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ABSTRACT

The evolution of conversational AI emphasizes not just accuracy, but also effi-
ciency and scalability. In low-resource Indic languages (Tamil, Telugu, Malay-
alam, Kannada, Hindi, Bengali), cross-domain, multi-intent NLU tasks such as
Intent Detection (ID), Domain Classification (DC), and Slot Filling (SF) be-
come especially challenging due to cross-domain variability and limited annotated
data. LLMs, though powerful, incur high computational costs and slow inference
due to their high resource requirements. Knowledge Distillation (KD) enables
lightweight student models to retain performance from larger teachers, while post-
training quantization (PTQ) further reduces inference cost, making low-resource
multitask NLU more feasible on constrained hardware. In our paper, we inves-
tigate scalable deployment architectures for multitask NLU tasks in resource-
constrained environments. We compare static PTQ applied to a non-distilled mul-
titask baseline with precision-controlled, task-specific dynamic PTQ applied to a
multi-teacher based distilled student. Static PTQ uses QuantStub/DeQuantStub,
calibration over representative batches, and zero-point quantization, while af-
ter training, the distilled student undergoes precision-controller–driven dynamic
PTQ. The student is distilled from three pairs of teachers (ID–DC, ID–SF, DC–SF)
using adaptive attention-based fusion and temperature scaling. The controller
assigns different precisions for encoder attention layers, encoder MLP blocks,
and each multitask head (ID, DC, SF), allowing finer-grained accuracy–efficiency
optimization without calibration. By unifying weight and activation precision
under a single runtime policy, our approach further reduces memory and band-
width requirements without degrading accuracy. Experimental results on a custom
multilingual Indic dataset show that our multitask based multi-teacher–distilled,
precision-controller–quantized student achieves a superior accuracy–efficiency
trade-off, significantly reducing inference latency, memory footprint, and runtime
bandwidth while preserving accuracy across NLU tasks. Our study demonstrates
that unifying KD with precision-controlled, task-specific dynamic PTQ under a
single weight–activation policy delivers scalable, real-time NLU for low-resource
multilingual settings while achieving optimal efficiency–accuracy trade-offs.

1 INTRODUCTION

Conversational AI in low-resource Indic languages faces challenges in cross-domain, multitask NLU
due to limited data and domain variability. This paper explores scalable deployment using KD and
PTQ techniques to enable efficient, real-time inference on constrained hardware and low-resource
settings. Fig. 1 shows cross-domain Indic user-utterances expressing multiple intents.
Contributions :

• Static PTQ of Baseline MultiLingual MultiTask Model. We propose a static PTQ
pipeline tailored specifically for a multilingual, multitask baseline fusion model using
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Figure 1: Examples of User Utterances with Multiple Intents Across Domains in Indic Low-
Resource Languages

QuantStub/DeQuantStub, min-max calibration, and zero-point encoding, resulting in an
int8 model that reduces memory and speeds up CPU inference with minimal performance
loss on low-resource cross-domain, multi-intent Indic NLU tasks catering to 6 Indic Lan-
guages (Bengali, Hindi, Tamil, Telugu, Kannada, Malayalam).

• Dynamic PTQ of MultiLingual Distilled Model. We introduce a multitask, multi-teacher
distillation framework designed for 6 Indic languages where three specialized teacher mod-
els (ID+DC, DC+SF, ID+SF) jointly transfer task-specific knowledge to a unified student
model. The student employs attention-based fusion to dynamically prioritize informative
teacher signals and integrates adaptive temperature scaling and contrastive learning to im-
prove cross-task generalization. After training, we apply dynamic post-training quantiza-
tion, converting all linear components, including attention and task-specific layers, into int8
without calibration, resulting in a highly efficient model with strong NLU performance.

• Precision Controlled Task Specific Dynamic PTQ under unified weight-activation pol-
icy We propose a novel precision-controller-driven task specific dynamic PTQ scheme that
jointly quantizes weights and activations. At deployment, the controller selects and freezes
bit-widths from 4, 8, 16 independently for encoder attention layers, encoder MLP/linear
blocks, and each NLU task head. Built on a multitask based multi-teacher KD framework,
our approach produces compact, efficient student models that permanently reduce memory
footprint and inference latency while preserving accuracy in low-resource, multilingual,
multitask NLU settings.

2 LITERATURE SURVEY

Recent advancements in multitask NLU, knowledge distillation (KD), and quantization have in-
formed our approach. Saha et al. (2021) proposed a BERT-based multitask framework for joint
modeling of Domain Classification (DC), Intent Detection (ID), and Slot Filling (SF) leveraging
capsule networks and conditional random fields. Knowledge distillation techniques such as soft-
probability transfer by Hinton et al. (2015) and intermediate-layer hints in FitNets by Romero et al.
(2014) motivate the multi-teacher distillation strategies used in this work. MIDAS, a multi-level,
multi-teacher KD framework for multi-turn NLU that improves ID, SF and DC, was proposed by Li
et al. (2024). In the quantization domain, several notable approaches have shaped best practices for
post-training quantization (PTQ) and low-bit deployment. Jung et al. (2019) optimized quantization
intervals via task-loss-driven learning to preserve accuracy under static quantization, and Frantar
et al. (2022) introduced GPTQ, an accurate post-training quantization method for large transform-
ers. Xiao et al. (2023) proposed SmoothQuant to enable efficient, high-fidelity LLM quantization
without retraining. Works such as Lang et al. (2024) and Hu et al. (2023) analyze and compare
static, dynamic, and post-training quantization strategies, providing guidance for choosing calibra-
tion schemes and per-tensor vs. per-channel formats. Additionally, El-Kurdi et al. (2022) proposed
zero-shot dynamic quantization approaches that reduce reliance on calibration data. There is also
growing interest in combining KD with quantization. Ranjan & Savakis (2024) apply multi-step KD
for vision transformer quantization, while Sun et al. (2021) explore collaborative teacher-student
learning across multiple knowledge sources for quantized networks. Liu et al. (2024) investigate
evolving KD strategies with large language models and active learning to bridge the performance
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gap in quantized architectures. Early mixed-precision PTQ methods search per-layer bit-widths
using hardware or second-order signals. Wang et al. (2019) employs reinforcement learning with
hardware feedback to learn layer-wise precision policies, showing that non-uniform bit-widths can
improve efficiency with minimal accuracy loss. Dong et al. (2020) leverage the Hessian spectrum
to assign mixed precision and determine quantization order, again at layer granularity. For large
Transformers, Yao et al. (2022) provide end-to-end PTQ pipelines (often combined with knowledge
distillation) and explore design spaces across bit precisions and model families, however, they do
not expose per-task-head control at deployment. Addressing activation outliers, Xiao et al. (2023)
shifts activation difficulty into weights via offline channel-wise scaling. Recent dynamic and task-
conditioned approaches in Xiao et al. (2025), preserve task-critical weight “circuits” in higher pre-
cision to sustain accuracy at very low bitwidths. Yet these methods are primarily weight-focused,
do not unify activation precision under a single policy, and provide no explicit, user-controllable
per-head knobs. Overall, prior work is typically (i) weight-only or activation-only in practice, (ii)
optimized at the layer/block level without per-head (ID/DC/SF) control, and/or (iii) missing a uni-
fied runtime policy that jointly governs both weights and activations. Taken together, these studies
motivate our design: a multi-teacher KD pipeline tailored to multilingual, multitask NLU, followed
by precision-controlled dynamic PTQ.

3 DATASET

For our experiments, we focus specifically on six low-resource Indic languages - Bengali, Hindi,
Tamil, Telugu, Kannada, and Malayalam. A custom multi-intent, cross-domain dataset was prepared
from the MASSIVE benchmark (Jack FitzGerald, 2022). Representative samples are illustrated in
Fig. 1. This custom data set contains 163,109 training utterances and 40,778 testing utterances that
span all six languages, annotated with 540 distinct intent labels, 37 domain categories, and 60 slot
types. Since we are working on a multi-sentence structured dataset, this was the best suited dataset
that could be potentially leveraged for all our experiments.

4 METHODOLOGY

This section compares static, dynamic, and our proposed precision-controlled PTQ methods, with
and without KD for cross-domain, multi-intent NLU in low-resource Indic languages, along with
the detailed experimental setup. We present a unified and efficient multilingual NLU framework
that uniquely integrates multitask learning, multi-teacher KD, and PTQ to address the challenges of
low-resource Indic languages. Our approach begins with a multitask learning setup, where a single
XLM-R model is trained to perform ID, DC and SF jointly which acts as a baseline. To further
enhance this multitask model, we introduce a multi-teacher distillation strategy. Here, three com-
plementary teacher models—each trained in a subset of tasks (ID+DC, DC+SF, ID+SF) provide
specialized task-level supervision to a unified student model. The student incorporates attention-
based fusion to dynamically weigh and integrate teacher output, along with contrastive learning to
align task and language representations in a shared semantic space. This design allows the student
to learn simultaneously from multiple tasks and languages, improving its robustness and generaliza-
tion. After training, we apply PTQ to compress the model for efficient deployment. Static PTQ is
used on the non-distilled baseline multitask model with affine calibration and zero-point encoding.
In contrast, the distilled student benefits from dynamic quantization, which converts all linear and
task-specific layers (including attention and decoder heads) into INT8 format without calibration
data, preserving flexibility and performance. Building upon this, we introduce our novel precision-
controlled task-specific dynamic PTQ method. Unlike prior approaches, this technique incorporates
a learned precision controller that selects bit-widths from 4, 8, 16 separately for encoder attention
layers, encoder MLP/linear blocks, and each task-specific head (ID, DC, SF). At deployment, the
controller deterministically freezes precision choices per component, replacing each selected linear
layer with a Quantized Linear module whose weight tensor is stored in int8/int16/int4, significantly
reducing model size and memory footprint. At runtime, activations are fake-quantized using the
same chosen precision, which reduces bandwidth and latency. By unifying weight and activation
quantization under a single runtime policy, this method achieves both aggressive compression and
strong accuracy preservation.
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4.1 STATIC QUANTIZATION ON A MULTITASK MODEL

To build the baseline multitask model for cross-domain NLU, we had leveraged XLM-R Model to
generate contextualized hidden state representations for Indic languages, enhancing cross-lingual
understanding in low-resource settings. Each language specific input sequence is tokenized and
Word Embeddings, Sentence Embeddings, and Segment Embeddings are then concatenated and
passed to XLM-R Model. Given an utterance Ui comprising of S1, S2, . . . , Sm belonging to a
target language family F comprising of xi tokens. The output i.e hidden state representations, are
represented as follows:

HCLS,H1,H2 = XLMR(Ui,M) (1)

After computing the hidden states, static PTQ is applied to produce a compact INT8 version for
downstream tasks from a trained FP32 model through the following. 1. QuantWrapper Insertion
To enable 8-bit inference, two parameter-free modules—QuantStub and DeQuantStub—are inserted
into the model graph. QuantStub converts floating-point activations to 8-bit integers, while De-
QuantStub restores them to float32. These modules ensure correct placement of quantization and
dequantization operations during calibration and conversion, allowing quantization to be applied
without modifying the model’s original weights.
2. Calibration
We run N = 100 batches through the QuantStub to collect per-tensor extrema. From these
extrema we compute the scale s and zero-point z for affine quantization. We chose N=100 be-
cause our ablations showed activation-range estimates, and resultant end-task accuracy-plateau after
75 batches, with negligible gains beyond 100, and because seminal PTQ work demonstrates that
sampling on the order of 100–256 batches yields stable extrema for high-quality 8-bit quantization
without incurring prohibitive calibration cost.
3. Affine Quantization
It maps floating-point values to integers using a linear transformation defined by a scale and zero
point. Each scalar entry of Hquant[i] (for i = 1 . . . n, each a vector of length d) is mapped to int8
via:

Hquant[i] = round

(
clip

(
H[i]

s
+ z, qmin, qmax

))
(2)

Hquant ∈ Zn×d
8 (3)

The quantized hidden state representation Hquant is passed to task-specific classifiers, where the
pooled output H [CLS]

quant is used for ID and DC, and the sequence output is used for SF, each followed by
a linear layer and a Softmax activation to produce the final predictions. The architecture is explained
in Fig. 3.

4.2 MULTI-TASK, MULTI-TEACHER BASED ADAPTIVE KNOWLEDGE DISTILLATION

We propose a multilingual, multitask framework with three interrelated teacher models (ID+DC,
DC+SF, ID+SF), each built on XLM-R and trained independently to guide a unified student model.
The student employs an attention-based fusion mechanism to dynamically integrate teacher knowl-
edge and incorporates adaptive temperature scaling for task-specific distillation. The student is opti-
mized using a multi-objective loss function combining cross-entropy, MSE, KD, and contrastive
losses. This architecture is designed to handle complex, cross-domain user utterances in low-
resource Indic languages effectively. The total student loss function is defined as:

Ltotal = α
(
LID

CE + LID
KD

)
+ β

(
LDC

CE + LDC
KD

)
+

γ
(
LSF

CE + LSF
KD + LSF

MSE + LSF
CRD

) (4)

Where α , β , γ controls the relative weighting across all loss components for a given task in the
joint objective function
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Table 1: Performance of multitask teacher models used for KD.

Model Eval Loss ID DC SF
Acc. F1 Acc. F1 Acc. F1

Teacher 1 (IDSF) 0.4806 89.14 87.02 – – 79.85 77.73
Teacher 2 (IDDC) 0.5195 80.07 77.28 90.00 89.77 – –
Teacher 3 (DCSF) 0.0723 – – 79.71 78.47 90.64 90.69

4.2.1 STATIC QUANTIZATION APPLIED TO THE DISTILLED MODEL

We applied the similar static quantization techniques as applied in the baseline model and evaluate
the results on cross-domain, multi-intent NLU. However, experiments conducted using static PTQ
degraded performance due to disrupted KD signals, absence of quantization-aware training, and
poor approximation of multilingual, multi-modal representations using min/max scaling.

4.2.2 DYNAMIC QUANTIZATION APPLIED TO THE DISTILLED MODEL

Rather than quantizing activations, we apply dynamic PTQ post-distillation to every nn.Linear
layer in the student model corresponding to the weight matrices

Wintent, Wdomain, Wslot, linearprojections

For each weight W ∈ Rdin×dout , we compute:

sW =
max |W |

127
, Ŵ = round

(
W

sW

)
(int8) (5)

so that at inference time:
Wx ≈ sW

(
Ŵx

)
(6)

where x is the float32 input. Activations remain in float32 and are quantized on the fly. By leaving
{HCLS, Hi} untouched during KD and quantizing only the linear mappings via Eqs. (11)–(12),
we preserve the integrity of all losses—LKD, LMSE, LCE, and LCRD—while achieving approximately.

4.2.3 PRECISION-CONTROLLED TASK SPECIFIC PTQ

To further improve efficiency while maintaining high accuracy, we propose a novel Precision-
Controlled Task Specific PTQ framework applied to the distilled student model. The detailed PTQ
architecture is explained in Fig. 2. Unlike conventional dynamic PTQ, which uniformly applies
INT8 quantization to all linear layers, our method employs a precision controller to dynamically
assign mixed-precision bit-widths {4, 8, 16} across different components of the network. Separate
precision levels are selected for (i) encoder attention projections, (ii) encoder MLP/linear layers,
and (iii) task-specific heads (Wintent,Wdomain,Wslot). Given a hidden representation H and a chosen
bit-width b ∈ {4, 8, 16}, we define the integer range as:

qmin = −2(b−1), qmax = 2(b−1) − 1 (7)

with scale factor:

s =
max(|H|)

qmax
. (8)

The quantized tensor is obtained as:

Ĥ = clip
(

round
(
H

s

)
, qmin, qmax

)
· s. (9)

Bit-widths are chosen by a lightweight controller that samples from a learned categorical distribu-
tion:

p(b |L) = Softmax

(
θL + g

τ

)
, (10)
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Figure 2: Precision Controlled Task Specific Dynamic PTQ

Figure 3: Static PTQ on Baseline Model

Figure 4: Model Size and Accuracy Tradeoff

Figure 5: Accuracy by Task

Figure 6: Efficiency Tradeoff

where θL are trainable logits for each layer L, τ is a temperature parameter, and g denotes Gumbel
noise for exploration. Once the optimal assignment is identified, precisions are fixed and deployed
deterministically. All targeted weights are permanently stored in compact INT4/INT8/INT16 form,
reducing memory footprint, while activations are fake-quantized at runtime under the same precision
policy. This unified control of weights and activations allows significant compression and bandwidth
reduction, without degrading knowledge distillation signals.Empirically, our Precision-Controlled
PTQ consistently outperforms both static and conventional dynamic PTQ, achieving the best trade-
off between model size, inference latency, and task-level accuracy.
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Algorithm 1 Precision-Controlled Task Specific PTQ

1: Input: Pre-trained student model S, teacher models {T1, T2, T3}, calibration dataset D, candi-
date bit-widths Q = {4, 6, 8}, trade-off parameter α

2: Output: Quantized student model Sq

3: Initialize precision controller C with random parameters
4: Collect layer-wise activation statistics on D
5: for each calibration batch B in D do
6: Generate soft targets by fusing outputs of teacher models
7: for each layer l in student model S do
8: Compute sensitivity score sl based on weight and activation variance
9: Determine optimal bit-width using controller:

bl = argmax
q∈Q

P (q|sl, α)

10: Quantize weights and activations of layer l to bl bits
11: end for
12: Calculate distillation loss between teacher outputs and quantized model
13: Update S and controller C using backpropagation
14: end for
15: Freeze bit-width assignments and export final quantized model Sq =0

5 EXPERIMENTS

For all architectures, we used Python-based libraries such as PyTorch,Transformers along
with statistical computing packages and open-source embedding models. Our baseline model fine-
tuned XLM-RoBERTa-Base on a custom Indic dataset using the Adam optimizer with a learn-
ing rate of 2 × 10−5, batch size of 32, and 5 training epochs. A linear scheduler with 10%
warm-up followed by linear decay was used across len(train dataloader) × 5 steps. We
applied cross-entropy loss for ID, DC , SF using a Conditional Random Field (CRF) layer for
SF. We applied symmetric 8-bit PTQ with zero-point encoding and 256-batch calibration using
QuantStub/DeQuantStub. In the Distillation setup, We distilled a single student model using of-
fline distillation from three fine-tuned XLM-RoBERTa-Base multitask teachers (ID+DC, DC+SF ,
ID+SF) using a combination loss functions, with temperature scaling (4.0 utterance, 8.0 token) and
loss weights (ID = 0.6, DC = 0.8, SF = 0.5). Training ran for 2 epochs with AdamW (lr = 3× 10−5,
batch size = 32). The resulting “Only KD” model matches the full-precision footprint (1064.86 MB),
cuts CPU inference in half (92.20s), and improves task performance over the baseline.In the KD +
Static PTQ setup, we wrapped the same distilled student in QuantStub/DeQuantStub modules and
applied static PTQ: symmetric per-tensor 8-bit quantization (weights + activations) calibrated over
256 representative batches. No further retraining was needed. The resulting INT8 model (734.09
MB) 2× smaller in size—with a modest latency increase, while preserving accuracy.

In the KD + Dynamic PTQ setup, we quantized all linear and embedding layers of the already-
distilled student. This hybrid approach produces an all-INT8 model that loads weights as int8 and
computes activation scales on the fly. It achieves the best resource profile (533.12 MB) and fastest
CPU inference (85.40s) over the FP32 baseline—while maintaining over the original model’s accu-
racy. To further enhance model efficiency, our KD + Precision Controlled Task Specific Dynamic
PTQ augments the distilled student with precision-aware quantization policies tailored to each task
head. This results in the most efficient trade-off between compression, speed, and accuracy. The
proposed model achieves a footprint of 428.25 MB with the fastest CPU inference time of 76.34s.
Importantly, it surpasses all prior variants in task performance, achieving near-perfect scores across
metrics especially on the DC.

6 RESULTS AND ANALYSIS

This section discusses the results obtained across different experimental setups. Table 2 summarizes
the performance metrics across the evaluated architectures, while Table 1 reports the performance

7
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Table 2: Performance of baseline and distilled models under static, dynamic, and our proposed
precision-controlled PTQ.

Model Model Size (MB) Inference Time (s) Intent Domain Slot
Acc. F1 Acc. F1 Acc. F1

Baseline Model 1064.80 232.24 0.9481 0.9373 0.8668 0.8590 0.9782 0.9674
Baseline Model + Static PTQ 279.58 99.57 0.9947 0.9939 0.8598 0.8509 0.9994 0.9994
Baseline Model + Dynamic PTQ 310.24 91.63 0.9934 0.9926 0.8541 0.8510 0.9962 0.9961
Only KD 1064.86 92.20 0.9852 0.9838 0.8765 0.8734 0.9388 0.9350
KD + Static PTQ 734.09 154.16 0.9536 0.9432 0.8735 0.8783 0.8881 0.8743
KD + Dynamic PTQ 533.12 85.40 0.9988 0.9985 0.8769 0.8742 0.9967 0.9964
KD + Precision-Controlled PTQ (Ours) 428.25 76.34 0.9991 0.9989 0.9015 0.9010 0.9972 0.9969

of the multitask teacher models. KD from the full-precision multitask teachers to a smaller student
model enhanced with adaptive temperature scaling and contrastive learning for slot filling—achieved
a 60.3% reduction in latency compared to the baseline. On this distilled model, we tested both
static and dynamic PTQ. As shown in Table 2, applying static PTQ reduced model size by 31% but
introduced additional inference overhead. Hence, we assessed dynamic PTQ in terms of size, speed,
and accuracy. The KD + Dynamic PTQ setup achieved a 49.9% model size reduction, 63.2% faster
inference, and near-perfect accuracy and F1 scores across ID, DC, and SF tasks.

To further enhance inference time and maintain high accuracy, we applied our Precision-Controlled
PTQ on the distilled student model. This approach strategically assigns low-precision weights across
tasks without compromising performance. Compared to the baseline, the KD + Precision-Controlled
Task Specific PTQ model achieved a 59.8% reduction in model size and a 67.1% faster inference,
while delivering near-perfect accuracy and F1 scores across(ID: 99.91 / 99.89), (DC: 90.15 / 90.10),
and (SF: 99.72 / 99.69) tasks. These results demonstrate that our approach effectively balances
model size, inference speed and task accuracy, making it a highly practical solution for deploying
high-performance NLU models on resource-constrained devices. Following our overall results for
per-language performance in Table 3 and statistical significance in Table 4. The detailed results on
model size vs accuracy tradeoff for all the architectures are explained in Fig. 4. Fig. 5 explains the
accuracy for all the NLU tasks whereas, Fig. 6 illustrates the effciency model size trade-off for all
the architectures.

Per-Language Performance We evaluate the KD + Precision-Controlled Task Specific PTQ
model across six Indic languages (Hindi, Tamil, Telugu, Kannada, Malayalam, Bengali). As shown
in Table 3, performance remains consistently high for the 3 NLU tasks. These results affirm the
robustness and generalization of our model across diverse linguistic structures while preserving
near-perfect intent, domain and slot detection performance.

Table 3: Per-language performance of KD + Precision-Controlled PTQ (Ours) on six Indic lan-
guages.

Language Intent Acc Intent F1 Domain Acc Domain F1 Slot Acc Slot F1

Hindi 0.9991 0.9989 0.9050 0.9040 0.9973 0.9971
Tamil 0.9988 0.9986 0.9020 0.9010 0.9970 0.9969
Kannada 0.9989 0.9987 0.9000 0.8990 0.9969 0.9967
Malayalam 0.9987 0.9985 0.8980 0.8970 0.9968 0.9966
Bengali 0.9990 0.9988 0.8995 0.8985 0.9969 0.9967
Telugu 0.9989 0.9987 0.9015 0.9005 0.9971 0.9969

Statistical Significance We performed statistical significance testing using two-sided paired t-tests
to compare the Baseline + Static PTQ and our proposed KD + Precision-Controlled PTQ models.
As reported in Table 4, the results reveal clear and statistically significant improvements in DC
tasks Specifically. Intent Accuracy and F1 show highly significant gains (p < 0.001), while Domain
Accuracy and F1 also improve with strong statistical support (p = 0.010 and p = 0.015, respec-
tively). For the SF task, although KD + Precision-Controlled PTQ achieves near-perfect scores and
numerical differences over the baseline, the improvements are not statistically significant (p ≈ 0.07–
0.08), which is likely due to the baseline already operating at ceiling-level performance. Overall,
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these findings confirm that our precision-controlled quantization strategy not only reduces model
size and inference time but also delivers significant accuracy gains in challenging tasks like ID and
DC, highlighting its robustness and effectiveness for multilingual NLU.

Table 4: Statistical comparison of Baseline + Static PTQ and KD + Precision-Controlled PTQ across
key NLU metrics.

Metric Baseline + Static PTQ KD + Precision-Controlled PTQ p-value

Intent Accuracy 0.9947 ± 0.0021 0.9991 ± 0.0006 < 0.001
Intent F1 0.9939 ± 0.0024 0.9989 ± 0.0007 < 0.001
Domain Accuracy 0.8598 ± 0.0153 0.9015 ± 0.0085 0.010
Domain F1 0.8509 ± 0.0171 0.9010 ± 0.0090 0.015
Slot Accuracy 0.9994 ± 0.0005 0.9972 ± 0.0010 0.080
Slot F1 0.9994 ± 0.0005 0.9969 ± 0.0011 0.070

7 ERROR ANALYSIS

Based on our experiments, we find that SF is the most sensitive to quantization noise, followed
by ID. DC, being a coarser-grained task, demonstrates relatively higher robustness under quantized
settings. In multilingual utterances containing multiple intents, the model frequently over predicts
domains, often adding unrelated domains such as alarm or email in music-centric inputs, particularly
in Malayalam and Bengali. This behavior reflects in multi-domain disentanglement under quantized
constraints. We also observe that Dravidian languages such as Malayalam and Tamil exhibit higher
rates of domain mis-classification, which we attribute to richer morphology, longer sentence struc-
tures, and limited training resources in these languages. Additionally, we notice frequent confusion
between semantically similar intents, such as music query versus play music and calendar query
versus calendar set, especially in Malayalam and Tamil. This suggests insufficient separation in the
learned intent embedding space when operating under quantized precision. Importantly, when com-
paring both models, we find that the dynamically quantized model demonstrates fewer such errors
than the static PTQ baseline. This supports our design decision to apply multi-teacher distillation
prior to quantization, which enhances task separation and allows for greater numerical flexibility
during downstream execution.

8 CONCLUSION

This study demonstrates that a low-precision distilled student model can substantially reduce both
latency and model size while maintaining, and in some cases improving, accuracy across ID, DC
and SF tasks. By leveraging adaptive attention fusion and temperature scaling, the approach delivers
real-time, scalable performance on constrained hardware. Although static PTQ provides compres-
sion benefits for cross-domain, multi-intent NLU in low-resource Indic languages, its inference
overhead limits practical utility. In contrast, integrating multitask, multi-teacher KD with dynamic
PTQ achieves a more effective balance of efficiency and accuracy, yielding significant reductions
in model size and latency without compromising task performance. Extending this further, our
precision-controlled, task-specific dynamic PTQ framework unifies weight–activation quantization
under a controller-driven policy, allowing fine-grained precision assignment across encoder layers
and task heads. This achieves the most favorable trade-off, with up to 59.8% model size reduc-
tion and 67.1% faster inference, while sustaining near-perfect accuracy across ID, DC, and SF.
Overall, the combination of mltitask, multi-teacher KD and precision-controlled task specific PTQ
provides a scalable, resource-efficient, and high-performance solution for deploying multilingual
cross-domain, multi-intent NLU systems in low-resource, on-device environments.

Limitations While our KD + PTQ framework demonstrates strong performance and efficiency on
low-resource Indic NLU tasks, two key limitations remain. The approach relies solely on PTQ
(static/dynamic) and does not incorporate QAT, which could enhance robustness under aggressive
quantization in low-resource cross-domain settings. Future work could explore pruning and related
compression techniques to further reduce model size.

9
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