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Abstract

Image restoration is a fundamental task in computer vision and machine learning,
which learns a mapping between the clear images and the degraded images under
various conditions (e.g., blur, low-light, haze). Yet, most existing image restoration
methods are highly restricted by the requirement of degraded and clear image pairs,
which limits the generalization and feasibility to enormous real-world scenarios
without paired images. To address this bottleneck, we propose a Degradation-aware
Dynamic Schrédinger Bridge (DDSB) for unpaired image restoration. Its general
idea is to learn a Schrodinger Bridge between clear and degraded image distribution,
while at the same time emphasizing the physical degradation priors to reduce the ac-
cumulation of errors during the restoration process. A Degradation-aware Optimal
Transport (DOT) learning scheme is accordingly devised. Training a degradation
model to learn the inverse restoration process is particularly challenging, as it
must be applicable across different stages of the iterative restoration process. A
Dynamic Transport with Consistency (DTC) learning objective is further proposed
to reduce the loss of image details in the early iterations and therefore refine the
degradation model. Extensive experiments on multiple image degradation tasks
show its state-of-the-art performance over the prior arts.

1 Introduction

Image restoration, encompassing tasks like denoising, deblurring, and dehazing, is one of the most
crucial yet fundamental challenges in computer vision [8}28,54]. A traditional paradigm is supervised
learning, where paired data of clear and degraded images are used to train models. However, acquiring
large-scale paired datasets in many real-world scenarios is often impractical due to the vast diversity
of degradation conditions and the absence of ground truth. Unpaired image restoration methods,
which learn mappings between unpaired degraded and clear image sets, have gained significant
attention in recent years as an alternative solution [30, 58, 47]]. However, one of its key challenges
lies in the absence of explicit correspondences between the input and output images.

The realm of generative models, exemplified by the recent diffusion models [38} (17} 39,140,135} 4], has
achieved remarkable progress over the past few years. Compared with the prior arts (e.g., generative
adversarial networks [[14]], variational autoencoders [23]]), these recent generative models are more
capable to generate diverse and high-quality samples [50], and have shown great success in image
restoration [7]. Unfortunately, diffusion models are still subject to a specific prior distribution, e.g.,
Gaussian, which prevents its full potential to various degradation conditions in image restoration.

*Jingjun Yi is affiliated with University of Alberta. This research was conducted when he was a research
intern at Westlake University.
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Figure 1: Dynamic Schrodinger bridge formulates image restoration as an optimal transport between
the clear and degraded images, while maintaining the flexibility to handle unpaired data.

Schrodinger bridge (SB) provides a promising alternative by formulating the restoration problem
as an optimal transport (OT) task between the clear image distribution and the degraded image
distribution, while maintaining the flexibility to handle unpaired data [9} [6} [43]. In contrast to prior
generative models, SB enables the translation between two arbitrary distributions without requiring

paired training data [45] 29} 10} 41} 391 [5]).

In light of these properties, the first research question naturally arises: How to leverage SB for
unpaired image restoration, while achieve as physically meaningful and realistic restoration as
possible? To address this challenge, we propose a Degradation-aware Optimal Transport (DOT)
learning scheme, which builds on the entropy-regularized OT framework inherent in SB. The core
objective of DOT is to reduce the accumulation of errors from unpaired SB during the iterative
restoration process. By introducing a degradation model to learn the inverse process of restoration,
DOT can amplify the degradations and artifacts produced by the restoration model, and impose an
additional constraint based on this information.

Training the degradation model is particularly challenging due to the absence of paired training data,
and this difficulty is compounded by the need for the model to generalize across different stages of
the iterative restoration process. In the early stages of iteration, the predicted clean images often
contain excessive artifacts, whereas in the later stages, the differences between consecutive steps
become minimal. Both scenarios are suboptimal for effective degradation model training. To address
these issues, we introduce Dynamic Transport with Consistency (DTC), which not only strengthens
the constraints on the early stages, thereby reducing the loss of image details, but also refines the
learning objective of the degradation model. This dual approach alleviates the challenges associated
with learning the inverse restoration process and improves the overall effectiveness of the model.

Both components are incorporated as the proposed Degradation-aware Dynamic Schrodinger Bridge
(DDSB). It ensures that the restoration process remains robust to variations in the degradation types,
while preserving the integrity of the underlying image structure. The effectiveness of our method is
validated through extensive experiments on multiple image restoration tasks, including denoising,
deblurring, and dehazing, across a range of degradation conditions, in terms of both visual quality
and quantitative metrics. In particular, our approach demonstrates superior generalization to unseen
degradation types, providing a more robust solution for real-world image restoration tasks.

In a nutshell, our contributions can be summarized as follows.

* This paper opens up a new direction for applying Schrodinger Bridge in unpaired image
restoration, providing a promising solution to the limitations of existing techniques.

* A Degradation-aware Dynamic Schrodinger Bridge (DDSB) is developed for unpaired
image restoration, which incorporates a degradation model to reduce the error accumulation
during the transport process.



* A Dynamic Transport with Consistency (DTC) learning objective is proposed to optimize
the training of the degradation model.

» Extensive experiments on multiple image restoration benchmarks show its state-of-the-art
performance.

2 Related Works

Schrodinger Bridge (SB) problem, also known as entropy-regularized optimal transport [37, 24]],
aims to learn a stochastic process between an initial distribution and a specified terminal distribution
over time under the guidance of a reference measure. Owing to its property to allow arbitrary choices
of initial and terminal distributions, SB has fostered the development of a variety of generative
modeling problems, to name a few, iterative proportional fitting [9} 44], Riemannian manifolds [42],
image translation [41], path sampling [S5! 136l], unpaired transport [22]], under both supervised
settings [[15} 29, [10] and unsupervised settings [45]]. In contrast to earlier work [49]], the proposed
method innovatively integrates dynamic multi-step transport modeling and trajectory consistency
regularization. Besides, it is capable to handle various degradation types over deraining in [49].

Unpaired Image-to-Image (12I) Translation aims to generate a target image that preserves the
structural similarity of the source image without pair-wise input [59,|19]]. Early works usually leverage
geometric consistency [12]] and mutual information regularization [3]. More recently, contrastive
unpaired translation (CUT) and its variants [32, 21| 146, |57]] have advanced I2I tasks by refining
patch-wise regularization. Santa [51]] introduces shortest-path constraints, while DN [18]] applies
dense normalization for translation. However, recent works usually conduct unpaired I12I under a
resolution no higher than 128 x 128 pixels. In contrast, under our image restoration task, 121 requires
substantially higher resolutions, which poses significant challenges. In addition, the proposed method
is conceptually distinct from the previous circle consistency learning objective (e.g., CycleGAN [59])
by further imposing adaptive constraint on the SB path to align with plausible degradation outcomes
and introducing temporal consistency across intermediate SB steps.

Unpaired Image Restoration aims to recover clean images from degraded ones without requiring
aligned supervision [S8]]. Classical priors like DCP [[16] rely on statistical assumptions, while recent
domain-specific approaches, like YOLY [26] and USID-Net [27], exploit layer disentanglement
and uncertainty-aware representations. CycleGAN [59] pioneered the use of cycle-consistency
loss, while later works incorporated depth-aware degradation modeling [53}[56]], mutal information
maximization [32], and degradation feature decoupling [47]. However, the reliance on adversarial
losses or handcrafted constraints makes it difficult to enforce degradation consistency throughout
the restoration forward trajectory. In contrast, our method opens a new direction by introducing
Schrodinger bridge to unpaired restoration.

3 Preliminaries

Schrodinger Bridge. Given two probability distributions 7y and 71 over R, the Schrodinger Bridge

problem seeks the most likely stochastic trajectory {@¢ };c[o,1] that evolves from 7y to 7. Let

denote the space of continuous paths in R?, and let () represent the collection of path measures.

The SB problem can be formulated as the following entropy-regularized variational problem:
Q*:argminKL(QHWT) st. Qp=my, Qp=m, D

QeP(Q)
where W7 is the Wiener measure with diffusion parameter 7, and Q; represents the marginal at time
t. The solution Q* defines the Schrodinger Bridge connecting 7 to 7.

Two perspectives—stochastic control and static coupling—offer foundational insight into the SB
problem and guide our model design. Both are central to understanding the shortcomings of prior SB
methods and motivating our approach.

Stochastic Control Formulation. From the viewpoint of stochastic control [33]], the SB process
{x;} ~ Q~ satisfies a stochastic differential equation dzy; = u}dt + /Tdw;, where u} is the optimal
control minimizing the expected energy of the drift:

1
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Figure 2: Framework overview of the proposed Degradation-aware Dynamic Schrédinger Bridge
(DDSB). On top of the unpaired Schrédinger Bridge model, it presents two novel components, namely,
Degradation-aware Optimal Transport (DOT) and Dynamic Transport with Consistency (DTC).

This formulation reveals that SB paths are minimum-action stochastic processes constrained to match
boundary distributions. The resulting trajectory is both Markovian and converges to the deterministic
optimal transport flow as 7 — 0, with 7 determining the stochasticity level.

Static Coupling. SB also admits a static formulation based on endpoint marginals. If the joint
distribution at times ¢ = 0 and ¢ = 1 is known, denoted Q;, then intermediate states are conditionally
Gaussian, given by p(x; | 4, ) = N(xy | (1 — t)xq + txe, 7t(1 — ¢)I). This allows trajectory
simulation by sampling from the coupling Qf,, and the marginal density of ; given x4 is thus:

e | i) = [ plae | @ e) dQjo(ae | 20). )
The optimal coupling QQF; satisfies the entropy-regularized optimal transport (EROT) formulation:
@61 = arg min ]E(md,mc)w'y [”md - mcHQ] - QTH('Y)a (4)
~y€EI(mo,m1)

where II(mg, 71 ) denotes the set of couplings with marginals g and 71, and H () is the entropy.

4 Method

In unpaired image restoration, the source and target distributions represent degraded and clean visual
domains, respectively. While Schrodinger Bridge (SB) offers a principled probabilistic framework to
interpolate between two distributions via entropy-regularized optimal transport (EROT), conventional
formulations often neglect physical degradation priors that are crucial for realism in restoration
tasks. We propose a novel formulation Degradation-aware Dynamic Schridinger Bridge (DDSB) that
explicitly integrates a differentiable degradation model within the SB formulation. DDSB enforces
that the restored outputs remain consistent with their degraded inputs under learned degradation
dynamics. The framework overview is shown in Fig. 2]

4.1 Unpaired Schrodinger Bridge (UNSB)

The DDSB framework formulates the Schrodinger Bridge as a composition of learnable generative
transitions that iteratively transport samples from a degraded distribution toward the clean image



distribution. Let x4 ~ 74 denote a real degraded image, where 7, is the degraded image distribution.
The objective is to recover its corresponding clean counterpart . € m., with 7. representing the
clean image distribution. Consider a discretized time partition {t;}, of the unit interval [0, 1],
where tg = 0,txy = 1, and ¢; < t;41. The UNSB process can be simulated via a Markov chain:

p({mtn}) - p(th |th—1) o 'p(wtl Imto)p(wto)' ©)

Here, x;, corresponds to the degraded input x4, while x,, approximates the clean image x.. To
approximate p(x;, ), a conditional generator gy, (.|x;,) is introduced, where 6; denotes the network
parameters at step ¢. This defines a joint distribution between the latent state and the clean target as:

qo;, (wtﬂxc) = dqo; (wc|wti)p(wti)7 qo;, (ZBC) = Ep(mti)[qgi (wc|wt1)] (6)
Given a sample x;; ~ gg(x, ), the generator predicts a clean estimate x.(x:,) ~ go(xc|Ts,). A new
sample x;, , is then obtained by interpolating x;, with x.(x;,) and injecting noise:

p(wt]+1 |wc; wtj) = N (:Btj+1 | MjJrl:Bc + (1 - /’Lj+1)wtj ) U?+1I) ) (7)

tj;’ 1;” controls the interpolation weight, and the noise scale is computed as o’?- 1=

where f1;41 =

ti+1(1 — pj41)7(1 — t;), with 7 being a hyperparameter.

By iteratively applying this transition for j = 0,...,7 — 1, sample x, is generated. When the
generator gy, is sufficiently optimized, its marginal gp, (x;,) closely approximates the target p(x, ).
The sequence {:cc(:cti)}figl thus forms a progressively refined trajectory toward clean image
reconstruction. The optimal parameters 6 are obtained by optimizing the Schrodinger Bridge via
entropy-regularized optimal transport (EROT), defined as

Leror = Eg aymr U|$d - wCHQ} — 27 H(m) + KL(go(xc) || p(2c)), 7 ~ (7a, me). (®)
Specifically, the first term of Lgror seeks a stochastic coupling 7* between w4 and 7..:

™ = argmin Eg, 5 )on [[2a — zc]|?] — 27 H(7), )
mell(mg,mc)

where H () is the joint entropy and 7 is a temperature hyperparameter. It measures the reconstruction
error between the predicted clean sample and the clean targe.

To ensure that the clean images inferred from qg(z.|x;,) match the target distribution p(x.), the
second term uses an adversarial Kullback-Leibler (KL) regularization, given by:

»Cadv = KL(QG(Q’C) ||p(:vc)), (10)

which enforces marginal alignment at the clean endpoint. This loss acts as a global guidance signal
complementing local transport fidelity, encouraging the generator to produce clean estimates that are
statistically indistinguishable from real data. In practice, this term is implemented via a discriminator
network and optimized using a reverse KL objective.

4.2 Degradation-aware Optimal Transport

To enhance the Schrodinger Bridge optimization in unpaired restoration, we introduce Degradation-
aware Optimal Transport (DOT), which integrates degradation consistency into the EROT framework.
An important issue with the aforementioned SB process is the accumulation of image detail loss
resulting from model inference. In particular, during the initial stages, predicting a clear image from
a severely degraded input often introduces new blur, over-smoothing, or unnatural textures. These
artifacts are propagated to subsequent iterations via Eq.[7] thereby affecting the final restoration.

Let m4 and 7. denote the marginal distributions over degraded and clean images, respectively. The
classical static Schrodinger Bridge seeks a coupling m minimizing an entropy-regularized cost as
defined in Eq.[9] We enhance this cost by introducing a degradation-alignment term, yielding the
DOT energy:

cpot(®a, @) 1= [lza — xcl|* + A+ [| Dy () — @all*, (11)
where Dy is a learnable degradation model, and A weights degradation fidelity. Model Dy is used
to amplify the existing degradations in the image, that is, to learn the inverse process of image
restoration. On the one hand, compared to artifacts introduced by model predictions, certain natural



degradation processes, such as haze and rain, are easier to learn. On the other hand, for new types of
degradation generated during prediction, amplification makes their differences from the original x4
more pronounced. Through this component, we impose constraints on the degradations and artifacts
produced by the model. Plugging Eq.[IT]into Eq.[9] we obtain:

*

T = argmin E(wd,mc)mn [cpor(®a, )] — 27 H(™). (12)
m€ll(mg,mc)

To align this with UNSB'’s iterative structure, we implement DOT at the selected transport step ¢;,
where x;, is the intermediate state sampled from the evolving distribution. Let gg(x.|x¢,) denote the
distribution of generated clean image. We define the DOT loss at step ¢; as:

Loor(0,ti) = Eygya,, wmn ([0 — @e(®e)|” + X [z, = Dg(@e(,))|]
—27(1 — t;) - H(go(r,, ®e(x1,)) + KL(go (2 c|21,)) Ip(2C))- (13)

4.3 Dynamic Transport with Consistency

DOT imposes the LpoT constraint at a randomly sampled time point ¢;. However, during the iterative
image restoration process, the initial stages are significantly more challenging than the later iterations.
Artifacts introduced by the restoration model are also more likely to occur in these early stages.
Therefore, it is necessary to place greater emphasis on the initial stages during the training of the
restoration model. To this end, we further propose Dynamic Transport with Consistency (DTC),
which provides supervision at every step of the restoration trajectory.

Specifically, for a sampled time point 5, we denote the restoration trajectory as Ty, =
{@ty, Tty .- Tty . We apply Lpor at each step of the trajectory, while the first item in Lpor is
replaced by Lprc, which is defined as:

2. (14)

|2 + )\ti : ”wtl - D(;s(ilith)

Lprc = ||xs, — ()

Here )\, is the weight for the degradation-alignment term, which is computed by

1 — cos(nt)

A=A 5 ,

te[0,1]. (15)

2 with Ay, ||, — Dg(y,)||*. The

learning objective of Dy (x:,_) becomes Zfiso_ "z, / Zfio_ " At,. There are two main reasons
behind this modification. First, the x.(x,) in initial stage may contain unnatural scenes, and such
representations are not suitable for training the degradation model D4, whereas the end point of the
trajectory @, is of higher quality. In addition, for some steps, the difference between @, and x;,
is not significant, which also makes them less suitable for training D,. Therefore, we use a weighted
average over the entire trajectory as the learning objective, where time steps closer to ¢, are assigned
higher weights. This approach can, to some extent, reduce the difficulty of degradation learning.

Compared with Lpor, Lpre replaces M|z, — Dg(xc(xt,))]

Understanding DTC. In DTC, we enhance the focus on the early stages of the iterative process by
supervising the entire trajectory. More importantly, we employ a constraint based on Dy (¢, ) to
mitigate the loss of image details during restoration. Compared to using x,, Dg(x;,_) not only
incorporates certain restorations upon x:,, but also amplifies the degradations and artifacts introduced
by the restoration model, making it a more effective constraint. In other words, the transport trajectory
is supervised by penalizing the differences between adjacent SB states (i.e., pairwise consistency
between x;, and x;,_,). Compared to baseline UNSB, which only supervises the endpoints, our
method densely regularizes the entire trajectory, especially the early steps, where errors are more
likely to propagate. Therefore, even though the overall loss includes unweighted endpoint terms, the
trajectory-level consistency term explicitly emphasizes earlier stages due to its design, providing
stronger guidance when the model is most prone to drift.

4.4 TImplementation Details

Training Strategy. We randomly select a time step ¢y, € {to,...,{n} and simulate the forward
transport from the degraded sample x4 ~ 7o to obtain {x;,, ¢, , ..., T:y_}. In each intermediate
step, x;, is fed into the conditional generator gg(x.|x;,) so as to output a clean estimate x.(xy,).



Together with a reference sample . ~ 71, the tuples (z;,, z.(x¢,)) and (x., x.(x;,)) are used to
compute LpoT(6,t;) and Lprc(6,t;). The entropy term is computed by the mutual information
neural estimation (MINE) [2]]. The KL divergence is implemented via adversarial learning, where x,
and x.(x;,) serve as real and fake inputs, respectively, to a Markovian discriminator.

Network Architecture. The conditional generator gy is implemented using a U-Net architecture
with instance normalization, where the encoder and decoder consists of five convolutional and
deconvolutional layers, respectively. The input and sampled noise are concatenated as the input
channels at the first layer, enabling conditioning on both the degraded input and latent noise during
the restoration process. The degradation model is a lightweight convolutional neural network (CNN),
which consists of three 64-channel convolutional layers with ReLLU activation functions. Notice that,
the degradation model is designed as a degradation guidance module rather than a reconstructor.
It guides the restoration process by penalizing implausible states through constraints on the SB
trajectory, making it highly effective for its purpose despite being small.

Hyperparameters. The training terminates after 400 epochs, with a batch size of 1. The initial
learning rate is 2 x 10~* and decays to zero linearly. All the inputted images are firstly resized to
512 x 512 pixels and then the image intensity is normalized to [—1, 1]. The time interval [0, 1] is
discretized into N=5 uniform steps. The temperature parameter is fixed as 7=0.01, and the balanced
constant hyper-parameter of LpoT A is set to 0.01. For DTC, the weight of degradation term adopts
a cosine annealing schedule. The generator adopts AdaIN layers and sinusoidal timestep embeddings,
following DDGAN [50].

S Experiments

5.1 Results on Multi-Task Image Restoration

Datasets & Evaluation Protocols. We adopt four restoration tasks: deraining, raindrop removal,
deblurring, and low-light enhancement. Rain200L [52] is used for deraining. It includes 1,800
synthetic rainy images for training and 200 for testing. Raindrop [34] is used for raindrop removal. It
consists of 1,119 paired images with and without raindrops on glass surfaces. The GoPro dataset [31]
is widely used for image deblurring, containing 3,214 high-resolution blurred images (1280x720
pixels). It is split into 2,103 samples for training and 1,111 for testing. LOL [48]] is used for low-
light enhancement. It consists of 500 image pairs captured under normal and low-light conditions.
Following prior works [20]], we use 485 pairs for training and 15 for testing. All images are resized
to 512 x 512 pixels and the intensity is normalized before training. These datasets cover a broad
spectrum of degradations and provide a comprehensive testbed for multi-task restoration. Following
prior unpaired methods [53}147], during training, for each degraded input image, we randomly sample
a clean image from the set, excluding its ground-truth counterpart. The resulting image tuple is
thus unaligned and used solely for learning the transport between unpaired distributions. Structural
Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR, in dB), are used for evaluation.

Baselines. We compare DDSB with a wide range of state-of-the-art unpaired image restoration
methods. These include the classical prior-based approach DCP [16], and various learning-based
methods such as CycleGAN [59], YOLY [26], USID-Net [27], RefineDNet [56], D* [53], CUT [32],
Santa [51], ODCR [47]], and DN [18]]. We also include UNSB [22], which formulates cross-domain
generation as a Schrodinger Bridge problem. Although Santa, DN, and UNSB were originally
proposed for unpaired image translation, we adapt them to image restoration for a boarder comparison.
For each task, all the methods are fine-tuned under the same configuration.

Quantitative Evaluation. Table[T|shows that DDSB achieves the best performance across all four
unpaired image restoration tasks. DDSB consistently outperforms all competing unpaired methods
in both PSNR and SSIM. Compared with the strongest baseline DN, DDSB achieves significant
PSNR gains of +0.69 dB on deraining, +1.12 dB on de-raindrop removal, +1.80 dB on low-light
enhancement, and +2.02 dB on deblurring. Corresponding SSIM improvements are +0.025, +0.007,
+0.021, and +0.008, respectively. These consistent improvements, especially under challenging
conditions like low-light and motion blur, validate the effectiveness of our dynamic Schrédinger
Bridge framework with degradation consistency. Furthermore, compared with CUT and D*, DDSB
demonstrates superior robustness due to its explicit modeling of intermediate transport dynamics and
degradation-aligned consistency.



Table 1: Quantitative comparison of DDSB with the state-of-the-art unpaired image restoration
methods on multi-task restoration. Top three results are highlighted as best , second and third .

Method | Derain [52] | Deraindrop [34] | Lowlight [48] | Deblur [31]

| PSNR (dB) SSIM | PSNR (dB) SSIM | PSNR (dB) SSIM | PSNR (dB) SSIM
DCP [16] 13.25 0.705 18.92 0.752 15.93 0.743 12.97 0.702
CycleGAN [59] 21.28 0.796 20.55 0.787 14.03 0.781 19.10 0.735
YOLY [26] 15.72 0.714 14.71 0.748 13.16 0.762 16.28 0.717
USID-Net [27] 21.50 0.784 19.81 0.771 1791 0.769 20.72 0.726
RefineDNet [56] 24.41 0.840 21.65 0.783 19.75 0.793 21.03 0.747
D* 53] 24.75 0.832 23.84 0.805 21.32 0.826 21.59 0.782
CUT [32] 24.22 0.815 23.51 0.827 22.90 0.804 21.26 0.766
Santa [51] 24.55 0.828 23.65 0.797 21.93 0.838 21.80 0.778
UNSB [22] 24.68 0.837 24.52 0.812 22.75 0.822 22.11 0.785
ODCR [47] 24.89 0.848 24.08 0.818 23.42 0.832 22.73 0.791
DN [18] 24.72 0.845 24.63 0.824 23.58 0.844 23.20 0.796
DDSB (ours) 25.41 0.870 25.75 0.831 25.38 0.865 25.22 0.804

Table 2: Non-parametric perceptual metric comparison of DDSB with the state-of-the-art unpaired
image restoration methods. Top three results are highlighted as best , second and third .
| Derain [52] | Deraindrop [34] | Lowlight [48] | Deblur [31]

Method

\ LPIPS NIQE \ LPIPS NIQE \ LPIPS NIQE \ LPIPS NIQE
DCP [16] 0.229 537 0.204 5.61 0.218 5.77 0.231 5.94
CycleGAN [59] 0.146  4.82 | 0.167 4.69 0.197 544 0.172 498
YOLY [26] 0.198 5.03 0.202 5.19 0.210  5.66 0.211 547

USID-Net [27] 0.152 475 | 0172 492 0.188 5.3l 0.162  4.88
RefineDNet [56] | 0.104  4.36 | 0.147 4.68 0.179 522 | 0.150 4.71

D* 53] 0.098 428 | 0.124 450 0.155 5.04 | 0.139 4.6l
CUT [32] 0.111 442 | 0.118 4.55 0.142 517 | 0.143  4.66
Santa [51] 0.096 433 | 0.109 4.39 0.138 509 | 0.130 4.54
UNSB [22] 0.085 4.18 | 0.096  4.27 0.145  5.02 | 0.126  4.49
ODCR [47] 0.076  4.09 0.091 421 0.131 488 | 0.121 443
DN [18] 0.079  4.11 0.082  4.17 0.124 485 | 0.118 4.40

DDSB (ours) 0063 394 0.069 4.03 0129 479 | 0.108 4.31

Table 3: Quantitative comparison of DDSB with the state-of-the-art unpaired dehazing methods on
the generalized dehazing task, trained on SOTS-indoor, and the test result are shown. Cells where

results are not available are replaced by "-". The time is measured on images of the size of 512 x 512
pixels using a single GPU.
Method | SOTS-indoor [23] | SOTS-outdoor [25] | NH-HAZE2 [I] | Overhead
| PSNR (dB) SSIM | PSNR (dB) SSIM | PSNR (dB) SSIM | Para. (M) Time (ms)
DCP [16] 13.10 0.699 19.13 0.815 14.90 0.668 - -
CycleGAN [39] 21.34 0.898 20.55 0.856 13.95 0.689 11.38 10.22
YOLY [26] 15.84 0.819 14.75 0.857 13.38 0.595 32.00 -
USID-Net [27] 21.41 0.894 23.89 0.919 15.62 0.740 3.780 31.01
RefineDNet [56] 24.36 0.939 19.84 0.853 14.20 0.754 65.80 248.5
D* [53] 25.42 0.932 25.83 0.956 14.52 0.709 10.70 28.08
CUT [32] 24.30 0911 23.67 0.904 15.92 0.758 11.38 10.06
Santa [51] 25.01 0.923 24.21 0.945 16.02 0.749 11.43 136
UNSB [22] 25.68 0.930 25.30 0.954 16.10 0.753 14.42 0.212
ODCR [47] 26.32 0.945 26.16 0.960 17.56 0.766 11.38 10.14
DN [18] 26.25 0.947 26.18 0.962 17.15 0.769 11.40 87.7
DDSB (ours) 27.85 0.956 27.67 0.971 17.92 0.783 14.68 0.019

Non-parametric Perceptual Evaluation. We additionally report two non-parametric metrics that
provide a more holistic assessment without relying on predefined statistical models. The Learned
Perceptual Image Patch Similarity (LPIPS) measures perceptual distance in deep feature space
using a pretrained network and requires ground-truth reference images. The Naturalness Image
Quality Evaluator (NIQE) operates without any reference image by modeling natural image statistics.
As shown in Table 2] we evaluate these two non-parametric metrics on our multi-task restoration
benchmark. DDSB consistently outperforms prior methods, demonstrating its strong generalization
and perceptual fidelity without relying on pixel-wise supervision.

Qualitative Evaluation. Visual comparisons on four unpaired restoration tasks are shown in Fig.
D* struggles to preserve structural details. UNSB yields inconsistent restorations. DN improves local
textures, yet residual degradations remain, especially under blur and low-light conditions. ODCR
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Figure 3: Comparison of state-of-the-art unpaired methods on multi-task image restoration.

still falters under severe corruption such as dense raindrops or extreme darkness. In contrast, DDSB
delivers perceptually sharper and more faithful restorations across all scenarios.

5.2 Results on Generalized Haze Removal

Datasets and Evaluation Protocols. To evaluate the generalization capability of DDSB under diverse
degradation scenarios, we follow the setting of [47] by training on the Indoor Training Set (ITS)
from RESIDE [23]], and evaluating on the SOTS-outdoor (OTS) test set from NH-HAZE 2 [I], which
jointly covers synthetic, artificial, and real-world domains. Specifically, RESIDE provides 13,990
synthetic hazy-clear image pairs in ITS and 500 outdoor test pairs in OTS. NH-HAZE 2 contains 25
image pairs with non-homogeneous haze for more challenging and realistic evaluation.

Baselines. We compare DDSB against a broad set of state-of-the-art image dehazing methods. In the
unpaired setting, we include both traditional priors and recent deep models, including DCP [[16]], Cy-
cleGAN [359], CycleDehaze [11], YOLY [26], USID-Net [27], RefineDNet [56], D* 53], CUT [32],
Santa [51]], ODCR [47]], and DN [18]. We also include UNSB [22], a Schrodinger Bridge-based
image generation method. Notably, Santa, DN, and UNSB were originally designed for unpaired
image generation rather than restoration, and we adapt them to dehazing tasks to benchmark their
transferability. Following the evaluation protocol of D, we train all methods on the ITS subset of
RESIDE and evaluate on multiple test sets.

Quantitative Evaluation. Table [3] summarizes the performance of DDSB under a generalized
dehazing protocol. All methods are trained only on the SOTS-indoor dataset and evaluated on three
benchmarks: SOTS-indoor, SOTS-outdoor, and NH-HAZE 2. DDSB achieves the best performance
across all settings. In terms of PSNR, DDSB outperforms DN by +1.60 dB on SOTS-indoor, +1.49
dB on SOTS-outdoor, and +0.77 dB on NH-HAZE 2. For SSIM, the improvements are +0.009,
+0.009, and +0.014, respectively. These results demonstrate DDSB’s strong generalization ability
to both synthetic and real-world haze conditions. Moreover, DDSB is highly efficient: despite its
effectiveness, it only uses 14.68M parameters and runs at 0.019 ms per 512 x 512 image—significantly
faster than most baselines, including DN (87.7 ms) and RefineDNet (248.5 ms).

Qualitative Evaluation. Fig. Ié-_l| shows qualitative comparisons. D?* preserves some scene-level
consistency but often leaves residual haze and lacks fine detail recovery. DN introduces texture
artifacts and inconsistent brightness in challenging outdoor or real-world scenes. DDSB demonstrates
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Figure 4: Comparison of state-of-the-art unpaired methods on generalized haze removal.

the most robust generalization among all compared methods. On SOTS-outdoor, it effectively
removes haze while maintaining edge sharpness and color balance. On NH-HAZE 2, DDSB delivers
perceptually clean outputs with restored textures, faithful color rendering, and minimal artifacts.

5.3 Ablation Studies

Effect of Each Component. We conduct an ablation study on the SOTS-indoor and SOTS-outdoor
datasets. The results are summarized in Table ] Starting from the baseline equipped with only
EROT, we observe consistent improvements when adding either DOT or DTC. Specifically, DOT
brings a PSNR gain of +1.55dB on SOTS-indoor and +1.74dB on SOTS-outdoor, as well as SSIM
improvements of +0.023 and +0.009, respectively. When adding DTC alone, PSNR improves by
+0.43dB on SOTS-indoor and +0.62dB on SOTS-outdoor, and SSIM increases by 0.017 and 0.003,
respectively. This shows that DTC improves the intermediate trajectory regularity. Combining DOT
and DTC yields the best overall performance, confirming their complementarity.

Effect of Time Step N. Table [5|analyzes how the number of time steps [V in the trajectory affects
restoration performance. The default setting is V = 5. When N is reduced to 2 or 3, the performance
drops notably (e.g., PSNR drops to 26.18dB at N = 2). When N increases beyond 5 to 6, the
performance slightly degrades, likely due to over-discretization and increased interpolation error.

Effect of Hyper-parameter ). Table|§| studies the sensitivity of our method to the regularization
weight X in Eq. 0] which governs the strength of the entropy-regularized transport. We observe
that A = 0.01 achieves the highest performance (27.85dB / 0.956). Setting A too low (e.g., 0.0001)
degrades performance significantly (down to 25.76dB / 0.940), as the EROT constraint becomes too
weak. Conversely, overly large A values (e.g., 1.0) also degrade performance to 26.91dB / 0.946,
likely because the transport term dominates and suppresses reconstruction.

Effect of Layer Depth D . We conduct an ablation study by varying the number of convolutional
layers in Dy from 2 to 7. As shown in Tablem the 3-layer configuration offers the best trade-off
between performance and stability. While the 5-layer variant yields a slightly higher SSIM (0.958), its
overall PSNR is marginally lower than the 3-layer setting. The 2-layer model underfits the degradation
guidance, and the 7-layer version suffers a noticeable performance drop due to training instability.

6 Conclusion

In this work, we presented Degradation-aware Dynamic Schrédinger Bridge (DDSB), a novel
framework for unpaired image restoration that addresses the limitations of paired data and static
restoration dynamics. By leveraging Schrédinger Bridge modeling between unpaired domains and
incorporating constraints based on degradation amplification, DDSB enhances the realism of restored
outputs. Extensive experiments on diverse degradation scenarios demonstrated the effectiveness and
generalizability of our approach, establishing a new direction for principled, data-efficient image
restoration in real-world settings.

Limitation, Future Work & Societal Impact. DDSB approaches image degradation from a machine
learning perspective. Some physical degradation models can be integrated in the future. This work
benefits various image degradation scenarios, and we do not envision its negative societal impact.
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A Technical Appendices and Supplementary Material

A.1 Tighter Generalization Error Bound

In this subsection, we provide a step-by-step deduction of the generalization error bounds for the
proposed Degradation-aware Dynamic Schrodinger Bridge (DDSB), and also demonstrate that it has
a tighter generalization error bound than the Schrodinger Bridge (SB) baseline.

Definition 1. Generalization Error. The generalization error E,,, quantifies the discrepancy between
the predicted clean image % . and the true clean image x., defined as:

ggen =E [”‘%c - $c||2] ) (16)
where I denotes the clean image generated by the model, and x. denotes the true clean image.

Lemma 1. Optimal Transport Formulation. The problem of learning the optimal transport plan
w* between the degraded image distribution 74 and the clean image distribution 7. is formulated as:

*

7° = argmin Eq, » )ur [||acd — xc||2] — 27 H(m), (17)
mell(rg,me)

where H(7) denotes the joint entropy of the transport plan 7, and 7 denotes the regularization
hyperparameter.

Proof: Please refer to [[13] for the detailed proof. Briefly, the objective is to minimize the discrepancy
between 74 and 7. while regularizing the transport plan 7 by its entropy. This ensures that the
transport process remains smooth and avoids overfitting. The entropy term H () penalizes complex
transport plans, promoting a smoother and more generalizable solution.

Theorem 1. Tighter Generalization Error Bound of the Proposed DDSB. Compared to the
Schrodinger Bridge baseline, the proposed Degradation-aware Dynamic Schrodinger Bridge (DDSB)
has a tighter generalization error bound.

Proof: The generalization error is linked to the entropy regularization term H (7). The term %
reflects the error due to the finite number of transport steps, while the term 7 controls the smoothness
of the transport plan. As the number of transport steps increases, the transport plan approximates
the true coupling between 74 and 7., thus reducing the generalization error. Moreover, increasing 7
reduces the impact of entropy regularization, helping to prevent overfitting and further improving
generalization. To summarize, the generalization error for the entropy-regularized optimal transport
formulation, i.e. Schrédinger Bridge baseline, is bounded as:

1
SB
ggen S 0] (N + 7-) 5 (]8)

where N denotes the number of transport steps, and 7 denotes the temperature hyperparameter.

The DDSB method incorporates the degradation-aware term A\, which helps the model remain
consistent with the degradation process during the restoration. This term reduces error accumulation
during the iterative restoration process and improves the generalization performance. The total
generalization error is composed of three components: 1. The transport error O (%) , which decreases
as the number of transport steps increases. 2. The entropy regularization error O(7), which ensures
smooth transport. 3. The degradation fidelity term O(\), which helps the restoration process respect
the underlying degradation. Thus, the generalization error for DDSB is bounded as:

1
DDSB
Eon <O<N+r+/\>. (19)

Combining Eq. [I8and Eq.[T9] we conclude that:
gDDSB S gSB _ O()\)7 (20)

gen gen

demonstrating that the inclusion of the degradation-aware term A results in a tighter error bound for
DDSB.

We conclude this subsection by the following remark. This theoretical analysis demonstrates that the
proposed DDSB method provides superior generalization performance compared to the SB baseline.
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A.2 Connection to Physical Model based Degradation

In this subsection, we provide a theoretical analysis of the Degradation-aware Dynamic Schrodinger
Bridge (DDSB), focusing on its connection to degradation-aware techniques and the integration of
a physical degradation model. This analysis formalizes how the proposed method ensures realistic
image restoration by incorporating the degradation process into the transport framework and learning
to reverse it.

Degradation-aware Transport (DOT) and its Role. The core innovation in DDSB lies in the
Degradation-aware Optimal Transport (DOT) term. Traditional Schrédinger Bridge (SB) methods
focus on learning a transport plan between the degraded and clean image distributions, without
considering the physical degradation process that generated the degraded image. DDSB, on the other
hand, introduces a degradation-aware component, which ensures that the transport process respects
the underlying degradation dynamics at every step.

Let mg and 7. denote the degraded and clean image distributions, respectively. The objective in
DDSB is to learn a transport plan 7* that minimizes the discrepancy between these distributions
while respecting the degradation model. The optimal transport cost is modified to include the
degradation-aware term:

cpor(Ta, @) = [|Xg — || + X+ || Dy () — x4l (1)

where x4 is a sample from the degraded image distribution 74, . is a clean image sample, Dy(x.)
denotes the degraded version of x. predicted by the learned degradation model Dy, and X is a
hyperparameter controlling the strength of the degradation fidelity term.

The term \ - || Dy () — x4 enforces that the transport process not only minimizes the discrepancy
between x4 and x., but also ensures that the restoration process is consistent with the learned
degradation model Dy. This degradation-aware term helps maintain physical realism during the
restoration process and prevents the generation of unrealistic artifacts.

Physical Degradation Model Dy and its Role. In real-world image restoration, the degradation
process is typically complex, involving factors such as noise, blur, and distortion. In many cases, it is
impractical to assume a simple degradation model (such as Gaussian noise). Therefore, DDSB uses a
learnable degradation model D, which is trained to simulate various degradation processes, such as
motion blur, fog, and noise. The model D, learns to predict the degradation process for a given clean
image, providing a more accurate representation of real-world degradation dynamics.

The degradation model Dy is integrated into the transport process by penalizing discrepancies
between the degraded version of the predicted clean image and the degraded input image. Specifically,
at each transport step, we introduce a degradation consistency term that ensures the restored image
x. remains aligned with the degradation process at each intermediate step. This term is added to the
transport cost as follows:

Lot = Eqy(zy) [[|@d — Te(xa)|* + M| Dy (wc(4)) — zal?] | (22)

where x is a degraded sample, .(x,) denotes the predicted clean image at a given transport step,
and Dy (z.(x4)) denotes the degraded version of x.(xz4) predicted by the degradation model D.

This ensures that each intermediate image in the restoration trajectory follows the degradation process
as closely as possible, improving the physical realism of the restoration.

Degradation Amplification for Realism. In this approach, the degradation model D, is not only
used to predict the degradation but is also employed to amplify the degradation at each step. This
means that the model simulates the inverse of the restoration process by artificially degrading the
predicted clean image, making the difference between the degraded image x4 and the predicted clean
image more pronounced. This helps in preventing the model from generating unrealistic images that
would not correspond to any physical degradation.

Formally, the degradation model Dy is learned to amplify the degradation, i.e., simulate the inverse
process of restoration. The objective is to penalize large deviations between the degraded input x4
and the predicted clean image x. by introducing a degradation consistency term, as described in the
DOT loss:

1Dy () — all?, 23)
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which ensures that the model’s restoration trajectory remains consistent with the degradation process,
leading to more realistic results.

Integrating the Degradation Model into the Transport Process. The key idea behind DDSB is
to integrate the degradation model D into the optimal transport framework. The method learns a
transport plan 7* that minimizes the distance between the degraded and clean images while ensuring
that intermediate steps in the restoration process respect the physical degradation dynamics. This is
achieved by adding the degradation-aware term to the transport cost.

At each step of the restoration, we aim to align the transport plan with the degradation process. The
total loss for DDSB can be expressed as the sum of the standard SB loss and the degradation-aware
term:

Lppss = Lsg + Lpor, (24)

where Lgg denotes the standard Schrodinger Bridge loss (transport loss). In addition, Lpor denotes
the degradation-aware optimal transport loss, which ensures that the restoration process respects the
degradation model Dy.

This dual loss function encourages the model to minimize the transport cost while ensuring that the
restored images are consistent with the degradation process, leading to more realistic and physically
plausible restoration results.

We conclude this subsection by the following remark. The introduction of the degradation-aware term
A in the DOT loss improves the generalization of the restoration model. By enforcing consistency
with the degradation process, DDSB ensures that the model can generalize well to unseen degradation
types. This also reduces the risk of generating unrealistic artifacts, which is a common problem in
unpaired image restoration tasks.

The Degradation-aware Dynamic Schrodinger Bridge (DDSB) method introduces a novel integration
of degradation-aware optimal transport and a physical degradation model. By incorporating the
degradation model Dy into the transport process, DDSB ensures that the restoration trajectory
remains consistent with the physical degradation process, improving the realism of the restored
images. This is achieved by penalizing discrepancies between the degraded input and the predicted
clean images, leading to a more physically plausible restoration process that reduces artifacts and
improves generalization to unseen degradation types.

This theoretical analysis, along with the introduced degradation-aware and dynamic transport compo-
nents, lays the foundation for DDSB’s superior performance in unpaired image restoration, addressing
the key challenges of realism and generalization.

B More Visual Results

B.1 On Multi-Task Image Restoration

More visual results of multi-task image restoration are provided in Fig.[5|and Fig.[d

B.2 On Generalized Haze Removal

More visual results of generalized haze removal are provided in Fig.[/|and Fig.
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Figure 5: More results of multi-task image restoration

Input DCP UNSB DN DDSB Ground Truth

Figure 6: More results of multi-task image restoration
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Figure 8: More results of generalized haze removal
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction covers the theoretical and technical contribution,
the developed method and the experimental contribution.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: At the end of the conclusion section, a limitation discussion is provided.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, the assumptions are given in the form of Lema in the Prelimaries section.
A complete proof is given in the Supplementary material.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the baseline model, technical details, hyper-parameter and configuration
are detailed in the submission for reproducibility.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets this paper uses are publicly available, and the source code is
promised to be public once published.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details are given at the end of the methodology section
and the beginning of the experimental section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Following prior works in this field, the evaluation protocols on the correspond-
ing datasets do NOT require a report of the error bar.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware, especially the GPU requirement, is limited in the subsection of
implementation details.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper focuses on a fundamental task of machine learning and conducts
experiments on publicly available datasets.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impact of this work has been discussed at the end of the conclusion
section. We do not envision negative societal impact could be brought by this work.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work focuses on a fundamental problem in machine learning and conducts
experiments on standard datasets. We do not envision such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all the assets have been properly cited, with a license to use for academia
and no commercial purpose.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research of this paper does not involve
LLMs as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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