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Abstract

Position Statement:

Current Large Language Models (LLMs) face
three fundamental limitations: (1) reliance on pat-
tern matching rather than deliberate reasoning, (2)
inability to self-validate their output, similar to
Gödel’s incompleteness constraints, and (3) incon-
sistent constraint management in planning tasks.
These deficiencies prevent LLMs from achieving
system-2 level reasoning and planning.

We introduce Multi-Agent Collaborative Intel-
ligence (MACI), a structured framework de-
signed to overcome these challenges through
meta-planning and distributed validation. MACI
comprises three key components: (1) a meta-
planner (MP) that formulates and refines all task
roles and constraints while generating a depen-
dency graph augmented with common-sense rea-
soning; (2) a collection of specialized agents to
facilitate domain-specific planning and task ex-
ecution; and (3) a run-time monitor that dynam-
ically adjusts plans as needed. By structuring
problem solving into specialized roles and coor-
dinating agent collaboration, MACI enables ro-
bust constraint awareness, self-verification, and
adaptability, capacities absent in monolithic LLM
architectures. The experimental results validate
the effectiveness of MACI in improving planning
consistency and satisfaction with constraints.

1. Introduction
Artificial intelligence requires capabilities beyond pattern
matching. To tackle complex real-world tasks, AI must
exhibit deliberate reasoning, temporal awareness, and ef-
fective constraint management. Although large language
models (LLMs) (e.g. (OpenAI, 2024a; Anthropic, 2024;
DeepSeek-AI et al., 2025)) excel at pattern recognition, they
face significant challenges in planning tasks that require
sustained attention, knowledge of constraints, and reasoning
in both past and future temporal states (Kahneman, 2011).

1.1. Limitations of LLMs in Planning

LLMs reveal three limitations that fundamentally undermine
their effectiveness in complex planning scenarios:

1. Lack of Self-Verification. LLMs struggle with validating
their own output, a problem that extends beyond Gödel’s
incompleteness theorems for formal systems (Gödel, 1967).
Their probabilistic nature and lack of logical foundations
create significant barriers to self-assessment. This intrin-
sic limitation means LLMs cannot reliably detect errors
or inconsistencies in their generated content (Hong et al.,
2024; Weng et al., 2023; Stechly et al., 2024), necessitating
external mechanisms to validate and refine their output.

2. Attention Bias and Constraint Drift. In complex scenar-
ios, LLMs demonstrate a critical cognitive limitation known
as cognitive tunneling. This phenomenon occurs when re-
cently provided context dominates and progressively erodes
earlier-established constraints (Wei et al., 2024; Momenne-
jad et al., 2023). When planning a multi-leg journey, for
instance, an LLM might optimize the final travel segment
while completely neglecting crucial earlier constraints such
as vehicle availability or required rest periods. This bias
toward local optimization fundamentally undermines the
global feasibility of generated plans.

3. Lack of Common Sense Integration. LLMs often over-
look practical constraints that humans intuitively consider
(Bhagavatula et al., 2020; McKenna, 2023). This deficiency
becomes particularly evident in domains that require real-
world experience and understanding. In travel planning,
an LLM might generate a route without accounting for air-
port security processing times. In logistics, it may create
schedules that ignore resource availability and preparation
windows. Without explicit, granular specifications, these
models produce plans that appear superficially coherent but
remain impractical.

1.2. The MACI Framework

To address these limitations, we propose Multi-Agent Col-
laborative Intelligence (MACI), a framework designed to
enhance reasoning and planning through a multi-component
architecture. MACI introduces three core components:
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1. Meta-Planner (MP). The meta-planner serves as the
central orchestration mechanism in MACI. It analyzes task
requirements, identifies roles and constraints, and dynami-
cally generates a dependency graph (or workflow template)
tailored to the task. This template includes actionable work-
flows with nodes representing roles (e.g., cook, driver, super-
visor) and edges representing dependencies (e.g., temporal,
spatial, or resource constraints). The incorporation of com-
mon sense augmentation into the metaplanner ensures that
the generated plans are realistic, comprehensive, and aligned
with practical constraints.

2. Common and Task-specific Agents. MACI employs two
types of agents to execute the generated plans:
- Common Agents: These agents handle general-purpose

tasks, including constraint validation, practical reasoning,
and performance evaluation. For instance, a Common
Sense Integration agent identifies implicit constraints,
while a Constraint Validation agent ensures feasibility
and compliance with the task’s requirements.

- Task-specific Agents: These agents cater to domain-
specific requirements, including task-dependent data and
knowledge augmentation, selection of the most effective
planning algorithms, safety and ethics assessment, and
emergency response optimization. By integrating do-
main expertise, they extend the capabilities of common
agents, enabling MACI to address specialized planning
challenges with precision and adaptability.

3. Run-Time Monitor. The run-time monitor handles real-
time adjustments to the static plan in response to unexpected
changes, such as resource delays, environmental disruptions,
or evolving task requirements. This component ensures
adaptability and robustness by:

- Monitoring plan execution to detect deviations.

- Activating emergency agents to revise dependencies, re-
assign roles, or dynamically adjust constraints.

- Communicating updates to affected agents to maintain
coherence throughout the workflow.

1.3. Summary: How MACI Addresses LLM Limitations

With its multi-component architecture, MACI directly ad-
dresses the three critical limitations of LLMs in planning:

1. Lack of Self-Verification. MACI separates planning from
validation, employing independent agents for validation.
These agents operate without shared memory or interference,
ensuring external verification of outputs and mitigating the
risks of self-referential errors.

2. Attention Bias and Constraint Drift. MACI avoids
relying on a single LLM to execute complex, multi-step
reasoning sequentially. Instead, it utilizes small collabora-
tive agents that enjoy two key benefits: independence and

well-defined input/output protocols (ensuring specificity and
quality) for specific tasks. These agents operate within re-
stricted context windows of e.g., 1k tokens, which physically
limits attention bias and ensures that earlier constraints are
not overridden by recent context. By logically scoping prob-
lems and physically constraining context, MACI preserves
global feasibility and mitigates cognitive tunneling.

3 Lack of Common Sense Integration. MACI incorpo-
rates a Common Sense Integration Agent and other spe-
cialized agents to identify implicit constraints and augment
plans with practical, domain-specific knowledge. This en-
sures that generated plans are realistic, comprehensive, and
aligned with real-world conditions.

Through its innovative architecture, MACI overcomes the
inherent limitations of LLMs, enhancing their capacity for
deliberate reasoning and planning. In subsequent sections,
we demonstrate MACI’s effectiveness through evaluations
in complex scenarios, such as the Traveling Salesman Prob-
lem (TSP) and a multi-layered dinner planning task.

2. Related Work
The development of MACI builds on theoretical insights
from formal systems and addresses limitations of current
multi-agent architectures. Gödel’s second incompleteness
theorem (Kennedy, 2008; Gödel, 1967) established that no
consistent formal system can prove its own consistency.
This principle extends to LLMs, which rely on probabilistic
rather than axiomatic foundations, making them inherently
incapable of reliable self-validation. To address this, MACI
employs a distributed validation architecture, where inde-
pendent agents validate externally the output, bypassing the
self-referential loops that may lead to inconsistencies.

In formal systems, consistency proofs require a “higher-
order” system. Analogously, MACI provides a validation
framework that operates as a higher-order metasystem for
LLM output. By decoupling planning from validation,
MACI mirrors the separation needed in formal systems,
where validation is performed independently to avoid con-
flicts and errors.

Moreover, MACI advances the state of the art in multi-agent
systems by addressing challenges that existing frameworks
have not fully resolved.

Current multi-agent systems (MAS) primarily function
as integration platforms for coordinating multiple LLMs.
Notable frameworks include Microsoft’s AutoGen (Wu
et al., 2024), the Multi-LLM Agent Debate Framework
(Du et al., 2023; Chang, 2023; 2024), LangGraph and Cre-
wAI (LangChain AI, 2024; Moura, 2024), XAgent (XAgent
Team, 2023), and CAMEL (Li et al., 2023). While these
frameworks excel in agent coordination, they prioritize task
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distribution over the comprehensive constraint management
necessary for complex planning.

MACI bridges this gap by integrating a meta-planning mod-
ule with independent agents that validate constraints, en-
abling robust and adaptable solutions in dynamic real-world
scenarios. The meta-planner constructs task-specific depen-
dency graphs that encode inter-agent constraints, ensuring
precise role allocation while maintaining global feasibility.
Meanwhile, validation agents, operating independently of
the planning process, monitor for errors and inconsistencies
stemming from probabilistic output, ensuring alignment
with task objectives. This separation of roles mitigates cog-
nitive tunneling and enhances adaptability, allowing MACI
to dynamically respond to real-time disruptions such as
resource shortages or environmental changes.

By integrating these advanced mechanisms, MACI goes
beyond existing MAS frameworks to provide a cohesive
architecture for complex reasoning and planning. It ensures
a high degree of scalability and robustness, making it suit-
able for applications ranging from logistical optimization to
adaptive decision-making in uncertain environments.

3. Case Study: Illuminating LLM Limitations
Planning methodologies fall into two categories: sequential
and reactive. Sequential planning organizes time-ordered
schedules (Allen & Hayes, 1989), anticipates future sce-
narios (Cox & Veloso, 1998), and improves through past
experiences (Kolodner, 1993). Reactive planning adapts
to dynamic conditions (Hammond, 1990), prioritizes im-
mediate actions (Georgeff & Lansky, 1987), and leverages
data-driven forecasting (Kushmerick et al., 1995).

This section examines LLM limitations in planning via two
experiments: a scheduling problem exposing sequential
planning challenges and a resource allocation task high-
lighting reactive planning deficiencies. Section 4 proposes
solutions.

Problem Statement We experiment with a Thanksgiving
dinner planning task:

Setup:

• Mom (Sarah) hosts dinner at 6:00 PM in Boston.

• Family arrivals:
– Dad (James) from San Francisco, lands at 1:00 PM

ET.
– Sister (Emily) from Chicago, lands at 2:30 PM.
– Brother (Michael) driving from NY, arrives at 3:00

PM.

• Grandma, healthy, requires pickup from suburban
Boston.

Constraints:

• James must rent a car post-landing.

• Emily needs an airport pickup (no alternatives).

• Turkey requires 4 hours to cook; someone must be home
once it’s in.

• Side dishes need 2 hours of preparation.

• Travel times:
– Home to BOS Airport: 1 hour.
– BOS Airport to Grandma’s: 1 hour.
– Home to Grandma’s: 30 minutes.

Key Planning Questions:

1. When should cooking start?

2. Who picks up Emily, and when?

3. When and by whom should Grandma be picked up?

Using this problem, we examine sequential and reactive
planning performed by GPT-4o and DeepSeek.

Table 1. DeepSeek Proposed Schedule
Time Task Assigned

12:00pm Sarah starts preparing side dishes. Sarah
1:00pm James arrives at the airport, begins car rental (takes

30-60 minutes).
James

2:00pm James is ready to pick up Emily; Sarah and James
put the turkey in the oven.

J, S

2:30pm Emily lands at BOS. Emily
3:00pm X James arrives at airport to pick up Emily J
3:00pm Michael arrives at home and leaves to pick up

Grandma.
Michael

3:15pm X Michael at Grandma’s home. M
3:45pm Grandma arrives home; Michael returns. M
4:00pm James and Emily arrive home. J, E
6:00pm Dinner is served. All

3.1. Study #1 Sequential Planning

GPT-4o and DeepSeek struggled with real-world travel lo-
gistics, omitting key human considerations such as luggage
claim time, rental car processes, and spatial relationships
between airport terminals and the rental center (Table 1).
These gaps forced manual constraint additions, highlighting
LLM’s inability to integrate experiential knowledge, a gap
addressed by the MACI common sense agent.

DeepSeek’s schedule further revealed spatial-temporal er-
rors: 1) Spatial: Assumed James drove home immediately
after renting a car at Boston Logan, ignoring his airport
location while awaiting Emily; and 2) Temporal: Directed
Michael to return home before heading to Grandma’s, miss-
ing the optimal direct route from NYC.

Table 2 shows the GPT-4o schedule, which appears feasi-
ble but contains two critical errors in the case of adaptive
planning required for emergency: 1) Arithmetic: Incorrectly
calculates Grandma’s round-trip driving time as 30 min-
utes (vs. 30×2 minutes); and 2) Over-Constraint: Assumes
only Sarah must watch the oven (vs. “someone”), creating
brittleness under reduced slack time (e.g., delays).

3
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Table 2. GPT4o Proposed Schedule
Time Task Assigned

1:00pm James lands in Boston James
2:00pm Turkey goes into the oven Sarah
2:00pm James finishes car rental J
2:30pm Emily lands at BOS Emily
2:30pm James picks up Emily at airport J
3:00pm Michael arrives home Michael
4:00pm Side dishes preparation starts S, M
5:00pm Michael leaves to pick up Grandma M
5:30pm X Michael arrives home with Grandma M
6:00pm Dinner is served All

Analysis (with detailed execution in Appendix A) links both
errors to flawed reasoning in constraint interpretation.

Diagnoses: Common-Sense Constraints and Isolated
Processing Syndrome LLMs struggle with implicit real-
world constraints that humans consider common sense, lim-
iting their planning capabilities. Additionally, we identify
isolated processing syndrome, where LLMs tackle sub-tasks
independently, lacking awareness of overall constraints.
This results in two critical failures: missing obvious op-
timizations or generating infeasible plans by violating stated
constraints.

3.2. Study #2 Reactive Planning

Real-world scenarios do not always follow plans precisely.
Robust systems require contingency planning for factors
such as weather, traffic, or airline changes. These cascade
through schedules, demanding adaptive replanning.

To evaluate LLMs’ dynamic replanning, we introduce a ma-
jor disruption in our Thanksgiving scenario: James’s flight
is delayed by 3 hours (arrival 4:00 PM vs. 1:00 PM). This
forces adjustments to pickups, meal prep, and coordination
while preserving original constraints.

LLM responses reveal critical flaws: 1) DeepSeek violates
core constraints by unjustifiably delaying dinner to 7:00
PM (vs. the 6:00 PM deadline); and 2) GPT-4o (Table 5
in Appendix D) commits a safety violation: leaving the
oven unattended, despite explicit constraints. These errors
highlight LLMs’ inability to reliably maintain and validate
constraints during replanning, even with full information.

Diagnosis: Attention Narrowing Claude detects con-
straint violations in other LLMs’ plans, but GPT-4o and
DeepSeek struggle with self-validation, revealing an asym-
metry in error detection. LLMs often misinterpret con-
straints during planning (e.g., rigidly enforcing “someone
must be in the house” while the turkey is in the oven), prop-
agating errors throughout their reasoning.

Two key limitations emerge: 1) Attention narrowing: Over-
focusing on objectives (e.g., arrival times) leads to neglect
of critical constraints (e.g., fire safety). 2) Solution rigidity:
Once a constraint is satisfied (e.g., assigning Sarah to oven

duty), LLMs treat it as fixed, failing to explore alternatives.

For example, GPT-4o assigned Sarah to monitor the oven
but failed to reallocate this task to Grandma earlier, missing
an efficiency gain by freeing Sarah to serve as an additional
driver.

3.3. Summary of LLM Limitations in Planning

Our analysis reveals three core limitations in LLM-based
reasoning methods (CoT (Wei et al., 2022), ToT (Yao et al.,
2023)):

Metacognitive Limitations LLMs struggle with self-
validation and constraint awareness. While external models
detect errors in others’ plans, planners overlook their own
(e.g., GPT-4o rigidly assigning Sarah to oven duty without
considering Grandma’s availability). Causes include:
1. Pattern-matching over analytical validation

2. Lack of belief-state tracking

3. Single-solution focus vs comparative reasoning

Current reasoning methods reinforce these flaws by operat-
ing within the same cognitive framework.

Attention Bias Transformers prioritize recent context,
leading to: 1) Narrowing—recent constraints (e.g., arrival
times) overshadow earlier ones (e.g., oven safety); and 2)
Isolated Processing—sub-tasks are handled independently
without global awareness.

Common Sense Gaps LLMs fail to infer implicit real-
world knowledge (e.g., luggage claim times, rental logis-
tics), requiring explicit specification of human-obvious con-
straints (e.g., airport-terminal proximity).

In Sections 4 and 5, we show how MACI’s meta-planner
corrects errors and dynamically adapts plans.

4. MACI Framework Specification
MACI implements a three-component architecture to ad-
dress current LLM limitations: metacognitive constraints,
attention bias, and gaps in common-sense reasoning. Each
component plays a distinct role in enabling robust and adapt-
able planning capabilities.

4.1. Three-Component Architecture

Meta-Planner Component The meta-plannerMP func-
tions as a higher-order planner that generates task-specific
planning systems:

MP : (O, CE)→W,

where W represents a planning system composed of special-
ized, coordinated agents. Similar to a compiler generator
producing compilers from specifications,MP constructs

4
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agent networks from task requirements. It analyzes objec-
tives, identifies required roles and dependencies, selects
appropriate agents, and establishes interaction protocols.
This produces a workflow template that defines the plan-
ning state space and the coordination mechanisms needed
to solve the task.

Agent Repository Component This component main-
tains a distributed collection of planning agents, each de-
signed with a restricted context window and specialized
interface. By dividing cognitive tasks among agents, the
repository ensures a complete representation of constraints
without overwhelming individual components. The meta-
planner queries this repository to select agents for specific
roles and dependencies based on task requirements.

System Infrastructure Component Built on open-source
multi-agent system (MAS) frameworks, the infrastructure
component supports essential operations such as agent reg-
istration, message routing, resource allocation, and deploy-
ment scaling. This foundation provides the necessary run-
time environment for executing and monitoring the gener-
ated workflows.

4.2. Agent Repository Design

The agent repository in MACI serves as a structured
database, enabling efficient registration, retrieval, and match-
ing of agents to task requirements. By categorizing agents
into common agents and specialized agents, the repository
supports both generalized functionality and domain-specific
expertise, as outlined in Section 4.1.

4.2.1. LIGHTWEIGHT, INDEPENDENT AGENT DESIGN

MACI avoids relying on a single LLM to execute complex,
multi-step reasoning sequentially. Instead, it utilizes small,
independent agents that adhere to strict efficiency and mod-
ularity principles. These agents operate with well-defined
input/output protocols and are constrained to restricted con-
text windows to mitigate attention bias and prevent earlier
constraints from being overridden by recent context.

By scoping problems logically and constraining context
physically, MACI ensures that each agent processes only
the task-relevant information needed for its specific role.
This design prevents cognitive tunneling, maintains global
feasibility, and enhances robustness in dynamic environ-
ments.

4.2.2. AGENT REGISTRATION AND SPECIFICATIONS

Each agent is registered in the repository using a standard-
ized protocol buffer that encodes the following attributes:
• Input/output protocol (P ): Defines the data format and

expected interactions for seamless communication.

• Agent type (t): Specifies whether the agent is common or
specialized.

• Capability vector (c): Encodes the agent’s functional
capabilities, constraints, and operating conditions.

• Context window size (w): Ensures that each agent oper-
ates within a restricted buffer (w ≤ 1k tokens) to prevent
attention bias and excessive information retention.

• Computational efficiency constraint (e): Agents are
lightweight, avoiding unnecessary memory usage or pro-
cessing delays.

• User rating (r): Tracks historical performance evalua-
tions to prioritize reliable agents during selection.

The meta-planner retrieves agents from the repository using
a three-step matching process:
1. Task-to-capability matching: Filters agents based on their

capability vector (c) and task-specific requirements.

2. Protocol verification: Ensures compatibility of in-
put/output protocols (P ) between selected agents to pre-
vent communication errors.

3. Agent ranking: Ranks agents by their relevance, effi-
ciency, and historical user rating (r) to select the optimal
candidates.

This structured retrieval mechanism ensures that MACI effi-
ciently scales to complex planning problems without requir-
ing predefined agent hierarchies. By leveraging protocol
buffers and a structured repository, MACI achieves both
modularity and adaptability, allowing new agents to be in-
troduced seamlessly while maintaining coherence across
multi-agent interactions.

4.2.3. STATE SPACE AND AGENT DESIGN

Tasks in MACI are modeled in a general five-dimensional
state space to ensure comprehensive representation of con-
straints and dependencies. These dimensions include:
1. Who (Actors): Identifies roles, constraints, and transitions

between agents or individuals.

2. Where (Location): Tracks physical or logical positions,
transitions, and access rules.

3. When (Time): Captures temporal constraints such as dead-
lines, durations, and time points.

4. What (Resources): Manages resource availability, con-
straints, and associated costs.

5. Why (Logic): Encodes rationale, dependencies, and risk
assessments for decision-making.

This structured state space allows the meta-planner to gen-
erate workflows that account for all relevant constraints and
dependencies across diverse domains.

5
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4.2.4. AGENT ROLES IN STATE SPACE MANAGEMENT

Common Agents Common agents are designed to handle
foundational planning tasks that align with MACI’s state
space dimensions (Who, Where, When, What, Why). These
agents provide general-purpose functionality that ensures
consistency, feasibility, and robustness across planning tasks.
Their primary responsibilities include:
• Constraint Validation Agents: Ensure adherence to tem-

poral, spatial, and resource constraints by verifying the
feasibility of generated plans.

• Common Sense Integration Agents: Identify implicit con-
straints that may be overlooked, such as transition times,
dependencies, or practical limitations.

• Adaptation Agents: Dynamically adjust plans in response
to changes in task environments, such as resource delays
or evolving requirements.

• Performance Evaluation Agents: Assess the quality and
efficiency of proposed plans relative to predefined met-
rics, ensuring continuous improvement.

By addressing these tasks, common agents form the back-
bone of MACI’s planning architecture. Their modular de-
sign enables reuse across multiple domains, and their col-
laborative functionality ensures they work seamlessly with
specialized agents to maintain global consistency and coher-
ence within the planning workflow.

Task-Specific Agents These agents cater to domain-
specific requirements, including task-dependent data and
knowledge augmentation, selecting and optimizing planning
algorithms, safety and ethics assessment, and emergency
response optimization. By leveraging domain expertise, spe-
cialized agents extend the capabilities of common agents,
enabling MACI to address specialized planning challenges
with precision and adaptability.

4.2.5. SEAMLESS INTEGRATION AND SCALABILITY

The repository’s standardized agent specifications and
matching mechanism enable MACI to scale efficiently
across domains. By leveraging modular designs and proto-
col buffers, new agents can be integrated seamlessly into
existing workflows, ensuring adaptability and extensibility
without compromising performance or consistency.

4.3. Meta-Planner: Planning a Planner to Plan

The mission of the meta-plannerMP is to construct a plan-
ner that generates an actionable workflow for a given task.
It does so by analyzing task objectives, identifying roles
and constraints, and organizing agents into a structured exe-
cution plan. This three-phase approach ensures that every
agent and dependency is optimally placed, refined, and vali-
dated, leading to robust, task-specific workflows.

4.3.1. THE META-PLANNER ALGORITHM

Appendix E provides the full algorithm.

The meta-planner operates as a higher-order planning sys-
tem that formulates workflows as directed graphs:

W = (N , E), where N = A∗
n, E = A∗

e. (1)

Here, N denotes roles assigned to agents, and E represents
dependencies between roles, including constraints such as
timing, data flow, and supervision requirements.

4.3.2. META-PLANNING DESIGN ELEMENTS

Role and Qualification Analysis The meta-planner ex-
tracts roles from task objectives and maps them to required
qualifications:

maprole : O → {(ni, qi)} (2)

where ni represents a role and qi its required qualifications
(e.g., a driver requires a license, a cook requires experience).

Constraint Management Constraints govern role interac-
tions and dependencies. The framework maintains a global
constraint set:

C = CE ∪ CI ∪ CD (3)

where CE represents explicit constraints from task specifica-
tions, CI denotes implicit constraints identified by common
sense agents, and CD represents derived constraints from
agent interactions.

Agent Assignment Two categories of agents are assigned
based on task requirements:

• Node Agents (Role Execution):

A∗
n = argmin

Ai∈A

∑
nj

dist(qj , Ai.capabilities) (4)

These agents are responsible for fulfilling role qualifica-
tions and managing people-role assignments.

• Edge Agents (Dependency Management):

A∗
e = argmin

Ai∈A

∑
ej

dist(cj , Ai.capabilities) (5)

These agents ensure dependencies between roles are cor-
rectly maintained, such as time constraints, spatial rela-
tions, and supervisory requirements.

4.4. Workflow Execution Framework

The final workflow W∗ must be executed in a runtime envi-
ronment. In this work, we evaluate W∗ by entering it into
an LLM (e.g., GPT4o) alongside the problem statement. A
key limitation is that the feedback loop for refining W∗ is
currently manual, requiring iterative adjustments to opti-
mize execution. Future research will focus on automating
this process to enhance adaptability and efficiency.

6
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5. EvaluatingMP vs. Independent LLMs
To assessMP’s performance and adaptability, we adopted a
dual-approach experimental structure. The first experiment
uses the Traveling Salesperson Problem (TSP) to validate
MP’s optimization capabilities. The second involves the
Thanksgiving Dinner Planning problem, showcasingMP’s
ability to handle complex, real-world challenges with cross-
thread dependencies and dynamic adaptability. Due to space
constraints, detailed results for these experiments are pro-
vided in Appendices F and G, respectively.

5.1. Traveling Salesperson Problem (TSP)

The TSP experiment benchmarks MP against stan-
dalone planners (Claude (Anthropic, 2024), DeepSeek R1
(DeepSeek-AI et al., 2025), GPT-4o (OpenAI, 2024a)) and
theirMP-integrated counterparts. The metrics include so-
lution quality and optimality.

Result Summary WithoutMP , DeepSeek performs best,
while Claude and GPT-4o struggle, each exceeding the op-
timal travel time by more than 10%. With MP , Claude
requires two iterations to reach the optimal distance, while
both GPT-4o and DeepSeek solve the problem in a single
attempt.

Although TSP involves a straightforward single-thread plan-
ning process, MP still provides notable improvements.
Again, see Appendix F for details.

5.2. Thanksgiving Dinner Planning

This task, detailed in Section 3, evaluatesMP’s ability to
generate workflows W∗ with enhanced constraint and de-
pendency management in the MACI setting. Unlike TSP,
this problem involves multiple interdependent agents, intro-
ducing complex coordination challenges.

Planning performance is assessed across three configura-
tions: DeepSeek + MP , GPT-4o + MP , and Claude +
MP . The prior results in Section 3 show that all LLMs fail
the task when executed independently.

Evaluation metrics include:

Performance = {%Constraint satisfaction, Flexibility},

where flexibility measures slack time incorporated to handle
unexpected events.

5.2.1. META-PLANNING FOR THANKSGIVING EVENT

Following Algorithm 1,MP generates workflows with:
• Role nodes (e.g., cook, drivers, supervisor),

• Explicit constraint edges (e.g., temporal, spatial, etc.),

• Implicit constraint edges from common-sense analysis.

The planner monitors nodes and edges, enabling dynamic
adjustments. The full specifications are in Appendix G.

Evaluation Scenarios We testMP under:
1. Sequential Planning: Task executed as planned.

2. Reactive Planning: A 3-hour flight delay requiring task
reallocations.

Meta-Planner Output MP enhances planning by:
• Identifying implicit constraints (e.g., luggage claim time,

car rental delays),

• Clarifying role dependencies,

• Incorporating common-sense constraints (e.g., fatigue,
social preferences),

In reactive planning,MP integrates an alert agent to detect
flight delays at departure, enabling timely workflow updates
and demonstrating adaptability.

5.2.2. EXPERIMENTAL RESULTS

Sequential Planning Performance With MP’s en-
hanced workflow W∗, all three LLMs successfully gener-
ated feasible solutions, a significant improvement over their
previous failures with the original problem specification.

Table 3. Sequential Planning Performance. (# = iterations)

LLM # Notable Features
DeepSeek 2 Optimized airport wait time for James; bal-

anced workload
GPT4o 3 Extra travel for Michael; suboptimal load

balance
Claude 2 Unnecessary travel between pickup tasks

Table 4. Reactive Planning Performance (Alert: flight delay)
LLM # Notable Features
DeepSeek 3 Smart routing of Michael directly to airport;

efficient travel patterns
GPT4o X Failed to maintain critical constraints; un-

able to recover
Claude 3 Two valid plans with different trade-offs;

longer wait times

Table 3 summarizes the detailed schedules documented in
Tables 13, 14, and 15, in Appendix G.8. DeepSeek demon-
strated superior scheduling efficiency by optimizing James’s
airport wait time for Emily’s pickup, requiring only two
iterations. While GPT4o eventually produced a valid so-
lution in three iterations, it created suboptimal travel pat-
terns by having Michael make separate trips. Claude’s solu-
tion, though feasible in two iterations, included unnecessary
travel between pickup tasks. This experiment highlighted
howMP’s explicit constraint specification and common-
sense augmentation enabled consistent performance im-
provement across different LLMs.

7
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Reactive Planning Performance The flight delay sce-
nario revealed significant differences between LLMs’ ca-
pabilities. DeepSeek demonstrated superior spatial reason-
ing by routing Michael directly to the airport, an insight
that should have come fromMP’s common-sense spatial
reasoning. This unexpected ability to improve workflow
highlights the synergy betweenMP and LLM —MP pro-
vided early alert through its information agent (Table 16 in
Appendix G.9).

Table 4 summarizes the detailed schedules documented in
Tables 17, 19, and 20, in Appendix G.9. DeepSeek lever-
aged the early alert at 10:00 AM for immediate replanning.
In contrast, Claude produced two feasible plans but missed
the 10:00 AM alert in WR, starting its schedule at 1:00 PM
and missing opportunities for proactive actions like early
Grandma pickup to free Sarah as a driver. GPT4o failed
entirely, producing three constraint violations it could not
recognize, preventing further improvements.

6. Alternate Views and Conclusion
The limitations of current LLMs in planning and reasoning
are well documented: reliance on pattern matching over
deliberate reasoning, inability to self-validate, and failure to
maintain constraints, compounded by well-known halluci-
nations and biases. These are not incidental flaws, but rather
structural weaknesses inherent to LLM architectures.
Addressing these shortcomings requires more than incre-
mental improvements; it demands a fundamental rethinking
of AI’s approach to planning, constraint management, and
validation.

6.1. MACI as the Necessary Evolution of AI Planning

MACI represents this necessary evolution. Its structured
meta-planning, distributed validation, and proactive
multi-agent coordination systematically overcome the defi-
ciencies of single-LLM architectures. Empirical evaluations
substantiate its effectiveness:

- In the Thanksgiving Dinner Planning experiment,
MACI successfully resolved intricate cross-thread de-
pendencies that individual LLMs failed to handle.

- Its ability to dynamically reallocate tasks, integrate
implicit constraints, and adapt to evolving conditions
underscores MACI’s real-world applicability.

These results, along with the Traveling Salesperson Prob-
lem (TSP) experiment, demonstrate a fundamental shift
in AI reasoning and planning, rather than mere marginal
improvements. While there is still room for enhancement,
approaches such as self-refinement using GRPO (Hong
et al., 2024; OpenAI, 2024b), supervised fine-tuning (An-
thropic, 2024), distillation (Zhang & colleagues, 2023), and
information theory-based techniques could further advance

AI towards AGI.

6.2. Alternative Approaches and Their Shortcomings

A. Single-LLM Enhancements: The “Average Model
Problem” Efforts to enhance single LLMs, by adding
memory modules, logical reasoning layers, or constraint-
aware training, ultimately face the average model problem:
any single model trained to handle diverse planning domains
must make trade-offs, reducing its effectiveness in specific
tasks. As seen in (Weng et al., 2023), single LLMs trained
in various planning domains struggle to maintain peak per-
formance in all scenarios, requiring trade-offs that degrade
specialized reasoning capabilities.

Single LLMs also struggle to address the challenge of
self-verification, as an LLM remains bound by its proba-
bilistic reasoning and cannot independently validate its own
plans, a limitation that extends beyond Gödel’s incomplete-
ness theorems for formal systems (Gödel, 1967). Their lack
of logical foundations and reliance on probabilistic inference
create significant barriers to self-assessment, necessitating
external validation mechanisms (Hong et al., 2024; Weng
et al., 2023; Stechly et al., 2024).

B. Multi-Agent Systems (MAS): Limited Global Coor-
dination and Static Configuration MAS facilitate dis-
tributed problem-solving but lack global coordination and
real-time adaptability. Agents optimize locally with limited
information sharing, often leading to suboptimal system-
wide outcomes (Stone & Veloso, 2000; Wooldridge, 2009).

While MAS can incorporate agents like RAG for data aug-
mentation or CoT for abductive reasoning, these additions
are predefined rather than dynamically integrated via feed-
back, limiting responsiveness to changing environments.
The inability to reconfigure in real time constrains MAS in
complex, evolving scenarios. Unlike MAS, MACI dynami-
cally adjusts task allocation based on real-time feedback, as
demonstrated in the Thanksgiving dinner experiment (e.g.,
responding to flight delays).

C. Additional Views AI planning and reasoning are vast
fields with ongoing research exploring various alternative
approaches. Additional details are provided in Appendix A.

6.3. Final Statement

When designed correctly, multi-LLM agent collaboration
can mitigate hallucinations and biases while significantly
enhancing reasoning and planning, as demonstrated in this
paper. The future of AI planning does not lie in incremental
improvements to LLMs but in redefining the very structure
of intelligence. MACI embodies this paradigm shift, offer-
ing a scalable, adaptable, and verifiable framework for
AI-driven reasoning and decision-making. MACI is the
blueprint for this transformation.
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Appendices

A. Advancing Multi-Agent Systems: The Next
Evolution with MACI

Multi-Agent Collaborative Intelligence (MACI) represents
the next stage in the evolution of multi-agent systems, ad-
vancing beyond traditional frameworks to enable more dy-
namic, adaptable, and self-improving AI interactions. Cur-
rent Large Language Models (LLMs) operate at system-1
level, excelling in pattern recognition and linguistic genera-
tion, but lacking high-level reasoning and planning capa-
bilities, key hallmarks of system-2 intelligence (Kahneman,
2011; Bommasani et al., 2021). MACI aims to bridge this
gap by enabling structured multi-agent collaboration to en-
hance decision-making, adaptability, and self-improvement.
Beyond previous discussions, three key areas require fur-
ther development: (1) conducting more experiments and
establishing benchmarks to validate progress, (2) improv-
ing reasoning quality, and (3) developing a feedback loop
for self-improvement while managing domain-specific con-
straints.

Key Areas for MACI Enhancement

Benchmarking and Empirical Validation For MACI
to advance, rigorous empirical validation is essential. Al-
though theoretical improvements provide direction, practi-
cal validation ensures robustness. Establishing benchmarks
will enable structured evaluations in multiple domains, of-
fering measurable comparisons to assess reasoning qual-
ity, adaptability, and real-time decision-making efficiency
(Hendrycks et al., 2021).

Enhancing Reasoning and Planning Capabilities A crit-
ical distinction between MACI and single-LLM architec-
tures is the emphasis on structured reasoning and strategic
planning. Unlike traditional multi-agent systems that rely
on heuristic-based coordination, MACI should incorporate
dynamic logic refinement, probabilistic inference mecha-
nisms, and hierarchical task planning (Georgeff et al., 1998;
Yao et al., 2023). These enhancements enable MACI to go
beyond shallow pattern recognition and improve complex
decision making in real-world applications.

Feedback-Driven Self-Improvement For MACI to be
truly adaptable, it must incorporate a feedback loop that
enables self-improvement. However, not all errors can or
should be corrected at the system level. Some errors arise
due to individual circumstances, such as determining seat-
ing arrangements at a banquet table. Constraints related to
tasks, domains, and cultures are highly contextual and diffi-
cult to model comprehensively. Instead of modifying MACI
itself, such context-dependent constraints should be han-

dled via context augmentation techniques, such as Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020) and
few-shot prompting (Brown et al., 2020), to dynamically
adapt solutions based on user preferences and contextual
inputs.

Balancing Systemic and Task-Specific Improvements
The distinction between system-wide enhancements and
task-specific adjustments is crucial. Core agents within
MACI should undergo continuous improvements in rea-
soning, coordination, and adaptability. However, user-
specific requirements—such as subjective preferences in
planning—should remain flexible and be addressed at the
application layer. This division ensures that MACI remains
both robust in its general reasoning capabilities and adapt-
able to varying user needs without overcomplicating its core
architecture.

Alternative Approaches and Future Directions A key
question for MACI is whether Reinforcement Learning (RL)
is necessary for personalization, improvement, or alignment
with values (e.g., national, corporate). Although RL has
been effective in optimizing reward-driven behaviors, its ap-
plicability to personalize MACI remains questionable due to
challenges such as data sparsity (Ouyang et al., 2022), con-
flicting preferences (Christiano et al., 2017), and unstable
reward signals (Ziegler et al., 2019).

Instead of relying on RL-based adaptation, alternative meth-
ods should be explored based on specific applications.
Retrieval-Augmented Generation (RAG) can fetch relevant
personal data without modifying the model (Lewis et al.,
2020), while meta-prompting allows for dynamic prefer-
ence injection (Reynolds & McDonell, 2021). Graph-based
optimization can manage constraints more effectively than
reinforcement learning, and rule-based filtering can enable
value alignment without extensive retraining.

Considerations for MACI: When to Improve and When
to Avoid Adaptation MACI should focus on logical con-
sistency, constraint satisfaction, and dynamic adaptation
while avoiding excessive personalization that leads to over-
fitting. Some constraints, such as cultural or domain-specific
preferences, should be handled dynamically rather than em-
bedded into MACI’s core framework. Using structured,
context-sensitive, and retrieval-based adaptation mecha-
nisms, MACI can ensure both flexibility and robustness.

Conclusion MACI advances multi-agent systems by im-
proving reasoning, planning, and self-improvement, dis-
tinguishing itself from system-1-level LLMs that rely solely
on pattern recognition. By addressing the fundamental lim-
itations of current AI architectures, MACI enables struc-
tured decision-making and real-time adaptability. Although
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personalization remains a challenge, domain-specific con-
straints should be managed dynamically instead of hard-
coded into the MACI architecture. Future research should
focus on structured benchmarking, logic refinement, and
context-aware adaptation mechanisms to further the evolu-
tion of MACI.

B. Validation and Recovery Protocols
The validation protocol implements a multi-stage process
for ensuring state consistency. When any agent proposes
a state change, the validation agent initiates a sequence of
checks:

validate(st → st+1) =

{
true if all checks pass
false if any check fails

(6)

The protocol begins with pre-validation. Before a state tran-
sition starts, the validation agent queries relevant agents
about preconditions. For a travel booking, temporal agent
verifies the proposed times fit within existing schedules. Spa-
tial agent confirms the physical feasibility of movements
between locations. Role agent checks if all actors can per-
form their assigned functions.

During the transition, the protocol maintains atomic opera-
tions. The validation agent tracks changes across all state
dimensions, ensuring partial updates cannot create incon-
sistent states. If the temporal agent approves a flight time
but the resource agent finds insufficient seats, the entire
transition fails and rolls back.

Post-validation examines the resulting state. The validation
agent verifies that all constraints remain satisfied after the
change. Common sense agent reviews the new state for
practical issues that formal checks might miss. Strategy
agent confirms the transition aligns with overall planning
objectives.

When validation fails, the protocol triggers a structured
recovery process:

recover(st, sfailed)→ svalid (7)

Recovery begins by logging the failure cause and violated
constraints. The strategy agent then works with domain
agents to generate alternative proposals that satisfy the con-
straints. This might involve relaxing non-critical constraints
or exploring different approaches to meet the planning ob-
jectives.

B.1. Operations Research Techniques in Validation
Protocols

The validation protocols described above align closely with
established methods in operations research (OR). Some
relevant techniques include:

• Constraint Programming (CP): Focuses on solving
combinatorial problems by enforcing constraints, en-
suring consistency across dimensions such as temporal,
spatial, and resource availability (Rossi et al., 2006).

• Mixed-Integer Linear Programming (MILP): Opti-
mizes decision variables subject to linear constraints
and objective functions, often used in scheduling and
resource allocation (Wolsey & Nemhauser, 1998).

• Network Flow Algorithms: Validates feasibility and
optimizes flows in networks by ensuring capacity, tim-
ing, and availability constraints are satisfied (Ahuja
et al., 1993).

• Dynamic Programming (DP): Decomposes problems
into sequential subproblems, useful for validating pro-
cesses like inter-terminal walking or luggage claiming
time (Bellman, 1957).

• Monte Carlo Simulation: Simulates scenarios
to validate feasibility and robustness under uncer-
tainty (Metropolis & Ulam, 1949).

• Robust Optimization: Focuses on solutions that re-
main feasible under uncertainty, ensuring plans adapt
to disruptions (Ben-Tal & Nemirovski, 2009).

Integration in Multi-Agent Systems The validation
agent also employs techniques from multi-agent systems,
such as:

• Blackboard Systems: A shared workspace for collab-
orative validation by different agents, ensuring global
consistency (England & Engelmore, 1987).

• Consensus Protocols: Used for distributed validation,
where agents negotiate to ensure all constraints are
met (Ren & Beard, 2005).

By combining these OR techniques with agent-based sys-
tems, the validation protocol ensures comprehensive and
adaptive checks for workflow consistency. Future work can
explore integrating heuristic methods, such as genetic algo-
rithms or simulated annealing, to further enhance recovery
processes.

C. MACI Additional Design Considerations
C.1. Cross-Domain Generalization

While the state space dimensions—Who, Where, When,
What, and Why—are broad enough to cover diverse do-
mains, additional customization may be required for unique
applications. This section examines how MACI generalizes
across domains like financial planning, healthcare logistics,
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and supply chain optimization. The travel planning example
is illustrative, emphasizing how MACI dynamically adapts
state spaces and agents to domain-specific requirements.

C.2. Dynamic Agent Registration and Evolution

This section explores how agents are dynamically developed,
trained, and validated for new tasks. It discusses mecha-
nisms for evaluating new agents and integrating them into
the repository without retraining the entire system, ensuring
scalability and adaptability.

C.3. Scalability and Resource Efficiency

As the number of agents and task complexity grows, MACI
employs strategies to manage communication overhead and
optimize agent interactions. This section details techniques
for clustering agents and hierarchical coordination to main-
tain scalability.

C.4. Empirical Evaluation Across Domains

To demonstrate MACI’s adaptability, this section presents
empirical results from applying the framework to multiple
domains. Examples include financial portfolio management,
urban traffic planning, and hospital resource allocation, high-
lighting MACI’s advantages over state-of-the-art systems.

C.5. Challenges and Future Directions

While MACI addresses many limitations of LLM-based
planning, challenges remain in real-time coordination, im-
plicit knowledge integration, and robust recovery mecha-
nisms. This section proposes future research directions to
enhance MACI’s performance and applicability to novel
tasks.

D. Additional Tables and Figures
D.1. Case Study Tables

Table 5. GPT4o Revised Thanksgiving Schedule. Hazard! No one
home watch oven between 3:00pm and 4:00pm.

Time Task Assigned

2:00pm Turkey placed in oven (4-hour cooking time begins) Sarah
3:00pm Michael arrives home Michael

Michael departs to pick up Emily from airport Michael
3:00pm X Sarah departs to pick up Grandma Sarah
3:30pm Arrive at Grandma’s house Sarah
4:00pm Arrive at airport for Emily’s pickup Michael

Sarah home with Grandma -
James’s flight lands James
Begin side dish preparation Sarah

4:30pm James completes car rental process James
5:00pm Michael returns home with Emily -
5:30pm James arrive home -
6:00pm Thanksgiving dinner served Everyone

D.2. Notation

Table 6 presents all symbols used throughout this paper.

Table 6. Symbol Definitions
Symbol Definition Symbol Definition

Basic Sets
O Planning objectives P Available people
CE Explicit constraints CI Implicit constraints
M Performance metrics Q Role qualifications
Workflow Components
W Workflow network N Roles (nodes)
E Dependencies (edges) A Agent repository
ni Individual role eij Role dependency
Agent Functions
frole Role-agent mapping fedge Edge-agent mapping
V (·) Validation function dist(·) Capability distance
maprole Role extraction mapedge Dependency extrac-

tion
Optimization
A∗

n Selected node agents A∗
e Selected edge agents

W∗ Optimal workflow V ∗ Best validation score

D.3. State Space Dimensions and Description
Table 7. State Space Dimensions and Components

Dimension Core Components Example States
Who
(Actors)

• Actor ID
• Current Roles
• Role Constraints
• Role Changes

• Driver vs Passenger
• Supervisor vs Worker
• Buyer vs Seller
• Multiple role conflicts

Where
(Location)

• Current Position
• Target Location
• Transition Points
• Access Rules

• Physical locations
• Virtual positions
• State transitions
• Boundary constraints

When
(Time)

• Time Points
• Duration
• Deadlines
• Probability

• Event timestamps
• Process duration
• Completion times
• Delay likelihood

What
(Resources)

• Methods
• Requirements
• Constraints
• Costs

• Tools/Vehicles
• Tickets/Permits
• Capacity limits
• Time-money trade-offs

Why
(Logic)

• Rationale
• Dependencies
• Risks
• Alternatives

• Decision basis
• Causal chains
• Failure modes
• Backup plans

D.4. Example Common Agents

1. Role Manager Agent (Who): Tracks actors, their roles,
and their associated constraints, ensuring that all role-
based requirements are satisfied.

2. Spatial Agent (Where): Manages geographic and
location-based constraints, verifying transitions between
physical or virtual locations.

3. Temporal Agent (When): Handles scheduling, timing, and
deadlines, ensuring alignment with temporal constraints.
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4. Resource Agent (What): Tracks real-world resources such
as tools, vehicles, or financial instruments, managing
capacity, availability, and associated costs.

5. Reasoning and Explanation Agent (Why): Maintains the
rationale behind decisions, dependencies, and alternative
plans, enabling consistent alignment with objectives and
providing explanations for outcomes.

6. Common Sense Agent: Identifies implicit constraints,
integrates practical knowledge, and ensures plans align
with real-world considerations.

7. Constraint Validation Agent: Ensures that all constraints
are satisfied and that proposed plans remain feasible.

8. Plan Evaluation Agent: Assesses the effectiveness of
plans against predefined metrics and objectives.

9. What-If Testing Agent: Evaluates plan robustness by sim-
ulating alternative scenarios and analyzing their impact.

10. Compliance and Safety Agent: Monitors adherence to
safety standards, ethical principles, and regulatory frame-
works.

E. MACI Planner Algorithm

Algorithm 1MP: Planner for Planning a Plan
input Objectives O, explicit constraints CE , agent pool A,

people P , metricsM
output Optimized workflow W∗ = (N , E) (Eq. 1)

// Phase 1: Network Construction
1. Extract roles N from O (Eq. 2)
2. Identify dependencies E from CE (Eq. 3)
// Phase 2: Agent Assignment
3. Assign agents to nodes: ∀n ∈ N , select αn ∈ An (Eq.
4)
4. Assign agents to dependencies: ∀eij ∈ E , select
αij ∈ Ae (Eq. 5)
// Phase 3: Iterative Refinement
while improvement in V (W,M) do

for all n ∈ N do
Update role-person mappings frole(n,P)

end for
for all e ∈ E do

Verify dependencies via assigned edge agents
end for
if V (Wnew,M) > V (Wcurrent,M) then
Wcurrent ←Wnew

end if
end while
return W∗ = Wcurrent

F. Traveling Salesman Problem Experiment
F.1. General Problem Specification

The TSP requires finding the shortest possible route visiting
N locations exactly once, returning to the start:

• Inputs: N locations, distance matrix D[N][N]
• Output: Optimal tour T minimizing total distance
• Constraints: Each location visited once, return to start

Computational Complexity - Brute Force For N loca-
tions:

• Number of possible tours = (N-1)!/2
• Time complexity = O(N!)
• Space complexity = O(N2)

Solution Methods
1. Exact Methods: Representative methods are Branch

and Bound (Land & Doig, 1960), Dynamic Program-
ming (Bellman, 1962), and Integer Linear Programming
(Dantzig et al., 1954).

2. Heuristics: Methods include Nearest Neighbor, In-
sertion Methods, and Christofides Algorithm (3/2-
approximation) (Christofides, 1976).

3. Meta-heuristics: This category includes Genetic Algo-
rithms (Holland, 1992), Simulated Annealing (Kirk-
patrick et al., 1983), and Ant Colony Optimization
(Dorigo & Stützle, 2004).

F.2. W∗: MACI Generated Planner for TSP

Node Components (N) For TSP with n locations:

N = {nroute, ndist, nvalid}, where (8)

- nroute: Route generation role
- ndist: Distance calculation role
- nvalid: Solution validation role

Edge Dependencies (E)

E = {espatial, esequence, ecomplete} where (9)

- espatial: Distance constraints between locations
- esequence: Visit order constraints
- ecomplete: Tour completion requirements

Agent Assignments

Node Agents (An):
• Route Generation Agent: Generates candidate tours
• Distance Calculator Agent: Computes tour lengths
• Solution Validator Agent: Verifies tour validity

Edge Agents (Ae):

14
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• Spatial Constraint Agent: Monitors distance feasibility
• Sequence Monitor Agent: Ensures valid visit order
• Completion Checker Agent: Verifies tour completeness

Algorithm Selection Based on the size of the problem, an
algorithm is selected to balance performance trade-offs and
mitigate the exponential computational cost of the brute-
force method.

Validation Function

V (W,M) =

{
−∞ if constraints violated
−tour_length if tour valid

(10)

F.3. Experiments, From Small to Large N

1. N=5: Establish ground truth via brute force
2. N=10,20,100: Test LLM performance degradation
3. Metrics:

• Solution quality vs optimal
• Computation attempts before giving up
• Error recognition capability

F.3.1. SMALL CAMPUS TOUR (N=5)

Plan an optimal route for campus tour guide visiting 5 key
locations:

• A: Admissions Office (start/end)
• B: Library
• C: Student Center
• D: Science Building
• E: Sports Complex

Distance Matrix (minutes)

D =


0 5 8 4 7
5 0 6 3 8
8 6 0 5 4
4 3 5 0 6
7 8 4 6 0

 (11)

Constraints
• Tour starts/ends at Admissions (A)
• Each location visited exactly once
• Total possible routes: (5-1)!/2 = 12
• Optimal solution can be verified by hand

3.1.1. W∗ Workflow Components

Node Components (N)
• nroute: Generates permutations starting/ending at A.
• ndist: Computes tour length using distance matrix D.
• nvalid: Checks tour validity (start/end at A, no repeats).

Edge Dependencies (E)
• espatial: Enforces distance constraints from D.

• esequence: Ensures visit order consistency.

• ecomplete: Validates all 5 locations are visited.

Agent Assignments
• Node Agents:

– Route Generation Agent (handles nroute)
– Distance Calculator Agent (handles ndist)
– Solution Validator Agent (handles nvalid)

• Edge Agents:
– Spatial Constraint Agent (enforces espatial)
– Sequence Monitor Agent (enforces esequence)
– Completion Checker Agent (enforces ecomplete)

Selected Algorithm Brute-force.

Validation Function

V (W,M) =

{
−∞ if constraints violated
−tour_length if tour valid

3.1.2. Solution Steps

Step 1: Problem Parsing
• Input: 5 locations with distance matrix D.

• Initialize node/edge agents and constraints.

Step 2: Route Generation (nroute Agent)
• Generate all valid permutations: (5−1)!

2 = 12 routes.

• Example permutations:
– A→ D → B → C → E → A

– A→ B → D → C → E → A

Step 3: Distance Calculation (ndist Agent)
• Compute total time for each route using D.

Step 4: Solution Validation (nvalid Agent)
• Check all routes for:

– Start/end at A (e.g., invalid route: A→ B → C →
D → E → B).

– No duplicate visits.

Step 5: Edge Agent Validation
• Spatial Constraint Agent: Verify Di,j matches edge

weights.

• Sequence Monitor Agent: Confirm no backtracking
(e.g., B → D allowed; D → B invalid unless part
of loop).
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Step 6: Apply Validation Function
• Assign V = −∞ to invalid routes.
• Assign V = −tour_length to valid routes.
• Identify minimal V = −24 (i.e., maximal tour length

24 mins).

3.1.3 Solution

Optimal tour time: 24 minutes, achieved by three routes:
• A→ D → B → C → E → A

• A→ B → D → C → E → A

• A→ E → C → B → D → A

F.3.2. LARGE CAMPUS TOUR (N=10)

Plan an optimal route for a guided tour through 10 locations:

• Locations: A (Admissions), B (Library), C (Student
Center), ..., J (Sports Complex)

• Distance Matrix: Asymmetric travel times (minutes)

D =



0 12 8 15 9 14 7 11 10 6
10 0 7 14 6 16 9 13 5 8
9 5 0 11 8 12 10 7 15 4
14 8 12 0 10 9 13 6 11 7
7 13 6 9 0 8 5 12 14 10
11 9 15 8 12 0 7 10 13 5
5 7 10 6 11 9 0 8 12 15
8 14 4 10 7 13 6 0 9 11
12 6 9 7 15 10 8 5 0 14
9 10 7 13 5 11 14 8 12 0



Algorithm Selection Based on the size of the problem,
MP selected the Ant Colony Optimization (Dorigo & Stüt-
zle, 2004) algorithm to achieve at least a 4x speedup. For
N ≥ 10, an approximate method is recommended.

3.2.1. ACO METHOD

Parameters
• 100 ants, 50 iterations, and ρ = 0.1 evaporation
• α = 1 (pheromone weight), and β = 2 (heuristic weight)

The termination criteria can be modified to stop the algo-
rithm if no meaningful improvement is observed after k
consecutive iterations.

Algorithm
1: Initialize τij ← 1.0, ηij ← 1/Dij

2: for 50 iterations do
3: for all 100 ants do
4: Build tour using Pij =

[τij ]
1[ηij ]

2∑
[τik]1[ηik]2

5: Record tour length Lk

6: end for
7: Evaporate pheromones: τij ← 0.9τij
8: Deposit pheromones: τij ← τij +

∑
10
Lk

9: Track best tour
10: end for

3.2.2. PERFORMANCE COMPARISON

The goalpost is the optimal time of 60 minutes. Table 8
compares six different configurations, and three of the six
achieve the optimal answer. Although TSP is a relatively
simple scheduling problem with just one actor and no paral-
lel execution, the benefit of havingMP to validate results
is still helpful to Glaude and GPT4o.

When asked to solve the problem without MP , Glaude
and GPT4o initially chose brute force, then switched to an
approximation method without thorough deliberation (or
perhaps they did, but did not output their reasoning process).
However, DeekSeek picked Held-Karp, a computationally
expensive method, even more expensive than brute force,
arguing that the absolute computation time for N = 10
is only 0.2 seconds. MP was more deliberate, opting for
brute force when N = 5 and ACO for N = 10.

F.4. TSP Experiment Conclusion

This simple task demonstrates that MP can be valuable
for monitoring the execution process, validating the correct-
ness of intermediate results, and suggesting more efficient
algorithmic approaches.

G. Experiment Details: Meta-Planning for the
Thanksgiving Dinner Task

The problem statement remains consistent with Section 3,
with W∗ generated by MP to enhance constraints and
dependencies. Planning performance is compared across
four configurations: DeepSeek, GPT4o, DeepSeek +MP ,
and GPT4o +MP .

G.1. Phase 1: Network Construction

G.1.1. NODE (ROLE) SPECIFICATIONS

First, meta-planner MP extracts roles (N ) with their re-
quired qualifications:

• ncook: capability to prepare dinner

• ndriver1: capability to drive, pick up from airport

• ndriver2: capability to drive, pick up grandma

• nsupervisor: capability to monitor oven
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Table 8. Comparison of Planners and Their Performance Characteristics. MP provides validation to improve accuracy.
Planner Best Results Algorithm Iters. Advantages Limitations
Claude 92 → 66 mins Nearest

Neighbor
3 Efficiently implements

greedy heuristic approach
Makes data reading errors,
compromising solution ac-
curacy

GPT4o 75 → 68 mins Genetic 3 Identifies effective termina-
tion conditions

Unable to implement exact
algorithms like Held-Karp

DeepSeek 60 mins Held-Karp 1 Implements optimal algo-
rithm correctly

None observed for this
problem size

MP + Claude 66 → 60 mins Ant Colony
Optimiza-
tion

2 Provides validation and sug-
gests iteration increases for
improvement

Requires external guidance
for algorithm selection and
parameter tuning

MP + GPT4o 60 mins Ant Colony
Optimiza-
tion

1 Achieves optimal solution
with precise execution

Requires more computa-
tional resources with larger
ant population and iteration
count

MP + DeepSeek 60 mins Ant Colony
Optimiza-
tion

1 Combines efficient algo-
rithm selection with opti-
mal parameter tuning

None significant for given
problem

G.1.2. EDGE (DEPENDENCY) SPECIFICATIONS

Next,MP identifies dependencies (E) between roles:

E = {etemporal, espatial, esafety} (12)

The critical dependencies include:
• etemporal: - Turkey (4 hours) must finish by 6:00 PM -

Side dishes (2 hours) must finish by 6:00 PM - Airport
pickups must align with landing times

• espatial: - Driver-passenger location matching - Travel
time constraints between locations

• esafety: - Continuous oven supervision requirement

G.2. Phase 2: Agent Assignments

After constructing the network structure,MP selects and
assigns agents to monitor both the roles and dependencies.

G.2.1. NODE (ROLE) AGENT ASSIGNMENT

For each role,MP selects monitoring agents with the re-
quired capabilities:

frole : N → A (13)

The role monitoring agents include:
• Cook Monitor: Tracks cooking timeline, coordinates

meal components

• Driver Monitor: Validates driver availability

• Supervisor Monitor: Ensures oven supervision

• Resource Monitor: Manages vehicle assignments and
actor schedules

G.2.2. EDGE (DEPENDENCY) AGENT ASSIGNMENT

For the identified dependencies,MP assigns specialized
monitoring agents:

fedge : E → A (14)

Dependencies require these monitoring agents:
• Temporal Agent: Manages timing constraints (cooking

durations, travel times, arrival schedules)

• Spatial Agent: Tracks location constraints (airport-
home-grandma routes)

• Safety Agent: Ensures oven supervision constraint re-
mains satisfied

The resulting agent assignments create a complete monitor-
ing system where:

• Role agents track individual actor assignments and qual-
ifications

• Edge agents monitor interactions and dependencies be-
tween roles

• All agents coordinate to maintain global constraint satis-
faction

Table 9. Node (Role) Monitoring Agent Requirements
Agent Input Protocol Output Protocol
Cook
Monitor

Role: cook
Qualifications: skills
Time: prep and cook

Status: progress
Alerts: timing issues!
Updates: completed?

Driver
Monitor

Role: driver
Qs: license, rest
Where: current GPS

Status: availability
Alerts: fatigue warnings
Updates: new GPS

Supervisor
Monitor

Role: supervisor
Location: house
Duration: cover time

Status: covered?
Alerts: coverage gaps!
Updates: role transitions
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Table 10. Edge (Dependency) Monitoring Agent Requirements

Agent Input Protocol Output Protocol
Temporal Start times

Durations
Deadlines
Buffer requirements

Schedule conflicts
Timing violations
Schedule updates

Spatial Locations
Routes
Travel times
Traffic conditions

Route violations
Location conflicts
Path updates

Safety Critical constraints
Resource states
Coverage requirements

Safety violations
Resource conflicts
Mitigation plans

G.2.3. COMMON SENSE CONSTRAINT ANALYSIS
(PERFORMED BY AN LLM)

A common sense agent identifies the following implicit
constraints that can affect Thanksgiving dinner planning.
This list is generated by Claude given the problem statement.

• Physical Processing Times:
– Airport luggage claim: 30 minutes
– Car rental procedures: 30 minutes
– Holiday traffic variations
– Winter weather considerations

• Human Factors:
– Driver fatigue after long trips
– Cooking preparation overhead
– Multi-tasking limitations
– Task switching delays
– Required rest periods

• Resource Dependencies:
– Vehicle passenger capacity
– Oven temperature management
– Kitchen workspace limits
– Shared resource coordination

• Social Considerations:
– Personal preferences for interactions
– Family dynamics in assignments
– Post-travel guest comfort
– Host preparation requirements

G.2.4. COMMON SENSE CONSTRAINT ANALYSIS AND
VERIFICATION (HUMAN IN THE LOOP)

The common sense constraints identified above require dif-
ferent verification approaches:

Agent-Required Information These constraints need spe-
cialized agents to verify and quantify:

• Airport Operations

– United Airlines’ average luggage delivery time at
BOS Terminal B

– Terminal B to rental car center: shuttle schedule,
walking options

– Historical flight delay patterns for November at
BOS

• Weather and Traffic
– Boston weather forecast for the event date
– Historical traffic patterns on Thanksgiving days
– Impact on airport-city-suburb travel times

• Task Dependencies
– Kitchen workflow analysis for parallel cooking

tasks
– Resource contention in meal preparation
– Critical path identification in cooking timeline

Human Verification Certain constraints require explicit
human input to ensure that the planning process takes into
account subtle interpersonal and individual considerations.
These include:

• Family Dynamics
– Preferred pickup arrangements for Grandma (e.g.,

Grandma loves to have a grandson surprise her).
– Optimal relationship-based task pairings.
– Social comfort factors in assignments (e.g., Sarah

and Grandma do not work together in the kitchen).
• Personal Capabilities

– Individual cooking experience levels.
– Driver comfort with airport navigation.
– Multi-tasking abilities of participants.

This separation ensures that agents focus on collecting quan-
tifiable data while humans provide essential social and per-
sonal insights.MP can then integrate both types of infor-
mation into the final workflow design.

G.3. Agent Requirements and Assignments

TheMP requires two categories of agents.MP specifies
their requirements in the protocol buffer format in Table 9
for the nodes and Table 10 for the edges, respectively.

Each agent must implement these protocols to participate
in the workflow. The meta-planner selects agents from the
pool based on their ability to satisfy these interface require-
ments. During execution, agents communicate through these
standardized protocols while maintaining their specialized
monitoring functions.

G.4. Monitoring Protocols and Dynamic Adjustments

The workflow monitoring operates through a hierarchical
protocol system that enables both routine supervision and
dynamic adjustments.
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Table 11. Complete Workflow Specification: Nodes, Edges, and Agent Assignments
Type Component Requirements Agent Protocol Dependencies
Node Components (Roles)
Node Cook Role

(Sarah)
- Turkey (4hr)
- Side dishes (2hr)
- Kitchen management
- Time management

Input: schedule, resources, recipes
Output: task progress, completion
Monitor: kitchen_state() → status
Validate: cooking_constraints()

Connected to:
- Supervisor
- Resource edges

Node Driver1
(James/Michael)

- Valid license
- Airport navigation
- Car rental capable
- Rest state adequate

Input: flight times, routes
Output: location, ETA
Monitor: driver_state() → status
Validate: driver_constraints()

Connected to:
- Airport pickup
- Travel edges

Node Driver2
(Flexible)

- Valid license
- Local navigation
- Availability window
- Rest state adequate

Input: pickup schedule, route
Output: location, ETA
Monitor: driver_state() → status
Validate: driver_constraints()

Connected to:
- Grandma pickup
- Travel edges

Node Supervisor
(Flexible)

- Home presence
- Oven monitoring
- Safety awareness
- Time commitment

Input: cooking schedule, rules
Output: supervision status
Monitor: safety_state() → status
Validate: safety_constraints()

Connected to:
- Cook role
- Safety edges

Edge Components (Dependencies)
Edge Temporal - Schedule tracking

- Buffer management
- Sequence logic
- Critical path

Input: timestamps, durations
Output: schedule conflicts
Monitor: schedule_state() → alerts
Optimize: timeline_adjust()

Connects:
- All roles
- All activities

Edge Spatial - Location tracking
- Route optimization
- Traffic updates
- Distance constraints

Input: locations, routes
Output: travel updates
Monitor: location_state() → alerts
Optimize: route_adjust()

Connects:
- Drivers
- Locations

Edge Resource - Vehicle allocation
- Kitchen resources
- People availability
- Capacity limits

Input: resource demands
Output: allocation status
Monitor: resource_state() → alerts
Optimize: resource_adjust()

Connects:
- All roles
- All resources

Edge Safety - Oven monitoring
- Driving safety
- Food safety
- Critical rules

Input: safety requirements
Output: violation alerts
Monitor: safety_state() → alerts
Enforce: safety_rules()

Connects:
- All roles
- Critical tasks

Basic Monitoring Protocol Each agent maintains a con-
tinuous monitoring cycle:

monitor : State→ {normal, warning, violation} (15)

For example, the temporal agent tracks schedule adherence:

∆t = tplanned − tactual


normal if |∆t| < buffer
warning if buffer ≤ |∆t| < τ

violation if |∆t| ≥ threshold τ
(16)

Dynamic Adjustment Mechanism When deviations oc-
cur, the system initiates a three-phase response:

1. Impact Assessment:

impact(e) =
∑

n∈affected(e)

severity(n)× urgency(n) (17)

2. Solution Generation:

S∗ = argmin
s∈Solutions

{cost(s)|feasible(s)} (18)

3. Coordination Protocol:

update : (Wcurrent, S
∗)→Wnew (19)

For instance, if James’s flight is delayed:
• Spatial agent detects arrival time change
• Temporal agent calculates ripple effects
• Role agents evaluate reassignment options
• Safety agent verifies continued supervision coverage

The meta-plannerMP coordinates these responses while
maintaining global constraint satisfaction.

G.5. Integrated Workflow Network

Table 11 presents the resulting workflow network W∗,
which includes all nodes and edges, and their assigned
agents and protocols.

1. Role Nodes:
• Cook1: Sarah (primary) or Grandma (if at home) with

4-hour turkey + 2-hour sides
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• Driver1: James (after car rental) or Michael
• Driver2: Available person after initial pickups
• Supervisor: Must be present while turkey cooks

2. Dependencies:
• Temporal: Verified airport processing + travel times
• Spatial: Traveling routes with traffic consideration
• Safety: Continuous oven supervision requirement

3. Agent Monitoring:
• Temporal Agent: Schedules with verified buffer times
• Spatial Agent: Real-time location and route mgmt.
• Safety Agent: Role coverage for supervision

G.6. Agent Interaction Specifications

Please, see Table 12.

G.7. New Problem Statement Revised with W∗

Given the W∗ generated by MACI’s meta-planner MP ,
the Thanksgiving Dinner Planning problem statement stated
at the beginning of this section is revised as follows:

Initial Setup:

• Mom (Sarah) is hosting Thanksgiving dinner at 6:00 PM
in Boston. The following family members are traveling:

• Dad (James) flying from San Francisco, landing at 1:00
PM Eastern time.

• Sister (Emily) flying from Chicago, landing at 2:30 PM
• Brother (Michael) driving from New York, estimated

arrival 3:00 PM at home
• Grandma is healthy and needs to be picked up from her

home in suburban Boston

Critical Dependencies:

• James must rent a car after landing
• Emily must be picked up from airport, no other trans-

portation options are allowed
• Turkey needs 4 hours to cook, someone must be in the

house once turkey is in oven for safety
• Side dishes require 2 hours of preparation, which can

overlap with turkey
• Travel time between home and Boston airport is one

hour (one-way)
• Travel between Boston airport and grandma home is one

hour (one-way)
• Travel between home and grandma home 30 minutes

(one-way)

* New Dependencies:
• The airport luggage pickup time after landing is 30 min-

utes.
• Renting a car takes 30 minutes.

• One person can simultaneously prepare turkey and side
dishes.

• Grandma prefers Michael to pick her up, provided that
it does not cause the dinner time delay.

• Grandma and Sarah prefer not to cook together in the
kitchen.

• Traffic congestion is not factored into current planning.

Planning Question Set:

1. All tasks and dependencies must be strictly observed in
the plan, or the plan fails.

2. Dinner time is strictly at 6:00 PM, all tasks must be
completed by then (redundancy).

3. Account for the idle time of each person.

4. The schedule consists of three columns: time, task, and
assigned person(s).

G.8. Experiment #1: Sequential Planner

Once after the original plan was revised byMP to include
more specific details, clarify ambiguous explicit constraints,
and define implicit constraints, the performance of the three
LLMs used in the experiment improved significantly. When
the augmented plan W∗ was input into DeepSeek, GPT4o,
and Claude, each model successfully generated a feasible
plan within two to three iterations. (The case study in Sec-
tion 3 shows that DeepSeek was confusing and GPT4o
repeatedly committed constraint violations.)

G.8.1. RESULTS: DEEPSEEK WINS

Upon closer examination of the number of iterations re-
quired to produce a feasible plan, DeepSeek and Claude
each required one revision (two iterations), while GPT4o
required two revisions (three iterations). In terms of schedul-
ing quality, measured by slack time, total driving distance,
and load balance, DeepSeek (Table 13) outperformed both
Claude (Table 15) and GPT4o (Table 14). DeepSeek opti-
mized time and effort by scheduling James to wait at the
airport for 30 minutes to pick up Emily. In contrast, Claude
scheduled James to drive home and then return to the airport
to pick up Emily, resulting in unnecessary travel. GPT4o
assigned James to return home and scheduled Michael to
first pick up Emily and then proceed to pick up Grandma,
leading to a less balanced load. A better solution to reduce
travel time would have been to schedule Michael to pick
up Emily first and then drive with her to Grandma’s home
to pick up Grandma, allowing all three to return home to-
gether. This adjustment would save 30 minutes of driving
time and improve Grandma’s overall happiness to see both
grandchildren.
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Table 12. Agent Interaction Protocols and State Transitions
Interaction Type Protocol State Transitions Validation Rules
Node-to-Node Interactions
Cook↔ Supervisor Protocol: cooking_handoff()

Message: (task, duration, reqs.)
States: prep → cooking → comp.
Trigger: task_state_change()

Validate: coverage()
Alert: coverage_gap()

Driver1 ↔ Driver2 Protocol: pickup_handoff()
Message: (location, time, passenger)

States: available → enroute → comp.
Trigger: location_change()

Validate: timing_feasible()
Alert: schedule_conflict()

Edge Agent Operations
Temporal Agent Protocol: schedule_monitor()

Message: (event, time, dependencies)
States: scheduled → active → comp.
Trigger: time_milestone()

Validate: timing_feasible()
Alert: delay_impact()

Spatial Agent Protocol: location_track()
Message: (actor, position, dest.)

States: idle → moving → arrived
Trigger: position_update()

Validate: route_feasible()
Alert: travel_delay()

Table 13. DeepSeek’s Plan, Two Iterations
Time Task Assigned
1:00 PM James lands at Boston James
1:00–1:30 PM James picks up luggage James
1:30–2:00 PM James rents a car James
2:00 PM Turkey in oven (4 hours; re-

quires monitoring)
Sarah

2:00–3:00 PM James waits at airport (idle) James
2:30 PM Emily lands at Boston Emily
2:30–3:00 PM Emily waits for luggage Emily
3:00 PM James picks up Emily James
3:00 PM Michael arrives home Michael
3:00 PM Michael departs to Grandma Michael
3:30 PM Michael picks up Grandma Michael
3:30–4:00 PM Michael drives back home

with Grandma
Michael

3:00–4:00 PM James drives Emily home (air-
port to home: 1 hour)

James

4:00 PM James and Emily home James
4:00 PM M. and Grandma home Michael
4:00–6:00 PM Sarah prepares side dishes Sarah
6:00 PM Thanksgiving dinner begins All

Table 14. GPT4o’s Plan, Three Iterations
Time Task Assigned
1:00 PM Land at BOS Airport James
1:00-1:30 PM Luggage pickup James
1:30-2:00 PM Rent car James
2:00 PM Start turkey Sarah
2:00-3:00 PM Drive home James
2:30 PM Land at BOS Airport Emily
3:00 PM Arrive home Michael
3:00-4:00 PM Drive to airport, pick up Emily Michael
4:00-5:00 PM Return home with Emily Michael
5:00-5:30 PM Drive to Grandma’s Michael
5:30-6:00 PM Return with Grandma Michael
4:00-6:00 PM Prepare side dishes Sarah
6:00 PM Dinner served All

G.8.2. OBSERVATIONS ON ERRORS

Handling Long Dependencies Complex scheduling prob-
lems reveal cascading errors when dependencies overlap.
Key constraints, especially multi-factor dependencies, often
get dropped during iterative problem-solving.
Reason: Cognitive load limits simultaneous constraint track-

Table 15. Claude’s Plan, Two Iterations
Time Task Assigned
1:00 PM Land at BOS Airport James
1:00-1:30 PM Luggage pickup James
1:30-2:00 PM Rent car James
2:00 PM Start turkey Sarah
2:00-3:00 PM Drive home James
2:30 PM Land at BOS Airport Emily
3:00 PM Arrive home Michael
3:00-4:00 PM Drive to airport, pick up Emily James
4:00-5:00 PM Return home with Emily James
4:30-5:00 PM Drive to Grandma’s Michael
5:00-5:30 PM Return with Grandma Michael
4:00-6:00 PM Prepare side dishes Sarah
6:00 PM Dinner served All

ing, making exhaustive verification difficult in single passes.
Solution Framework:
• Isolate and enumerate atomic task dependencies.
• Verify global constraint satisfaction.
• Implement systematic conflict resolution.

Stale Memory and Iterative Revisions Iterative solu-
tions can propagate errors due to partial constraint resets.
Reason: Over-reliance on previous solutions without full
constraint re-evaluation leads to compounding errors.
Relation to Gödel’s Incompleteness:
• Systems capable of arithmetic contain unprovable truths.
• Similarly, inherited errors hinder consistent solutions.
• Clean-state resets necessary for error prevention.

Implementation Strategy Reset to baseline state for each
iteration, fully re-evaluating all constraints.
Core Challenges:
• Nested dependency management.
• Residual error prevention.
• Cross-iteration consistency.

G.9. Experiment #2: Reactive Planner for Flight Delay

At 10:00 AM Eastern time, Sarah is notified that James’s
flight is delayed by three hours, with a new arrival time of
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4:00 PM. Incorporating this unexpected delay,MP gener-
ates a reactive plan, WR.

Early Information Agent Addition The meta-planner
adds an early information agent to monitor upstream events:

fearly : Eupstream → alerts (20)

The agent’s protocol is defined as:

Table 16. Early Information Agent Specification
Component Flight Monitor Impact Analyzer
Input Flight status, depar-

ture logs, weather
Alert details, work-
flow dependencies

Output Alert(event, severity,
delay)

Replan(affected_nodes,
time_window)

This addition allows the workflow to initiate replanning
at the earliest possible moment when upstream changes
occur, significantly enhancing the system’s proactive plan-
ning capability. Since none of the planned elements have
been executed, this reactive planning effectively functions
as proactive planning.

In this experiment, the problem statement remains un-
changed apart from James’s updated arrival time.

Initial Setup (Updated at 10:00 AM):

• Mom (Sarah) is hosting Thanksgiving dinner at 6:00 PM
in Boston. The following family members are traveling:

• Dad (James) flying from San Francisco, landing at 4:00
PM Eastern time [UPDATED].

• Sister (Emily) flying from Chicago, landing at 2:30 PM
• Brother (Michael) driving from New York, estimated

arrival 3:00 PM at home
• Grandma is healthy and needs to be picked up from her

home in suburban Boston

Critical Dependencies:

• James must rent a car after landing
• Emily must be picked up from airport, no other trans-

portation options are allowed
• Turkey needs 4 hours to cook, someone must be in the

house once turkey is in oven for safety
• Side dishes require 2 hours of preparation, which can

overlap with turkey
• Travel time between home and Boston airport is one

hour (one-way)
• Travel between Boston airport and grandma home is one

hour (one-way)
• Travel between home and grandma home 30 minutes

(one-way)

* New Dependencies:

• The airport luggage pickup time after landing is 30 min-
utes.

• Renting a car takes 30 minutes.

• One person can simultaneously prepare turkey and side
dishes.

• Grandma prefers Michael to pick her up, provided that
it does not cause the dinner time delay.

• Grandma and Sarah prefer not to cook together in the
kitchen.

• Traffic congestion is not factored into current planning.

Planning Question Set:

1. All tasks and dependencies must be strictly observed in
the plan, or the plan fails.

2. Dinner time is strictly at 6:00 PM, all tasks must be
completed by then (redundancy).

3. Account for the idle time of each person.

4. The schedule consists of three columns: time, task, and
assigned person(s).

G.9.1. RESULTS: DEEPSEEK WINS

None of the LLMs cannot react appropriately to this new
event without clearing their context buffers. As explained in
Appendix G.8.2, this limitation is evident. The key takeaway
is that for future runtime frameworks, we must ensure infras-
tructure support for selectively invalidating stale constraints.
If a workflow is already in execution, completed steps and
assignments cannot be erased or altered. For example, in a
stock-market investment plan, when pertinent news arrives,
MP cannot revert completed nodes or resolved dependen-
cies in WR. For now, we treat the reactive plan as a new
plan, given that no steps have been realized in the real world
by 10:00 AM.

Table 17 presents GPT4o’s plan. There are three severe
constraint violations. Unfortunately, when asked to identify
violations, it answers none. Therefore,MP is stuck without
a feasible plan.

Table 18 depicts Claude’s plan. It violated a couple of
constraints in the first two attempts, but these were minor.
For instance, in the second trial, it planned for Michael’s
round trip to Grandma’s home to take 30 minutes. However,
the key is that Claude can recognize its own error and make
corrections in the next iteration.

When asked to produce an alternate plan to reduce wait
time and improve load balancing, as Michael can suffer
from severe fatigue, an implicit constraint, Claude generates
another feasible plan in Table 19. In this plan, James picks
Emily instead of Michael. Emily has to wait for James’
availability for two hours at the airport.
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Table 17. GPT4o’s Infeasible Plan. Fail to proceed.
Time Task Assigned
10 - 2:00 PM Prep side dishes (2 hours, over-

laps with turkey cooking later)
Sarah

X2:30 - 3:00 PM Pick up Emily from the airport Sarah
X3:00 - 4:00 PM Prep turkey and place it in the

oven (4-hour cooking time)
Sarah

3:00 - 3:30 PM Michael drives to pick up
Grandma

Michael

3:30 - 4:00 PM Drive Grandma home Michael
4:00 - 4:30 PM James lands and gets luggage James
4:30 - 5:00 PM James rents a car James
X5:00 - 5:30 PM James drives home James
5:00 - 6:00 PM Set the table and clean kitchen Emily
5:30 - 6:00 PM Michael helps Grandma settle

in and assists with final prep
Michael

There are clearly other alternatives to improve the schedule
and eliminate Emily’s wait time, but none of the LLMs can
figure that out. For example, using the time between 10:00
am and 1:00 pm, Sarah could have picked up Grandma and
assigned her to cook, allowing Sarah to be available as a
driver.

Table 18. Claude’s Reactive Plan #1, Three Iterations

Time Task Assigned
13:00 Start turkey in oven Sarah
14:00 Start side dishes Sarah
14:30 Land at airport Emily
15:00 Arrive home from NY Michael
15:00 Leave for airport Michael
16:00 Land at airport James
16:00 Pick up Emily Michael
17:00 Arrive home with Emily Michael
17:00 Leave for Grandma Michael
18:00 Arrive home with Grandma Michael
18:00 Arrive home James
18:00 Dinner starts All

DeepSeek offers a clever alternative by routing Michael
directly to the Boston airport without stopping at home first.
This is a pleasant common-sense inference that the other
two LLMs failed to include themselves. (This was supposed
to be provided byMP’s common-sense spatial reasoning,
but it did not.)

However, Michael could drive to Grandma’s home after
picking up Emily. This schedule not only saves 30 minutes
but also makes Grandma happy by allowing her to surpris-
ingly see two grandchildren at the same time.

G.9.2. OBSERVATIONS ON ERRORS

The initial meta-planner failed to recognize a critical oppor-
tunity in early information detection. A flight delay from

Table 19. Claude’s Reactive Plan #2. Michael can rest.
Time Task Person
13:00 Start turkey Sarah
14:00 Start side dishes Sarah
14:30 Land at airport Emily
15:00 Arrive from NY Michael
16:00 Land at airport James
16:30 Leave for Grandma Michael
16:30 Get rental car James
17:00 Pick up Emily James
17:00 Pick up Grandma Michael
17:30 Return home with Grandma Michael
18:00 Arrive with Emily James
18:00 Dinner starts All

Table 20. DeepSeek’s Reactive Plan. Three Iterations. Routining
Michael directly to BOS is smart.

Time Task Assigned
10:00 AM Michael departs New York for

Boston Airport (4-hour drive).
Michael

2:00 PM Start cooking turkey Sarah
2:30 PM Emily lands at Boston Emily
3:00 PM Emily gets her luggage Emily
3:00 PM Michael arrives at Logan air-

port, picks up Emily.
Michael

3:00–4:00 PM Drive Emily home Michael
4:00 PM Michael departs for Grandma Michael
4:00 PM James lands at Boston Airport James
4:00–4:30 PM James picks up luggage James
4:30–5:00 PM James rents car (30 minutes). James
4:30 PM Michael arrives at Grandma’s Michael
5:00 PM Michael & Grandma home. Grandma
5:00–6:00 PM James drives home from BOS James
4:00–6:00 PM Sarah prepares side dishes

(overlaps with turkey).
Sarah

6:00 PM James arrives home. Dinner
served.

All

SFO to BOS becomes known at departure time (10:00 AM
EST) rather than arrival time (1:00 PM EST). An early infor-
mation agent could enable replanning three hours sooner by
monitoring flight departures. To remedy this oversight, the
meta-planner adds an early information agent specification,
detailed in Table 16. DeepSeek was aware of this alert in a
timely manner, but Claude was not.

G.10. Conclusion

Our concluding remark is that we may not be able to rely
on LLMs alone to cover all constraints and react promptly
to various alerts. This reinforces that the MACI architec-
ture is on the right path to address all the aforementioned
limitations of LLMs, some of which cannot be rectified.
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