
Under review as a conference paper at ICLR 2023

CAMA: A NEW FRAMEWORK FOR SAFE MULTI-
AGENT REINFORCEMENT LEARNING USING CON-
STRAINT AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

With the widespread application of multi-agent reinforcement learning (MARL)
in real-life settings, the ability to meet safety constraints has become an urgent
problem to solve. For example, it is necessary to avoid collisions to reach a com-
mon goal in controlling multiple drones. We address this problem by introducing
the Constraint Augmented Multi-Agent framework — CAMA. CAMA can serve
as a plug-and-play module to the popular MARL algorithms, including centralized
training, decentralized execution and independent learning frameworks. In our ap-
proach, we represent the safety constraint as the sum of discounted safety costs
bounded by the predefined value, which we call the safety budget. Experiments
demonstrate that CAMA can converge quickly to a high degree of constraint sat-
isfaction and surpasses other state-of-the-art safety counterpart algorithms in both
cooperative and competitive settings.

1 INTRODUCTION

Multi-agent problems are ubiquitous in real world, such as robotics (Al-Abbasi et al., 2019; Mguni
et al., 2021), transportation systems (Zhou et al., 2020; Chu et al., 2019), network optimization
(Wang et al., 2020; Wai et al., 2018), and multi-player video games (Du et al., 2019; Samvelyan
et al., 2019; Han et al., 2019; Peng et al., 2017). A modern approach to solving these decision-
making problems is multi-agent reinforcement learning (MARL), which tackles these problems us-
ing only interactions with the environment. There are many different frameworks within MARL
such as fully centralized Berner et al. (2019); Sukhbaatar & Fergus (2016), independent learning
(IL) de Witt et al. (2020); Zhang et al. (2018) and a hybrid framework which is the centralized train-
ing and decentralized execution (CTDE) (Foerster et al., 2018; Lowe et al., 2017; Yang et al., 2018).
However, within the deployment of MARL, safety is still a crucial problem, which has not been
fully solved yet.

In recent years, several works have incorporated safety constraints into RL training, such as opti-
mizing policy under constraints (Di Castro et al., 2012; Tessler et al., 2018; Achiam et al., 2017;
Chow et al., 2018), adding safety layers (Dalal et al., 2018), or constructing verifiable safe explo-
ration (Anderson et al., 2020), etc. In the context of safe MARL, recent papers extend constrained
policy optimization (Achiam et al., 2017) to multi-agent domain (Gu et al., 2021) as a model-free
safe MARL algorithms. But there are still challenges with low reward performance compare to the
non-safe MARL algorithms. There are also some works performed constrained policy optimization
by transforming it into a min-max game (Lu et al., 2021; Liu et al., 2021). However, which limited
by the specific framework, it cannot generalize to other framework such as solving the competi-
tive game. Therefore, a more general safe MARL framework with high reward performance is still
lacking at this stage.

To fill this gap, in this paper we propose a general module that can be incorporated into differ-
ent MARL algorithms. The proposed Constraint Augmented Multi-Agent framework, coined as
CAMA, is a plug-and-play method to improve cutting-edge non-safe MARL algorithms satisfying
the adding constraints. Furthermore, CAMA aims to address both cooperation and competitive set-
ting under CTDE and IL frameworks. In our algorithm, we represent the safety constraint as the
sum of discounted safety costs bounded by a pre-defined scalar, which we call the safety budget.

1

Under review as a conference paper at ICLR 2023

The main idea of this approach is the introduction of the hazard value, which tracks the accumulated
costs and represents the remaining safety budget. When the hazard value falls below zero, CAMA
assigns a low negative reward to the agents, incentivizing them to learn a safe policy. The implemen-
tation of CAMA can be seen as a direct modification of the environment and indirectly influencing
the algorithm by constraints augmentation so that there is no need for any new algorithm-based
assumptions.

In summary, our contributions are three-fold. Firstly, CAMA is a flexible framework with a plug-
and-play feature, which can be combined with many existing MARL algorithms. Secondly, CAMA
can work in both CTDE and IL settings, including cooperative and competitive multi-agent games.
Lastly, we evaluate CAMA on a series of multi-agent control tasks in SMAMujoco (Gu et al., 2021)
and Gym Compete (Bansal et al., 2017). Empirical results demonstrate the effectiveness of our
solutions both in terms of constraint satisfaction and reward maximisation compared to their state-
of-the-art counterparts.

2 RELATED WORK.

In the following, we review the related works on general MARL, MARL with constraint and state
augmentation method.

Existing MARL algorithms are often developed under the paradigm of CTDE and IL (Oroo-
jlooyJadid & Hajinezhad, 2021): CTDE is a commonly used learning framework, which updates
decentralized policies by using the centralized critic architecture (Du et al., 2019; Gu et al., 2021).
In CTDE, the joint critic network is based on the all agents’ states and actions, and thus generally
handles the joint team reward scenarios (Kuba et al., 2022; Yu et al., 2021). Conversely, if the
setting is a competitive game or only focus on the individual reward, then IL is another MARL
paradigm to be based on. The earliest discussions of IL in a multi-agent-based environment can
be traced back to (Tan, 1993). It subsequently evolved into the IL algorithm using neural networks
as function approximators (Foerster et al., 2018; Rashid et al., 2020). Some recent attempts, like
de Witt et al. (2020) extend single agent proximal policy optimization algorithms (Schulman et al.,
2017) into the multi-agent IL setting.

Although MARL has received significant attention in recent years, there are still many unresolved
safety related challenges (Gu et al., 2022), such as the multiple constraints setting, low algorithm
efficiency problem etc. There are generally several ways to solve additional safe constraints. Recent
attempts such as MACPO, MAPPO-L(Gu et al., 2021) proposed to fill such a gap as the first safe
model-free MARL algorithms, which are extensions of CPO (Achiam et al., 2017) and HATRPO
(Kuba et al., 2022), respectively. However, neither MACPO nor MAPPO-L is guaranteed to be
applied in competitive games, which resulting in limited scalability. Another research direction is
based on the parameters-sharing hypothesis. For example, the CMIX (Liu et al., 2021) can combine
multi-objective programming and the Q-mix framework to solve the constraint MARL problem.
However, in CMIX, different Q-function approximators are required for each constraint and each
agent, which leads to scalability and efficiency challenges. Another parameters-sharing based ap-
proach, Safe Dec-PG (Lu et al., 2021) aims to stratify the constraint by passing the parameters
through a predefined communication network. Instead, our framework requires no communica-
tion during policy execution. Another route to avoid unsafe action is to use shielding and barrier
functions, such as ElSayed-Aly et al. (2021); Cai et al. (2021). However, those approaches require
pre-training or strong prior knowledge to create the shields for filtering actions. Moreover, they
cannot generalize to new scenarios where safety shield is not known. In contrast, CAMA is more
flexible when dealing with new constrained environments. We test different types of tasks with
varying agents without designing or pre-train a particular shielding function for each task.

The state augmentation method extend the specific state to an environment, in order to enhance
policy performance or satisfy certain constraints (Calvo-Fullana et al., 2021). Recent works like
(Qiu et al., 2021) augmented the CVaR to measure over the learned distributions of individuals’
Q values, Chen et al. (2020) and Foerster et al. (2017) augmented delay awareness and experience
replay, respectively. The idea of enhancing safety-related variables has been considered in the past,
e.g., in classical control methods (Daryin & Kurzhanski, 2005) and in single-agent safe RL (Sootla
et al., 2022a;b; Chow et al., 2017). We apply it in a multi-agent framework, but multiple constraints
and multiple policy settings hinder the direct extension. Some works, such as (Chen et al., 2020;

2

Under review as a conference paper at ICLR 2023

Foerster et al., 2017), also apply augmentation methods to MARL problems, but we are the first to
augment the constraint to solve the safe MARL problem.

3 PRELIMINARIES

Constrained Multi-agent MDP (CMMDP) A CMMDP (Boutilier, 1996) extends CMDP (Ma
et al., 1986) by adding a factored action space, which can be defined by a tuple M =〈
N ,S,A,P, γr, γc, ρ

0,R, C,B
〉
. Here, N = {1, . . . , n} is the set of agents, S denotes the state

space, and A =
∏n

i=1 A
i the joint action space, P (s′ | s, a) : S×A×S → [0, 1] is the probabilistic

transition function. γr, γc ∈ (0, 1) are the discount factor for reward and cost. R(s,a) : S×A → R
is the reward function of state s and joint action a, C =

{
Ci

j

}i∈n

1≤j≤mi is set of safety costs, where

Ci
j is the jth element of the total mi constraints, Ci

j : S × Ai → R. B =
{
bij
}i∈N
1≤j≤mi is the set of

corresponding safety budgets, the maximum value of agents can be violated, ρ0 is the initial state dis-
tribution. Denote agent i’s policy as πi : S×Ai → [0, 1], π = {πi}ni=1. CMMDP aims to find a op-
timal joint policy π∗ that maximizes the joint reward JR(π) ≜ Es0,a0,... [

∑∞
t=0 γ

t
rR (st,at)] while

satisfying the safety constraints JL(π, i, j) ≜ E
[∑∞

t=0 γ
t
cC

i
(
st,a

i
t

)]
≤ bi, where Ci =

∑
j C

i
j ,

s0 ∼ ρ0,ai
t ∼ πi (· | st) , st+1 ∼ P (· | st,at) for all i ∈ N .

Two commonly used architectures are Centralized Training with Decentralized Execution
(CTDE) and Independent Learning (IL). CTDE update independent policies by maximizing the
expected team reward JR using the policy gradient. IL decomposes an n-agent MARL problem
into n decentralized single-agent problems, and ignores other agents by treating them as part of the
environment. The policy update is conditioned on the local observations or global state and actions
πi : si×ai → R, then received the local reward and cost. CTDE is widely used in cooperative tasks
with a shared team reward, and IL can work in both cooperative and competitive settings.

Constraints State Augmentation. State augmentation eliminates safety constraints by incorporat-
ing them into the state space (Chow et al., 2017; Sootla et al., 2022a). Defining zt as a scaled version
of the remaining safety budget b, where zt can be calculate as zt+1 = (zt − c (st,at)) /γc, z0 = b.
Using this new variable, they reshape the reward by

R̃(st, zt, at) =

{
R(st, at) zt ≥ 0

k zt < 0
(1)

where k<0 is an unsafe reward. Using these simple modifications, Sootla et al. (2022a) showed that
an algorithm solving this problem actually solves a safe RL with probability one constraints under
certain conditions.

4 METHODOLOGY

In this section, we first define the basic definition of CAMA-MDP and list the basic assumptions and
propositions required. After that, we introduce the specific derivation process of CAMA under the
CTDE and IL paradigms in subsections 4.2 and 4.3. Finally, we made an algorithm to summarize
the workflow of CAMA.

4.1 THE DEFINITION OF CAMA

We formalize our approach by considering the following definition,

Definition 1 . Given a CMMDP, we define a Constraint Augmented Multi-Agent Markov Decision
Process (CAMA-MDP) as a tuple: M̃ =

〈
N , S̃,A, P̃, γr, γc, R̃, C,B

〉
, where S̃ = S × ht is the

constraint augmented state space, ht = {hi
t}ni=1 denotes the set of hazard value, P̃ : S̃×A×S̃ → R.

Let R̃ = 1
n

∑n
i=1 R̃i denotes reward function, where R̃i = S̃ ×A → [0,+∞) is the ith element of

R defined in the tuple.

To guarantee the optimal policy of CAMA-MDP exists and is also the same as CMMDP’s π∗, we
can adapt the theoretical results: Assumption.A1-A3 from Sootla et al. (2022a) in a straightforward

3

Under review as a conference paper at ICLR 2023

manner for CAMA IL frameworks. But in the CTDE setting, we still need the following regularity
assumption, in particular, to guarantee that the policy set is closed and bounded:

Assumption 1 There exists θ ∈ R, such that 0 < θ ≪ 1, and for every agent i ∈ N , the policy
space Πi is θ-soft, which means for every πi ∈ Πi, s ∈ S, and ai ∈ Ai, we have πi

(
ai | s

)
≥ θ.

This assumption has been discussed in Lemma 3 (Kuba et al., 2022). For more details, we provided
the theoretical analysis in Appendix A.

4.2 CAMA IN CTDE

Let us firstly consider a CMMDP problem with multi-constraints and joint reward. Since the
JC(π, i, j) always greater than 0, which can be equivalent to enforcing the finite number of the
following constrains:

t∑
k=0

γk
cC

i
j (sk,ak) ≤ bij ,∀t ≥ 0, (2)

Therefore, when an agent violates the limit at a specific moment tv , it will be in a hazard zone
for a series of subsequent time points t ≥ tv , which allows us to incorporate constraints into the
instantaneous time as the safe cost, taking safety into account when solving the task. In the multi-
agent case, defining the hazard value is slightly more complicated due to the number of constraints.
We introduce a hazard value for each constraint and each agent as follows,

hi
j,t =

(
bij −

t∑
k=0

γk
cC

i
j

(
sk, a

i
k

))
/γt

c. (3)

For simplicity, we will use the notation hi
t for the vector

(
hi
0,t · · · hi

mi,t

)
and ht for the vector(

h0
t · · · hn

t

)
. This shows that the remaining safety budget and it can easily be tracked in order

to assess the constraint satisfaction. Similarly, to the single agent case the recursive update is
hi
j,t+1 =

(
hi
j,t − Ci

j (st,at)
)
/γc. (4)

Then, during the policy training, we can reshape the reward by using the vector of hazard values ht:

R̃(s̃t,at) =

{
R(st,at) ∀i : minj h

i
j,t ≥ 0

k ∃i : minj h
i
j,t < 0.

(5)

In the CTDE setting, according to equation 5, the algorithms will firstly find the minimum hazard
value for each agent in the multiple constraints hazard vector minj h

i
j,t. Then, suppose there ex-

ists one hazard value less than 0. In that case, this agent’s trajectory already violates the adding
constraints, so all agents will get an unsafe reward k to avoid the same unsafe situation in the next
time-step. Finally, we can formalise the problem to

max
π

Ĵ ≜ J̃R(π) ≜ Es̃0,a0,...

[∞∑
t=0

γt
rR̃(s̃t,at)

]
,

s.t. s̃t = st × hi
j,t, s0 ∼ ρ0(s0),h

i
j,0 = bij , a

i
t ∼ πi(· | s̃t),

s̃t+1 ∼ P̃
(
· | s̃t, a1t , . . . , ant

)
,hi

j,t+1 =

hi
j,t −

mi∑
j=1

Ci
j

(
st, a

i
t

) /γc.

(6)

Note that the hazard values can be considered part of the transition dynamics, so that it can stay the
Markov feature. Further, the overall problem is the standard CTDE formulation, which enables the
plug-and-play feature.

4.3 CAMA IN IL

The CAMA in IL has the same process to calculate the hazard value vector, following equation 3
and updating the rule by equation 4. However, each agent can only observe its hazard value vector.
Therefore, we reshaped the individual reward functions as follows,

r̃it = R̃n(s̃
i
t, a

i
t) =

{
Ri(sit, a

i
t) minj h

i
j,t ≥ 0

k minj h
i
j,t < 0.

(7)

4

Under review as a conference paper at ICLR 2023

Where for CAMA in the IL setting, considering each agent has its local critic and actor, and the
reshaped reward function is the part that each agent interacts with the environment. Note that the
reward is replaced by the negative number k when this agent’s minimum local hazard value is less
than 0. The benefit is that it follows the original intention of the IL setting, which is to treat the
surrounding agents as environment so that neighbors’ violations do not affect their rewards.

Algorithm 1: Constraint Augmented Multi-Agent Reinforcement Learning (CAMA)
1: for Nepisodes do
2: Initialize the scenario and the agent
3: Reset state s0, Initialize a random process P0 for action exploration
4: for t = 0, 1, . . . do
5: for each agent do
6: Select the action ai under the current policy πi and its exploration.
7: Store those in the buffer.
8: end for
9: Executes the actions a and calculate the new state s′

10: Sample the hazard value vector ht and augmented into the state st // Eq 4
11: Get the new reshaped Reward R̃(s̃t,at) // Choose Eq 5 or 7 depending on the game

setting.
12: Updating policies π, to maximise JR(π) through the MARL algorithm //Eq 6
13: end for
14: end for

Therefore, we can present CAMA’s framework and internal logic through the algorithms.1. For both
CTDE and IL settings, CAMA will follow the general update process in steps 1-9 until all agents’
following actions and their ground truth rewards are obtained. Then, in steps 10 to 12, the hazard
values and reshaped rewards are updated according to the two settings discussed above. In the end,
update the policy by using new reshaped reward and augmented hazard value to state to wait next
time-steps training. This flexible framework enables CAMA to improve the safety without changing
the combined algorithm.

5 EXPERIMENTAL RESULTS

We compare CAMA with the Safety MAMujoco baseline (Gu et al., 2021) and the GymCompete
baseline (Bansal et al., 2017). We also provide ablation studies on unsafe reward and safety budget
components.

General Implementation. To use the CAMA framework, we only need to calculate the hazard
value, reshape the rewards, and augment them into their trajectory. Thus, there is no need to modify
the non-safe MARL algorithm itself. During the training, the reset and step function will augment
the hazard value and reshape the new cost function according to equation.5. We combine the CAMA
with HAPPO (Kuba et al., 2022), MAPPO (Yu et al., 2021) and IPPO (de Witt et al., 2020) to create
CAMA-HAPPO, and CAMA-MAPPO for CTDE setting and CAMA-IPPO for IL setting. For the
baseline comparisons, we compare our method with the MACPO, MAPPO-Lagrange (Gu et al.,
2021), and those originally non-safe algorithms itself. We used the hyperparameters that reported
the best performance of the baseline algorithms. More details of the hyperparameters setting can be
found in Appendix E.

5.1 CTDE EXPERIMENT

In this subsection, we mainly introduce the performance of CAMA in the cooperative MARL game.
In cooperative tasks, different agents will share a common goal and maximize team reward.

Joint Reward Environments setup. We demonstrate the benefit and limitations of our method on
SMAMuJoCo (Gu et al., 2021), which is a safety-aware extension of Mujoco (Todorov et al., 2012)
designed for safe MARL research. The main three scenarios we used are Ants, Half-Cheetahs, and
ManyAnt (schematically depicted in Figure.1). The number behind the robot name is the number of
agents and the parts each agent controls, like Ant 2x4, which means there are two agents and control
two neighbour legs together (each lag has two parts), and Ant 2x4d indicate the diagonal two legs

5

Under review as a conference paper at ICLR 2023

(a) Ant 2x4 (b) ManyAnt 2x3 (c) Half-Cheetah (d) Ant & ManyAnt Game (e) Half Cheetah Game

Figure 1: Cooperate Scenarios: Panels a to c: The view of robots. Multi-agents control the body by
different colour parts. Panels d: The Ant and ManyAnt scenario with overthrow-able walls, Panels
e: The Half Cheetah scenario with a moving heading obstacle and overthrow-able walls.

control by two agents. All the task aims to let agents jointly learn the manipulation of the robot
while avoiding crashing dark red walls into an unsafe area.

For the environment costs design, we follow the previous work by (Gu et al., 2021) , more details
listed in Appendix B, every agent will receive cost from the environment, and we calculate the
average and maximum for performance comparisons. We all run in 5 different seeds for all following
experiments and evaluate the result using the saved intermediate policies for every agent. Please
note that, in each episode, for each agent, the system will present two types of rewards. One is
true reward rt based on the original task reward, we sum all agents’ true reward as the team reward
(titled Average Episode Cost in the figure). The other one is reshaped reward r̃t based on hazard
value hi

j,t, the policy receives this as a feedback from the environment for training.

In addition, two main hyper-parameters can be tuned in CAMA: the safety budget b and unsafe
reward k. In order to have a fair comparison, we set the safety budget equal 50 and the unsafe
reward to equal to kt = −R(st, at) for all tasks, for more setting discussion and its ablation test
follow in sec.5.3.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
500

1000
1500
2000
2500
3000
3500

An
t 2

x4

Average Episode Reward

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

50

100

150

200

250

300
Average Episode Cost

HAPPO MAPPO MACPO MAPPO-Lagrange CAMA-HAPPO (ours) CAMA-MAPPO (ours)

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
100
200
300
400
500
600
700
800

Max Episode Cost
Safety budget = 50

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

1000

2000

3000

4000

Ha
lfC

he
et

ah
 3

x2

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
100
200
300
400
500
600

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

200

400

600

800

0.0 0.2 0.4 0.6 0.8 1.0
1e7

500
0

500
1000
1500
2000
2500

M
an

yA
nt

 2
x3

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0
100
200
300
400
500
600
700

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

200

400

600

800

Figure 2: CAMA in SMAMuJoCo with joint reward. Performance comparisons between CAMA-
MAPPO, CAMA-HAPPO with their rivals in the CTDE settings. Our approach converges average
and max costs to a priori safety budgets. Easily enable non-safe MARL algorithms that meet con-
straints.

6

Under review as a conference paper at ICLR 2023

Main Result in CTDE. Figure 2 demonstrate the performance comparisons in the CTDE setting,
including tasks of Ant 2x4d, Half-Cheetah 3x2, ManyAnt 2x3 in terms of Average Episode Reward,
Average Episode Cost and Max Episode Cost. The dotted line are the safety budget set to 50 for
all tasks. In terms of cost, compared to the original non-safe algorithms MAPPO and HAPPO,
the CAMA version ensures that the average cost stays close to zero and the Max cost converges to
the safety budget. Regarding reward, the CAMA-HAPPO consistently outperforms MACPO and
MAPPO-L but performs its original non-safe algorithm. The CAMA-MAPPO can hold similar
performance compared to MACPO but lower than MAPPO and MAPPO-Lagrange. The figures
show that our approach significantly improved the safety of the algorithm with only a slight reduction
in the efficiency of the reward.

5.2 IL EXPERIMENT

To demonstrate the plug-and-play nature of CAMA, and its generality, we also test its performance
in both cooperative and competitive IL games.

(a) Sumo-Human (b) Sumo-Ant

Figure 3: Gym Compete Sumo Scenarios: Agents
compete in a circular arena, each with the goal of
knocking another agent to the ground or pushing
them out of the ring.

Sum Independent Reward Environments
setup. (Cooperative) The setting of the en-
vironment is similar to SMAMuJoCo CTDE.
Each agent has an independent policy (rather
than each part of the robot), but updating the
policy refers to its local state and reward. To
better show the whole system’s performance,
we will calculate the sum of the independent re-
wards and costs by each agent. Note that those
measure values are only used for analysis.

Zero-sum Game Environments setup. (Com-
petitive)We involve the CAMA in Gym Com-
pete (Bansal et al., 2017) to demonstrate per-

formance in a competitive setting. The tested scene is shown in Figure 3, which called Sumo. We
mainly tested two different robots, namely Ant and Humans, and each color represents an agent
(Note that, unlike SMAMuJoCo, the robot is no longer divided into multiple parts). The Sumo-
Human environment will be more difficult than the Sumo-Ant, since the initial state dimensions of
the two robots are different (DHuman = 24;DAnt = 15), please refer to Appendix C for details.

In a sumo competition, each player must stay on the field within 5m. And try to push your opponent
out of bounds as much as possible to win. For each agent, the closer the edge, the more dangerous it
is. Therefore, CAMA can convert "not falling" into a condition that needs to be met. The direct idea
is to use the distance from the agent to the center as a reference. We set the safe radius to 2.5m and
the safety budget to 1.0. The environment will give the agent a 0.1 cost when out of range. Similar to
the previous implementation, we use five random seeds for testing and calculate the average winning
rate and episode cost for analysing

Main Result in IL. Figure 4 demonstrates the results for the cooperative IL setting, which includes
Ant 2x4d, and Half-Cheetah 3x2 tasks. In terms of cost, compared to the original IPPO, the CAMA-
IPPO ensures that the average cost stays close to zero, and the Max cost converges to the safety
budget in both tasks. In terms of reward, CAMA-IPPO not only have a similar performance to
IPPO in half- cheetah, but it also outperformed in the ant task. The reason probably stems from the
reward setting of the environment, as the reward includes a portion of the cost penalty, leading to a
relatively higher reward for the safe algorithm. All in all, the figures show that our approach results
in a significant improvement in constraint satisfaction and limited enhancements in rewards.

Figure 5 shows the CAMA player verse the original IPPO player in the competitive IL game. In
sumo-ant, CAMA can significantly improve the win rate while converging to the lower cost. We
also found that CAMA tends to be a counter-attack player, which tries to attack the opponent while
ensuring itself in a safe area. We speculate that CAMA will choose to avoid the attack due to
the heavier penalties for violating the safety constraints in the later stage. On the contrary, the
original IPPO attacked desperately and easily rushed to the edge. In the more challenging scenario
sumo-human, we found that although CAMA will still be a low win rate at the beginning, it will
eventually tend to converge to a state of equilibrium (the winning rate of both sides tends to be

7

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
1e7

250
500
750

1000
1250
1500
1750
2000

An
t 2

x4

Average Episode Reward

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
50

100
150
200
250
300
350

Average Episode Cost
IPPO CAMA-IPPO (ours)

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
100
200
300
400
500
600
700
800

Max Episode Cost
Safety budget = 50

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

500

1000

1500

2000

2500

Ha
lfC

he
et

ah
 3

x2

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

100

200

300

400

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

200

400

600

800

Figure 4: CAMA in SMAMuJoCo with independent reward. Performance comparisons between
CAMA-IPPO and IPPO in the IL settings. With the benefit of satisfying the constraints, it has been
possible to exceed the performance of IPPO in the both scenario.

50%). According to the cost figure, in higher dimensional and more complex situations, CAMA
is hard to learn attack strategies and instead aims to avoid attack and stalemate with the opponent.
This strategy is reminiscent of the attack strategy proposed by Gleave et al. (2019) in performance.
Nonetheless, there is an essential difference between the two: CAMA players are defences chosen
under the premise of satisfying constraints and still have the possibility of anti-policy learning. At
the same time, adversarial strategies change the victim through the natural behaviour of the attacker
state. Interestingly, the two perform similarly, and it may be a potential research direction to guide
the agent to learn aggressive strategies by adjusting constraints.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
m

o
An

t

Win Rate
IPPO
CAMA-IPPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Average Episode Cost

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
m

o
Hu

m
an

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

0

1

2

3

4

5

Figure 5: CAMA in GymCompete with independent reward. Performance comparisons for
CAMA-IPPO verse IPPO in a competitive game. In both sumo-ant and sumo-human, CAMA based
IPPO have higher win rate and lower average cost.

8

Under review as a conference paper at ICLR 2023

5.3 ABLATION STUDIES

The Dynamic Unsafe Reward in CTDE. In order to facilitate the calculation, the unsafe reward is
usually defined as a very large negative number, which is feasible in the IL setting. However, in the
CTDE environment, substantial unsafe rewards will lead to the problem of low learning efficiency
and non-convergence, and we discuss the reasons in detail in Appendix D. Intuitively, in the setting
of CTDE, all other agents are severely penalized for a violation by one agent,which affects the policy
exploration of the safe agent. Therefore, we changed the unsafe reward from fixed to dynamic.
We let the unsafety reward become proportional to the getting reward at the time step, as kt =
−R(st,at). After testing, we found that when one or more agents violate the constraints in multi-
agent to some extent, this dynamic unsafe reward can reduce the impact on the rewards of other
agents. Therefore, we do not need to tune this as a hyper-parameter anymore.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
500

1000
1500
2000
2500
3000
3500
4000

An
t 2

x4

Average Episode Reward
5
15
50
75
150
300
500

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

50

100

150

200

250 Average Episode Cost

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

100

200

300

400

500 Max Episode Cost
Safety Budget = 50

Figure 6: Ablation Result in Safety Budget , unsafe reward kt = −R(st, at)

Safety Budget. As the initial value of the h, we can generalize the different budgets before or after
the training process. We progressively selected seven different budgets in the Ant2x4 joint reward
game, ranging from very low initial constraints "5" to almost no constraints at the beginning "500".
The results are shown in Figure 6, and the final convergence details can be found in Appendix D
table 1. It can be found that under the same setting of the unsafe reward −R(st, at), all algorithms
have high efficiency in average team reward, and the maximum cost can almost satisfy the constraints
in the end. We set the safety budget as 50 in all SMAMuJoco experiments and 1.0 in all Gym
Compete Sumo experiments, and other details of the settings can be viewed in appendix E.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

500

1000

1500

2000

2500

3000

3500

Reward
HAPPO
NO_CA
NO_RS
CAMA-HAPPO (ours)

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

50

100

150

200

250

Average Episode Cost

Figure 7: The ablation on CAMA components in
joint reward Ant2x4d scenario.“No CA” stands
for without constraint augmentation, “No RS”
stands for without reward reshaping.

Ablation on CAMA components. Figure.7
demonstrates the performance after removing
two critical components in CAMA. Removing
constraint enhancement leads to lower learn-
ing efficiency but still keeps the safety con-
straints satisfied. It appears that the constraints
and its budget value still be involved during re-
ward calculation, thus being forced to converge
to the conservative policy. Conversely, remov-
ing reward reshaping has better rewards but no
longer satisfies the constraints. While in con-
trast, the cost is still lower than the original al-
gorithm, which is related to the augmentation
of the hazard value. Overall, this experiment
demonstrates that these two components play a
crucial role in CAMA.

6 CONCLUSION

This work proposed CAMA, which is a plug-and-play framework of Safe MARL using constraint
augmentation. The proposed framework improve safety of existing multi-agent learning algorithms
without pre-training and complex implementations. Furthermore, our framework is compatible with
different MARL settings and interface seamlessly with both cooperative and competitive settings.
Empirical results on cooperative and competitive tasks demonstrate the superiority of the CAMA-
based algorithms in improving safety and maintaining the same level of reward performance.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The details of the experiment settings are provided in Section 5.1 and 5.2. The hyparameter for
the proposed algorithm and baselines are in Appendix E. The pseuco code is summarized in Algo-
rithm 1. The ablation test detail are provided in Section 5.3 and Appendix D. We provide detailed
proof of theoretical analysis in Appendix A. A more detailed description and implementation setting
can be found in Appendix B for SMAMujoco and Appendix C for Gym Compete.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning (ICML 2017), pp. 22–31. PMLR, 2017.

Abubakr O. Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal. DeepPool: Distributed Model-Free Al-
gorithm for Ride-Sharing Using Deep Reinforcement Learning. IEEE Transactions on Intelligent
Transportation Systems, pp. pages 4714–4727, 2019.

Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosymbolic reinforcement
learning with formally verified exploration. Advances in neural information processing systems
(NeurIPS 2020), volume 33:6172–6183, 2020.

Aristotle Arapostathis, Vivek S Borkar, Emmanuel Fernández-Gaucherand, Mrinal K Ghosh, and
Steven I Marcus. Discrete-time controlled markov processes with average cost criterion: A survey.
SIAM Journal on Control and Optimization, 31(2):282–344, 1993.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent com-
plexity via multi-agent competition. arXiv preprint arXiv:1710.03748, 2017.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In TARK,
volume 96, pp. 195–210. Citeseer, 1996.

Zhiyuan Cai, Huanhui Cao, Wenjie Lu, Lin Zhang, and Hao Xiong. Safe multi-agent rein-
forcement learning through decentralized multiple control barrier functions. arXiv preprint
arXiv:2103.12553, 2021.

Miguel Calvo-Fullana, Santiago Paternain, Luiz F. O. Chamon, and Alejandro Ribeiro. State aug-
mented constrained reinforcement learning: Overcoming the limitations of learning with rewards.
arXiv preprint arXiv:2102.11941, 2021.

Baiming Chen, Mengdi Xu, Zuxin Liu, Liang Li, and Ding Zhao. Delay-aware multi-
agent reinforcement learning for cooperative and competitive environments. arXiv preprint
arXiv:2005.05441, 2020.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained re-
inforcement learning with percentile risk criteria. The Journal of Machine Learning Research, 18
(1):6070–6120, 2017.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing sys-
tems (NeurIPS 2018), volume 31, 2018.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2019.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

AN Daryin and AB Kurzhanski. Nonlinear control synthesis under double constraints. IFAC Pro-
ceedings Volumes, 38(1):247–252, 2005.

10

Under review as a conference paper at ICLR 2023

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Dotan Di Castro, Aviv Tamar, and Shie Mannor. Policy gradients with variance related risk criteria.
arXiv preprint arXiv:1206.6404, 2012.

Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. LIIR: Learning Individual
Intrinsic Reward in Multi-Agent Reinforcement Learning. In Advances in Neural Information
Processing Systems (NeurIPS 2019), volume 32. Curran Associates, Inc., 2019.

Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and Lu Feng.
Safe multi-agent reinforcement learning via shielding. arXiv preprint arXiv:2101.11196, 2021.

Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS Torr, Pushmeet
Kohli, and Shimon Whiteson. Stabilising experience replay for deep multi-agent reinforcement
learning. In International conference on machine learning (ICML 2017), pp. 1146–1155. PMLR,
2017.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual Multi-Agent Policy Gradients. Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell. Adver-
sarial policies: Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615, 2019.

Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian,
Jun Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained policy optimisation. arXiv
preprint arXiv:2110.02793, 2021.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu, and Tong Zhang.
Grid-wise control for multi-agent reinforcement learning in video game AI. In Kamalika Chaud-
huri and Ruslan Salakhutdinov (eds.), International Conference on Machine Learning (ICML
2019), volume 97, pp. 2576–2585. PMLR, 2019.

Onésimo Hernández-Lerma and Jean B Lasserre. Discrete-time Markov control processes: basic
optimality criteria, volume 30. Springer Science & Business Media, 2012.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and
Yaodong Yang. Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning. In
International Conference on Learning Representations (ICLR 2022), 2022.

Chenyi Liu, Nan Geng, Vaneet Aggarwal, Tian Lan, Yuan Yang, and Mingwei Xu. CMIX: Deep
multi-agent reinforcement learning with peak and average constraints. In Machine Learning and
Knowledge Discovery in Databases. Research Track, pp. 157–173. Springer International Pub-
lishing, 2021.

Ryan Lowe, Yi I. Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems (NeurIPS 2017), volume 30, 2017.

Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Başar, and Lior Horesh. Decentralized policy
gradient descent ascent for safe multi-agent reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 8767–8775, 2021.

D-J Ma, Armand M Makowski, and Adam Shwartz. Estimation and optimal control for constrained
markov chains. In 1986 25th IEEE Conference on Decision and Control, pp. 994–999. IEEE,
1986.

11

Under review as a conference paper at ICLR 2023

David H Mguni, Yutong Wu, Yali Du, Yaodong Yang, Ziyi Wang, Minne Li, Ying Wen, Joel Jen-
nings, and Jun Wang. Learning in nonzero-sum stochastic games with potentials. In International
Conference on Machine Learning (ICML 2021), volume 139, pp. 7688–7699. PMLR, 2021.

Afshin OroojlooyJadid and Davood Hajinezhad. A Review of Cooperative Multi-Agent Deep Rein-
forcement Learning. arXiv preprint arXiv:1908.03963, 2021.

Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long, and Jun Wang.
Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learn-
ing to Play StarCraft Combat Games. arXiv preprint arXiv:1703.10069, 2017.

Wei Qiu, Xinrun Wang, Runsheng Yu, Rundong Wang, Xu He, Bo An, Svetlana Obraztsova, and
Zinovi Rabinovich. Rmix: Learning risk-sensitive policies for cooperative reinforcement learning
agents. Advances in Neural Information Processing Systems, 34:23049–23062, 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob N Fo-
erster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent rein-
forcement learning. Journal of Machine Learning Research, 21, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David Mguni, Jun Wang,
and Haitham Bou-Ammar. Saute rl: Almost surely safe reinforcement learning using state aug-
mentation. In International Conference on Machine Learning (ICML 2022). PMLR, 2022a.

Aivar Sootla, Alexander I Cowen-Rivers, Jun Wang, and Haitham Bou Ammar. Enhancing safe
exploration using safety state augmentation. arXiv preprint arXiv:2206.02675, 2022b.

Sainbayar Sukhbaatar and Rob Fergus. Learning multiagent communication with backpropagation.
Advances in neural information processing systems (NeurIPS 2016), volume 29, 2016.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning (ICML 1993), pp. 330–337. PMLR,
1993.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization.
arXiv preprint arXiv:1805.11074, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp.
5026–5033, October 2012.

Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. Multi-agent reinforcement learn-
ing via double averaging primal-dual optimization. Advances in Neural Information Processing
Systems (NeurIPS 2018), 31, 2018.

Fangxin Wang, Feng Wang, Jiangchuan Liu, Ryan Shea, and Lifeng Sun. Intelligent video caching
at network edge: A multi-agent deep reinforcement learning approach. In IEEE Conference on
Computer Communications, pp. 2499–2508. IEEE, 2020.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. In Proceedings of the 35th International Conference on Machine
Learning (ICML 2018), volume 80, pp. 5571–5580. PMLR, 2018.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-
agent reinforcement learning with networked agents. In International Conference on Machine
Learning (ICML 2018), pp. 5872–5881. PMLR, 2018.

12

Under review as a conference paper at ICLR 2023

Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang, Mont-
gomery Alban, Iman Fadakar, and Zheng Chen. Smarts: Scalable multi-agent reinforcement
learning training school for autonomous driving. arXiv preprint arXiv:2010.09776, 2020.

13

Under review as a conference paper at ICLR 2023

A THEORETICAL ANALYSIS

In this paper, we extend the theoretical analysis for the single agent case Sootla et al. (2022a) to the
multi-agent case. The authors of Sootla et al. (2022a) define the problem in the following form,

max
π

Es0,a0,...JR(π),ai ∼ π(·|si) (8a)

s. t.: JL(π) ≤ b, W.P. 1 (8b)

where b is the safety budget and W.P. 1 stands for with probability one. In this setting the goal is to
find the policy (8a), which maximizes the task reward while making the cost less than a pre-defined
safety budget b with probability one (8b). To facilitate training, they actually solved the following
problem,

max
π

Es0,a0,...J
n
R,ai ∼ π(si)

Jn
R ≜

∞∑
t=0

γt
cR̃n(s̃t, at)

(9)

Their key result was to show that with n → −∞ the cost Jn
R converges monotonically to JR — the

optimal cost after solving Problem 8. The authors of Sootla et al. (2022a) invoked classical results
for optimal control to prove this assertion (Hernández-Lerma & Lasserre, 2012). They made the
following three assumptions:

Assumption 2 The functions R̃(s̃, a) are bounded, measurable, nonnegative, and upper semi-
continuous on S̃ × A

Assumption 3 A is compact;

Assumption 4 The transition P̃ is weakly continuous on S̃ × A, i.e., for any continuous and
bounded function u on S̃ the map (s̃, a) →

∫
S̃ u(x, y)P(dx, dy|s̃, a) is continuous.

Note that in the results in Sections 4.2 and 4.3 in (Hernández-Lerma & Lasserre, 2012), the authors
used milder assumptions than Assumptions A1 and A2. However, Sootla et al have found that As-
sumptions A1 and A2 are often met in RL applications, and hence there was no need to complicate
the presentation. Assumption A3 is also mild in the RL setting as discussed in (Arapostathis et al.,
1993) in Section 2.4. Indeed, this assumption hols when the transition P is a Gaussian distribu-
tion with continuous mean and variance. Now, consider the problem with the objective Jn

task in
Equation 9 satisfying the assumptions above. Then

Theorem 1 For any finite unsafe reward k, the Bellman equation is satisfied, i.e., there exists a
function V ∗

n (s̃) such that

V ∗
n (s̃) = max

a∈A

(
R̃n(s̃, a) + γrEs̃′V

∗
n (s̃

′)
)
,

where s̃′ ∼ P̃(·|s̃, a). Furthermore, the optimal policy solving Jn
R has the representation a ∼

π∗
n(·|s̃).

Theorem 2 The optimal value functions V ∗
n for Jn

R converge monotonically to V ∗
∞ — the optimal

value function for J∞
R .

Theorem 3 Suppose there exists an optimal policy π∗(·|s̃t) solving Equation 9 for the objective J∞
R

with a finite cost, then π∗(·|s̃t) is an optimal policy for Equation 8.

Now we discuss this results from MARL perspective. In the IL setting, the independent learners
consider other agents as the environment. Hence intuitively if these independent learners satisfy the
Bellman equation in the unconstrained case, then Theorem 1 would show that safe IL would also
satisfy the Bellman equation in the constrained case. Therefore, we can use critic-based methods
for the safe version and guarantee their convergence under those assumptions, at the same time each
agent’s optimal policy would be Markovian.

14

Under review as a conference paper at ICLR 2023

In the CTDE setting, Assumption A1 can be directly extended because the reward function will
evaluate all agents and return the team reward by summing, in case of upper semi-continuous,
Jn,i
R → J i

R. According to (Kuba et al., 2022), in some CTDE cases we also need the following
regularity assumptions, which in particular, guarantees that the set of policies is closed and bounded:

Assumption 5 There exists θ ∈ R, such that 0 < θ ≪ 1, and for every agent i ∈ N , the policy
space Πi is θ-soft, which means for every πi ∈ Πi, s ∈ S, and ai ∈ Ai, we have πi

(
ai | s

)
≥ θ.

Indeed, according to Lemma 3 (Kuba et al., 2022), let
(
πi
t

)∞
t=0

be a convergent sequence of policies
of agent i. Then according to the Assumption A4, for any k ∈ N, s ∈ S, and ai ∈ Ai, πi

t

(
ai | s

)
≥

θ, hence, πi
(
ai | s

)
= limt→∞ πi

t

(
ai | s

)
≥ limt→∞ θ ≥ θ. Furthermore, since sum of probability

for actions sampled from policy is one, so that
∣∣πi
(
ai | s

)∣∣ ≤ 1 →
∥∥πi
∥∥
max

≤ 1, which proved the
boundedness of the set of polices.

Finally, let us discuss Assumption A3 in CTDE. Although, the CTDE setting increases the dimen-
sion of the hazard value according to the cost equation, each agent will eventually return the smallest
and continuous hazard value for augmentation with the current state, so the assumption is still true.
Therefore, we can extend Theorem 1 to both CTDE and IL by satisfying the assumptions A1-A4.

B SMAMUJOCO ENVIRONMENTS:

Safe Multi-Agent MuJoCo (SMAMuJoCo) (Gu et al., 2021) is an extension of MuJoCo (Todorov
et al., 2012). In particular, while retaining the background environment, proxy, physics simulator
and reward functions, adding collision obstacles in the environment, such as fixed walls and moving
baffles, can be touched and knocked over when agents valid the constraint. During the training
process, when the agent produces unsafe behaviours like crash, the environment will generate costs
according to the settings of different scenarios. This section will introduce the cost settings for each
task used in this paper.

MANYANT & ANT

ManyAnt environment (8a) has a linear corridor with a width of 9m. Ants (8b) environment has
three sections of polyline corridors with an angle of 30 degrees, and the width between the two
walls is 10m. In both environments, which returns cost if the distance between the agent and the
wall is less than 1.8m or the agents falls over. Therefore,

cit =

{
0, (Safe), If 0.2 ≤ zagent

t+1 ≤ 1.0 and
∥∥xagent

t+1 − xwall
∥∥
2
≥ 1.8,

1, (Unsafe), Otherwise .

where zagent
t+1 is the agents torso’s z-coordinate, and xagent

t+1 is the agents torso’s x-coordinate. For
each time step, the system need to calculate the distance between agents torso with xwall , which is
the x-coordinate of the wall.

(a) ManyAnt Scenario (b) Ant Scenario

HALF-CHEETAH

15

Under review as a conference paper at ICLR 2023

Figure 9: Ant 2x4

In this mission, the agent moves in a special corri-
dor, the fixed walls on both sides no longer incur
costs and do not get knocked down, but which
will restricts agents’ movement. Newly added is
a moving baffle in the corridor, which incurs a
cost of 1 if the distance between the agent and
the baffle is less than 9 m, then the cost ct can be
demonstrated as,

ct =

{
0, (Safe), If

∥∥yagent
t+1 − ybaffle

∥∥
2
≥ 9

1, (Unsafe), otherwise .

where yagent
t+1 is the y-coordinate of the agents torso, and ybaffle is the y-coordinate of the baffle.

C COMPETITIVE ENVIRONMENTS:

Figure 10: Sumo area

Gym Compete (Bansal et al., 2017) Sumo allows agents to compete in a 1-vs-1 system following
standard sumo rules. There are two types of agents, Ant and Humans, which have different anatom-
ical structures. During the game, The players’ positions are randomly initialized, and each agent
observes its own and its opponent’s positions, its own joint angles, the corresponding speed, and
the force applied to its own body (i.e., the equivalent of touch). The action space is continuous.
Figure.10 describes the safe area in the arena, that is, a circle with a radius of 2.5m. The cost given
by the environment is set as follows,

ct =

{
0, (Safe), If

∥∥xagent
t+1 − xcenter

∥∥
2
≤ 2.5

0.1, (Unsafe), otherwise .

where xagent
t+1 is the x-coordinate of the agents torso, and xcenter is the x-coordinate of the center of

circle.

16

Under review as a conference paper at ICLR 2023

D ABLATION EXPERIMENTS

b Average R Max C
0 [1709.78± 123.66] [3.12± 0.4]
5 [2233.00± 429.62] [6.2± 0.49]

15 [2508.28± 390.03] [14 .7 ± 0 .40]
50 [3299.01± 518.19] [44 .0 ± 6 .41]
75 [2923.27± 180.27] [82± 11.84]
150 [3376.28± 603.48] [169± 24.07]
300 [3627.82± 576.99] [273± 65.65]
500 [3737.58± 97.50] [416± 89.43]

Table 1: Ablation test in Safety Budget b

k Average R Max C
−R(st, at) [3299.01± 518.19] [44 .0 ± 6 .41]

-0 [2959.34± 357.12] [75.0± 13.295]
-5 [1964.27± 311.90] [45.0± 9.559]
-10 [1447.00± 364.32] [41.0± 12.77]
-20 [1170.36± 371.57] [69.33± 17.72]
-50 [522.46± 195.17] [79.0± 19.05]

-100 [364.72± 51.68] [76.0± 7.79]
-1000 [31.34± 18.55] [48.0± 12.86]

Table 2: Ablation test in Unsafe Reward k

Further Ablation experiments for unsafe rewards. In previous experiments, we know that for
different scenarios or Markov game settings, we should use different unsafe rewards. Here, we test
the performance of both fixed and dynamic values of k under a safety budget of 50, and present the
results of one million training evaluations in Table 2. It was found that when the fixed k is reduced,
the policy learning is inefficient or even unable to converge. This result significantly differs from
the single-agent setting. We consider this a unique situation worth discussing in the multi-agent
environment. Under the CTDE setting, when one of the agents violates the constraint, the team
reward becomes the unsafe reward times the number of agents. Then it means that the reshaped
rewards will be much smaller than the real rewards given to the agents by the environment. As a
result, the centralized critic will ignore the general policy exploration of agents who do not violate
the constraints, resulting in low training efficiency. At the same time, too small k can also lead
to other numerical issues in training. Therefore, for this situation, it is necessary to balance the
relationship between environmental reward and unsafe reward to improve learning efficiency while
satisfying the constraints. In order to do that, an intuitive idea is to set a dynamic k that grows
larger over the time, and eventually reaching negative infinity. Thus, we set k = −R(st, at). The
advantage is that the reward is small at the beginning, so the corresponding penalty is also small,
which encouraging agents to explore the policy. With this dynamic setup, we find that CAMA can
better adapt to difficult tasks and tends to converge (Table 2, first row). Therefore, in CTDE and IL,
we set k = −R(st, at).

Through the detailed convergence comparison in Table 2, we finally determined to use −0.2 as an
unsafe reward in the Ant environment to ensure the stability of learning.

E HYPER-PARAMETERS SETTING FOR EXPERIMENTS

The following four tables describe all the hyperparameters used in practice, respectively. For
CAMA-base MARL algorithms, besides the Safety Budget and Unsafe Reward, other parameters
are the same as the occupation, in order to have the fair comparison in experiments. Notably, these
used hyperparameters are all cited from their best performing experiments in the original paper.

hyperparameters value hyperparameters value hyperparameters value

critic lr 5e-3 optimizer Adam num mini-batch 40
gamma(γc,γr) 0.99 optim eps 1e-5 batch size 16000

gain 0.01 hidden layer 1 training threads 4
std y coef 0.5 actor network mlp rollout threads 16
std x coef 1 eval episodes 32 episode length 1000
activation ReLU hidden layer dim 64 max grad norm 10

Table 3: Common hyperparameters used for CAMA-HAPPO, CAMA-MAPPO, CAMA-IPPO,
MAPPO-Lagrangian, MAPPO, HAPPO, IPPO, and MACPO in the Safe Multi-Agent MuJoCo
ManyAnt, Ant, Half-Cheetah, and Gym Compete Sumo-Ant, Sumo-Human

17

Under review as a conference paper at ICLR 2023

Algorithms CAMA-HAPPO HAPPO CAMA-MAPPO MAPPO MACPO
actor lr 9e-5 9e-5 9e-5 9e-5 /

ppo epoch 5 5 5 5 /
kl-threshold / / / / 0.0065

ppo-clip 0.2 0.2 0.2 0.2 /
fraction / / / / 0.5

fraction coef / / / / 0.27
Lagrangian coef / / / / /

Lagrangian lr / / / / /
Table 4: Different hyperparameters used for CAMA-HAPPO , HAPPO, CAMA-MAPPO,
MAPPO, and MACPO in the SMAMuJoCo domains.

Algorithms CAMA-IPPO IPPO MAPPO-Lagrangian
actor lr 9e-5 9e-5 9e-5

ppo epoch 5 5 5
kl-threshold / / /

ppo-clip 0.2 0.2 0.2
fraction / / /

fraction coef / / /
Lagrangian coef / / 0.78

Lagrangian lr / / 1e-3
Table 5: Different hyperparameters used for CAMA-IPPO , IPPO, MAPPO-Lagrangian in the both
SMAMuJoCo and Gym Compete domains.

task Safety Budget Unsafe Reward

Ant(2x4d) 50 −R(st, at)

HalfCheetah(3x2) 40 −R(st, at)

ManyAnt(2x3) 30 −R(st, at)

Table 6: The new two hyper-parameters Safety Budget and Unsafe Reward used for CAMA-HAPPO,
CAMA-MAPPO, CAMA-IPPO in the SMAMuJoCo domains.

task Safety Budget Unsafe Reward

Sumo-Ant 1.0 −R(st, at)

Sumo-Human 1.0 −R(st, at)

Table 7: The new two hyper-parameters Safety Budget and Unsafe Reward used for CAMA-IPPO
in the Gym Compete domains.

18

	Introduction
	Related work.
	Preliminaries
	Methodology
	The Definition of CAMA
	CAMA in CTDE
	CAMA in IL

	Experimental Results
	CTDE Experiment
	IL Experiment
	Ablation Studies

	Conclusion
	Theoretical analysis
	SMAMuJoCo Environments:
	Competitive Environments:
	Ablation Experiments
	Hyper-parameters Setting For Experiments

