

000 COMPACT YET CAPABLE: DO MULTITASK-BASED 001 MULTI-TEACHER DISTILLATION WITH PRECISION- 002 CONTROLLED TASK-SPECIFIC DYNAMIC PTQ 003 OUTPERFORM STATIC QUANTIZATION FOR LOW- 004 RESOURCE MULTITASK NLU?

009 **Anonymous authors**

010 Paper under double-blind review

014 ABSTRACT

016 The evolution of conversational AI emphasizes not just accuracy, but also effi-
017 ciency and scalability. In low-resource Indic languages (Tamil, Telugu, Malay-
018 alam, Kannada, Hindi, Bengali), cross-domain, multi-intent NLU tasks such as
019 Intent Detection (ID), Domain Classification (DC), and Slot Filling (SF) be-
020 come especially challenging due to cross-domain variability and limited annotated
021 data. LLMs, though powerful, incur high computational costs and slow inference
022 due to their high resource requirements. Knowledge Distillation (KD) enables
023 lightweight student models to retain performance from larger teachers, while post-
024 training quantization (PTQ) further reduces inference cost, making low-resource
025 multitask NLU more feasible on constrained hardware. In our paper, we investi-
026 giate scalable deployment architectures for multitask NLU tasks in resource-
027 constrained environments. We compare static PTQ applied to a non-distilled mul-
028 titask baseline with precision-controlled, task-specific dynamic PTQ applied to a
029 multi-teacher based distilled student. Static PTQ uses QuantStub/DeQuantStub,
030 calibration over representative batches, and zero-point quantization, while af-
031 ter training, the distilled student undergoes precision-controller-driven dynamic
032 PTQ. The student is distilled from three pairs of teachers (ID-DC, ID-SF, DC-SF)
033 using adaptive attention-based fusion and temperature scaling. The controller
034 assigns different precisions for encoder attention layers, encoder MLP blocks,
035 and each multitask head (ID, DC, SF), allowing finer-grained accuracy-efficiency
036 optimization without calibration. By unifying weight and activation precision
037 under a single runtime policy, our approach further reduces memory and band-
038 width requirements without degrading accuracy. Experimental results on a custom
039 multilingual Indic dataset show that our multitask based multi-teacher-distilled,
040 precision-controller-quantized student achieves a superior accuracy-efficiency
041 trade-off, significantly reducing inference latency, memory footprint, and runtime
042 bandwidth while preserving accuracy across NLU tasks. Our study demonstrates
043 that unifying KD with precision-controlled, task-specific dynamic PTQ under a
044 single weight-activation policy delivers scalable, real-time NLU for low-resource
045 multilingual settings while achieving optimal efficiency-accuracy trade-offs.

046 1 INTRODUCTION

047 Conversational AI in low-resource Indic languages faces challenges in cross-domain, multitask NLU
048 due to limited data and domain variability. This paper explores scalable deployment using KD and
049 PTQ techniques to enable efficient, real-time inference on constrained hardware and low-resource
050 settings. Fig. 1 shows cross-domain Indic user-utterances expressing multiple intents.

051 **Contributions :**

- 052 • **Static PTQ of Baseline MultiLingual MultiTask Model.** We propose a static PTQ
053 pipeline tailored specifically for a multilingual, multitask baseline fusion model using

054	Language	User-Utterance	Intents	Domains	Slots
055	Hindi	ਪੰਜਾਬੀ ਢਾਬਾ ਸੇ ਮੇਰੇ ਲਿਖੇ ਇੱਕ ਆਲੂ ਕਾ ਪਰਾਥਾ ਅੰਦਰੋਂ ਕਰੋ। ਮੇਰੇ ਪਾਸ ਥਾਂਡੀ ਸੀ ਫਿਲਿਆ ਹੈ ਮੈਂ ਇਸੇ ਕੋਸ਼ਿਸ਼ ਵਿੱਚਾਂ। ਟੱਕੋ ਪਕਾਨੇ ਕਾ ਸਵਰਗੀ ਆਰਾਮ ਔਰ ਜਲਦੀ ਰੀਤੀਕਾ ਕਿਵੇਂ ਹੈ।	takeaway_order , cooking_recipe , cooking_query	takeaway , cooking	[business_name : Punjabi Dhaba] O O O [food_type : Potato] O [food_type : Paratha] O O O O O [food_type : Fish] O O O O O O O O O O O O O O
056		Order me an aloo ka paratha from Punjabi Dhaba. I have some fish how do I cook it. What is the easiest and quickest way to cook turkey			
057	Bengali	আপনি কি সাড়ে সাতটির ডিনার আমার আলার্ম সেট করতে পারেন। আমি আজ নয়টা মুঠুর রাত একটা তার সাথে দেখা করতে পারি।	alarm_set , calendar_query , email_send	calendar , alarm , email	O O [time : 7:30] O O O O O O [date : today] [time : nine] O [time : five] O O [event_name : meeting] O O [person : Shabana] O O O O O [date : Saturday] O [time : one o'clock] O O O O O
058		Can you set my alarm for 7:30? How many meetings do I have today from 9 to 5? Send Shabana an email that I can meet her on Saturday at 1 p.m.			
059	Kannada	ದಂಗಲ ಈತಿದ್ದ ಹಾಡನ್ನು, ಡೈನಾಲ್‌ಫೆಡ್‌ ಮಾಡಿ ಯಾವು, ಉಳಿಸಿ. ಮುಳ್ಳಿಸ್ಕ್ ಈ ಈ ಈವೆಲ್‌ ಸೆಂಟ್‌ ರ್ಯಾಂಕ್‌, ಮ್ಯಾಲ್‌ಫೆಡ್‌ ಈವೆಲ್‌. ಡೈನಾಲ್‌ಫೆಡ್‌ ನೀನಿಗೆ ಅಂತರೆ ಜನಹಿಂದಿಗೆ ಡಾಂಗಲ್‌ಫೆಡ್‌ ಅನ್ನು ಹೇಳಿ.	music_likeness , audio_volume_up , play_podcasts	music , play , audio	[music_descriptor : Dangal movie] O O O O O O [change_amount : To Level Seven] O [device_type : Music Player] O O O O O O O O O
060		Download and save Dangal movie song. Music to Level Seven Music Player. Play the most popular podcast for me on iTunes.			
061					
062					
063					

Figure 1: Examples of User Utterances with Multiple Intents Across Domains in Indic Low-Resource Languages

QuantStub/DeQuantStub, min-max calibration, and zero-point encoding, resulting in an int8 model that reduces memory and speeds up CPU inference with minimal performance loss on low-resource cross-domain, multi-intent Indic NLU tasks catering to 6 Indic Languages (Bengali, Hindi, Tamil, Telugu, Kannada, Malayalam).

- **Dynamic PTQ of MultiLingual Distilled Model.** We introduce a multitask, multi-teacher distillation framework designed for 6 Indic languages where three specialized teacher models (ID+DC, DC+SF, ID+SF) jointly transfer task-specific knowledge to a unified student model. The student employs attention-based fusion to dynamically prioritize informative teacher signals and integrates adaptive temperature scaling and contrastive learning to improve cross-task generalization. After training, we apply dynamic post-training quantization, converting all linear components, including attention and task-specific layers, into int8 without calibration, resulting in a highly efficient model with strong NLU performance.
- **Precision Controlled Task Specific Dynamic PTQ under unified weight-activation policy** We propose a novel precision-controller-driven task specific dynamic PTQ scheme that jointly quantizes weights and activations. At deployment, the controller selects and freezes bit-widths from 4, 8, 16 independently for encoder attention layers, encoder MLP/linear blocks, and each NLU task head. Built on a multitask based multi-teacher KD framework, our approach produces compact, efficient student models that permanently reduce memory footprint and inference latency while preserving accuracy in low-resource, multilingual, multitask NLU settings.

2 LITERATURE SURVEY

Recent advancements in multitask NLU, knowledge distillation (KD), and quantization have informed our approach. Saha et al. (2021) proposed a BERT-based multitask framework for joint modeling of Domain Classification (DC), Intent Detection (ID), and Slot Filling (SF) leveraging capsule networks and conditional random fields. Knowledge distillation techniques such as soft-probability transfer by Hinton et al. (2015) and intermediate-layer hints in FitNets by Romero et al. (2014) motivate the multi-teacher distillation strategies used in this work. MIDAS, a multi-level, multi-teacher KD framework for multi-turn NLU that improves ID, SF and DC, was proposed by Li et al. (2024). In the quantization domain, several notable approaches have shaped best practices for post-training quantization (PTQ) and low-bit deployment. Jung et al. (2019) optimized quantization intervals via task-loss-driven learning to preserve accuracy under static quantization, and Frantar et al. (2022) introduced GPTQ, an accurate post-training quantization method for large transformers. Xiao et al. (2023) proposed SmoothQuant to enable efficient, high-fidelity LLM quantization without retraining. Works such as Lang et al. (2024) and Hu et al. (2023) analyze and compare static, dynamic, and post-training quantization strategies, providing guidance for choosing calibration schemes and per-tensor vs. per-channel formats. Additionally, El-Kurdi et al. (2022) proposed zero-shot dynamic quantization approaches that reduce reliance on calibration data. There is also growing interest in combining KD with quantization. Ranjan & Savakis (2024) apply multi-step KD for vision transformer quantization, while Sun et al. (2021) explore collaborative teacher-student learning across multiple knowledge sources for quantized networks. Liu et al. (2024) investigate evolving KD strategies with large language models and active learning to bridge the performance

108 gap in quantized architectures. Early mixed-precision PTQ methods search per-layer bit-widths
 109 using hardware or second-order signals. Wang et al. (2019) employs reinforcement learning with
 110 hardware feedback to learn layer-wise precision policies, showing that non-uniform bit-widths can
 111 improve efficiency with minimal accuracy loss. Dong et al. (2020) leverage the Hessian spectrum
 112 to assign mixed precision and determine quantization order, again at layer granularity. For large
 113 Transformers, Yao et al. (2022) provide end-to-end PTQ pipelines (often combined with knowledge
 114 distillation) and explore design spaces across bit precisions and model families, however, they do
 115 not expose per-task-head control at deployment. Addressing activation outliers, Xiao et al. (2023)
 116 shifts activation difficulty into weights via offline channel-wise scaling. Recent dynamic and task-
 117 conditioned approaches in Xiao et al. (2025), preserve task-critical weight “circuits” in higher pre-
 118 cision to sustain accuracy at very low bitwidths. Yet these methods are primarily weight-focused,
 119 do not unify activation precision under a single policy, and provide no explicit, user-controllable
 120 per-head knobs. Overall, prior work is typically (i) weight-only or activation-only in practice, (ii)
 121 optimized at the layer/block level without per-head (ID/DC/SF) control, and/or (iii) missing a uni-
 122 fied runtime policy that jointly governs both weights and activations. Taken together, these studies
 123 motivate our design: a multi-teacher KD pipeline tailored to multilingual, multitask NLU, followed
 124 by precision-controlled dynamic PTQ.

3 DATASET

125
 126 For our experiments, we focus specifically on six low-resource Indic languages - Bengali, Hindi,
 127 Tamil, Telugu, Kannada, and Malayalam. A custom multi-intent, cross-domain dataset was prepared
 128 from the MASSIVE benchmark (Jack FitzGerald, 2022). Representative samples are illustrated in
 129 Fig. 1. This custom data set contains 163,109 training utterances and 40,778 testing utterances that
 130 span all six languages, annotated with 540 distinct intent labels, 37 domain categories, and 60 slot
 131 types. Since we are working on a multi-sentence structured dataset, this was the best suited dataset
 132 that could be potentially leveraged for all our experiments.
 133

4 METHODOLOGY

134
 135 This section compares static, dynamic, and our proposed precision-controlled PTQ methods, with
 136 and without KD for cross-domain, multi-intent NLU in low-resource Indic languages, along with
 137 the detailed experimental setup. We present a unified and efficient multilingual NLU framework
 138 that uniquely integrates multitask learning, multi-teacher KD, and PTQ to address the challenges of
 139 low-resource Indic languages. Our approach begins with a multitask learning setup, where a single
 140 XLM-R model is trained to perform ID, DC and SF jointly which acts as a baseline. To further
 141 enhance this multitask model, we introduce a multi-teacher distillation strategy. Here, three com-
 142plementary teacher models—each trained in a subset of tasks (ID+DC, DC+SF, ID+SF) provide
 143 specialized task-level supervision to a unified student model. The student incorporates attention-
 144 based fusion to dynamically weigh and integrate teacher output, along with contrastive learning to
 145 align task and language representations in a shared semantic space. This design allows the student
 146 to learn simultaneously from multiple tasks and languages, improving its robustness and generaliza-
 147 tion. After training, we apply PTQ to compress the model for efficient deployment. Static PTQ is
 148 used on the non-distilled baseline multitask model with affine calibration and zero-point encoding.
 149 In contrast, the distilled student benefits from dynamic quantization, which converts all linear and
 150 task-specific layers (including attention and decoder heads) into INT8 format without calibration
 151 data, preserving flexibility and performance. Building upon this, we introduce our novel precision-
 152 controlled task-specific dynamic PTQ method. Unlike prior approaches, this technique incorporates
 153 a learned precision controller that selects bit-widths from 4, 8, 16 separately for encoder attention
 154 layers, encoder MLP/linear blocks, and each task-specific head (ID, DC, SF). At deployment, the
 155 controller deterministically freezes precision choices per component, replacing each selected linear
 156 layer with a Quantized Linear module whose weight tensor is stored in int8/int16/int4, significantly
 157 reducing model size and memory footprint. At runtime, activations are fake-quantized using the
 158 same chosen precision, which reduces bandwidth and latency. By unifying weight and activation
 159 quantization under a single runtime policy, this method achieves both aggressive compression and
 160 strong accuracy preservation.

162 4.1 STATIC QUANTIZATION ON A MULTITASK MODEL
163

164 To build the baseline multitask model for cross-domain NLU, we had leveraged XLM-R Model to
165 generate contextualized hidden state representations for Indic languages, enhancing cross-lingual
166 understanding in low-resource settings. Each language specific input sequence is tokenized and
167 Word Embeddings, Sentence Embeddings, and Segment Embeddings are then concatenated and
168 passed to XLM-R Model. Given an utterance U_i comprising of S_1, S_2, \dots, S_m belonging to a
169 target language family F comprising of x_i tokens. The output i.e hidden state representations, are
170 represented as follows:

$$171 \quad \mathbf{H}_{\text{CLS}}, \mathbf{H}_1, \mathbf{H}_2 = XLMR(\mathbf{U}_i, \mathbf{M}) \quad (1)$$

173 After computing the hidden states, static PTQ is applied to produce a compact INT8 version for
174 downstream tasks from a trained FP32 model through the following. **1. QuantWrapper Insertion**
175 To enable 8-bit inference, two parameter-free modules—QuantStub and DeQuantStub—are inserted
176 into the model graph. QuantStub converts floating-point activations to 8-bit integers, while De-
177 QuantStub restores them to float32. These modules ensure correct placement of quantization and
178 dequantization operations during calibration and conversion, allowing quantization to be applied
179 without modifying the model’s original weights.

180 **2. Calibration**

181 We run $N = 100$ batches through the QuantStub to collect per-tensor extrema. From these
182 extrema we compute the scale s and zero-point z for affine quantization. We chose $N=100$ be-
183 cause our ablations showed activation-range estimates, and resultant end-task accuracy-plateau after
184 75 batches, with negligible gains beyond 100, and because seminal PTQ work demonstrates that
185 sampling on the order of 100–256 batches yields stable extrema for high-quality 8-bit quantization
186 without incurring prohibitive calibration cost.

187 **3. Affine Quantization**

188 It maps floating-point values to integers using a linear transformation defined by a scale and zero
189 point. Each scalar entry of $H_{\text{quant}}[i]$ (for $i = 1 \dots n$, each a vector of length d) is mapped to int8
190 via:

$$191 \quad H_{\text{quant}}[i] = \text{round} \left(\text{clip} \left(\frac{H[i]}{s} + z, q_{\min}, q_{\max} \right) \right) \quad (2)$$

$$194 \quad H_{\text{quant}} \in \mathbb{Z}_8^{n \times d} \quad (3)$$

196 The quantized hidden state representation H_{quant} is passed to task-specific classifiers, where the
197 pooled output $H_{\text{quant}}^{[\text{CLS}]}$ is used for ID and DC, and the sequence output is used for SF, each followed by
198 a linear layer and a Softmax activation to produce the final predictions. The architecture is explained
199 in Fig. 3.

201 4.2 MULTI-TASK, MULTI-TEACHER BASED ADAPTIVE KNOWLEDGE DISTILLATION
202

203 We propose a multilingual, multitask framework with three interrelated teacher models (ID+DC,
204 DC+SF, ID+SF), each built on XLM-R and trained independently to guide a unified student model.
205 The student employs an attention-based fusion mechanism to dynamically integrate teacher knowl-
206 edge and incorporates adaptive temperature scaling for task-specific distillation. The student is opti-
207 mized using a multi-objective loss function combining cross-entropy, MSE, KD, and contrastive
208 losses. This architecture is designed to handle complex, cross-domain user utterances in low-
209 resource Indic languages effectively. The total student loss function is defined as:

$$211 \quad \mathcal{L}_{\text{total}} = \alpha (\mathcal{L}_{\text{CE}}^{\text{ID}} + \mathcal{L}_{\text{KD}}^{\text{ID}}) + \beta (\mathcal{L}_{\text{CE}}^{\text{DC}} + \mathcal{L}_{\text{KD}}^{\text{DC}}) + \\ 212 \quad \gamma (\mathcal{L}_{\text{CE}}^{\text{SF}} + \mathcal{L}_{\text{KD}}^{\text{SF}} + \mathcal{L}_{\text{MSE}}^{\text{SF}} + \mathcal{L}_{\text{CRD}}^{\text{SF}}) \quad (4)$$

213 Where α, β, γ controls the relative weighting across all loss components for a given task in the
214 joint objective function

216
217
218 Table 1: Performance of multitask teacher models used for KD.
219
220
221
222

Model	Eval Loss	ID		DC		SF	
		Acc.	F1	Acc.	F1	Acc.	F1
Teacher 1 (IDSF)	0.4806	89.14	87.02	—	—	79.85	77.73
Teacher 2 (IDDC)	0.5195	80.07	77.28	90.00	89.77	—	—
Teacher 3 (DCSF)	0.0723	—	—	79.71	78.47	90.64	90.69

223
224 4.2.1 STATIC QUANTIZATION APPLIED TO THE DISTILLED MODEL
225226 We applied the similar static quantization techniques as applied in the baseline model and evaluate
227 the results on cross-domain, multi-intent NLU. However, experiments conducted using static PTQ
228 degraded performance due to disrupted KD signals, absence of quantization-aware training, and
229 poor approximation of multilingual, multi-modal representations using min/max scaling.
230231 4.2.2 DYNAMIC QUANTIZATION APPLIED TO THE DISTILLED MODEL
232233 Rather than quantizing activations, we apply dynamic PTQ post-distillation to every `nn.Linear`
234 layer in the student model corresponding to the weight matrices
235

236
$$W_{\text{intent}}, W_{\text{domain}}, W_{\text{slot}}, \text{linear projections}$$

237 For each weight $W \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}}}$, we compute:
238

239
$$s_W = \frac{\max |W|}{127}, \quad \widehat{W} = \text{round} \left(\frac{W}{s_W} \right) \quad (\text{int8}) \quad (5)$$

240

241 so that at inference time:
242

243
$$Wx \approx s_W (\widehat{W}x) \quad (6)$$

244 where x is the float32 input. Activations remain in float32 and are quantized on the fly. By leaving
245 $\{H^{\text{CLS}}, H^i\}$ untouched during KD and quantizing only the linear mappings via Eqs. (11)–(12),
246 we preserve the integrity of all losses— \mathcal{L}_{KD} , \mathcal{L}_{MSE} , \mathcal{L}_{CE} , and \mathcal{L}_{CRD} —while achieving approximately.
247248 4.2.3 PRECISION-CONTROLLED TASK SPECIFIC PTQ
249250 To further improve efficiency while maintaining high accuracy, we propose a novel **Precision-
251 Controlled Task Specific PTQ** framework applied to the distilled student model. The detailed PTQ
252 architecture is explained in Fig. 2. Unlike conventional dynamic PTQ, which uniformly applies
253 INT8 quantization to all linear layers, our method employs a *precision controller* to dynamically
254 assign mixed-precision bit-widths $\{4, 8, 16\}$ across different components of the network. Separate
255 precision levels are selected for (i) encoder attention projections, (ii) encoder MLP/linear layers,
256 and (iii) task-specific heads ($W_{\text{intent}}, W_{\text{domain}}, W_{\text{slot}}$). Given a hidden representation H and a chosen
257 bit-width $b \in \{4, 8, 16\}$, we define the integer range as:
258

259
$$q_{\min} = -2^{(b-1)}, \quad q_{\max} = 2^{(b-1)} - 1 \quad (7)$$

260 with scale factor:
261

262
$$s = \frac{\max(|H|)}{q_{\max}}. \quad (8)$$

263 The quantized tensor is obtained as:
264

265
$$\widehat{H} = \text{clip} \left(\text{round} \left(\frac{H}{s} \right), q_{\min}, q_{\max} \right) \cdot s. \quad (9)$$

266 Bit-widths are chosen by a lightweight controller that samples from a learned categorical distribution:
267

268
$$p(b | L) = \text{Softmax} \left(\frac{\theta_L + g}{\tau} \right), \quad (10)$$

269

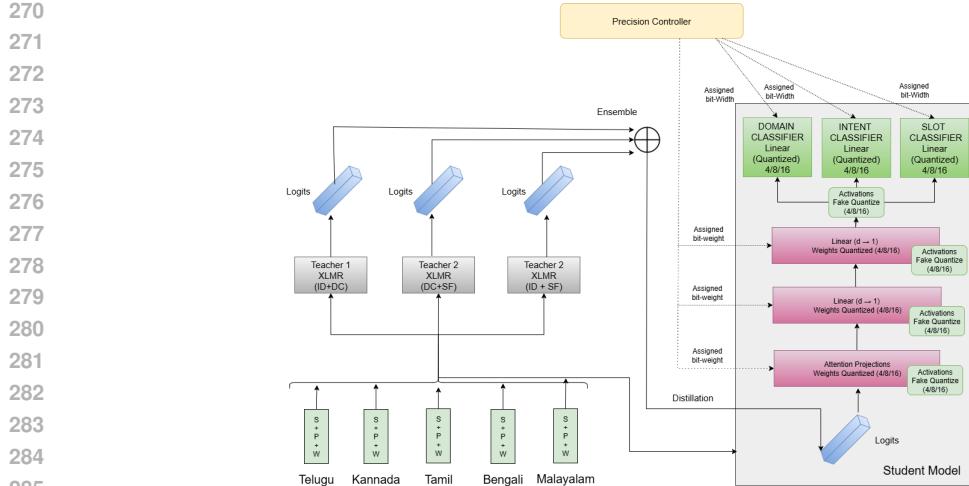


Figure 2: Precision Controlled Task Specific Dynamic PTQ

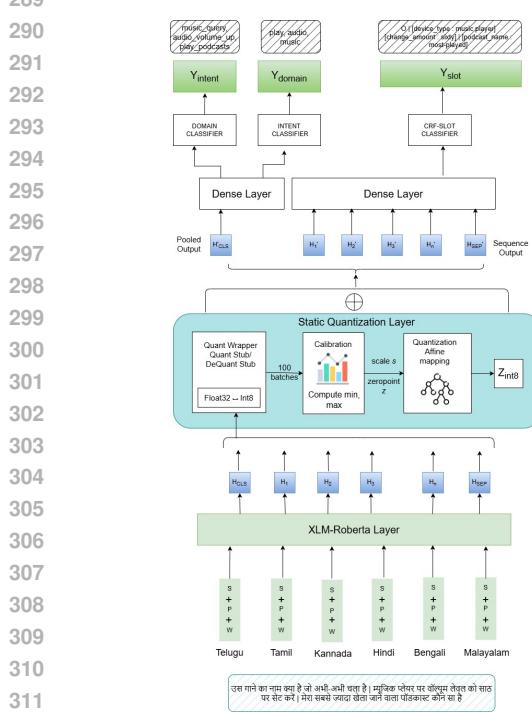


Figure 3: Static PTQ on Baseline Model

312
313
314
315
316
317
318
319
320
321
322
323

where θ_L are trainable logits for each layer L , τ is a temperature parameter, and g denotes Gumbel noise for exploration. Once the optimal assignment is identified, precisions are fixed and deployed deterministically. All targeted weights are permanently stored in compact INT4/INT8/INT16 form, reducing memory footprint, while activations are fake-quantized at runtime under the same precision policy. This unified control of weights and activations allows significant compression and bandwidth reduction, without degrading knowledge distillation signals. Empirically, our Precision-Controlled PTQ consistently outperforms both static and conventional dynamic PTQ, achieving the best trade-off between model size, inference latency, and task-level accuracy.

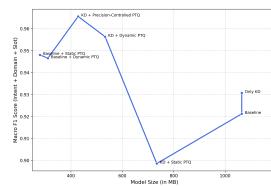


Figure 4: Model Size and Accuracy Tradeoff

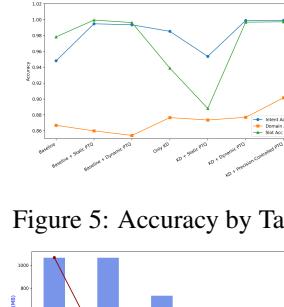


Figure 5: Accuracy by Task

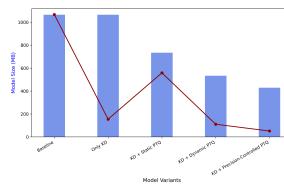


Figure 6: Efficiency Tradeoff

324 **Algorithm 1** Precision-Controlled Task Specific PTQ

325 1: **Input:** Pre-trained student model \mathcal{S} , teacher models $\{\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3\}$, calibration dataset \mathcal{D} , candidate bit-widths $\mathcal{Q} = \{4, 6, 8\}$, trade-off parameter α

326 2: **Output:** Quantized student model \mathcal{S}_q

327 3: Initialize precision controller C with random parameters

328 4: Collect layer-wise activation statistics on \mathcal{D}

329 5: **for** each calibration batch B in \mathcal{D} **do**

330 6: Generate soft targets by fusing outputs of teacher models

331 7: **for** each layer l in student model \mathcal{S} **do**

332 8: Compute sensitivity score s_l based on weight and activation variance

333 9: Determine optimal bit-width using controller:

334

$$b_l = \arg \max_{q \in \mathcal{Q}} P(q|s_l, \alpha)$$

335

336 10: Quantize weights and activations of layer l to b_l bits

337 11: **end for**

338 12: Calculate distillation loss between teacher outputs and quantized model

339 13: Update \mathcal{S} and controller C using backpropagation

340 14: **end for**

341 15: Freeze bit-width assignments and export final quantized model $\mathcal{S}_q = 0$

342

5 EXPERIMENTS

For all architectures, we used Python-based libraries such as PyTorch, Transformers along with statistical computing packages and open-source embedding models. Our baseline model fine-tuned XLM-RoBERTa-Base on a custom Indic dataset using the Adam optimizer with a learning rate of 2×10^{-5} , batch size of 32, and 5 training epochs. A linear scheduler with 10% warm-up followed by linear decay was used across `len(train_dataloader) × 5` steps. We applied cross-entropy loss for ID, DC, SF using a Conditional Random Field (CRF) layer for SF. We applied symmetric 8-bit PTQ with zero-point encoding and 256-batch calibration using QuantStub/DeQuantStub. In the Distillation setup, We distilled a single student model using offline distillation from three fine-tuned XLM-RoBERTa-Base multitask teachers (ID+DC, DC+SF, ID+SF) using a combination loss functions, with temperature scaling (4.0 utterance, 8.0 token) and loss weights (ID = 0.6, DC = 0.8, SF = 0.5). Training ran for 2 epochs with AdamW ($lr = 3 \times 10^{-5}$, batch size = 32). The resulting “Only KD” model matches the full-precision footprint (1064.86 MB), cuts CPU inference in half (92.20s), and improves task performance over the baseline. In the KD + Static PTQ setup, we wrapped the same distilled student in QuantStub/DeQuantStub modules and applied static PTQ: symmetric per-tensor 8-bit quantization (weights + activations) calibrated over 256 representative batches. No further retraining was needed. The resulting INT8 model (734.09 MB) 2x smaller in size—with a modest latency increase, while preserving accuracy.

In the KD + Dynamic PTQ setup, we quantized all linear and embedding layers of the already-distilled student. This hybrid approach produces an all-INT8 model that loads weights as int8 and computes activation scales on the fly. It achieves the best resource profile (533.12 MB) and fastest CPU inference (85.40s) over the FP32 baseline—while maintaining over the original model’s accuracy. To further enhance model efficiency, our KD + Precision Controlled Task Specific Dynamic PTQ augments the distilled student with precision-aware quantization policies tailored to each task head. This results in the most efficient trade-off between compression, speed, and accuracy. The proposed model achieves a footprint of 428.25 MB with the fastest CPU inference time of 76.34s. Importantly, it surpasses all prior variants in task performance, achieving near-perfect scores across metrics especially on the DC.

6 RESULTS AND ANALYSIS

This section discusses the results obtained across different experimental setups. Table 2 summarizes the performance metrics across the evaluated architectures, while Table 1 reports the performance

378
379
380
381
382 Table 2: Performance of baseline and distilled models under static, dynamic, and our proposed
383 precision-controlled PTQ.
384
385
386
387

Model	Model Size (MB)	Inference Time (s)	Intent		Domain		Slot	
			Acc.	F1	Acc.	F1	Acc.	F1
Baseline Model	1064.80	232.24	0.9481	0.9373	0.8668	0.8590	0.9782	0.9674
Baseline Model + Static PTQ	279.58	99.57	0.9947	0.9939	0.8598	0.8509	0.9994	0.9994
Baseline Model + Dynamic PTQ	310.24	91.63	0.9934	0.9926	0.8541	0.8510	0.9962	0.9961
Only KD	1064.86	92.20	0.9852	0.9838	0.8765	0.8734	0.9388	0.9350
KD + Static PTQ	734.09	154.16	0.9536	0.9432	0.8735	0.8783	0.8881	0.8743
KD + Dynamic PTQ	533.12	85.40	0.9988	0.9985	0.8769	0.8742	0.9967	0.9964
KD + Precision-Controlled PTQ (Ours)	428.25	76.34	0.9991	0.9989	0.9015	0.9010	0.9972	0.9969

388
389
390 of the multitask teacher models. KD from the full-precision multitask teachers to a smaller student
391 model enhanced with adaptive temperature scaling and contrastive learning for slot filling—achieved
392 a 60.3% reduction in latency compared to the baseline. On this distilled model, we tested both
393 static and dynamic PTQ. As shown in Table 2, applying static PTQ reduced model size by 31% but
394 introduced additional inference overhead. Hence, we assessed dynamic PTQ in terms of size, speed,
395 and accuracy. The KD + Dynamic PTQ setup achieved a 49.9% model size reduction, 63.2% faster
396 inference, and near-perfect accuracy and F1 scores across ID, DC, and SF tasks.
397398
399
400
401
402
403
404
405
406
407 To further enhance inference time and maintain high accuracy, we applied our Precision-Controlled
408 PTQ on the distilled student model. This approach strategically assigns low-precision weights across
409 tasks without compromising performance. Compared to the baseline, the KD + Precision-Controlled
410 Task Specific PTQ model achieved a 59.8% reduction in model size and a 67.1% faster inference,
411 while delivering near-perfect accuracy and F1 scores across (ID: 99.91 / 99.89), (DC: 90.15 / 90.10),
412 and (SF: 99.72 / 99.69) tasks. These results demonstrate that our approach effectively balances
413 model size, inference speed and task accuracy, making it a highly practical solution for deploying
414 high-performance NLU models on resource-constrained devices. Following our overall results for
415 per-language performance in Table 3 and statistical significance in Table 4. The detailed results on
416 model size vs accuracy tradeoff for all the architectures are explained in Fig. 4. Fig. 5 explains the
417 accuracy for all the NLU tasks whereas, Fig. 6 illustrates the efficiency model size trade-off for all
418 the architectures.419
420
421
422
423
424
425
426
427
428
429
430
431 **Per-Language Performance** We evaluate the KD + Precision-Controlled Task Specific PTQ
427 model across six Indic languages (Hindi, Tamil, Telugu, Kannada, Malayalam, Bengali). As shown
428 in Table 3, performance remains consistently high for the 3 NLU tasks. These results affirm the
429 robustness and generalization of our model across diverse linguistic structures while preserving
430 near-perfect intent, domain and slot detection performance.
431440
441
442
443
444 Table 3: Per-language performance of KD + Precision-Controlled PTQ (Ours) on six Indic lan-
445 guages.
446

Language	Intent Acc	Intent F1	Domain Acc	Domain F1	Slot Acc	Slot F1
Hindi	0.9991	0.9989	0.9050	0.9040	0.9973	0.9971
Tamil	0.9988	0.9986	0.9020	0.9010	0.9970	0.9969
Kannada	0.9989	0.9987	0.9000	0.8990	0.9969	0.9967
Malayalam	0.9987	0.9985	0.8980	0.8970	0.9968	0.9966
Bengali	0.9990	0.9988	0.8995	0.8985	0.9969	0.9967
Telugu	0.9989	0.9987	0.9015	0.9005	0.9971	0.9969

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696

432 these findings confirm that our precision-controlled quantization strategy not only reduces model
 433 size and inference time but also delivers significant accuracy gains in challenging tasks like ID and
 434 DC, highlighting its robustness and effectiveness for multilingual NLU.
 435

436 Table 4: Statistical comparison of Baseline + Static PTQ and KD + Precision-Controlled PTQ across
 437 key NLU metrics.

Metric	Baseline + Static PTQ	KD + Precision-Controlled PTQ	p-value
Intent Accuracy	0.9947 ± 0.0021	0.9991 ± 0.0006	< 0.001
Intent F1	0.9939 ± 0.0024	0.9989 ± 0.0007	< 0.001
Domain Accuracy	0.8598 ± 0.0153	0.9015 ± 0.0085	0.010
Domain F1	0.8509 ± 0.0171	0.9010 ± 0.0090	0.015
Slot Accuracy	0.9994 ± 0.0005	0.9972 ± 0.0010	0.080
Slot F1	0.9994 ± 0.0005	0.9969 ± 0.0011	0.070

448 7 ERROR ANALYSIS

449
 450 Based on our experiments, we find that SF is the most sensitive to quantization noise, followed
 451 by ID. DC, being a coarser-grained task, demonstrates relatively higher robustness under quantized
 452 settings. In multilingual utterances containing multiple intents, the model frequently over predicts
 453 domains, often adding unrelated domains such as alarm or email in music-centric inputs, particularly
 454 in Malayalam and Bengali. This behavior reflects in multi-domain disentanglement under quantized
 455 constraints. We also observe that Dravidian languages such as Malayalam and Tamil exhibit higher
 456 rates of domain mis-classification, which we attribute to richer morphology, longer sentence struc-
 457 tures, and limited training resources in these languages. Additionally, we notice frequent confusion
 458 between semantically similar intents, such as music_query versus play_music and calendar_query
 459 versus calendar_set, especially in Malayalam and Tamil. This suggests insufficient separation in the
 460 learned intent embedding space when operating under quantized precision. Importantly, when com-
 461 paring both models, we find that the dynamically quantized model demonstrates fewer such errors
 462 than the static PTQ baseline. This supports our design decision to apply multi-teacher distillation
 463 prior to quantization, which enhances task separation and allows for greater numerical flexibility
 464 during downstream execution.

465 8 CONCLUSION

466 This study demonstrates that a low-precision distilled student model can substantially reduce both
 467 latency and model size while maintaining, and in some cases improving, accuracy across ID, DC
 468 and SF tasks. By leveraging adaptive attention fusion and temperature scaling, the approach delivers
 469 real-time, scalable performance on constrained hardware. Although static PTQ provides compres-
 470 sion benefits for cross-domain, multi-intent NLU in low-resource Indic languages, its inference
 471 overhead limits practical utility. In contrast, integrating multitask, multi-teacher KD with dynamic
 472 PTQ achieves a more effective balance of efficiency and accuracy, yielding significant reductions
 473 in model size and latency without compromising task performance. Extending this further, our
 474 precision-controlled, task-specific dynamic PTQ framework unifies weight-activation quantization
 475 under a controller-driven policy, allowing fine-grained precision assignment across encoder layers
 476 and task heads. This achieves the most favorable trade-off, with up to 59.8% model size reduc-
 477 tion and 67.1% faster inference, while sustaining near-perfect accuracy across ID, DC, and SF.
 478 Overall, the combination of multitask, multi-teacher KD and precision-controlled task specific PTQ
 479 provides a scalable, resource-efficient, and high-performance solution for deploying multilingual
 480 cross-domain, multi-intent NLU systems in low-resource, on-device environments.
 481

482 **Limitations** While our KD + PTQ framework demonstrates strong performance and efficiency on
 483 low-resource Indic NLU tasks, two key limitations remain. The approach relies solely on PTQ
 484 (static/dynamic) and does not incorporate QAT, which could enhance robustness under aggressive
 485 quantization in low-resource cross-domain settings. Future work could explore pruning and related
 486 compression techniques to further reduce model size.

486 REFERENCES
487

488 Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
489 Hawq-v2: Hessian aware trace-weighted quantization of neural networks. *Advances in neural*
490 *information processing systems*, 33:18518–18529, 2020.

491 Yousef El-Kurdi, Jerry Quinn, and Avirup Sil. Zero-shot dynamic quantization for transformer
492 inference. *arXiv preprint arXiv:2211.09744*, 2022.

493 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
494 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

495

496 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
497 *preprint arXiv:1503.02531*, 2015.

498

499 Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Mike Papadakis, Lei Ma, and Yves Le Traon.
500 Aries: Efficient testing of deep neural networks via labeling-free accuracy estimation. In *2023*
501 *IEEE/ACM 45th International Conference on Software Engineering (ICSE)*, pp. 1776–1787.
502 IEEE, 2023.

503 Charith Peris Scott Mackie Kay Rottmann Ana Sanchez Aaron Nash Liam Urbach Vishesh Kakar-
504 ala Richa Singh Swetha Ranganath Laurie Crist Misha Britan Wouter Leeuwis Gokhan Tur
505 Prem Natarajan Jack FitzGerald, Christopher Hench. Massive: A 1m-example multilingual nat-
506 ural language understanding dataset with 51 typologically-diverse languages. *arXiv:2204.08582*,
507 2022.

508

509 Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
510 Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
511 intervals with task loss. In *Proceedings of the IEEE/CVF conference on computer vision and*
512 *pattern recognition*, pp. 4350–4359, 2019.

513

514 Jiedong Lang, Zhehao Guo, and Shuyu Huang. A comprehensive study on quantization tech-
515 niques for large language models. In *2024 4th International Conference on Artificial Intelligence,*
516 *Robotics, and Communication (ICAIRC)*, pp. 224–231. IEEE, 2024.

517

518 Yan Li, So-Eon Kim, Seong-Bae Park, and Soyeon Caren Han. Midas: Multi-level intent, domain,
519 and slot knowledge distillation for multi-turn nlu. *arXiv preprint arXiv:2408.08144*, 2024.

520

521 Chengyuan Liu, Yangyan g Kang, Fubang Zhao, Kun Kuang, Zhuoren Jiang, Changlong Sun, and
522 Fei Wu. Evolving knowledge distillation with large language models and active learning. *arXiv*
523 *preprint arXiv:2403.06414*, 2024.

524

525 Navin Ranjan and Andreas Savakis. Vision transformer quantization with multi-step knowledge
526 distillation. In *Signal Processing, Sensor/Information Fusion, and Target Recognition XXXIII*,
527 volume 13057, pp. 283–292. SPIE, 2024.

528

529 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
530 Yoshua Bengio. Fitnets: Hints for thin deep nets. *arXiv preprint arXiv:1412.6550*, 2014.

531

532 Tulika Saha, Neeti Priya, Sriparna Saha, and Pushpak Bhattacharyya. A transformer based multi-
533 task model for domain classification, intent detection and slot-filling. In *2021 International Joint*
534 *Conference on Neural Networks (IJCNN)*, pp. 1–8, 2021.

535

536 Liyuan Sun, Jianping Gou, Baosheng Yu, Lan Du, and Dacheng Tao. Collaborative teacher-student
537 learning via multiple knowledge transfer. *arXiv preprint arXiv:2101.08471*, 2021.

538

539 Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
540 tization with mixed precision. In *Proceedings of the IEEE/CVF conference on computer vision*
541 *and pattern recognition*, pp. 8612–8620, 2019.

542

543 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
544 Accurate and efficient post-training quantization for large language models. In *International*
545 *Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023.

540 Hanqi Xiao, Yi-Lin Sung, Elias Stengel-Eskin, and Mohit Bansal. Task-circuit quantiza-
541 tion: Leveraging knowledge localization and interpretability for compression. *arXiv preprint*
542 *arXiv:2504.07389*, 2025.

543

544 Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
545 He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
546 *Advances in neural information processing systems*, 35:27168–27183, 2022.

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593