Degradation-aware Dynamic Schrödinger Bridge for Unpaired Image Restoration

Jingjun Yi^{1,2}*, Qi Bi^{3 \boxtimes}, Hao Zheng^{4 \boxtimes}, Huimin Huang⁴, Yixian Shen³, Haolan Zhan⁵, Wei Ji⁶, Yawen Huang¹, Yuexiang Li⁷, Xian Wu⁴, Yefeng Zheng^{1 \boxtimes}

¹ Westlake University, China, ²University of Alberta, Canada ³University of Amsterdam, the Netherland, ⁴Tencent Jarvis Lab, China ⁵Monash University, Australia, ⁶Yale University, the United States, ⁷University of Macau, Macau q.bi@ieee.org, howzheng@tencent.com, zhengyefeng@westlake.edu.cn

Abstract

Image restoration is a fundamental task in computer vision and machine learning, which learns a mapping between the clear images and the degraded images under various conditions (e.g., blur, low-light, haze). Yet, most existing image restoration methods are highly restricted by the requirement of degraded and clear image pairs, which limits the generalization and feasibility to enormous real-world scenarios without paired images. To address this bottleneck, we propose a Degradation-aware Dynamic Schrödinger Bridge (DDSB) for unpaired image restoration. Its general idea is to learn a Schrödinger Bridge between clear and degraded image distribution, while at the same time emphasizing the physical degradation priors to reduce the accumulation of errors during the restoration process. A Degradation-aware Optimal Transport (DOT) learning scheme is accordingly devised. Training a degradation model to learn the inverse restoration process is particularly challenging, as it must be applicable across different stages of the iterative restoration process. A Dynamic Transport with Consistency (DTC) learning objective is further proposed to reduce the loss of image details in the early iterations and therefore refine the degradation model. Extensive experiments on multiple image degradation tasks show its state-of-the-art performance over the prior arts.

1 Introduction

Image restoration, encompassing tasks like denoising, deblurring, and dehazing, is one of the most crucial yet fundamental challenges in computer vision [8, 28, 54]. A traditional paradigm is supervised learning, where paired data of clear and degraded images are used to train models. However, acquiring large-scale paired datasets in many real-world scenarios is often impractical due to the vast diversity of degradation conditions and the absence of ground truth. Unpaired image restoration methods, which learn mappings between unpaired degraded and clear image sets, have gained significant attention in recent years as an alternative solution [30, 58, 47]. However, one of its key challenges lies in the absence of explicit correspondences between the input and output images.

The realm of generative models, exemplified by the recent diffusion models [38, 17, 39, 40, 35, 4], has achieved remarkable progress over the past few years. Compared with the prior arts (e.g., generative adversarial networks [14], variational autoencoders [23]), these recent generative models are more capable to generate diverse and high-quality samples [50], and have shown great success in image restoration [7]. Unfortunately, diffusion models are still subject to a specific prior distribution, e.g., Gaussian, which prevents its full potential to various degradation conditions in image restoration.

^{*}Jingjun Yi is affiliated with University of Alberta. This research was conducted when he was a research intern at Westlake University.

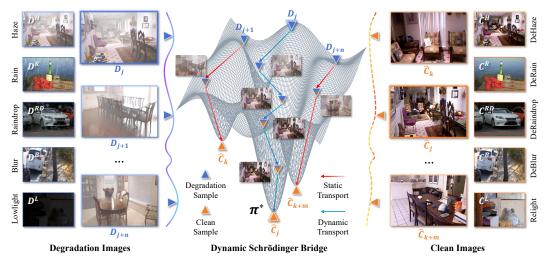


Figure 1: Dynamic Schrödinger bridge formulates image restoration as an optimal transport between the clear and degraded images, while maintaining the flexibility to handle unpaired data.

Schrödinger bridge (SB) provides a promising alternative by formulating the restoration problem as an optimal transport (OT) task between the clear image distribution and the degraded image distribution, while maintaining the flexibility to handle unpaired data [9, 6, 43]. In contrast to prior generative models, SB enables the translation between two arbitrary distributions without requiring paired training data [45, 29, 10, 41, 39, 5].

In light of these properties, the first research question naturally arises: *How to leverage SB for unpaired image restoration, while achieve as physically meaningful and realistic restoration as possible?* To address this challenge, we propose a Degradation-aware Optimal Transport (DOT) learning scheme, which builds on the entropy-regularized OT framework inherent in SB. The core objective of DOT is to reduce the accumulation of errors from unpaired SB during the iterative restoration process. By introducing a degradation model to learn the inverse process of restoration, DOT can amplify the degradations and artifacts produced by the restoration model, and impose an additional constraint based on this information.

Training the degradation model is particularly challenging due to the absence of paired training data, and this difficulty is compounded by the need for the model to generalize across different stages of the iterative restoration process. In the early stages of iteration, the predicted clean images often contain excessive artifacts, whereas in the later stages, the differences between consecutive steps become minimal. Both scenarios are suboptimal for effective degradation model training. To address these issues, we introduce Dynamic Transport with Consistency (DTC), which not only strengthens the constraints on the early stages, thereby reducing the loss of image details, but also refines the learning objective of the degradation model. This dual approach alleviates the challenges associated with learning the inverse restoration process and improves the overall effectiveness of the model.

Both components are incorporated as the proposed Degradation-aware Dynamic Schrödinger Bridge (DDSB). It ensures that the restoration process remains robust to variations in the degradation types, while preserving the integrity of the underlying image structure. The effectiveness of our method is validated through extensive experiments on multiple image restoration tasks, including denoising, deblurring, and dehazing, across a range of degradation conditions, in terms of both visual quality and quantitative metrics. In particular, our approach demonstrates superior generalization to unseen degradation types, providing a more robust solution for real-world image restoration tasks.

In a nutshell, our contributions can be summarized as follows.

- This paper opens up a new direction for applying Schrödinger Bridge in unpaired image restoration, providing a promising solution to the limitations of existing techniques.
- A Degradation-aware Dynamic Schrödinger Bridge (DDSB) is developed for unpaired image restoration, which incorporates a degradation model to reduce the error accumulation during the transport process.

- A Dynamic Transport with Consistency (DTC) learning objective is proposed to optimize the training of the degradation model.
- Extensive experiments on multiple image restoration benchmarks show its state-of-the-art performance.

2 Related Works

Schrödinger Bridge (SB) problem, also known as entropy-regularized optimal transport [37, 24], aims to learn a stochastic process between an initial distribution and a specified terminal distribution over time under the guidance of a reference measure. Owing to its property to allow arbitrary choices of initial and terminal distributions, SB has fostered the development of a variety of generative modeling problems, to name a few, iterative proportional fitting [9, 44], Riemannian manifolds [42], image translation [41], path sampling [55, 36], unpaired transport [22], under both supervised settings [15, 29, 10] and unsupervised settings [45]. In contrast to earlier work [49], the proposed method innovatively integrates dynamic multi-step transport modeling and trajectory consistency regularization. Besides, it is capable to handle various degradation types over deraining in [49].

Unpaired Image to-Image (I2I) Translation aims to generate a target image that preserves the structural similarity of the source image without pair-wise input [59, 19]. Early works usually leverage geometric consistency [12] and mutual information regularization [3]. More recently, contrastive unpaired translation (CUT) and its variants [32, 21, 46, 57] have advanced I2I tasks by refining patch-wise regularization. Santa [51] introduces shortest-path constraints, while DN [18] applies dense normalization for translation. However, recent works usually conduct unpaired I2I under a resolution no higher than 128×128 pixels. In contrast, under our image restoration task, I2I requires substantially higher resolutions, which poses significant challenges. In addition, the proposed method is conceptually distinct from the previous circle consistency learning objective (e.g., CycleGAN [59]) by further imposing adaptive constraint on the SB path to align with plausible degradation outcomes and introducing temporal consistency across intermediate SB steps.

Unpaired Image Restoration aims to recover clean images from degraded ones without requiring aligned supervision [58]. Classical priors like DCP [16] rely on statistical assumptions, while recent domain-specific approaches, like YOLY [26] and USID-Net [27], exploit layer disentanglement and uncertainty-aware representations. CycleGAN [59] pioneered the use of cycle-consistency loss, while later works incorporated depth-aware degradation modeling [53, 56], mutal information maximization [32], and degradation feature decoupling [47]. However, the reliance on adversarial losses or handcrafted constraints makes it difficult to enforce degradation consistency throughout the restoration forward trajectory. In contrast, our method opens a new direction by introducing Schrödinger bridge to unpaired restoration.

3 Preliminaries

Schrödinger Bridge. Given two probability distributions π_0 and π_1 over \mathbb{R}^d , the Schrödinger Bridge problem seeks the most likely stochastic trajectory $\{x_t\}_{t\in[0,1]}$ that evolves from π_0 to π_1 . Let Ω denote the space of continuous paths in \mathbb{R}^d , and let $\mathcal{P}(\Omega)$ represent the collection of path measures. The SB problem can be formulated as the following entropy-regularized variational problem:

$$\mathbb{Q}^* = \underset{\mathbb{Q} \in \mathcal{P}(\Omega)}{\operatorname{arg\,min}} \operatorname{KL}(\mathbb{Q} \parallel \mathbb{W}^{\tau}) \quad \text{s.t.} \quad \mathbb{Q}_0 = \pi_0, \quad \mathbb{Q}_1 = \pi_1, \tag{1}$$

where \mathbb{W}^{τ} is the Wiener measure with diffusion parameter τ , and \mathbb{Q}_t represents the marginal at time t. The solution \mathbb{Q}^{\star} defines the Schrödinger Bridge connecting π_0 to π_1 .

Two perspectives—stochastic control and static coupling—offer foundational insight into the SB problem and guide our model design. Both are central to understanding the shortcomings of prior SB methods and motivating our approach.

Stochastic Control Formulation. From the viewpoint of stochastic control [33], the SB process $\{x_t\} \sim \mathbb{Q}^*$ satisfies a stochastic differential equation $dx_t = u_t^* dt + \sqrt{\tau} dw_t$, where u_t^* is the optimal control minimizing the expected energy of the drift:

$$\boldsymbol{u}_{t}^{\star} = \underset{\boldsymbol{u}}{\operatorname{arg\,min}} \mathbb{E}\left[\int_{0}^{1} \frac{1}{2} \|\boldsymbol{u}_{t}\|^{2} dt\right] \quad \text{s.t.} \quad \begin{cases} d\boldsymbol{x}_{t} = \boldsymbol{u}_{t} dt + \sqrt{\tau} d\boldsymbol{w}_{t} \\ \boldsymbol{x}_{d} \sim \pi_{0}, \quad \boldsymbol{x}_{c} \sim \pi_{1}. \end{cases}$$
(2)

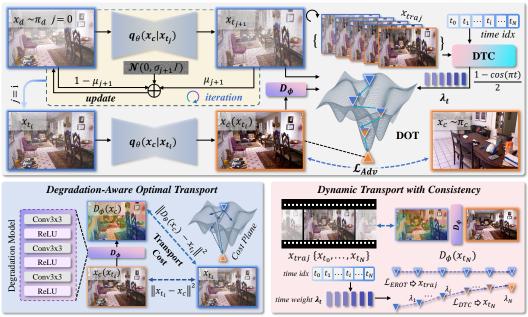


Figure 2: Framework overview of the proposed Degradation-aware Dynamic Schrödinger Bridge (DDSB). On top of the unpaired Schrödinger Bridge model, it presents two novel components, namely, Degradation-aware Optimal Transport (DOT) and Dynamic Transport with Consistency (DTC).

This formulation reveals that SB paths are minimum-action stochastic processes constrained to match boundary distributions. The resulting trajectory is both Markovian and converges to the deterministic optimal transport flow as $\tau \to 0$, with τ determining the stochasticity level.

Static Coupling. SB also admits a static formulation based on endpoint marginals. If the joint distribution at times t=0 and t=1 is known, denoted \mathbb{Q}_{01}^{\star} , then intermediate states are conditionally Gaussian, given by $p(\boldsymbol{x}_t \mid \boldsymbol{x}_d, \boldsymbol{x}_c) = \mathcal{N}(\boldsymbol{x}_t \mid (1-t)\boldsymbol{x}_d + t\boldsymbol{x}_c, \tau t(1-t)\mathbf{I})$. This allows trajectory simulation by sampling from the coupling \mathbb{Q}_{01}^{\star} , and the marginal density of \boldsymbol{x}_t given \boldsymbol{x}_d is thus:

$$p(\boldsymbol{x}_t \mid \boldsymbol{x}_d) = \int p(\boldsymbol{x}_t \mid \boldsymbol{x}_d, \boldsymbol{x}_c) \ d\mathbb{Q}_{1|0}^{\star}(\boldsymbol{x}_c \mid \boldsymbol{x}_d). \tag{3}$$

The optimal coupling \mathbb{Q}_{01}^{\star} satisfies the entropy-regularized optimal transport (EROT) formulation:

$$\mathbb{Q}_{01}^{\star} = \underset{\gamma \in \Pi(\pi_0, \pi_1)}{\operatorname{arg \, min}} \mathbb{E}_{(\boldsymbol{x}_d, \boldsymbol{x}_c) \sim \gamma} \left[\|\boldsymbol{x}_d - \boldsymbol{x}_c\|^2 \right] - 2\tau \mathcal{H}(\gamma), \tag{4}$$

where $\Pi(\pi_0, \pi_1)$ denotes the set of couplings with marginals π_0 and π_1 , and $\mathcal{H}(\gamma)$ is the entropy.

4 Method

In unpaired image restoration, the source and target distributions represent degraded and clean visual domains, respectively. While Schrödinger Bridge (SB) offers a principled probabilistic framework to interpolate between two distributions via entropy-regularized optimal transport (EROT), conventional formulations often neglect physical degradation priors that are crucial for realism in restoration tasks. We propose a novel formulation *Degradation-aware Dynamic Schrödinger Bridge (DDSB)* that explicitly integrates a differentiable degradation model within the SB formulation. DDSB enforces that the restored outputs remain consistent with their degraded inputs under learned degradation dynamics. The framework overview is shown in Fig. 2.

4.1 Unpaired Schrödinger Bridge (UNSB)

The DDSB framework formulates the Schrödinger Bridge as a composition of learnable generative transitions that iteratively transport samples from a degraded distribution toward the clean image

distribution. Let $x_d \sim \pi_d$ denote a real degraded image, where π_d is the degraded image distribution. The objective is to recover its corresponding clean counterpart $x_c \in \pi_c$, with π_c representing the clean image distribution. Consider a discretized time partition $\{t_i\}_{i=0}^N$ of the unit interval [0,1], where $t_0 = 0$, $t_N = 1$, and $t_i < t_{i+1}$. The UNSB process can be simulated via a Markov chain:

$$p(\{x_{t_n}\}) = p(x_{t_N}|x_{t_{N-1}}) \cdots p(x_{t_1}|x_{t_0})p(x_{t_0}).$$
(5)

Here, x_{t_0} corresponds to the degraded input x_d , while x_{t_N} approximates the clean image x_c . To approximate $p(x_{t_i})$, a conditional generator $q_{\theta_i}(x_c|x_{t_i})$ is introduced, where θ_i denotes the network parameters at step i. This defines a joint distribution between the latent state and the clean target as:

$$q_{\theta_i}(\boldsymbol{x}_{t_i}, \boldsymbol{x}_c) = q_{\theta_i}(\boldsymbol{x}_c | \boldsymbol{x}_{t_i}) p(\boldsymbol{x}_{t_i}), \quad q_{\theta_i}(\boldsymbol{x}_c) = \mathbb{E}_{p(\boldsymbol{x}_{t_i})} [q_{\theta_i}(\boldsymbol{x}_c | \boldsymbol{x}_{t_i})]. \tag{6}$$

Given a sample $x_{t_j} \sim q_{\theta}(x_{t_j})$, the generator predicts a clean estimate $x_c(x_{t_j}) \sim q_{\theta}(x_c|x_{t_j})$. A new sample $x_{t_{j+1}}$ is then obtained by interpolating x_{t_j} with $x_c(x_{t_j})$ and injecting noise:

$$p(\mathbf{x}_{t_{j+1}}|\mathbf{x}_c, \mathbf{x}_{t_j}) = \mathcal{N}\left(\mathbf{x}_{t_{j+1}} \mid \mu_{j+1}\mathbf{x}_c + (1 - \mu_{j+1})\mathbf{x}_{t_j}, \sigma_{j+1}^2 \mathbf{I}\right), \tag{7}$$

where $\mu_{j+1} = \frac{t_{j+1} - t_j}{1 - t_j}$ controls the interpolation weight, and the noise scale is computed as $\sigma_{j+1}^2 = \mu_{j+1}(1 - \mu_{j+1})\tau(1 - t_j)$, with τ being a hyperparameter.

By iteratively applying this transition for $j=0,\ldots,i-1$, sample \boldsymbol{x}_{t_i} is generated. When the generator q_{θ_i} is sufficiently optimized, its marginal $q_{\theta_i}(\boldsymbol{x}_{t_i})$ closely approximates the target $p(\boldsymbol{x}_{t_i})$. The sequence $\{\boldsymbol{x}_c(\boldsymbol{x}_{t_i})\}_{i=0}^{N-1}$ thus forms a progressively refined trajectory toward clean image reconstruction. The optimal parameters θ are obtained by optimizing the Schrödinger Bridge via entropy-regularized optimal transport (EROT), defined as

$$\mathcal{L}_{\text{EROT}} = \mathbb{E}_{\boldsymbol{x}_c, \boldsymbol{x}_d \sim \pi} \left[\|\boldsymbol{x}_d - \boldsymbol{x}_c\|^2 \right] - 2\tau \,\mathcal{H}(\pi) + \text{KL}(q_{\theta}(\boldsymbol{x}_c) \,\|\, p(\boldsymbol{x}_c)), \pi \sim \Pi(\pi_d, \pi_c). \tag{8}$$

Specifically, the first term of \mathcal{L}_{EROT} seeks a stochastic coupling π^* between π_d and π_c :

$$\pi^* = \underset{\pi \in \Pi(\pi_d, \pi_c)}{\operatorname{arg \, min}} \mathbb{E}_{(\boldsymbol{x}_d, \boldsymbol{x}_c) \sim \pi} \left[\|\boldsymbol{x}_d - \boldsymbol{x}_c\|^2 \right] - 2\tau \, \mathcal{H}(\pi), \tag{9}$$

where $\mathcal{H}(\pi)$ is the joint entropy and τ is a temperature hyperparameter. It measures the reconstruction error between the predicted clean sample and the clean targe.

To ensure that the clean images inferred from $q_{\theta}(\mathbf{x}_c|\mathbf{x}_{t_i})$ match the target distribution $p(\mathbf{x}_c)$, the second term uses an adversarial Kullback-Leibler (KL) regularization, given by:

$$\mathcal{L}_{\text{adv}} = \text{KL}(q_{\theta}(\boldsymbol{x}_c) \parallel p(\boldsymbol{x}_c)), \tag{10}$$

which enforces marginal alignment at the clean endpoint. This loss acts as a global guidance signal complementing local transport fidelity, encouraging the generator to produce clean estimates that are statistically indistinguishable from real data. In practice, this term is implemented via a discriminator network and optimized using a reverse KL objective.

4.2 Degradation-aware Optimal Transport

To enhance the Schrödinger Bridge optimization in unpaired restoration, we introduce *Degradationaware Optimal Transport* (DOT), which integrates degradation consistency into the EROT framework. An important issue with the aforementioned SB process is the accumulation of image detail loss resulting from model inference. In particular, during the initial stages, predicting a clear image from a severely degraded input often introduces new blur, over-smoothing, or unnatural textures. These artifacts are propagated to subsequent iterations via Eq. 7, thereby affecting the final restoration.

Let π_d and π_c denote the marginal distributions over degraded and clean images, respectively. The classical static Schrödinger Bridge seeks a coupling π minimizing an entropy-regularized cost as defined in Eq. 9. We enhance this cost by introducing a degradation-alignment term, yielding the DOT energy:

$$c_{\text{DOT}}(\boldsymbol{x}_d, \boldsymbol{x}_c) := \|\boldsymbol{x}_d - \boldsymbol{x}_c\|^2 + \lambda \cdot \|D_{\phi}(\boldsymbol{x}_c) - \boldsymbol{x}_d\|^2,$$
 (11)

where D_{ϕ} is a learnable degradation model, and λ weights degradation fidelity. Model D_{ϕ} is used to amplify the existing degradations in the image, that is, to learn the inverse process of image restoration. On the one hand, compared to artifacts introduced by model predictions, certain natural

degradation processes, such as haze and rain, are easier to learn. On the other hand, for new types of degradation generated during prediction, amplification makes their differences from the original x_d more pronounced. Through this component, we impose constraints on the degradations and artifacts produced by the model. Plugging Eq. 11 into Eq. 9, we obtain:

$$\pi^* = \underset{\pi \in \Pi(\pi_d, \pi_c)}{\operatorname{arg \, min}} \mathbb{E}_{(\boldsymbol{x}_d, \boldsymbol{x}_c) \sim \pi} \left[c_{\text{DOT}}(\boldsymbol{x}_d, \boldsymbol{x}_c) \right] - 2\tau \, \mathcal{H}(\pi). \tag{12}$$

To align this with UNSB's iterative structure, we implement DOT at the selected transport step t_i , where x_{t_i} is the intermediate state sampled from the evolving distribution. Let $q_{\theta}(x_c|x_{t_i})$ denote the distribution of generated clean image. We define the DOT loss at step t_i as:

$$\mathcal{L}_{DOT}(\theta, t_i) := \mathbb{E}_{q_{\theta}(\boldsymbol{x}_{t_i}, \boldsymbol{x}_c) \sim \pi} \left[\|\boldsymbol{x}_{t_i} - \boldsymbol{x}_c(\boldsymbol{x}_{t_i})\|^2 + \lambda \cdot \|\boldsymbol{x}_{t_i} - D_{\phi}(\boldsymbol{x}_c(\boldsymbol{x}_{t_i}))\|^2 \right] - 2\tau (1 - t_i) \cdot \mathcal{H}(q_{\theta}(\boldsymbol{x}_{t_i}, \boldsymbol{x}_c(\boldsymbol{x}_{t_i})) + KL(q_{\theta}(\boldsymbol{x}_c|\boldsymbol{x}_{t_i}))\|p(\boldsymbol{x}_c)).$$
(13)

4.3 Dynamic Transport with Consistency

DOT imposes the $\mathcal{L}_{\mathrm{DOT}}$ constraint at a randomly sampled time point t_i . However, during the iterative image restoration process, the initial stages are significantly more challenging than the later iterations. Artifacts introduced by the restoration model are also more likely to occur in these early stages. Therefore, it is necessary to place greater emphasis on the initial stages during the training of the restoration model. To this end, we further propose *Dynamic Transport with Consistency* (DTC), which provides supervision at every step of the restoration trajectory.

Specifically, for a sampled time point t_{N_s} , we denote the restoration trajectory as $\boldsymbol{x}_{\text{traj}} = \{\boldsymbol{x}_{t_0}, \boldsymbol{x}_{t_1}, \dots, \boldsymbol{x}_{t_{N_s}}\}$. We apply \mathcal{L}_{DOT} at each step of the trajectory, while the first item in \mathcal{L}_{DOT} is replaced by \mathcal{L}_{DTC} , which is defined as:

$$\mathcal{L}_{DTC} = \|\boldsymbol{x}_{t_i} - \boldsymbol{x}_c(\boldsymbol{x}_{t_i})\|^2 + \lambda_{t_i} \cdot \|\boldsymbol{x}_{t_i} - D_{\phi}(\boldsymbol{x}_{t_{N_s}})\|^2.$$
(14)

Here λ_{t_i} is the weight for the degradation-alignment term, which is computed by

$$\lambda_t = \lambda \cdot \frac{1 - \cos(\pi t)}{2}, \quad t \in [0, 1]. \tag{15}$$

Compared with $\mathcal{L}_{\mathrm{DOT}}$, $\mathcal{L}_{\mathrm{DTC}}$ replaces $\lambda \| \boldsymbol{x}_{t_i} - D_{\phi}(\boldsymbol{x}_c(x_{t_i})) \|^2$ with $\lambda_{t_i} \| \boldsymbol{x}_{t_i} - D_{\phi}(\boldsymbol{x}_{t_{N_s}}) \|^2$. The learning objective of $D_{\phi}(\boldsymbol{x}_{t_{N_s}})$ becomes $\sum_{i=0}^{N_s-1} \lambda_{t_i} \boldsymbol{x}_{t_i} / \sum_{i=0}^{N_s-1} \lambda_{t_i}$. There are two main reasons behind this modification. First, the $\boldsymbol{x}_c(x_{t_i})$ in initial stage may contain unnatural scenes, and such representations are not suitable for training the degradation model D_{ϕ} , whereas the end point of the trajectory $\boldsymbol{x}_{t_{N_s}}$ is of higher quality. In addition, for some steps, the difference between \boldsymbol{x}_{t_i} and $\boldsymbol{x}_{t_{i+1}}$ is not significant, which also makes them less suitable for training D_{ϕ} . Therefore, we use a weighted average over the entire trajectory as the learning objective, where time steps closer to t_{N_s} are assigned higher weights. This approach can, to some extent, reduce the difficulty of degradation learning.

Understanding DTC. In DTC, we enhance the focus on the early stages of the iterative process by supervising the entire trajectory. More importantly, we employ a constraint based on $D_{\phi}(\boldsymbol{x}_{t_{N_s}})$ to mitigate the loss of image details during restoration. Compared to using \boldsymbol{x}_{t_0} , $D_{\phi}(\boldsymbol{x}_{t_{N_s}})$ not only incorporates certain restorations upon \boldsymbol{x}_{t_0} , but also amplifies the degradations and artifacts introduced by the restoration model, making it a more effective constraint. In other words, the transport trajectory is supervised by penalizing the differences between adjacent SB states (i.e., pairwise consistency between \boldsymbol{x}_{t_i} and $\boldsymbol{x}_{t_{i-1}}$). Compared to baseline UNSB, which only supervises the endpoints, our method densely regularizes the entire trajectory, especially the early steps, where errors are more likely to propagate. Therefore, even though the overall loss includes unweighted endpoint terms, the trajectory-level consistency term explicitly emphasizes earlier stages due to its design, providing stronger guidance when the model is most prone to drift.

4.4 Implementation Details

Training Strategy. We randomly select a time step $t_{N_s} \in \{t_0, \dots, t_N\}$ and simulate the forward transport from the degraded sample $\boldsymbol{x}_d \sim \pi_0$ to obtain $\{\boldsymbol{x}_{t_0}, \boldsymbol{x}_{t_1}, \dots, \boldsymbol{x}_{t_{N_s}}\}$. In each intermediate step, \boldsymbol{x}_{t_i} is fed into the conditional generator $q_{\theta}(\boldsymbol{x}_c|\boldsymbol{x}_{t_i})$ so as to output a clean estimate $\boldsymbol{x}_c(\boldsymbol{x}_{t_i})$.

Together with a reference sample $x_c \sim \pi_1$, the tuples $(x_{t_i}, x_c(x_{t_i}))$ and $(x_c, x_c(x_{t_i}))$ are used to compute $\mathcal{L}_{DOT}(\theta, t_i)$ and $\mathcal{L}_{DTC}(\theta, t_i)$. The entropy term is computed by the mutual information neural estimation (MINE) [2]. The KL divergence is implemented via adversarial learning, where x_c and $x_c(x_{t_i})$ serve as real and fake inputs, respectively, to a Markovian discriminator.

Network Architecture. The conditional generator q_{θ} is implemented using a U-Net architecture with instance normalization, where the encoder and decoder consists of five convolutional and deconvolutional layers, respectively. The input and sampled noise are concatenated as the input channels at the first layer, enabling conditioning on both the degraded input and latent noise during the restoration process. The degradation model is a lightweight convolutional neural network (CNN), which consists of three 64-channel convolutional layers with ReLU activation functions. Notice that, the degradation model is designed as a degradation guidance module rather than a reconstructor. It guides the restoration process by penalizing implausible states through constraints on the SB trajectory, making it highly effective for its purpose despite being small.

Hyperparameters. The training terminates after 400 epochs, with a batch size of 1. The initial learning rate is 2×10^{-4} and decays to zero linearly. All the inputted images are firstly resized to 512×512 pixels and then the image intensity is normalized to [-1,1]. The time interval [0,1] is discretized into N=5 uniform steps. The temperature parameter is fixed as $\tau=0.01$, and the balanced constant hyper-parameter of $\mathcal{L}_{\mathrm{DOT}}$ λ is set to 0.01. For DTC, the weight of degradation term adopts a cosine annealing schedule. The generator adopts AdaIN layers and sinusoidal timestep embeddings, following DDGAN [50].

5 Experiments

5.1 Results on Multi-Task Image Restoration

Datasets & Evaluation Protocols. We adopt four restoration tasks: deraining, raindrop removal, deblurring, and low-light enhancement. Rain200L [52] is used for deraining. It includes 1,800 synthetic rainy images for training and 200 for testing. Raindrop [34] is used for raindrop removal. It consists of 1,119 paired images with and without raindrops on glass surfaces. The GoPro dataset [31] is widely used for image deblurring, containing 3,214 high-resolution blurred images (1280×720 pixels). It is split into 2,103 samples for training and 1,111 for testing. LOL [48] is used for low-light enhancement. It consists of 500 image pairs captured under normal and low-light conditions. Following prior works [20], we use 485 pairs for training and 15 for testing. All images are resized to 512×512 pixels and the intensity is normalized before training. These datasets cover a broad spectrum of degradations and provide a comprehensive testbed for multi-task restoration. Following prior unpaired methods [53, 47], during training, for each degraded input image, we randomly sample a clean image from the set, excluding its ground-truth counterpart. The resulting image tuple is thus unaligned and used solely for learning the transport between unpaired distributions. Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR, in dB), are used for evaluation.

Baselines. We compare DDSB with a wide range of state-of-the-art unpaired image restoration methods. These include the classical prior-based approach DCP [16], and various learning-based methods such as CycleGAN [59], YOLY [26], USID-Net [27], RefineDNet [56], D⁴ [53], CUT [32], Santa [51], ODCR [47], and DN [18]. We also include UNSB [22], which formulates cross-domain generation as a Schrödinger Bridge problem. Although Santa, DN, and UNSB were originally proposed for unpaired image translation, we adapt them to image restoration for a boarder comparison. For each task, all the methods are fine-tuned under the same configuration.

Quantitative Evaluation. Table 1 shows that DDSB achieves the best performance across all four unpaired image restoration tasks. DDSB consistently outperforms all competing unpaired methods in both PSNR and SSIM. Compared with the strongest baseline DN, DDSB achieves significant PSNR gains of +0.69 dB on deraining, +1.12 dB on de-raindrop removal, +1.80 dB on low-light enhancement, and +2.02 dB on deblurring. Corresponding SSIM improvements are +0.025, +0.007, +0.021, and +0.008, respectively. These consistent improvements, especially under challenging conditions like low-light and motion blur, validate the effectiveness of our dynamic Schrödinger Bridge framework with degradation consistency. Furthermore, compared with CUT and D⁴, DDSB demonstrates superior robustness due to its explicit modeling of intermediate transport dynamics and degradation-aligned consistency.

Table 1: Quantitative comparison of DDSB with the state-of-the-art unpaired image restoration methods on multi-task restoration. Top three results are highlighted as **best**, **second** and **third**.

Method	Derain [52]		Deraindro	[34]	Lowlight	[48]	Deblur [31]		
	PSNR (dB)	SSIM	PSNR (dB)	SSIM	PSNR (dB)	SSIM	PSNR (dB)	SSIM	
DCP [16]	13.25	0.705	18.92	0.752	15.93	0.743	12.97	0.702	
CycleGAN [59]	21.28	0.796	20.55	0.787	14.03	0.781	19.10	0.735	
YOLY [26]	15.72	0.714	14.71	0.748	13.16	0.762	16.28	0.717	
USID-Net [27]	21.50 0.784		19.81	0.771	17.91	0.769	20.72	0.726	
RefineDNet [56]	24.41	0.840	21.65	0.783	19.75	0.793	21.03	0.747	
D^4 [53]	24.75	0.832	23.84	0.805	21.32	0.826	21.59	0.782	
CUT [32]	24.22	0.815	23.51	0.827	22.90	0.804	21.26	0.766	
Santa [51]	24.55	0.828	23.65	0.797	21.93	0.838	21.80	0.778	
UNSB [22]	24.68	0.837	24.52	0.812	22.75	0.822	22.11	0.785	
ODCR [47]	24.89	0.848	24.08	0.818	23.42	0.832	22.73	0.791	
DN [18]	24.72	0.845	24.63	0.824	23.58	0.844	23.20	0.796	
DDSB (ours)	25.41	0.870	25.75	0.831	25.38	0.865	25.22	0.804	

Table 2: Non-parametric perceptual metric comparison of DDSB with the state-of-the-art unpaired image restoration methods. Top three results are highlighted as **best**, **second** and **third**.

Method	Derain [52]		Deraind	rop [34]	Lowlig	ht [48]	Deblur [31]		
	LPIPS	NIQE	LPIPS	NIQE	LPIPS	NIQE	LPIPS	NIQE	
DCP [16]	0.229	5.37	0.204	5.61	0.218	5.77	0.231	5.94	
CycleGAN [59]	0.146	4.82	0.167	4.69	0.197	5.44	0.172	4.98	
YOLY [26]	0.198	5.03	0.202	5.19	0.210	5.66	0.211	5.47	
USID-Net [27]	0.152	4.75	0.172	4.92	0.188	5.31	0.162	4.88	
RefineDNet [56]	0.104	4.36	0.147	4.68	0.179	5.22	0.150	4.71	
D^4 [53]	0.098	4.28	0.124	4.50	0.155	5.04	0.139	4.61	
CUT [32]	0.111	4.42	0.118	4.55	0.142	5.17	0.143	4.66	
Santa [51]	0.096	4.33	0.109	4.39	0.138	5.09	0.130	4.54	
UNSB [22]	0.085	4.18	0.096	4.27	0.145	5.02	0.126	4.49	
ODCR [47]	0.076	4.09	0.091	4.21	0.131	4.88	0.121	4.43	
DN [18]	0.079	4.11	0.082	4.17	0.124	4.85	0.118	4.40	
DDSB (ours)	0.063	3.94	0.069	4.03	0.129	4.79	0.108	4.31	

Table 3: Quantitative comparison of DDSB with the state-of-the-art unpaired dehazing methods on the generalized dehazing task, trained on SOTS-indoor, and the test result are shown. Cells where results are not available are replaced by "-". The time is measured on images of the size of 512×512 pixels using a single GPU.

Method	SOTS-indoor [25]		SOTS-outdo	or [25]	NH-HAZE 2 [1]		Overhead		
	PSNR (dB)	SSIM	PSNR (dB)	SSIM	PSNR (dB)	SSIM	Para. (M)	Time (ms)	
DCP [16]	13.10	0.699	19.13	0.815	14.90	0.668	-	-	
CycleGAN [59]	21.34	0.898	20.55	0.856	13.95	0.689	11.38	10.22	
YOLY [26]	15.84	0.819	14.75	0.857	13.38	0.595	32.00	-	
USID-Net [27]	21.41	0.894	23.89	0.919	15.62	0.740	3.780	31.01	
RefineDNet [56]	24.36	0.939	19.84	0.853	14.20	0.754	65.80	248.5	
D^4 [53]	25.42	0.932	25.83	0.956	14.52	0.709	10.70	28.08	
CUT [32]	24.30	0.911	23.67	0.904	15.92	0.758	11.38	10.06	
Santa [51]	25.01	0.923	24.21	0.945	16.02	0.749	11.43	136	
UNSB [22]	25.68	0.930	25.30	0.954	16.10	0.753	14.42	0.212	
ODCR [47]	26.32	0.945	26.16	0.960	17.56	0.766	11.38	10.14	
DN [18]	26.25	0.947	26.18	0.962	17.15	0.769	11.40	87.7	
DDSB (ours)	27.85	0.956	27.67	0.971	17.92	0.783	14.68	0.019	

Non-parametric Perceptual Evaluation. We additionally report two non-parametric metrics that provide a more holistic assessment without relying on predefined statistical models. The Learned Perceptual Image Patch Similarity (LPIPS) measures perceptual distance in deep feature space using a pretrained network and requires ground-truth reference images. The Naturalness Image Quality Evaluator (NIQE) operates without any reference image by modeling natural image statistics. As shown in Table 2, we evaluate these two non-parametric metrics on our multi-task restoration benchmark. DDSB consistently outperforms prior methods, demonstrating its strong generalization and perceptual fidelity without relying on pixel-wise supervision.

Qualitative Evaluation. Visual comparisons on four unpaired restoration tasks are shown in Fig. 3. D^4 struggles to preserve structural details. UNSB yields inconsistent restorations. DN improves local textures, yet residual degradations remain, especially under blur and low-light conditions. ODCR

Table 4: Ablation study on each compo- Table 5: Impact Table 6: Impact of Table 7: Impact nent. Evaluation metrics include PSNR \uparrow of time step N and

nent. Evaluation metrics include PSNR↑								me ste	p N.	hyper-parameter			
and SS	SIM↑.								-indoor	λ .	SOTS	indoor	
Component			SOTS-	indoor	SOTS-	outdoor		PSNR	SSIM	λ	PSNR	SSIM	
EROT	DOT	DTC	PSNR	SSIM	PSNR	SSIM	2	26.18	0.943	0.0001	25.76	0.940	
	Х	Х	25.68	0.930	25.30	0.954	3	26.91	0.950	0.0001	27.12	0.940	
X	1	X	27.23	0.953	27.04	0.963	4	27.42	0.957	0.001	27.12	0.956	
X	X	1	26.11	0.947	25.92	0.957	5	27.85	0.956	0.01	27.24	0.949	
X	1	1	27.85	0.956	27.67	0.971	6	27.09	0.949	1	26.91	0.946	
			27.00	0.750	27.07	0.771			***		20.71	0.710	
	Input		DCP		D^4			UNSB		DN		DDSB	
												1000	
Rain	udh-		-					and a				-	
2		Jen e										1	
									5			*	
	X					X and the		X				10 X 3	
Raindrop						112							
in										1			
Z Z					(40 PM								
	VERIS	F 14	Resource VS D	13000		VE DAY		TO VERSION		PER VERNING		er VEDIA	
	1			1				1		1		1	
	-	1	-		41.	T.		-			1	2	

Figure 3: Comparison of state-of-the-art unpaired methods on multi-task image restoration.

of layer depth in

SSIM

0.926

0.956

PSNR

25.37

27.85

27.69

Groud Truth

still falters under severe corruption such as dense raindrops or extreme darkness. In contrast, DDSB delivers perceptually sharper and more faithful restorations across all scenarios.

5.2 Results on Generalized Haze Removal

Datasets and Evaluation Protocols. To evaluate the generalization capability of DDSB under diverse degradation scenarios, we follow the setting of [47] by training on the Indoor Training Set (ITS) from RESIDE [25], and evaluating on the SOTS-outdoor (OTS) test set from NH-HAZE 2 [1], which jointly covers synthetic, artificial, and real-world domains. Specifically, RESIDE provides 13,990 synthetic hazy-clear image pairs in ITS and 500 outdoor test pairs in OTS. NH-HAZE 2 contains 25 image pairs with non-homogeneous haze for more challenging and realistic evaluation.

Baselines. We compare DDSB against a broad set of state-of-the-art image dehazing methods. In the unpaired setting, we include both traditional priors and recent deep models, including DCP [16], CycleGAN [59], CycleDehaze [11], YOLY [26], USID-Net [27], RefineDNet [56], D⁴ [53], CUT [32], Santa [51], ODCR [47], and DN [18]. We also include UNSB [22], a Schrödinger Bridge-based image generation method. Notably, Santa, DN, and UNSB were originally designed for unpaired image generation rather than restoration, and we adapt them to dehazing tasks to benchmark their transferability. Following the evaluation protocol of D⁴, we train all methods on the ITS subset of RESIDE and evaluate on multiple test sets.

Quantitative Evaluation. Table 3 summarizes the performance of DDSB under a generalized dehazing protocol. All methods are trained only on the SOTS-indoor dataset and evaluated on three benchmarks: SOTS-indoor, SOTS-outdoor, and NH-HAZE 2. DDSB achieves the best performance across all settings. In terms of PSNR, DDSB outperforms DN by +1.60 dB on SOTS-indoor, +1.49 dB on SOTS-outdoor, and +0.77 dB on NH-HAZE 2. For SSIM, the improvements are +0.009, +0.009, and +0.014, respectively. These results demonstrate DDSB's strong generalization ability to both synthetic and real-world haze conditions. Moreover, DDSB is highly efficient: despite its effectiveness, it only uses 14.68M parameters and runs at 0.019 ms per 512×512 image—significantly faster than most baselines, including DN (87.7 ms) and RefineDNet (248.5 ms).

Qualitative Evaluation. Fig. 4 shows qualitative comparisons. D⁴ preserves some scene-level consistency but often leaves residual haze and lacks fine detail recovery. DN introduces texture artifacts and inconsistent brightness in challenging outdoor or real-world scenes. DDSB demonstrates

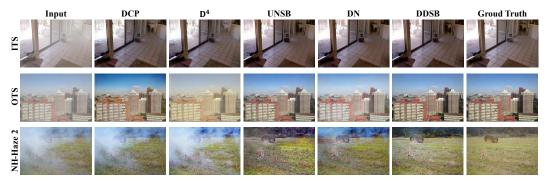


Figure 4: Comparison of state-of-the-art unpaired methods on generalized haze removal.

the most robust generalization among all compared methods. On SOTS-outdoor, it effectively removes haze while maintaining edge sharpness and color balance. On NH-HAZE 2, DDSB delivers perceptually clean outputs with restored textures, faithful color rendering, and minimal artifacts.

5.3 Ablation Studies

Effect of Each Component. We conduct an ablation study on the SOTS-indoor and SOTS-outdoor datasets. The results are summarized in Table 4. Starting from the baseline equipped with only EROT, we observe consistent improvements when adding either DOT or DTC. Specifically, DOT brings a PSNR gain of +1.55dB on SOTS-indoor and +1.74dB on SOTS-outdoor, as well as SSIM improvements of +0.023 and +0.009, respectively. When adding DTC alone, PSNR improves by +0.43dB on SOTS-indoor and +0.62dB on SOTS-outdoor, and SSIM increases by 0.017 and 0.003, respectively. This shows that DTC improves the intermediate trajectory regularity. Combining DOT and DTC yields the best overall performance, confirming their complementarity.

Effect of Time Step N. Table 5 analyzes how the number of time steps N in the trajectory affects restoration performance. The default setting is N=5. When N is reduced to 2 or 3, the performance drops notably (e.g., PSNR drops to 26.18dB at N=2). When N increases beyond 5 to 6, the performance slightly degrades, likely due to over-discretization and increased interpolation error.

Effect of Hyper-parameter λ . Table 6 studies the sensitivity of our method to the regularization weight λ in Eq. 9, which governs the strength of the entropy-regularized transport. We observe that $\lambda=0.01$ achieves the highest performance (27.85dB / 0.956). Setting λ too low (e.g., 0.0001) degrades performance significantly (down to 25.76dB / 0.940), as the EROT constraint becomes too weak. Conversely, overly large λ values (e.g., 1.0) also degrade performance to 26.91dB / 0.946, likely because the transport term dominates and suppresses reconstruction.

Effect of Layer Depth D_{ϕ} . We conduct an ablation study by varying the number of convolutional layers in D_{ϕ} from 2 to 7. As shown in Table 7, the 3-layer configuration offers the best trade-off between performance and stability. While the 5-layer variant yields a slightly higher SSIM (0.958), its overall PSNR is marginally lower than the 3-layer setting. The 2-layer model underfits the degradation guidance, and the 7-layer version suffers a noticeable performance drop due to training instability.

6 Conclusion

In this work, we presented Degradation-aware Dynamic Schrödinger Bridge (DDSB), a novel framework for unpaired image restoration that addresses the limitations of paired data and static restoration dynamics. By leveraging Schrödinger Bridge modeling between unpaired domains and incorporating constraints based on degradation amplification, DDSB enhances the realism of restored outputs. Extensive experiments on diverse degradation scenarios demonstrated the effectiveness and generalizability of our approach, establishing a new direction for principled, data-efficient image restoration in real-world settings.

Limitation, Future Work & Societal Impact. DDSB approaches image degradation from a machine learning perspective. Some physical degradation models can be integrated in the future. This work benefits various image degradation scenarios, and we do not envision its negative societal impact.

References

- [1] Codruta O Ancuti, Cosmin Ancuti, Florin-Alexandru Vasluianu, and Radu Timofte. NTIRE 2021 nonhomogeneous dehazing challenge report. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 627–646, 2021.
- [2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In *International Conference on Machine Learning*, pages 531–540. PMLR, 2018.
- [3] Sagie Benaim and Lior Wolf. One-sided unsupervised domain mapping. *Advances in Neural Information Processing Systems*, 30, 2017.
- [4] Qi Bi, Jingjun Yi, Huimin Huang, Hao Zheng, Haolan Zhan, Wei Ji, Yawen Huang, Yuexiang Li, and Yefeng Zheng. A simple yet mighty hartley diffusion versatilist for generalizable dense vision tasks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 6748–6760, 2025.
- [5] Qi Bi, Jingjun Yi, Hao Zheng, Haolan Zhan, Wei Ji, Yawen Huang, and Yuexiang Li. Dgfamba: Learning flow factorized state space for visual domain generalization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 1862–1870, 2025.
- [6] Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of schrödinger bridge using forward-backward sdes theory. *arXiv* preprint arXiv:2110.11291, 2021.
- [7] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. *arXiv* preprint arXiv:2209.14687, 2022.
- [8] Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Revitalizing convolutional network for image restoration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pages 9423 9438, 2024.
- [9] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling. Advances in Neural Information Processing Systems, 34:17695–17709, 2021.
- [10] Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising diffusion for image restoration. arxiv preprint arXiv:2303.11435, 2023.
- [11] Deniz Engin, Anil Genç, and Hazim Kemal Ekenel. Cycle-dehaze: Enhanced cyclegan for single image dehazing. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pages 825–833, 2018.
- [12] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, Kun Zhang, and Dacheng Tao. Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2427–2436, 2019.
- [13] Aude Genevay. Entropy-regularized optimal transport for machine learning. PhD thesis, Université Paris sciences et lettres, 2019.
- [14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2014.
- [15] Ming Gui, Johannes Schusterbauer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga Grebenkova, Stefan Andreas Baumann, Vincent Tao Hu, and Björn Ommer. Depthfm: Fast generative monocular depth estimation with flow matching. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 3203–3211, 2025.
- [16] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2341–2353, 2010.
- [17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
- [18] Ming-Yang Ho, Che-Ming Wu, Min-Sheng Wu, and Yufeng Jane Tseng. Every pixel has its moments: Ultrahigh-resolution unpaired image-to-image translation via dense normalization. In *European Conference on Computer Vision*, pages 312–328. Springer, 2024.
- [19] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image translation. In European Conference on Computer Vision, pages 172–189, 2018.

- [20] Yitong Jiang, Zhaoyang Zhang, Tianfan Xue, and Jinwei Gu. Autodir: Automatic all-in-one image restoration with latent diffusion. In *European Conference on Computer Vision*, pages 340–359. Springer, 2024.
- [21] Chanyong Jung, Gihyun Kwon, and Jong Chul Ye. Exploring patch-wise semantic relation for contrastive learning in image-to-image translation tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18260–18269, June 2022.
- [22] Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye. Unpaired image-to-image translation via neural schr\" odinger bridge. arXiv preprint arXiv:2305.15086, 2023.
- [23] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.
- [24] Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal transport. arXiv preprint arXiv:1308.0215, 2013.
- [25] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang. Benchmarking single-image dehazing and beyond. *IEEE Transactions on Image Processing*, 28(1):492–505, 2018.
- [26] Boyun Li, Yuanbiao Gou, Shuhang Gu, Jerry Zitao Liu, Joey Tianyi Zhou, and Xi Peng. You only look yourself: Unsupervised and untrained single image dehazing neural network. *International Journal of Computer Vision*, 129:1754–1767, 2021.
- [27] Jiafeng Li, Yaopeng Li, Li Zhuo, Lingyan Kuang, and Tianjian Yu. USID-Net: Unsupervised single image dehazing network via disentangled representations. *IEEE Transactions on Multimedia*, 25:3587–3601, 2022.
- [28] Jingbo Lin, Zhilu Zhang, Yuxiang Wei, Dongwei Ren, Dongsheng Jiang, Qi Tian, and Wangmeng Zuo. Improving image restoration through removing degradations in textual representations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2866–2878, 2024.
- [29] Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A. Theodorou, Weili Nie, and Anima Anandkumar. I2sb: Image-to-image schrödinger bridge. arxiv preprint arXiv:2302.05872, 2023.
- [30] Shunta Maeda. Unpaired image super-resolution using pseudo-supervision. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 291–300, 2020.
- [31] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3883–3891, 2017.
- [32] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired image-to-image translation. In European Conference on Computer Vision, pages 319–345. Springer, 2020.
- [33] Paolo Dai Pra. A stochastic control appraoch to reciprocal diffusion processes. Applied Mathematics and Optimization, 23(1):313–329, 1991.
- [34] Rui Qian, Robby T Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive generative adversarial network for raindrop removal from a single image. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2482–2491, 2018.
- [35] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer* vision and pattern recognition, pages 10684–10695, 2022.
- [36] Hamza Ruzayqat, Alexandros Beskos, Dan Crisan, Ajay Jasra, and Nikolas Kantas. Unbiased estimation using a class of diffusion processes. *Journal of Computational Physics*, 472:111643, 2023.
- [37] Erwin Schrödinger. Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique. Annales de l'institut Henri Poincaré, 2(4):269–310, 1932.
- [38] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning*, pages 2256–2265. pmlr, 2015.
- [39] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*, 2020.

- [40] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.
- [41] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for image-to-image translation. *arXiv preprint arXiv:2203.08382*, 2022.
- [42] James Thornton, Michael Hutchinson, Emile Mathieu, Valentin De Bortoli, Yee Whye Teh, and Arnaud Doucet. Riemannian diffusion schrödinger bridge. *arXiv preprint arXiv:2207.03024*, 2022.
- [43] Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic optimal transport. *arxiv preprint arXiv:2302.00482*, 2023.
- [44] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger bridges via maximum likelihood. *Entropy*, 23(9):1134, 2021.
- [45] Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via schrödinger bridge. In *International Conference on Machine Learning*, pages 10794–10804. PMLR, 2021.
- [46] Weilun Wang, Wengang Zhou, Jianmin Bao, Dong Chen, and Houqiang Li. Instance-wise hard negative example generation for contrastive learning in unpaired image-to-image translation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 14020–14029, 2021.
- [47] Zhongze Wang, Haitao Zhao, Jingchao Peng, Lujian Yao, and Kaijie Zhao. Odcr: Orthogonal decoupling contrastive regularization for unpaired image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 25479–25489, 2024.
- [48] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light enhancement. *arXiv preprint arXiv:1808.04560*, 2018.
- [49] Yuanbo Wen, Tao Gao, and Ting Chen. Neural schrödinger bridge for unpaired real-world image deraining. Information Sciences, 682:121199, 2024.
- [50] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with denoising diffusion GANs. arXiv preprint arXiv:2112.07804, 2021.
- [51] Shaoan Xie, Yanwu Xu, Mingming Gong, and Kun Zhang. Unpaired image-to-image translation with shortest path regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10177–10187, 2023.
- [52] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep joint rain detection and removal from a single image. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1357–1366, 2017.
- [53] Yang Yang, Chaoyue Wang, Risheng Liu, Lin Zhang, Xiaojie Guo, and Dacheng Tao. Self-augmented unpaired image dehazing via density and depth decomposition. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 2037–2046, 2022.
- [54] Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, and Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image restoration in the wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 25669–25680, 2024.
- [55] Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sampling. arXiv preprint arXiv:2111.15141, 2021.
- [56] Shiyu Zhao, Lin Zhang, Ying Shen, and Yicong Zhou. Refinednet: A weakly supervised refinement framework for single image dehazing. *IEEE Transactions on Image Processing*, 30:3391–3404, 2021.
- [57] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. The spatially-correlative loss for various image translation tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16407–16417, June 2021.
- [58] Dihan Zheng, Xiaowen Zhang, Kaisheng Ma, and Chenglong Bao. Learn from unpaired data for image restoration: A variational bayes approach. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5889–5903, 2022.
- [59] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference on computer* vision, pages 2223–2232, 2017.

A Technical Appendices and Supplementary Material

A.1 Tighter Generalization Error Bound

In this subsection, we provide a step-by-step deduction of the generalization error bounds for the proposed *Degradation-aware Dynamic Schrödinger Bridge (DDSB)*, and also demonstrate that it has a tighter generalization error bound than the Schrödinger Bridge (SB) baseline.

Definition 1. Generalization Error. The generalization error \mathcal{E}_{gen} quantifies the discrepancy between the predicted clean image \hat{x}_c and the true clean image x_c , defined as:

$$\mathcal{E}_{gen} = \mathbb{E}\left[\|\hat{x}_c - x_c\|^2\right],\tag{16}$$

where \hat{x}_c denotes the clean image generated by the model, and x_c denotes the true clean image.

Lemma 1. Optimal Transport Formulation. The problem of learning the optimal transport plan π^* between the degraded image distribution π_d and the clean image distribution π_c is formulated as:

$$\pi^* = \arg\min_{\pi \in \Pi(\pi_d, \pi_c)} \mathbb{E}_{(x_d, x_c) \sim \pi} \left[\|x_d - x_c\|^2 \right] - 2\tau \,\mathcal{H}(\pi), \tag{17}$$

where $\mathcal{H}(\pi)$ denotes the joint entropy of the transport plan π , and τ denotes the regularization hyperparameter.

Proof: Please refer to [13] for the detailed proof. Briefly, the objective is to minimize the discrepancy between π_d and π_c while regularizing the transport plan π by its entropy. This ensures that the transport process remains smooth and avoids overfitting. The entropy term $\mathcal{H}(\pi)$ penalizes complex transport plans, promoting a smoother and more generalizable solution.

Theorem 1. Tighter Generalization Error Bound of the Proposed DDSB. Compared to the Schrödinger Bridge baseline, the proposed Degradation-aware Dynamic Schrödinger Bridge (DDSB) has a tighter generalization error bound.

Proof: The generalization error is linked to the entropy regularization term $\mathcal{H}(\pi)$. The term $\frac{1}{N}$ reflects the error due to the finite number of transport steps, while the term τ controls the smoothness of the transport plan. As the number of transport steps increases, the transport plan approximates the true coupling between π_d and π_c , thus reducing the generalization error. Moreover, increasing τ reduces the impact of entropy regularization, helping to prevent overfitting and further improving generalization. To summarize, the generalization error for the entropy-regularized optimal transport formulation, i.e. Schrödinger Bridge baseline, is bounded as:

$$\mathcal{E}_{\text{gen}}^{\text{SB}} \le O\left(\frac{1}{N} + \tau\right),$$
 (18)

where N denotes the number of transport steps, and τ denotes the temperature hyperparameter.

The DDSB method incorporates the *degradation-aware term* λ , which helps the model remain consistent with the degradation process during the restoration. This term reduces error accumulation during the iterative restoration process and improves the generalization performance. The total generalization error is composed of three components: 1. The transport error $O\left(\frac{1}{N}\right)$, which decreases as the number of transport steps increases. 2. The entropy regularization error $O(\tau)$, which ensures smooth transport. 3. The degradation fidelity term $O(\lambda)$, which helps the restoration process respect the underlying degradation. Thus, the generalization error for DDSB is bounded as:

$$\mathcal{E}_{\text{gen}}^{\text{DDSB}} \le O\left(\frac{1}{N} + \tau + \lambda\right).$$
 (19)

Combining Eq. 18 and Eq. 19, we conclude that:

$$\mathcal{E}_{\text{gen}}^{\text{DDSB}} \le \mathcal{E}_{\text{gen}}^{\text{SB}} - O(\lambda),$$
 (20)

demonstrating that the inclusion of the degradation-aware term λ results in a tighter error bound for DDSB.

We conclude this subsection by the following remark. This theoretical analysis demonstrates that the proposed DDSB method provides superior generalization performance compared to the SB baseline.

A.2 Connection to Physical Model based Degradation

In this subsection, we provide a theoretical analysis of the *Degradation-aware Dynamic Schrödinger Bridge (DDSB)*, focusing on its connection to *degradation-aware* techniques and the integration of a *physical degradation model*. This analysis formalizes how the proposed method ensures realistic image restoration by incorporating the degradation process into the transport framework and learning to reverse it.

Degradation-aware Transport (DOT) and its Role. The core innovation in DDSB lies in the *Degradation-aware Optimal Transport (DOT)* term. Traditional Schrödinger Bridge (SB) methods focus on learning a transport plan between the degraded and clean image distributions, without considering the physical degradation process that generated the degraded image. DDSB, on the other hand, introduces a *degradation-aware component*, which ensures that the transport process respects the underlying degradation dynamics at every step.

Let π_d and π_c denote the degraded and clean image distributions, respectively. The objective in DDSB is to learn a transport plan π^* that minimizes the discrepancy between these distributions while respecting the degradation model. The optimal transport cost is modified to include the degradation-aware term:

$$c_{\text{DOT}}(x_d, x_c) = \|x_d - x_c\|^2 + \lambda \cdot \|D_{\phi}(x_c) - x_d\|^2,$$
 (21)

where x_d is a sample from the degraded image distribution π_d , x_c is a clean image sample, $D_{\phi}(x_c)$ denotes the degraded version of x_c predicted by the learned degradation model D_{ϕ} , and λ is a hyperparameter controlling the strength of the degradation fidelity term.

The term $\lambda \cdot \|D_{\phi}(x_c) - x_d\|^2$ enforces that the transport process not only minimizes the discrepancy between x_d and x_c , but also ensures that the restoration process is consistent with the learned degradation model D_{ϕ} . This degradation-aware term helps maintain physical realism during the restoration process and prevents the generation of unrealistic artifacts.

Physical Degradation Model D_{ϕ} **and its Role.** In real-world image restoration, the degradation process is typically complex, involving factors such as noise, blur, and distortion. In many cases, it is impractical to assume a simple degradation model (such as Gaussian noise). Therefore, DDSB uses a *learnable degradation model* D_{ϕ} , which is trained to simulate various degradation processes, such as motion blur, fog, and noise. The model D_{ϕ} learns to predict the degradation process for a given clean image, providing a more accurate representation of real-world degradation dynamics.

The degradation model D_{ϕ} is integrated into the transport process by penalizing discrepancies between the degraded version of the predicted clean image and the degraded input image. Specifically, at each transport step, we introduce a degradation consistency term that ensures the restored image x_c remains aligned with the degradation process at each intermediate step. This term is added to the transport cost as follows:

$$\mathcal{L}_{DOT} = \mathbb{E}_{q_{\theta}(\boldsymbol{x}_d)} \left[\|\boldsymbol{x}_d - \boldsymbol{x}_c(\boldsymbol{x}_d)\|^2 + \lambda \|D_{\phi}(\boldsymbol{x}_c(\boldsymbol{x}_d)) - \boldsymbol{x}_d\|^2 \right], \tag{22}$$

where x_d is a degraded sample, $x_c(x_d)$ denotes the predicted clean image at a given transport step, and $D_{\phi}(x_c(x_d))$ denotes the degraded version of $x_c(x_d)$ predicted by the degradation model D_{ϕ} .

This ensures that each intermediate image in the restoration trajectory follows the degradation process as closely as possible, improving the physical realism of the restoration.

Degradation Amplification for Realism. In this approach, the degradation model D_{ϕ} is not only used to predict the degradation but is also employed to *amplify the degradation* at each step. This means that the model simulates the inverse of the restoration process by artificially degrading the predicted clean image, making the difference between the degraded image x_d and the predicted clean image more pronounced. This helps in preventing the model from generating unrealistic images that would not correspond to any physical degradation.

Formally, the degradation model D_{ϕ} is learned to *amplify* the degradation, i.e., simulate the inverse process of restoration. The objective is to penalize large deviations between the degraded input x_d and the predicted clean image x_c by introducing a degradation consistency term, as described in the DOT loss:

$$||D_{\phi}(\boldsymbol{x}_c) - \boldsymbol{x}_d||^2, \tag{23}$$

which ensures that the model's restoration trajectory remains consistent with the degradation process, leading to more realistic results.

Integrating the Degradation Model into the Transport Process. The key idea behind DDSB is to integrate the *degradation model* D_{ϕ} into the *optimal transport* framework. The method learns a transport plan π^* that minimizes the distance between the degraded and clean images while ensuring that intermediate steps in the restoration process respect the physical degradation dynamics. This is achieved by adding the degradation-aware term to the transport cost.

At each step of the restoration, we aim to *align the transport plan with the degradation process*. The total loss for DDSB can be expressed as the sum of the standard SB loss and the degradation-aware term:

$$\mathcal{L}_{\text{DDSB}} = \mathcal{L}_{\text{SB}} + \mathcal{L}_{\text{DOT}}, \tag{24}$$

where \mathcal{L}_{SB} denotes the standard Schrödinger Bridge loss (transport loss). In addition, \mathcal{L}_{DOT} denotes the degradation-aware optimal transport loss, which ensures that the restoration process respects the degradation model D_{ϕ} .

This dual loss function encourages the model to minimize the transport cost while ensuring that the restored images are consistent with the degradation process, leading to more realistic and physically plausible restoration results.

We conclude this subsection by the following remark. The introduction of the degradation-aware term λ in the DOT loss improves the generalization of the restoration model. By enforcing consistency with the degradation process, DDSB ensures that the model can generalize well to unseen degradation types. This also reduces the risk of generating unrealistic artifacts, which is a common problem in unpaired image restoration tasks.

The Degradation-aware Dynamic Schrödinger Bridge (DDSB) method introduces a novel integration of degradation-aware optimal transport and a physical degradation model. By incorporating the degradation model D_{ϕ} into the transport process, DDSB ensures that the restoration trajectory remains consistent with the physical degradation process, improving the realism of the restored images. This is achieved by penalizing discrepancies between the degraded input and the predicted clean images, leading to a more physically plausible restoration process that reduces artifacts and improves generalization to unseen degradation types.

This theoretical analysis, along with the introduced degradation-aware and dynamic transport components, lays the foundation for DDSB's superior performance in unpaired image restoration, addressing the key challenges of realism and generalization.

B More Visual Results

B.1 On Multi-Task Image Restoration

More visual results of multi-task image restoration are provided in Fig. 5 and Fig. 6.

B.2 On Generalized Haze Removal

More visual results of generalized haze removal are provided in Fig. 7 and Fig. 8.

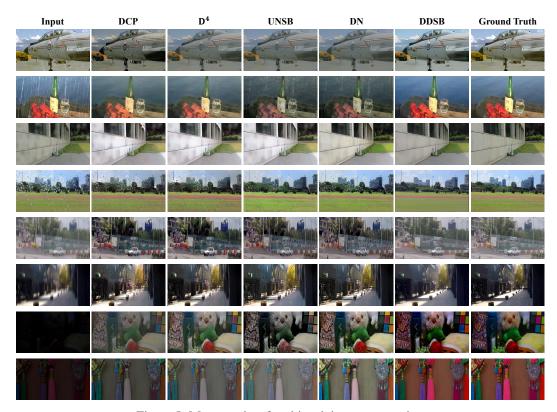


Figure 5: More results of multi-task image restoration

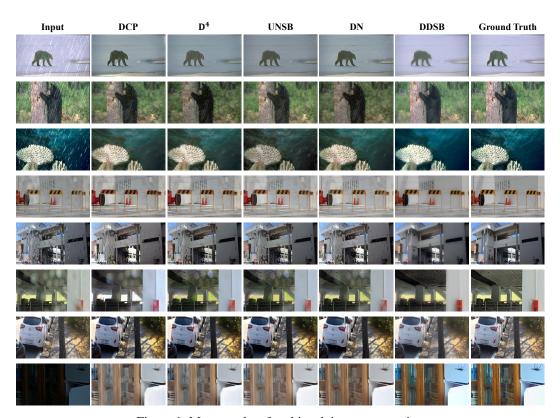


Figure 6: More results of multi-task image restoration

Figure 7: More results of generalized haze removal

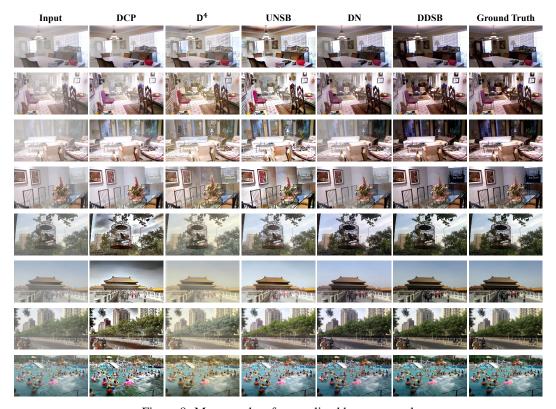


Figure 8: More results of generalized haze removal

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction covers the theoretical and technical contribution, the developed method and the experimental contribution.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: At the end of the conclusion section, a limitation discussion is provided.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, the assumptions are given in the form of Lema in the Prelimaries section. A complete proof is given in the Supplementary material.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the baseline model, technical details, hyper-parameter and configuration are detailed in the submission for reproducibility.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The datasets this paper uses are publicly available, and the source code is promised to be public once published.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The implementation details are given at the end of the methodology section and the beginning of the experimental section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No

Justification: Following prior works in this field, the evaluation protocols on the corresponding datasets do NOT require a report of the error bar.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The hardware, especially the GPU requirement, is limited in the subsection of implementation details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper focuses on a fundamental task of machine learning and conducts experiments on publicly available datasets.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impact of this work has been discussed at the end of the conclusion section. We do not envision negative societal impact could be brought by this work.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This work focuses on a fundamental problem in machine learning and conducts experiments on standard datasets. We do not envision such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Yes, all the assets have been properly cited, with a license to use for academia and no commercial purpose.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Guidelines:

Justification: This paper does not involve crowdsourcing nor research with human subjects.

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research of this paper does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.