural networks with sufficiently large widths,
under specific initialization conditions, can be accurately
approximated by their linearization obtained by the first-
order Taylor expansion (Jacot et al., 2018; Liu et al., 2020;
2022b; Zhu et al., 2022). Therefore, their training dynamics
are close to the dynamics of the corresponding linear mod-
els, under which the training loss decreases monotonically.
Such a training regime is commonly referred to as the ker-
nel regime. However, under the same setup of the kernel
regime except using a large learning rate, GD will experi-
ence a catapult phase (Lewkowycz et al., 2020): the training
loss increases drastically in the beginning stage of training
then decreases, while GD still converges. Recent studies
focusing on understanding catapults in GD include (Zhu
et al., 2024), which considers quadratic approximations of
neural networks, and (Meltzer & Liu, 2023), examining two-
layer homogeneous neural networks. Our work investigates
the impact of catapults in SGD on both optimization and
generalization through experimental approaches.

1When the underlying model is not available, we use a SOTA
model as a substitute.
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Edge of stability. A phenomenon related to catapults is
the “Edge of Stability” (EoS), which describes the dynamics
of the training loss and the sharpness, i.e., eigenvalues of the
Hessian of the loss, at the later stage of training networks
with GD (Cohen et al., 2021) and SGD (Jastrzębski et al.,
2019; Jastrzebski et al., 2020). There is a growing body of
work analyzing the mechanism of EoS in training dynamics
with GD (Arora et al., 2022; Ahn et al., 2022; Damian et al.,
2023; Wang et al., 2022b; Agarwala et al., 2023; Agarwala
& Dauphin, 2023; Wang et al., 2022a), and SGD (Kalra &
Barkeshli, 2023). It was conjectured in (Cohen et al., 2021)
that at EoS for GD the spikes in the training loss are micro-
catapults. Our work provides evidence that the spikes in the
training loss using SGD are catapults and demonstrates the
connection between the loss spikes and feature learning.

Generalization and sharpness. It has been observed that
networks trained with SGD generalize better than GD, and
smaller batch sizes often lead to better generalization per-
formance (LeCun et al., 2002; Keskar et al., 2017; Goyal
et al., 2017; Jastrzębski et al., 2017; Masters & Luschi, 2018;
Kandel & Castelli, 2020; Smith et al., 2021). Empirically,
it has been observed that training with SGD results in flat
minima (Hochreiter & Schmidhuber, 1994; 1997). How-
ever, we noticed that it is not always the case, e.g., (Geiping
et al., 2022). A number of works been argued that flatness
of the minima is connected to the generalization perfor-
mance (Neyshabur et al., 2017; Wu et al., 2017; Kleinberg
et al., 2018; Xie et al., 2021; Jiang* et al., 2020; Dinh et al.,
2017), however we know only one theoretical result in that
direction (Ding et al., 2024). Training algorithms aiming to
find a flat minimum were developed and shown to perform
well on a variety of tasks (Izmailov et al., 2018; Foret et al.,
2021). As an explanation for empirically observed improved
generalization, prior work (Lewkowycz et al., 2020) argued
that a single catapult with GD resulted in flatter minima. In
this work we propose a different line of investigation to un-
derstand generalization properties of GD-based algorithms
based on feature learning as measured by the alignment with
AGOP.

2. Preliminaries
Notation. We use bold letters (e.g., w) to denote vectors
and capital letters (e.g., K) to denote matrices. For a matrix,
we use ∥ · ∥F to denote its Frobenius norm and use ∥ · ∥2
to denote its spectral norm. For trainable parameters, we
use superscript t, as in wt, to denote the time stamp during
training. We use the big-O notation O(·) to hide constants,
and use Õ(·) to further hide logarithmic factors. For a map
f(w) : Rp → Rc, we use ∇wf(v) and ∇2

wf(v) to denote
the first and second order derivative of f w.r.t. w evaluated
at v respectively.

Optimization task. Consider a parameterized model
f(w; ·) : Rp → R (e.g., a neural network) with param-
eters w and a training dataset D = {(xi, yi)}ni=1 with data
xi ∈ Rd and labels yi ∈ R for i ∈ [n]. Denote X ∈ Rn×d

as the collection of training input data, with each row of
X representing an input xi, and y := (y1, · · · , yn)T . We
further write f ∈ Rn as the predictions of f on X . The goal
of the optimization task is to minimize the Mean Square
Error (MSE)

L(w; (X,y)) =
1

n

n∑
i=1

(f(w;xi)− yi)
2 =

1

n
∥f − y∥2. (1)

Let w0 be the weight parameters at initialization. Mini-
batch SGD is conducted as follows: at each step t, randomly
sample a batch B ⊂ D (of batch size b), and perform the
update following

wt+1 = wt − η

b

∂

∂w

∑

(xj ,yj)∈B

(f(wt;xj)− yj)
2,

where η is the learning rate. When b = n, mini-batch SGD
reduces to the full-batch gradient descent (GD).

Neural Tangent Kernel (NTK). Proposed in (Jacot et al.,
2018), NTK is a useful tool in understanding and analyzing
over-parameterized neural networks.
Definition 1 ((Neural) Tangent Kernel). The (neural) tan-
gent kernel K(w; ·, ·) for a parameterized machine learning
model f(w; ·) : Rp × Rd → R is defined as:

∀x, z ∈ Rd, K(w;x, z) =

〈
∂f(w;x)

∂w
,
∂f(w; z)

∂w

〉
.

Given the training data inputs X , the NTK can be evaluated
on any pair of inputs xi and xj , which results in a n × n
matrix K, called the NTK matrix. By definition, the NTK
matrix K is symmetric and positive semi-definite. There-
fore, it can be decomposed as K =

∑n
j=1 λjujuj

T , with
λj ∈ R and uj ∈ Rn, j ∈ {1, · · · , n}, being the eigenval-
ues and unit-length eigenvectors, respectively. Without loss
of generality, we assume λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Top-eigenspace and decomposition of loss function.
Given an integer s, 1 ≤ s < n, we call the top eigenspace
(or top-s eigenspace) of NTK as the subspace spanned by
the top eigenvectors uj with 1 ≤ j ≤ s. We also define
projection operators P≤s : Rn → Rn and P>s : Rn → Rn,
such that for any vector v ∈ Rn the followings hold:

P≤sv =

s∑

i=1

⟨v,ui⟩ui, P>sv =

n∑

i=s+1

⟨v,ui⟩ui.

The MSE Eq. (1) can be decomposed as

L =
1

n
∥f − y∥22 =

1

n
∥P≤s(f − y)∥22 +

1

n
∥P>s(f − y)∥22

=: L≤s + L>s. (2)
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Critical learning rate. When a constant learning rate of
the algorithm is used throughout the training, it is important
to select the learning rate η, as a large η easily leads to a
divergence of loss and a small η slows down the training
procedure. A conventional wisdom is to set η no larger than
the critical learning rate ηcrit(w) := 2

λmax(HL(w)) , where
HL := ∇2

wL(w) denotes the Hessian of the loss. This intu-
ition follows from the well-known lemma in optimization:

Lemma 1 (Descent Lemma (Nesterov, 1983)). For a
smooth loss L(w) : Rp → R, suppose λmax(HL(w)) ≤ β
for all w ∈ Rp, then GD satisfies:

L(wt+1) ≤ L(wt)− η(1− ηβ/2)
∥∥∇wL(wt)

∥∥2.

For η < 2/β, the descent lemma guarantees the decrease
of the loss. Note that this inequality is tight for quadratic
loss, e.g., loss for linear models. For neural networks with
sufficient width, due to transition to linearity (Liu et al.,
2020), the critical learning rate ηcrit almost does not change
during training, and ηcrit can be well-approximated by NTK
(exact, for linear models): ηcrit ≈ n/∥K∥2 = n/λ1 (see
the derivation in Appendix A.1). For neural networks that
are not wide, (Papyan, 2019; Agarwala et al., 2023; Wang
et al., 2022b) showed the approximation still holds and we
provide additional evidence for SGD in Appendix A.2.

Note that unless specified, the critical learning rate is evalu-
ated at initialization w0.
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Figure 2. An illustration of the
catapult. This experiment corre-
sponds to Fig. 3a.

Catapult dynamics. It
was recently observed
in (Lewkowycz et al.,
2020) that, for wide neu-
ral network, full batch
GD with a learning rate
that is larger than ηcrit
(e.g., η ∈ (ηcrit, 2ηcrit)
as shown in (Lewkowycz
et al., 2020)) surprisingly
ends up with a conver-
gence. Instead of the
expected divergence, the
loss decreases after a drastic increase at the beginning stage
of training, forming a loss spike (see Fig. 2). Moreover,
∥K∥2 is observed to be smaller at the end of the spike. In-
terestingly, the solution found by this large-learning-rate
GD turns out to perform better in terms of test loss. Intu-
itively, the decrease in ∥K∥2 raises the divergence threshold
n/∥K∥2 which allows a final convergence.

In this paper, we refer catapult dynamics as the phenomenon
of a drastic increase followed by a fast decrease in the train-
ing loss which is triggered by a learning rate larger than
ηcrit and accompanied by a decreasing ∥K∥2.
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(a) Loss decomposition(FCN)
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(b) Loss decomposition(CNN)

Figure 3. Catapult occurring in the top eigenspace of NTK in
GD for 5-layer FCN (a) and CNN (b). The training loss is
decomposed into the eigenspace of NTK, i.e., L = L≤5 + L>5.
In the experiment, both networks are trained by GD on 128 data
points from CIFAR-10 with learning rate 6 and 8 respectively (the
critical learning rates are 3.6 for FCN and 4.5 for CNN).

3. Catapults in optimization
3.1. Catapults occur in the top eigenspace of the tangent

kernel for GD

The training dynamics of the machine learning model, e.g.,
a neural network, are closely related to its NTK Kt :=
K(wt;X,X) ∈ Rn×n. Specifically, when the loss is opti-
mized by gradient flow (continuous-time GD) with learning
rate η, the output follows the dynamic equation (Lee et al.,
2019):

df t/dt = −2ηKt/n(f t − y).

By discrete time GD, this becomes

f t+1 − y =
(
In − 2ηKt/n

)
(f t − y) + ∆Ht

f
, (3)

with ∆Ht
f
:=

〈
wt+1 −wt,∇2

wf(ξ)(wt+1 −wt)
〉
∈ Rn

and ξ = τwt + (1 − τ)wt+1, τ ∈ (0, 1). Note that for
finitely wide neural networks,

∥∥∥∆Ht
f

∥∥∥
2

is small compared
to the first term (Papyan, 2019; Wang et al., 2022b) and is
exactly zero for infinitely wide neural networks (Lee et al.,
2019). Therefore, the training dynamics of neural networks
are mainly determined by the first term in R.H.S. of the
above equation, which relies on the spectral information
of the NTK Kt. This data-dependent NTK is also useful
for understanding the generalization performance of neural
networks (Fort et al., 2020; Atanasov et al., 2022; Ortiz-
Jiménez et al., 2021; Loo et al., 2022).

Consider decomposing Eq. (3) into eigendirections of the
NTK Kt, i.e., ⟨f t − y,ut

i⟩. Supposing the dynamics among
eigendirections are not interacting and ui is constant, we ex-
pect that the increase of training loss during catapult occurs
in the top few eigendirections where η > n/λi, while the
loss corresponding to the remaining eigendirections remain
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decreasing. Indeed, this has been theoretically shown to
be true on quadratic models that approximate wide neural
networks (Zhu et al., 2024).

Claim 1. The catapult occurs in the top eigenspace of the
tangent kernel: the loss component corresponding to the
top-s eigenspace L≤s has a spike during the catapult, while
the loss component in the complementary eigenspace L>s

decreases monotonically.

Remark 1. We note that catapults does not occur in all
eigendirections, as the learning rate η cannot be arbitrarily
large. Instead, there is a maximum learning rate ηmax such
that if η > ηmax the algorithm will diverge. For instance,
ηmax = 2ηcrit for quadratic models (Zhu et al., 2024) and
ηmax ≈ 6ηcrit for ReLU networks (Lewkowycz et al., 2020).
Therefore, for any learning rate η ∈ (ηcrit, ηmax) such that
catapult occurs, only the top few eigendirections satisfy
n/λi < ηmax. We consistently observe that s is a small
constant no larger than 10 in all our experiments.

We empirically justify Claim 1 for neural networks. In par-
ticular, we consider three neural network architectures: a
5-layer Fully Connected Neural Network (FCN), a 5-layer
Convolutional Neural Network (CNN), and Wide ResNets
10-10; and three datasets CIFAR-10, SVHN, and a synthetic
dataset. The details of experimental setup can be found in
Appendix F. We present a selection of the results in Fig. 3
with the remaining results in Fig. 14 and 15 in Appendix B.
We can see that L≤5 corresponds to the spike in the training
loss while L>5 decreases almost monotonically. Concur-
rently with this study, (Zhang & Xu, 2023) showed that
the loss spike in GD is primarily due to the low-frequency
component, corroborating our findings through a frequency
perspective.

We note that the same phenomenon holds for multidimen-
sional outputs. See more details in Fig. 16 in Appendix B.
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Figure 4. Multiple catapults during GD with increased learning
rates. We train a 5-layer FCN and CNN on a subset of CIFAR-10
using GD. The learning rate is increased two times for each experi-
ment. The experimental details can be found in Appendix F.2.

3.2. Inducing multiple catapults in GD

While prior work showed a single catapult during training
with gradient descent (Lewkowycz et al., 2020; Zhu et al.,
2024; Kalra & Barkeshli, 2023), we present that catapults
can be induced multiple times by repeatedly increasing the
learning rate during training.

Specifically, during a catapult, the norm of NTK ∥K∥2 de-
creases, which leads to an increase in the critical learning
rate ηcrit ≈ n/∥K∥2, see Fig. 4. When the loss starts to
decrease during a catapult, ηcrit surpasses the current learn-
ing rate η of the algorithm. Hence, after each catapult, one
can reset the algorithmic learning rate η to be greater than
the current ηcrit to trigger another catapult. In practice, we
observe that a sequence of catapults can be triggered by re-
peating the above procedure. See Fig. 4 for a demonstration
of various neural network architectures.

Interestingly, with multiple catapults, the gradient descent
can ultimately converge with a much larger learning rate,
which leads to a divergence, instead of a catapult, if set as
the initial learning rate of gradient descent (see Fig. 18 in
Appendix B.3). Furthermore, thanks to the relation ηcrit ≈
n/∥K∥2, this indicates that the multiple catapults achieve
a much smaller ∥K∥2 which can not be obtained in the
scenario of a single catapult. See Fig. 4 for an experimental
demonstration. Moreover, the multiple catapults lead to
better generalization performance than a single catapult.
We defer this discussion of generalization performance to
Section 4.

3.3. Catapults in SGD

In this section, we consider the stochastic setting, and argue
that the spikes often observed in the training loss of SGD
(e.g., Fig. 1) are in fact catapults.

Mechanism of catapults in SGD. Recall that the cata-
pults are triggered when η > ηcrit. Unlike in deterministic
gradient descent, the mini-batch stochastic training dynam-
ics is determined by the NTK matrix evaluated on the given
batch Xbatch. Specifically, the update equation of mini-
batch SGD becomes (c.f. Eq.(3) of GD):

f t+1
batch − ybatch =(Ib − ηKt(Xbatch)/b) (f

t
batch − ybatch)

+ ∆Hft
batch

, (4)

where b is the mini batch size, fbatch := f(Xbatch) and
ybatch is the label corresponds to Xbatch. It is important
to note that in mini-batch SGD the critical learning rate
ηcrit(Xbatch) becomes batch dependent: for batches that
have relatively large (small, respectively) ∥Kbatch∥2, the
corresponding critical learning rate ηcrit(Xbatch) is rela-
tively small (large, respectively). Then, if ηcrit(Xbatch) of
a given batch is smaller than the algorithmic learning rate
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Figure 5. Exact match between the occasion when η >
ηcrit(Xbatch) and loss spike for SGD. We train a two-layer neural
network on a synthetic dataset using SGD with batch size one.

η of SGD, we expect a catapult will happen: an increase in
the running training loss.

Indeed, this expectation is confirmed in our experiments.
Specifically, we train the network on a synthetic dataset with
SGD and consider batch size one. We set the algorithmic
learning rate higher than the critical learning rate for only
one training example. As expected, we observe that the loss
spikes only occur when the gradient is computed based on
that particular training example. See the results in Fig. 5
and the detailed experimental setup in Appendix F.3.

In more practical scenarios, we train a shallow network by
SGD with mini-batch size 32, on a subset of CIFAR-10
with training size 128. First, when the algorithmic learning
rate η is smaller than ηcrit(Xbatch) of all the batches (as
shown in the case of η = 0.1 in (Fig. 6 upper left)), we
observe that the training loss of mini-batch SGD monotoni-
cally decreases until convergence without any spike; when η
becomes greater than ηcrit(Xbatch) for some of the batches
(as shown in the case of η = 0.8 in Fig. 6 upper right),
many spikes appear in the training loss. Moreover, we show

0

1

2

3

4

5

LR

Critical LR
LR=0.1

Critical LR
LR=0.8

0 1000 2000
0

1

2

3

Tr
ai

ni
ng

 lo
ss LR = 0.1

0 100 200 300

LR = 0.8

Iteration

Figure 6. Mechanism of catapults in SGD. LR denotes learning
rate. We train a two-layer neural network on 128 data points of
CIFAR-10 using SGD with batch size 32. The leaning rate is 0.1
for the left two panels and 0.8 for the right two panels.

Network Architecture Match rate between ∆L > 0
and η > ηcrit(Xbatch)(%)

Shallow network 97.32± 0.45

5-layer FCN 96.17± 1.46

5-layer CNN 94.67± 3.27

Table 2. The match rate between ∆Lt := Lt+1 − Lt > 0 and
η > ηt

crit(Xbatch). For each network architecture, we calculate
the match rate as the ratio of occurrences where η > ηt

crit(Xbatch)
for all t such that Lt+1 > Lt until convergence of SGD (see the
training loss in Fig. 6(c) for shallow net and Fig. 7 (a,b) for deep
nets). Each result is the average of 3 independent runs.

that these spikes in the (total) training loss are caused by
large learning rates for batches. Specifically, for the case
of η = 0.8, we verify that whenever the (total) training
loss increases, the algorithmic learning rate η is larger than
the critical learning rate ηcrit(Xbatch) for the current batch
Xbatch. This phenomenon is further verified for 5-layer
FCN and CNN. See Table 2.

Decreases in the spectral norm of the tangent kernel cor-
respond to spikes. As shown in prior work (Lewkowycz
et al., 2020) and in the multiple catapults in Section 3.2
an important characterization of the catapult dynamics is
the decreasing NTK norm ∥K∥2. Here, we experimentally
show that the spectral norm of the NTK decreases whenever
there is a spike in the SGD training loss.

Specifically, we consider four network architectures: (1)
5-layer FCN, (2) 5-layer CNN (the same as the ones in
Fig. 3), (3) Wide ResNets 10-10 and (4) ViT-4. We train
neural networks on a subset of CIFAR-10 using SGD. Fig. 7
shows some of the results (more results on various datasets
and parameterizations are available in Appendix C). One
can easily see that at each spike of the training loss, there
is a significant drop in the NTK spectral norm ∥K∥2, while
∥K∥2 are mostly increasing or staying unchanged at other
steps. This empirical evidence corroborates that these spikes
are indeed (mini-)catapults, instead of some random fluctu-
ations in the training loss. All experimental details can be
found in Appendix F.

Catapults occur in the top eigenspace of the tangent
kernel for SGD. As discussed in Section 3.1, another
characteristic of the catapults is that they occur in the top
eigenspace of the tangent kernel. We show that these loss
spikes in SGD also occur in the top eigenspace, as another
evidence that these spikes are catapults.

In the experiments, we decompose the training loss of SGD
into L≤1 and L>1 based on the eigendirections of the tan-
gent kernel. We observe that L≤1 corresponds to the spikes
in the training loss, while the decrease of L>1 is nearly
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Figure 7. Catapult dynamics in SGD for modern deep architectures. The training loss is decomposed based on the eigendirections of
the NTK: L≤1 and L>1. We train the networks on a subset of CIFAR-10 using SGD. The complete versions of Panel (c) and (d) can be
found in Fig. 20 in Appendix C.

monotonic, with only small oscillations present. See Fig. 7
for deep networks and Fig. 19 in Appendix C for the shallow
network with η = 0.8 corresponding to Fig. 6.

This observation, along with the results that the spectral
norm of the NTK decreases corresponding to the loss spike,
is consistent with our findings for GD and provides evidence
that the spikes in training loss for neural networks are caused
by catapults.

Remark 2 (Top eigenspace accounts for the sharp loss
spikes in SGD). In SGD training loss, the sharp spikes
we observe last only a few iterations before rapidly return-
ing to their pre-spike levels. These spikes can be attributed
to catapults occurring in the top-1 eigendirection of the
tangent kernel. Consider the loss change in each eigendi-
rection of the tangent kernel. We expect that the rate of loss
change in each eigendirection depends on the corresponding
eigenvalue’s size. Therefore, with a constant learning rate,
changes happen faster in the top eigendirections, which ac-
counts for the sharp loss spikes in SGD as they occur in the
top-1 eigendirection.

Remark 3 (Catapults in SGD with cyclical learning rate
schedule). Training neural networks with the learning rate
cyclically varying between selected boundary values was
widely shown to improve the generalization performance
of neural networks with less tuning (Izmailov et al., 2018;
Smith, 2017). We empirically show that the increasing phase
of the cyclical learning rate schedule induces catapults in
SGD. Specifically, we observe that there is a spike in the
training loss when the learning rate is increased. We demon-
strate that the loss spikes are caused by catapults, by pro-
viding similar evidence to the case of SGD with a constant
learning rate. See the results in Fig. 24 in Appendix C.5.

4. Catapults lead to better generalization
through feature learning

Previous empirical results from (Lewkowycz et al., 2020;
Zhu et al., 2024) show that a single catapult can lead to

better test performance in GD for wide neural networks. In
this section, we observe a similar trend in our experiments
for both GD and SGD with multiple catapults. We posit
an explanation for this phenomenon by demonstrating that
catapults improve feature learning by increasing alignment
between the Average Gradient Outer Products (AGOP) of
the trained network and the true model, therefore improving
generalization. We formalize this claim as follows. Let
{(xi, f

∗(xi))}ni=1 denote training data with f∗(x) denot-
ing the true model. Then, for any predictor f , the AGOP,
G(f, {x1, . . . , xn}) is given as follows:

G(f, {x1, . . . , xn}) =
1

n

n∑

i=1

∇xf(xi)∇xf(xi)
T ; (5)

where ∇xf denotes the gradient of f with respect to the
input x.2 We will suppress the dependence on the data
{xi}ni=1 to simplify notation. Assuming the data xi are i.i.d.
samples from an underlying data distribution, in the limit
as n → ∞, Eq. (5) converges to a quantity referred to as
the Expected Gradient Outer Product (EGOP). Letting G∗

denote the EGOP of f∗ and G denote the AGOP of f , we
define AGOP alignment using the cosine similarity between
G,G∗ as follows:

AGOP alignment : cos(G,G∗) :=
Tr

(
GTG∗)

∥G∥F ∥G∗∥F
. (6)

Remark 4. G∗ captures the directions along which f∗

varies the most and those along which it varies least. When
training a predictor on data generated using low rank
G∗, it is possible improve sample efficiency by first esti-
mating G∗. Indeed, this has been theoretically shown in
the case of multi-index models, i.e., functions of the form
f∗(x) = g(Ux) where the index space U is a low-rank
matrix (Härdle & Stoker, 1989; Trivedi et al., 2014; Yuan
et al., 2023). Additionally, a recent line of work connected

2For predictors with multivariate outputs, we consider the Ja-
cobian instead of the gradient.
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Figure 8. Multiple catapults in GD. A greater number of catapults in GD leads to a higher (better) AGOP alignment and smaller (better)
test loss/error. We train 2-layer FCN in Panel(a), 4-layer FCN in Panel(b,d) and 5-layer CNN in Panel(c). Experimental details can be
found in Appendix F.4.
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Figure 9. Similarity between AGOP alignment and generalization. A greater number of catapults in SGD leads to a higher (better)
AGOP alignment and smaller (better) test loss/error. We train a 2-layer FCN in Panel(a), 4-layer FCN in Panel(b,d) and 5-layer CNN in
Panel(c) by SGD.

AGOP with feature learning in neural networks and further
demonstrated that training predictors on data transformed
by AGOP can lead to substantial increases in test perfor-
mance (Radhakrishnan et al., 2024a; Beaglehole et al.,
2023; Radhakrishnan et al., 2024b). Thus, we believe that
AGOP alignment is a key measure for generalization, and
we next corroborate our claim empirically across a broad
class of network architectures and prediction tasks.

Experimental settings. We work with a total of seven
datasets: three synthetic datasets and four real-world
datasets. For synthetic datasets, we consider true func-
tions f∗(x) = (1)x1x2 (rank-2), (2)x1x2(

∑10
i=1 xi) (rank-

3) and (3)
∑4

j=1

∏j
i=1 xi (rank-4) (Abbe et al., 2021). For

the four real-world datasets, we use (1) CelebA (Liu et al.,
2015), (2) SVHN dataset (Netzer et al., 2011), (3) Fashion-
MNIST (Xiao et al., 2017) and (4) USPS dataset (Hull,
1994). When the underlying model is not available, we use
a state-of-the-art model as a substitute. We present the re-
sults for a selection of the datasets in this section and put
the results for the remaining datasets in Appendix E.3. The
experimental details can be found in Appendix F.

Improved test performance by catapults in GD. In Sec-
tion 3.2, we showed that catapults can be generated multiple
times. We now show that generating multiple catapults leads
to improved test performance of neural networks trained
with GD by leading to increased AGOP alignment. In Fig. 8,
we can see for all tasks, the test loss/error decreases as the
number of catapults increases while AGOP alignment in-
creases. This indicates that learning the EGOP strongly
correlates with test performance.
Remark 5. As discussed earlier, AGOP alignment is a
means of improving sample efficiency when training on data
from multi-index models with low-rank index space. Our
results on synthetic datasets show that catapults increase
AGOP alignment, thereby leading to improved test perfor-
mance. Additionally, we show that when the index space
is full-rank, which can be effectively learned by neural net-
works in the NTK regime, catapults do not improve the test
performance as well as the AGOP alignment. See Fig. 29 in
Appendix D.

Improved test performance by catapults in SGD. In
Section 3.3, we have demonstrated the occurrence of cat-
apults in SGD. We now show that decreasing batch size
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Figure 10. “Large” vs. “small” learning rate on test performance with different batch sizes. We consider the same setting as in Fig. 9
except for selecting a smaller learning rate ηcrit/40 compared to ηcrit/2 in Fig. 9. Here ηcrit is the critical learning rate for the whole
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Figure 11. Strong correlation between generalization and AGOP alignment for different optimization algorithms. We train a
2-layer FCN in Panel(a), 4-layer FCN in Panel(b,d) and 5-layer CNN in Panel(c). We use GD, SGD, SGD with Momentum (Qian,
1999)(SGD+M), RMSprop (Hinton, 2014), Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012) and Adam (Kingma & Ba, 2015) for
training.

in SGD leads to better test performance as a result of an
increase in the number of catapults and thus, increased
AGOP alignment. We estimate the number of catapults dur-
ing training by counting the number of the occurrence of the
event η − ηcrit(Xbatch) > ϵ with ϵ = 10−8 until the best
validation loss/error.

In Fig. 9, we can see that across all tasks, as the batch
size decreases, (1) the number of catapults increases, (2)
the test loss/error decreases and (3) the AGOP alignment
improves. These findings indicate that in SGD, a smaller
batch size leads to more catapults which in turn improves the
test performance through alignment with the AGOP. These
observations are consistent with our findings in GD.

Batch size does not affect generalization when the learn-
ing rate is small. Given the discussion above, sufficiently
small learning rates will result in no catapults for any batch
size. Thus we expect that all batch sizes will provide similar
generalization performance for sufficiently small learning
rates. This, indeed, is what we observe in the experiments
presented in Fig. 10 where we keep the same experimen-
tal setting as for Fig. 9 except for a smaller learning rate.
Specifically, we observe that while decreasing batch size
consistently improves generalization for large learning rates,
it has little effect on generalization for small learning rates.

Generalization with different optimizers correlates with
AGOP alignment. We further demonstrate the strong cor-
relation between the test performance and AGOP alignment
by comparing the predictors trained on the same task with
different optimization algorithms. From the results shown in
Fig. 11, we can see that the AGOP alignment strongly corre-
lates with the test performance, which suggests that models
learning the AGOP is useful for learning the problem.

5. Conclusions
In this work, we addressed the following questions: (1)
why do spikes in training loss occur during training with
SGD and (2) how do the spikes relate to generalization?
For the first question, we demonstrate that the spikes in the
training loss are caused by the catapult dynamics in the top
eigenspace of the tangent kernel. For the second question,
we show that catapults lead to increased alignment between
the AGOP of the model being trained and the AGOP of the
underlying model or its state-of-the-art approximation. A
consequence of our results is the explanation for the observa-
tion that SGD with small batch size often leads to improved
generalization. This is due to an increase in the number
of catapults for small batch sizes, due to increased batch
variability, which, in turn, leads to better AGOP alignment.
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Appendix

A. The critical learning rate can be well approximated using NTK for wide neural networks
In this section, we show that the critical learning rate ηcrit := 2

λmax(HL) can be well approximated using NTK, i.e.,
η̃crit :=

n
λmax(K)(w) . Note that ∥K∥ = λmax(K)(w).

A.1. Approximation of the critical learning rate using NTK during training with a small constant learning rate

For MSE L(w;X) = 1
n

∑n
i=1(f(w;xi)− yi)

2, we can compute its HL by the chain rule:

HL(w) =
2

n

n∑

i=1

(
∂f(w;xi)

∂w

)T
∂f(w;xi)

∂w
︸ ︷︷ ︸

A(w)

+
2

n

n∑

i=1

(f(w;xi)− yi)
∂2f(w;xi)

∂w2

︸ ︷︷ ︸
B(w)

.

Assume ∥xi∥ = O(1) and |yi| = O(1) for all i ∈ [n]. For B(w0), by random initialization of weights w0, with high
probability, we have |f(w0;xi)−yi| = O(logm), and

∥∥∥∂2f(w0;xi)
∂w2

∥∥∥
2
= Õ(1/

√
m) (Liu et al., 2020; Zhu et al., 2022) where

m denotes the width of the network. Therefore, by the union bound, with high probability, we have B(w0) = Õ(1/
√
m).

Note that λmax(A(w)) = 2
nλmax(K(w)) for any w. Combining all the bounds together, we have∣∣λmax(HL)(w0)− 2

nλmax(K)(w0)
∣∣ = Õ(1/

√
m). Then we have

|ηcrit − η̃crit| =
∣∣∣∣

2

λmax(HL)(w0)
− n

λmax(K)(w0)

∣∣∣∣ = Õ(1/
√
m)

as long as λmax(K)(w0) = Ω(1), which is true with high probability over random initialization for wide networks (Nguyen
et al., 2019; Banerjee et al., 2023).

For wide neural networks trained with a small constant learning rate,
∥∥∥∂2f(w0;xi)

∂w2

∥∥∥
2
= Õ(1/

√
m) holds during the whole

training process of GD/SGD, hence this approximation holds (Liu et al., 2020).

A.2. Approximation of the critical learning rate using NTK during training with a large learning rate

In this section, we provide further evidence for SGD that η̃crit approximates ηcrit during training even with a large learning
rate. Recall that η̃crit = b/λmax(K(w;Xbatch)) where b is the batch size. We consider the same network architectures as
the shallow network in Fig. 6 and deep networks in Fig. 7.

We can see Fig. 12 shows that ηcrit is close to η̃crit during training with SGD.

0.5 1.0 1.5 2.0 2.5 3.0

ηcrit

0.5

1.0

1.5

2.0

2.5

3.0

η̃ c
ri
t

ηcrit = η̃crit

(a) Shallow network

4 5 6 7

ηcrit

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

η̃ c
ri
t

ηcrit = η̃crit

(b) 5-layer FCN

4.0 4.5 5.0 5.5 6.0 6.5 7.0

ηcrit

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

η̃ c
ri
t

ηcrit = η̃crit

(c) 5-layer CNN

Figure 12. Validation of ηcrit ≈ η̃crit during SGD with catapults. Plot of points (ηcrit, η̃crit) at each iteration of SGD for the shallow
network, 5-layer FCN and CNN. The models are trained on 128 data points from CIFAR-10 by SGD with batch size 32. The settings are
the same with Table 2.
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B. Additional experiments for the catapult in GD
B.1. Catapults occur in the top eigenspace of NTK

In this section, we provide additional empirical evidence to verify Claim 1. In particular, we consider three neural network
architectures: a 5-layer Fully Connected Neural Network (FCN), a 5-layer Convolutional Neural Network (CNN), and Wide
ResNets 10-10; and three datasets CIFAR-10, SVHN, and a synthetic dataset. For the synthetic dataset, we consider the
rank-2 regression task with training size 128.

From the experimental results, we can see that for a large learning rate that causes catapult dynamics, the loss spike occurs
in the top eigenspace of the tangent kernel. See Fig. 13 for 5-layer FCN and CNN on CIFAR-10 dataset and 14 on SVHN
dataset, and 15 for Wide-ResNets on CIFAR-10 dataset.

We further show Claim 1 holds for multidimensional outputs in Fig. 16. In particular, for k-class classification tasks, we
project the flattened vector of predictions of size kn to the top eigenspaces of the empirical NTK, which is of size kn× kn.
Correspondingly, we empirically observe that catapults occur in the top ks eigenspace with a small s.
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Figure 13. The training loss and the spectral norm of the tangent kernel during catapult for 5-layer FCN (a) and CNN (b) on
CIFAR-10 dataset. Both networks are trained under the same experimental setting with Fig. 3.
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Figure 14. Catapult dynamics for 5-layer FCN (a-b) and CNN (c-d) on SVHN dataset. Panel (a) and (c) are the training loss and the
spectral norm of the tangent kernel with learning rate 6.0 and 3.0 respectively, and Panel (b) and (d) are the training loss decomposed into
the top eigendirections of the tangent kernel, L≤5 and the remaining eigendirections, L>5. All the networks are trained on a subset of
SVHN with 128 data points. In this experiment, the critical learning rates for FCN and CNN are 3.4 and 1.6 respectively.
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Figure 15. Catapult dynamics for FCN (a-b) on a synthetic dataset and Wide ResNets 10-10 (c-d) on CIFAR-10 dataset. Panel (a)
and (c) are the training loss and the spectral norm of the tangent kernel with learning rates 5.0 and 3.0 respectively, and Panel (b) and (d)
are the training loss decomposed into the top eigendirections of the tangent kernel, L≤5 and the remaining eigendirections, L>5. For the
synthetic dataset, we use the rank-2 regression task considered in Section 4. The size of the training set is 128. In this experiment, the
critical learning rates for FCN and WRN are 1.9 and 1.5 respectively.
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Figure 16. Catapult dynamics for 5-layer FCN (a-b) and CNN (c-d) on multiclass classification tasks. Panel (a) and (c) are the
training loss and the spectral norm of the tangent kernel with learning rate 100 and 80 respectively, and Panel (b) and (d) are the training
loss decomposed into the top eigendirections of the tangent kernel, L≤5 and the remaining eigendirections, L>5. All the networks are
trained on a subset of CIFAR-10 with 10 classes. Here the dimension of the eigenspace s = 1, 3, 5 refers to 10, 30, 50 respectively due to
the output dimension 10. The critical learning rate for FCN and CNN are 34 and 16 respectively.

B.2. Multiple catapults in GD occur in the top eigenspace of NTK

For the multiple catapults shown in Fig. 4, similar to a single catapult, we show that the catapults occur in the top eigenspace
of NTK. See Fig. 17.
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Figure 17. Multiple catapults in GD with increased learning rates. With the same setting of Fig. 4, the training loss is decomposed into
the top eigendirections of the tangent kernel, L≤10 and the remaining eigendirections, L>10.

B.3. Multiple catapults allow a larger learning rate at convergence

Corresponding to Fig. 4 in Section 3.2, we show that if the neural networks are trained with the learning rate at the
convergence, i.e., after multiple catapults, the GD will diverge.
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Figure 18. GD diverges when trained with the learning rate after multiple catapults. Corresponding to Fig. 4, we train the model
using GD with learning rate at convergence, 60 and 40 respectively for the 5-layer FCN and CNN.
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C. Additional experiments for catapults in SGD
C.1. Loss decomposition for shallow network corresponding to Fig. 6
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Figure 19. The spectral norm of NTK and the loss decomposition during catapults for shallow network. This figure corresponds to
Fig. 6 with learning rate 0.8. The training loss is decomposed into the component corresponding to the top-5 eigendirections of the NTK
and the other components.

C.2. Full training process visualization corresponding to Fig. 7

We present the complete training loss and the spectrum norm of the NTK corresponding to Fig. 7(c,d) in Fig. 20.
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Figure 20. Cataput dynamics in SGD for modern deep architectures. The complete versions corresponding to Fig. 7(c,d). The training
loss is decomposed based on the eigendirections of the NTK: L≤1 and L>1.

C.3. Catapults in SGD with Pytorch default parameterization

In Fig. 7, we used NTK parameterization (see the definition in Appendix F) for the neural networks. We further validate our
empirical observations on (1) the occurrence of the loss spikes of SGD in the top eigenspace of the tangent kernel and (2) the
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decrease in the spectral norm of the tangent kernel during loss spikes in the setting with Pytorch default parameterization,
under which the wide networks are still close to their linear approximations (Liu et al., 2020; Yang & Hu, 2021) in Fig. 21.
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Figure 21. Cataput dynamics in SGD for modern deep architectures with Pytorch default parameterization. The tasks are the same
with Fig. 7 except that we use Pytorch default parameterization. The training loss is decomposed based on the eigendirections of the NTK:
L≤1 and L>1.

C.4. Catapults in SGD with additional datasets

We show that the findings in Fig. 7 hold for a subset of SVHN dataset (see Fig. 22) and for a larger dataset (5, 000 data
points from CIFAR-2) and for multi-class classification problems (see Fig. 23).
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Figure 22. Cataput dynamics in SGD for modern deep architectures on 2-class SVHN. The tasks are the same with Fig. 7 except that
we train the neural networks on a subset of SVHN dataset. The training loss is decomposed into the top eigenspace of the tangent kernel
L≤1 and its complement L>1. Here L = L≤1 + L>1.
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Figure 23. Catapult dynamics in SGD for large datasets (Panel (a) and (b)) and multi-class classification problems (Panel(c)).
Panel(a,b): The networks are trained on 5, 000 data points from CIFAR-2. Panel(c): The network is trained on 128 points from CIFAR-10.
The training loss is decomposed into the top eigenspace of the tangent kernel L≤1 and its complement L>1. Here L = L≤1 + L>1.

C.5. Catapults occur in training with cyclical learning rates

In this section, we show that catapults occur in SGD with a cyclical learning rate schedule. Specifically, we show that loss
spikes occur in the top eigenspace of the tangent kernel and there is a decrease in the spectral norm of the tangent kernel
according to each loss spike.
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Figure 24. Catapults in SGD with cyclical learning rates. Panel (a): The plot of the training loss and the spectral norm of the tangent
kernel corresponding to the whole training set with a cyclic learning rate schedule. Panel (b): The training loss is decomposed into the top
and non-top eigenspace of the tangent kernel, i.e.,L≤1 and L>1. Here L = L≤1 + L>1. We train Wide ResNets 10-10 on a subset of
CIFAR-10. The setting is the same with Fig. 7c except for a cyclical learning rate schedule.
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D. Additional experiments for feature learning in GD
D.1. Validation loss/error for multiple catapults corresponding to Fig. 8

We present the validation loss/error in Fig. 25 for the tasks corresponding to Fig. 8. The learning rate is increased during
training to generate multiple catapults.
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Figure 25. Validation loss/error of multiple catapults in GD corresponding to Fig. 8. Panel(c)&(d) only present first 200 iterations.

D.2. Feature learning with near zero initialization

We compare the performance of networks exhibiting multiple catapults with those initialized using near zero initialization
scheme, i.e., each weight is sampled i.i.d. from N (0, σ2) with σ = 0.1. This is in contrast to the NTK parameterization
where we use σ = 1. It was argued in (Yang & Hu, 2021) that feature learning occurs with near zero initialization. We can
see that small initialization achieves the smallest test loss/error as well as the best AGOP alignment, which indicates that
learning AGOP correlates strongly with the test performance.
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Figure 26. Multiple catapults in GD compared to the small initialization scheme. We train a 2-layer FCN in Panel(a), a 4-layer FCN
in Panel(b,d) and a 5-layer CNN in Panel(c). For small initialization, each weight parameter is i.i.d. from N (0, σ2) with σ = 0.1. The
experimental setup is the same as Fig. 8.

For the Rank-2 regression task, we visualize the AGOP in the following Fig. 27, where we can see that the features are
learned better, i.e., closer to the True AGOP, with a greater number of catapults.

25



Catapults in SGD: spikes in the training loss and their impact on generalization through feature learning

0 5
0 catapults

0

2

4

6

8

In
de

x 
of

 A
GO

P

0 5
1 catapults

0

2

4

6

8

0 5
2 catapults

0

2

4

6

8

0 5
3 catapults

0

2

4

6

8

0 5
4 catapults

0

2

4

6

8

0 5
5 catapults

0

2

4

6

8

0 5
Small init.

0

2

4

6

8

0 5
True AGOP

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

Figure 27. Visualization of AGOP for rank-2 regression task. All pixels are normalized to the range [0, 1] and the top 10 rows and
columns of the AGOP are plotted.

D.3. Feature learning in GD for additional datasets

In this section, we show the findings observed in Fig. 8 hold for Rank-4 regression, USPS dataset and Fashion MNIST
dataset. See Fig. 28.
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Figure 28. Correlation between AGOP alignment and test performance in GD with multiple catapults on additional datasets. We
train a 4-layer FCN using GD for all tasks. The learning rate is increased multiple times during training to generate multiple catapults.
Experimental details can be found in Appendix F.4.

D.4. No feature learning for full rank task

In Fig. 29, we show that for a full-rank task where the target function is f∗(x) = 1√
d
∥x∥, catapults do not improve the test

performance or the AGOP alignment.
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Figure 29. Multiple catapults in GD for a full rank task. We train a 2-layer FCN on a synthetic dataset with a full rank target function
f∗(x) = 1√

d
∥x∥ using GD.The learning rate is increased multiple times during training to generate multiple catapults. The experimental

details can be found in Appendix F.6.

E. Additional experiments for feature learning in SGD
E.1. Feature learning of catapults in SGD with Pytorch parameterization

In this section, we further verify our observation on the feature learning of SGD with Pytorch default parameterization on
the same tasks with Fig. 9 in Section 4.
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Figure 30. Correlation between AGOP alignment and test performance in SGD with Pytorch default parameterization. The tasks
are the same with Fig. 9 except that we use Pytorch default parameterization.
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E.2. Validation loss/error of SGD corresponding to Fig. 9 and 30
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Figure 31. Validation loss/error corresponding to Fig. 9. Panel(c) presents the validation error from iteration 4000.
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Figure 32. Validation loss/error with Pytorch default parameterization corresponding to Fig. 30. Panel(c) presents the validation
error from iteration 2000.

E.3. Feature learning in SGD for additional datasets

In this section, we show the findings observed in Fig. 9 hold for Rank-4 regression, USPS dataset and Fashion MNIST
dataset. See Fig. 33.
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Figure 33. Correlation between AGOP alignment and test performance in SGD. We train a 4-layer fully connected neural network
using SGD.
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E.4. Verification of catapults in SGD

In Fig. 34, we verify that the spikes in the training loss of SGD with small batch sizes are caused by catapult dynamics.
Specifically, we show that the spikes occur in the top eigendirection of the NTK.
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Figure 34. Verification of catapult dynamics: loss decomposition of Rank-2 and Rank-4 regression tasks corresponding to Fig. 9
with batch size 5. The training loss is decomposed into the top eigenspace of the tangent kernel L≤1 and its complement L>1. Here
L = L≤1 + L>1.

E.5. No feature learning with a small learning rate for SGD

In Fig. 9, we have shown that a smaller batch size leads to more catapults, hence resulting in better test performance. In this
section, we show that the test performance with different batch sizes is similar when training with a small learning rate,
where no catapults occur. This further verifies that a greater number of catapults accounts for better test performance for
small batch sizes. See Fig. 35.
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Figure 35. The networks are trained with a smaller learning rate corresponding to Fig. 31a &b. We consider the same setting as in
Fig. 31 except for selecting a smaller learning rate ηcrit/40 compared to ηcrit/2 in Fig. 31. Here ηcrit is the critical learning rate for the
whole dataset.

F. Experimental details
For all the networks considered in this paper, we use ReLU activation functions. We parameterize the networks by NTK
parameterization (Jacot et al., 2018). Note that NTK parametrization is widely used for understanding neural networks (Lee
et al., 2020; Du et al., 2019; Lewkowycz et al., 2020). We also verify our results with Pytorch (Paszke et al., 2019) default
parameterization for the experiments shown in Fig. 21 and 30.

NTK parameterization. Given a neural network with NTK parameterization, all the trainable weight parame-
ters are i.i.d. from N (0, 1). For a fully connected layer, it takes the form f ℓ+1 = ReLU

(
1√
mℓ

W ℓf ℓ + bℓ
)

where W ℓ ∈ Rmℓ+1×mℓ , f ℓ ∈ Rmℓ , bℓ ∈ Rmℓ+1 . For a convolutional layer, it takes the form f ℓ+1
i,j,k =

ReLU

(
1√
mℓs2

∑⌈ s+1
2 ⌉

p=0

∑⌈ s+1
2 ⌉

q=0

∑mℓ

o=1 W
ℓ
p,q,o,kf

ℓ
i−⌈ s−1

2 ⌉,j−⌈ s−1
2 ⌉,o + bℓk

)
, where W ℓ ∈ Rs×s×mℓ×mℓ+1 , f ℓ ∈

Rh×w×mℓ , bℓ ∈ Rmℓ+1 . Note that s is the filter size and we assume the stride to be 1 in this case. For f ℓ with neg-
ative indices, we let it be 0, i.e., zero padding. For the output layer, we use a linear layer without activation functions.

Dataset. For the synthetic datasets, we generate data {(xi, yi)}ni=1 by i.i.d. xi ∼ N (0, I100) and yi = f∗(x) + ϵ with
ϵ ∼ N (0, 0.12). For two real-world datasets, we consider a subset of CelebA dataset with glasses as the label, the Street
View House Numbers (SVHN) dataset, USPS dataset and Fashion MNIST dataset. Due to computational limitations with
GD, for some tasks, we select two classes (number 0 and 2) of SVHN dataset, USPS dataset and Fashion MNIST dataset.

EGOP (Epexcted Gradient Outer Product). Note that for these low-rank polynomial regression tasks, we know the

analytical form of target functions hence we can calculate the EGOP by G∗ = Ex
∂f∗

∂x
∂f∗

∂x

T
. For real-world datasets,

we estimate the EGOP by using the AGOP of one of the state-of-the-art models f̂ that achieve high test accuracy:

Ĝ = 1
n

∑n
i=1

∂f̂
∂xi

∂f̂
∂xi

T
.

In the following, we provide the detailed experimental setup for each experiment. Note that in the classification tasks, i.e.
CelebA and SVHN datasets, the test error refers to the classification error on the test split.

F.1. Experiments in Section 3.1

Fig. 3: We use a 2-class subset of CIFAR-10 dataset (Krizhevsky et al., 2009) (class 7 and class 9) and randomly select
128 data points out of it. For the network architectures, we use a 5-layer FCN with width 1024 and 5-layer CNN with 512
channels per layer. For CNN, we flatten the image into a one-dimensional vector before the last fully connected layer.
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F.2. Experiments in Section 3.2

Fig. 4: We use the same training tasks as in Fig. 3. For FCN, we start with a learning rate 6 and we increase the learning
rate to [10, 15] at iteration [15, 60]. For CNN, we start with a learning rate 8 and we increase the learning rate to [15, 20] at
iteration [10, 40].

F.3. Experiments in Section 3.3

Fig. 5: We consider a synthetic dataset (xi, yi) where xi are sampled i.i.d. on unit sphere and yi = 1 with training size and
dimension both equal to 100. We train a wide two-layer ReLU network with second-layer weights fixed, using SGD with
batch size one. The critical learning rate ηcrit(xi) for (a minibatch of size one) xi is proportional to 1/∥xi∥22 = const. We
select one data point (x∗, y∗) from the training set and multiply both x∗ and y∗ by 2. This makes the critical learning rate
corresponding to the sample x∗ four times smaller. We choose the (constant) learning rate η between the critical learning
rate of (the mini-batch) x∗ and the critical learning rates of the rest of the data points. Thus SGD with learning rate η induces
catapult on x∗ but not on any other data points.

Fig. 6: For the shallow network, we use a 2-layer FCN with width 1024. We train the model on 128 data points from
CIFAR 2 using SGD with batch size 32. We use a constant learning rate 0.8. We stop training when the training loss is less
than 10−3.

Table 2: The 5-layer FCN and CNN are the same as in Fig. 3. We train the model on 128 data points from CIFAR 2 using
SGD with batch size 32. We use a constant learning rate 6 and 8 for 5-layer FCN and CNN respectively. We stop training
when the training loss is less than 10−3.

Fig. 7: The 5-layer FCN and CNN are the same as in Fig. 3. And we use the standard Wide ResNets 10-10 and ViT-4
architectures. The learning rates for 5-layer FCN, 5-layer CNN, are 6, 8, 3, 0.2 respectively. We train the model with a
constant learning rate, and we stop training when the training loss is less than 10−3. All the models are trained on 128 data
points from CIFAR-2 using SGD with batch size 32.

F.4. Experiments in Section 4

Fig. 8: For rank-2 task, we train a 2-layer FCN with width 1024. The size of the training set, testing set and validation set
are 2000, 5000 and 5000 respectively.

For rank-3 task, CelebA tasks, we train a 4-layer FCN with width 256. The size of the training set, testing set and validation
set are 1000, 5000 and 5000 respectively.

For SVHN-2 tasks, we train a 5-layer CNN with width 256. We select class 0 and class 2 out of the full SVHN datasets as
SVHN-2. The size of the training set, testing set and validation set are 1000, 5000 and 5000 respectively.

We increase the learning rate during training. For Rank-2 task, we increase the learning rate to [8, 16, 30, 50, 75, 80] at
iteration [50, 150, 220, 280, 350, 400]. For Rank-3 task, we increase the learning rate to [40, 100, 150] at iteration [20, 60, 80].
For SVHN-2 task, we increase the learning rate to [30, 60, 90] at iteration [10, 35, 50]. For CelebA task, we increase the
learning rate to [40, 70, 100] at iteration [10, 35, 50]. We decay the learning rate if necessary after the catapult to avoid extra
catapults until the end of training.

Fig. 9: For both Rank-2 and Rank-3 tasks, we let the size of training set, testing set and validation set be 2000, 5000 and
5000. For the SVHN task, we train the full SVHN using the 5-layer Myrtle network. For the CelebA task, we train the full
2-class CelebA dataset with glasses feature using 4-layer FCN with width 256. To obtain the true AGOP , we use one of
the SOTA models (WideResNet 16-2) which achieves 97.2% test accuracy on SVHN and 5-layer Myrtle network which
achieves 95.7% test accuracy on CelebA.

We use the same learning rate across batch sizes for each task. The learning rate is chosen as 1
2ηcrit corresponding to the

whole training set. For SVHN and CelebA tasks, we estimate ηcrit using a subset with size 5000 of the whole training set.
We train the model with batch size [5, 10, 50, 100, 2000]. For all tasks, we stop training when the training loss is less than
10−3. We report the average of 3 independent runs.
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Fig. 11: We use the same network architectures and training/validation/testing sets as in Fig. 8.

For all the tasks, except for GD, all the optimizers use a mini-batch size 100.

We stop training when the training loss is less than 10−3. We report the average of 3 independent runs.

For the rank-2 task and rank-4 task, we know the target function hence we can analytically compute the exact true AGOP .
For SVHN-2 task and CelebA task, to estimate the true AGOP , we use one of the SOTA models, Myrtle-5 which achieves
98.4% test accuracy on two-class SVHN dataset and 95.7% test accuracy on CelebA dataset.

The following table is the learning rate we choose for the experiments:

Task SGD GD SGD+M Adadelta Adagrad RMSprop Adam

Rank-2 2.0 2.0 2.0 2.0 0.1 10−2 10−2

Rank-3 2.0 2.0 2.0 2.0 10−2 10−2 10−3

Rank-4 1.0 1.0 1.0 1.0 5× 10−3 10−3 10−3

SVHN-2 5.0 5.0 5.0 5.0 5× 10−3 10−4 10−3

CelebA 10.0 10.0 10.0 10.0 5× 10−3 10−3 10−3

Table 3. Choice of learning rates for Fig. 11.

The experiment is to demonstrate the correlation between AGOP alignment and test performance. For this reason, we did
not fine-tune the learning rate to achieve the best test performance.

F.5. Experiments in Appendix C

Fig. 16: We use the same network architectures as in Fig. 3 and we train 128 data point from CIFAR-10.

Fig. 22: We use the same setting as Fig. 7, except we train the networks on 128 data points from SVHN-2(number 0 and
2).

Fig. 23: For panel(a) and panel(b), we train the same 5-layer FCN and CNN as in Fig. 3 and on 5,000 data points from
CIFAR-2. For panel(c), we train a 5-layer Myrtle network on 128 points from CIFAR-10.

F.6. Experiments in Appendix D

Fig. 28: For rank-4 task, USPS dataset and Fashion MNIST dataset, we train a 4-layer FCN with width 256. The size of
the training set, testing set and validation set are 1000, 5000 and 5000 respectively.

For rank-4 task, we increase the learning rate to [15, 40, 60] at iteration [50, 75, 110]. For USPS dataset, we increase the
learning rate to [15, 30, 40] at iteration [10, 30, 45]. For Fashion MNIST dataset, we increase the learning rate to [10, 40, 55]
at iteration [6, 20, 30].

Fig. 29: We train a 2-layer FCN with width 1024. We consider a synthetic dataset, where f∗(x) = 1√
d
∥x∥. The size of

the training set and validation set is 128, 2000 respectively. During training, we start with the learning rate 6 and increase
the learning rate to [7, 12, 40, 80] at iteration [30, 120, 180, 280].

F.7. Experiments in Appendix E

Fig. 30: We use the same setup with Fig. 9 except that all the networks are parameterized with Pytorch default parameteri-
zation. The learning rates are 0.01, 0.01, 0.05 and 1.0 for each task.

Fig. 33: For rank-4 task, USPS dataset and Fashion MNIST dataset, we train a 4-layer FCN with width 256. The size of
the training set, testing set and validation set are 2000, 5000 and 5000 respectively. We add 10% label noise for the USPS
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dataset and Fashion MNIST dataset. To obtain the true AGOP , we use one of the SOTA models (5-layer CNN) which
achieves 99.2% test accuracy on USPS and 5-layer Myrtle network which achieves 91.8% test accuracy on Fashion MNIST.
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