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ABSTRACT

We present Low Distortion Local Eigenmaps (LDLE), a manifold learning tech-
nique which constructs a set of low distortion local views of a dataset in lower
dimension and registers them to obtain a global embedding. The local views are
constructed using the global eigenvectors of the graph Laplacian and are regis-
tered using Procrustes analysis. The choice of these eigenvectors may vary across
the regions. In contrast to existing techniques, LDLE is more geometric and can
embed manifolds without boundary as well as non-orientable manifolds into their
intrinsic dimension.

1 INTRODUCTION

Nonlinear dimensionality reduction techniques such as Local Linear Embedding (Roweis & Saul,
2000), Hessian eigenmaps (Donoho & Grimes, 2003), Laplacian eigenmaps (Belkin & Niyogi,
2003), t-SNE (Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018), aim at preserving lo-
cal distances as they map a manifold embedded in higher dimension into lower (possibly intrinsic)
dimension. In particular, UMAP and t-SNE follow a top-down approach where they start with an
initial low-dimensional global embedding and then refine it by minimizing a local distortion measure
on it. In contrast, similar to the one in (Singer & Wu, 2011), a bottom-up embedding approach
can be imagined to consist of two steps, first obtaining low distortion local views of the manifold
in lower dimension and then registering them to obtain a global embedding of the manifold. These
local views can be constructed using the coordinate charts of the manifold. In this work, we take
this local perspective to embed a manifold in low dimension.

2 BACKGROUND

Let (M, g) be a d-dimensional Riemannian manifold with finite volume. By definition, for every
xk inM, there exists a coordinate chart (Uk,Φk) such that xk ∈ Uk, Uk ⊂M and Φk maps Uk into
Rd. One can imagine Uk to be a local view ofM in the ambient space. Using rigid transformations,
these local views can be registered to recoverM. Similarly, Φk(Uk) can be imagined to be a local
view ofM in the embedding space Rd. Again using rigid transformations, these local views can be
registered to obtain a d-dimensional embedding ofM. As there may exist multiple mappings which
map Uk into Rd, a natural strategy would be to choose a mapping with low distortion. Let dg(x, y)
denote the shortest geodesic distance between x, y ∈M. Then the distortion of Φk on Uk as defined
in (Jones et al., 2007) is given by

Distortion(Φk,Uk) = ‖Φk‖Lip
∥∥Φ−1

k

∥∥
Lip

(1)

where ‖Φk‖Lip (and similarly
∥∥Φ−1

k

∥∥
Lip

) is the Lipschitz norm of Φk given by

‖Φk‖Lip = sup
x,y∈Uk
x6=y

‖Φk(x)− Φk(y)‖2
dg(x, y)

. (2)

Jones et al. (2007) provide guarantees on the distortion of the coordinate charts of the manifold
constructed using carefully chosen eigenfunctions of the Laplace-Beltrami operator ∆g on it with
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Dirichlet or Neumann boundary conditions. They proved that for a small enough ball Uk around a
given point xk on M, there exist i1, i2, . . . , id where is ≡ is(k), such that, if we let φi to be an
eigenfunction of ∆g then the map Φk(x) = (γki1φi1(x), . . . , γkidφid(x)), where x ∈ Uk and γki =

(
∫
Uk φ

2
i (y)dy/|Uk|)−1/2, has a distortion bounded from above by κ2, a constant that depends on

the natural geometric properties of M. The main idea behind the choice of these eigenfunctions
is that they need to constitute a locally orthonormal frame upto scale; the gradients ∇φis(xk) are
close to being mututally orthogonal and the local scaling factors γkis ‖∇φis(xk)‖2 are close to each
other.

3 OUR CONTRIBUTION

In this work we present Low Distortion Local Eigenmaps (LDLE), a new manifold learning ap-
proach. The main contributions of our work are as follows:

1. We present an algorithmic realization of the construction procedure in (Jones et al., 2007) that
applies to the discretized setting. Unlike existing techniques such as UMAP, Laplacian Eigenmaps
etc. which construct a global embedding by relying on the globally orthonormal eigenvectors, here,
we choose locally orthonormal eigenvectors (up to scale) of the graph Laplacian to construct
low distortion local embeddings and later piece them together to obtain a more geometric global
embedding compared to other techniques (see Appendix B).

2. We present an algorithm to obtain a global embedding of the manifold by registering its local
views. Unlike existing techniques, the algorithm is designed to embed manifolds without bound-
ary as well as non-orientable manifolds into their intrinsic dimension by tearing them apart. It
also provides gluing instructions for the boundary of the embedding by coloring it such that the
points on the boundary which are adjacent on the manifold have the same color (see Figure 3).

4 LDLE ALGORITHM

In summary, LDLE consists of three steps. In the first step, we present an algorithmic realization
of the result in (Jones et al., 2007) to construct low-dimensional low distortion parameterizations
(Φk)nk=1 of the small discrete balls (Uk)nk=1 around the points (xk)nk=1 on the discretized mani-
fold. This involves a careful selection of the eigenvectors φi1 , . . . ,φid , is ≡ is(k), of the graph
Laplacian to obtain a low distortion map Φk of Uk into Rd where

Φk ≡ (γki1φi1 , . . . , γkidφid) where
Φk(xk′) = (γki1φi1k′ , . . . , γkidφidk′) and (3)
Φk(Uk) = (Φk(xk′))xk′∈Uk

(See Figure 1).

We call Uk and Φk(Uk) the kth local view of the data in the ambient space and the d-dimensonal em-
bedding space, respectively. Also, using Eq. 1 and the fact that Euclidean distance de approximates
the local geodesic distance, we obtain the distortion of Φk on Uk as

ζk = sup
xl,xl′∈Uk

xl 6=xl′

‖Φk(xl)− Φk(xl′)‖
de(xl, xl′)

sup
xl,xl′∈Uk

xl 6=xl′

de(xl, xl′)

‖Φk(xl)− Φk(xl′)‖
. (4)

In the second step, we develop a clustering algorithm to obtain a small number of intermediate
views Φ̃m(Ũm) with low distortion, from the large number of smaller local views Φk(Uk). In the-
ory, one can use the Generalized Procrustes Analysis (GPA) (Crosilla & Beinat, 2002; Gower, 1975;
Ten Berge, 1977) to directly register the local views themselves and recover the global embedding.
In practice, too many small local views (high n and small |Uk|) result in extremely high compu-
tational complexity. Moreover, small overlaps between the local views makes their registration
susceptible to errors.

Therefore, we perform clustering to obtain M � n intermediate views, Ũm and Φ̃m(Ũm), of the
data in the ambient space and the embedding space, respectively. The algorithm transforms the
notion of a local view per an individual point to an intermediate view per a cluster of points.
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(a) (b) (c) (d)

Figure 1: (a) A discretized sphere colored by the distortion ζk of Φk on Uk as k varies. U1140 is a local view in the ambient space. (b)
2d embedding of (xk)nk=1 and U1140 due to Ψ1140. Here Ψ1140(U1140) is the corresponding local view in the embedding space. (c, d)
Chosen eigenvectors to construct Ψ1140. Notice that the chosen eigenvectors are close to being locally orthogonal.

It is designed so as to ensure low distortion of the parameterizations Φ̃m on Ũm. Overall, the
clustering reduces the number of views and increases the overlaps between them, leading to
their quick and robust registration. See Figure 2.

(a) (b) (c) (d)

Figure 2: (a) Same discretized sphere colored by the distortion ζ̃m of Φ̃m on Ũm as m varies (see Eq. (4)). Ũ150 is an intermediate
view in the ambient space which contains the local view U1140 as in Figure 1. (b) 2d embedding of (xk)nk=1 and Ũ150 due to Ψ̃150. Here
Ψ̃150(U150) is the corresponding intermediate view in the embedding space. (c, d) Chosen eigenvectors to construct Ψk where Φ̃150 = Φk .

In the final step, we present an algorithm based on Global Procrustes analysis (GPA) (Crosilla &
Beinat, 2002; Gower, 1975; Ten Berge, 1977) to register the intermediate views and obtain a global
embedding. Each view Φ̃m(Ũm) is transformed by an orthogonal matrix Tm of size d × d, a d-
dimensional translation vector vm and a positive scalar bm as a scaling component. The transformed
view is given by Φ̃gm(Ũm) such that for all xk ∈ Ũm,

Φ̃gm(xk) = bmΦ̃m(xk)Tm + vm. (5)

In general, the parameters (Tm, vm, bm)Mm=1 are estimated so that for all m and m′, the two trans-
formed views of the overlap between Ũm and Ũm′ , obtained using the parameterizations Φ̃gm and
Φ̃gm′ , align with each other. To be more precise, define the intersection of Ũm and Ũm′ as Ũmm′ .
Then, the parameters are estimated so as to minimize the following alignment error

L((Tm, vm, bm)Mm=1) =
∑
m,m′

∥∥∥Φ̃gm(Ũmm′)− Φ̃gm′(Ũmm′)
∥∥∥2

F
. (6)

In theory, one can start with Tm, vm and bm as Id, 0 and 1, and directly use GPA to obtain a local
minimum of the above alignment error. However, naive GPA does not allow tearing apart the
manifolds without a boundary. Therefore, we develop an algorithm by adapting GPA so as to
tear apart the manifolds without boundary as well as non-orientable manifolds and embed them into
their intrinsic dimension. Our algorithm also provides gluing instructions for the boundary of the
embedding by coloring it such that the points on the boundary which are adjacent on the manifold
have the same color. See Figure 3.

5 EXPERIMENTS

We present experiments to compare LDLE with UMAP (McInnes et al., 2018), t-SNE (Maaten
& Hinton, 2008) and Laplacian eigenmaps (Belkin & Niyogi, 2003) on several datasets. These
datasets are discretized 2d manifolds embedded in R2, R3 or R4, containing about 104 points. These
manifolds can be grouped based on the presence of the boundary and their orientability, as shown in
Figures 3 and 4 and Figures 5, 8 and 9 provided in the appendix.
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Input LDLE UMAP t-SNE Laplacian Eigenmaps

Figure 3: Embeddings of the sphere in R3 into R2. The top and bottom row contain the same plots colored by the height and the azimuthal
angle of the sphere (0 − 2π), respectively. LDLE automatically colors the boundary so that the points on the boundary which are adjacent
on the sphere have the same color. The arrows are manually drawn to help the reader identify the two pieces of the boundary which are to
be stitched together to recover the original sphere. UMAP and Laplacian eigenmaps squeezed the sphere into two different viewpoints of R2

(side or top view of the spehere). t-SNE also tore apart the sphere but the embedding lacks interpretability as it is “unaware” of the boundary.

Input LDLE UMAP t-SNE Laplacian Eigenmaps
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Figure 4: Embedding of swissroll with a hole and a Möbius strip in R3 into R2. The last two rows contain the same plots colored by the two
parameters used to construct the Möbius strip. The red arrows are manually drawn to help the reader identify the two pieces of the boundary
which are to be stitched together to recover the original strip. The pieces of the boundary along the dashed lines are not to be stitched together.

6 CONCLUSION

In summary, LDLE competes with the other methods in terms of visualization quality. In particular,
the embeddings produced by LDLE are geometrically more accurate than those produced by UMAP,
t-SNE and Laplacian Eigenmaps (see Appendix B). We also demonstrated that LDLE can embed
manifolds without boundary as well as non-orientable manifolds into their intrinsic dimension, a
feature that is missing from the existing techniques.
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A MANIFOLDS WITH BOUNDARY

Figure 5 compares the visualization quality of LDLE with other techniques. It shows the 2d embed-
dings of 2d manifolds with boundary in R2 or R3. For the square with two holes, unlike UMAP and
Laplacian Eigenmaps, LDLE nearly preserved the shape of the holes. For the sphere with a hole
which is a curved 2d manifold with boundary in R3, both UMAP and Laplacian eigenmaps flattened
it into R2 while LDLE and t-SNE tore it apart. Note that the boundaries of the LDLE embeddings
are usually distorted. It turns out that when the points in the input which lie on the boundary are
known apriori then the distortion near the boundary can be reduced by using the doubled manifold.
The resulting embeddings are shown in Figure 6.

Barbell Square with two holes Sphere with a hole Rectangle (4× 0.25) Noisy swiss roll

In
pu

t
L

D
L

E
U

M
A

P
t-

SN
E

L
ap

la
ci

an
E

ig
en

m
ap

s

Figure 5: Embeddings of 2d manifolds with boundary into R2. The noisy swiss roll is constructed by adding uniform noise in all three
dimensions, with support on [0, 0.05].
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Figure 6: LDLE embeddings when the points on the boundary are known apriori.
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B QUANTITAIVE COMPARISON

To compare LDLE with other techniques in a quantitative manner, we compute the distortion Dk
of the embeddings of the geodesics originating from xk and then plot the distribution of Dk (see
Figure 7). The procedure to computeDk follows. In the discrete setting, we first define the geodesic
between two given points as the shortest path between them which in turn is computed by running
Dijkstra algorithm on the graph of 5 nearest neighbors. Here, the distances are measured using the
Euclidean metric de. Let us denote the number of nodes on the geodesic between xk and xk′ by
nkk′ and the sequence of nodes by (xs)

nkk′
s=1 where x1 = xk and xnkk′ = xk′ . Then the length of the

geodesic between xk and xk′ is given by

Lkk′ =

nkk′∑
s=2

de(xs, xs−1). (7)

Denote the embedding of xk by yk. Then the length of the embedding of the geodesic between xk
and xk′ is given by

Lgkk′ =

nkk′∑
s=2

de(ys, ys−1). (8)

Finally, the distortion Dk of the embeddings of the geodesics originating from xk is given by the
ratio of maximum expansion and minimum contraction, that is,

Dk = sup
k′

Lgkk′

Lkk′
/ inf
k′

Lgkk′

Lkk′
= sup

k′

Lgkk′

Lkk′
sup
k′

Lkk′

Lgkk′
. (9)

A value of 1 for Dk means the geodesics originating from xk have same length in the input and in
the embedding space. If Dk = 1 for all k then the embedding is geometrically (and therefore topo-
logically too) the same as the input. Figure 7 shows the distribution of Dk due to LDLE and other
algorithms for various examples. Clearly, LDLE least distorts the geodesics in the input space, es-
pecially when the points on the boundary are known apriori. In this sense, LDLE is more geometric
than other techniques.

Rectangle
(4× 0.25) Barbell Square with

two holes
Swissroll
with hole Noisy swissroll

Figure 7: Violin plots for the distribution ofDk (See Eq. (9)). The white point inside the violin represents the median.

7



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

C MANIFOLDS WITHOUT BOUNDARY

In Figure 8, we show the 2d embeddings of 2d manifolds without boundary, a curved torus in R3

and a flat torus in R4. A flat torus is a parallelogram whose opposite sides are identified. In our
case, we construct a discrete flat torus using a rectangle with sides 2 and 0.5 and embed it in four
dimensions as follows,

X(θi, φj) =
1

4π
(4cos(θi), 4 sin(θi), cos(φj), sin(φj)) (10)

where θi = 0.01iπ, φj = 0.04jπ, i ∈ {0, . . . , 199} and j ∈ {0, . . . , 49}.
LDLE produced similar representation for both the inputs. None of the other methods do that. The
main difference in the LDLE embedding of the two inputs is based on the length of the same colored
pieces of the boundary. Note that these pieces are adjacent in the input space. For the flat torus, the
two pieces with same colors are almost equal in length while for the curved torus, they usually have
different lengths. This is because of the difference in the curvature of the two inputs, zero everywhere
for the flat torus and non-zero almost everywhere on the curved torus. The mathematical correctness
of the LDLE embeddings using the cut and paste argument is shown in Figure 10.
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Figure 8: Embeddings of 2d manifolds without boundary into R2. For each manifold, the left and right columns contain the same plots colored
by the two parameters of the manifold. A proof of the mathematical correctness of the LDLE embeddings is provided in Figure 10.
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D NON-ORIENTABLE MANIFOLDS

In Figure 9, we show the 2d embedding of a Klein bottle which is a non-orientable 2d manifold
without boundary. We construct a discrete Klein bottle using its 4d Möbius tube representation as
follows,

X(θi, φj) = (R(φj) cos θi, R(φj) sin θi, r sinφj cos
θi
2
, r sinφj sin

θi
2

)

R(φj) = R+ r cosφj (11)

where θi = iπ/100, φj = jπ/25, i ∈ {0, . . . , 199} and j ∈ {0, . . . , 49}.
Laplacian eigenmaps produced incorrect embeddings, t-SNE produced dissected and non-
interpretable embeddings and UMAP squeezed the input into R2. On the other hand, LDLE pro-
duced mathematically correct embedding by tearing apart the Klein bottle to embed it into R2 (see
Figure 10).

LDLE UMAP t-SNE Laplacian Eigenmaps
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Figure 9: Embedding of a 2d non-orientable Klein bottle in R4 into R2. The top and bottom row contain the same plots colored by the two
parameters of the manifold. A proof of the mathematical correctness of the LDLE embeddings is provided in Figure 10.
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E MATHEMATICAL CORRECTNESS OF LDLE EMBEDDINGS

LDLE with arrows Derived cut and paste diagrams
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Figure 10: (Left) LDLE embedding with arrows drawn by tracing the colored boundary. (Right) Derived cut and paste diagrams to prove
the correctness of the embedding. Filled arrows represent pieces of the boundary which are to be stitched along the arrows of the same color.
Pieces of the boundary represented by dashed lines are not to be stitched. Dotted lines and shallow arrows represent cut and paste instructions.
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