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ABSTRACT

Diffusion-based generative models achieve SOTA results in mode coverage and
generation quality but suffer from inefficient sampling. Recently introduced dif-
fusion distillation techniques approach this issue by transforming the original
multi-step model into a one-step generator with approximately the same output
distribution. Among these methods, Distribution Matching Distillation (DMD)
offers a suitable framework for training general-form one-step generators, appli-
cable beyond unconditional generation. In this paper, we propose a modification
of DMD, called Regularized Distribution Matching Distillation (RDMD), which
applies to the unpaired image-to-image (I2I) translation problem. To achieve this,
we regularize the generator objective from DMD by adding the transport cost
between its input and output. We validate the method’s applicability in theory by
establishing its connection with optimal transport. Moreover, we demonstrate its
empirical performance in application to several translation tasks, including 2D
examples and I2I between different image datasets, where it performs on par or
better than multi-step diffusion baselines.

1 INTRODUCTION

One of the global problems of contemporary generative modeling consists of solving the so-called
generative learning trilemma (Xiao et al., 2021). It states that a perfect generative model should
possess three desirable properties: high generation quality, mode coverage/diversity of samples
and efficient inference. Today, most model families tend to have only 2 of the 3. Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) have fast inference and produce high-quality
samples but tend to underrepresent some modes of the data set (Metz et al., 2016; Arjovsky et al.,
2017). Variational Autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014) efficiently
produce diverse samples while suffering from insufficient generation quality. Finally, diffusion-based
generative models (Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021; Karras et al.,
2022) achieve SOTA generative metrics and visual quality yet require running a high-cost multi-step
inference procedure.

Satisfying these three properties is essential in numerous generative computer vision tasks beyond
unconditional generation. One is image-to-image (I2I) translation (Isola et al., 2017; Zhu et al., 2017),
which consists of learning a mapping between two distributions that preserves the cross-domain
properties of an input object while appropriately changing its source-domain features to match the
target. Most examples, like transforming cats into dogs (Choi et al., 2020) or human faces into
anime (Korotin et al., 2022) belong to the unpaired I2I because they do not assume ground truth
pairs of objects in the data set. As in unconditional generation, unpaired I2I methods were previously
centered around GANs (Huang et al., 2018; Park et al., 2020; Choi et al., 2020; Zheng et al., 2022),
but now tend to be competed and surpassed by diffusion-based counterparts (Choi et al., 2021; Meng
et al., 2021; Zhao et al., 2022; Wu & De la Torre, 2023). Most of these methods build on top of the
original diffusion sampling procedure and tend to have high generation time as a consequence.

Since diffusion models succeed in both desirable qualitative properties of the trilemma, one could
theoretically obtain samples of the desired quality level given sufficient computational resources. It
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makes the acceleration of diffusion models an appealing approach to satisfy all of the aforementioned
requirements, including efficient inference.

Recently introduced diffusion distillation techniques (Song et al., 2023; Kim et al., 2023b; Sauer et al.,
2023) address this challenge by compressing diffusion models into one-step students with (hopefully)
similar qualitative and quantitative properties. Among them, Distribution Matching Distillation
(DMD) (Yin et al., 2023; Nguyen & Tran, 2023) offers an expressive and general framework for
training free-form generators based on techniques initially introduced for text-to-3D (Poole et al.,
2022; Wang et al., 2024). Free-form here means that the method does not make any assumptions
about the generator’s structure and distribution at the input. This crucial observation opens a large
space for its applications beyond the noise → data problems.

In this work, we introduce the modification of DMD, called Regularized Distribution Matching
Distillation (RDMD), that applies to the unpaired I2I problems. To achieve this, we replace the
generator’s input noise with the source data samples to further translate them into the target. We
maintain correspondence between the generator’s input and output by regularizing the objective with
the transport cost between them. As our main contributions, we

1. Propose a one-step diffusion-based method for unpaired I2I;
2. Theoretically verify it by establishing its connection with optimal transport (Villani et al.,

2009; Peyré et al., 2019);
3. Ablate its qualitative properties and demonstrate its generation quality on 2D and image-to-

image examples, where it obtains comparable or better results than the multi-step counter-
parts.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Song & Ermon, 2019; Ho et al., 2020) are a class of models that sequentially
perturb data distribution pdata with noise, transforming it into a tractable unstructured distribution,
which contains no information about the initial domain. Using this distribution as a prior and reversing
the process by progressively removing the noise yields a sampling procedure from pdata.

A common way to formalize diffusion models consists in defining distribution dynamics
{pt(xt)}t∈[0,T ], obtained by adding an independent Gaussian noise σtε with progressively growing
variance σ2

t to the original data sample x0 ∼ pdata: xt = x0 + σtε.

Conveniently, the equivalent distribution dynamics can be represented via a deterministic counterpart
given by the ordinary differential equation (ODE), which yields the same marginal distributions
pt(xt), given the same initial distribution p0(x0) = pdata(x0):

dxt = −1

2

(
σ2
t

)′ · ∇xt
log pt(xt)dt, (1)

where ∇xt log pt(xt) is called the score function of pt(xt). Equation 1 is also called Probability Flow
ODE (PF-ODE). The ODE formulation allows us to obtain a backward process of data generation
by simply reversing the velocity of the particle. In particular, one can obtain samples from pdata by
taking xT ∼ pT and running the PF-ODE backwards in time, given access to the score function. The
sampling procedure is essentially multi-step, which imposes computational challenges but allows to
control the resources-quality trade-off.

Diffusion models learn score functions ∇xt log pt(xt) of noisy distributions by approximating them
via the Denoising Score Matching (Vincent, 2011) objective:∫ T

0

βt Ep0,t(x0,xt)∥s
θ
t (xt)−∇xt log pt|0(xt|x0)∥2dt → min

θ
, (2)

where βt is some positive weighting function. The minimum in the Eq. 2 is obtained at sθt (xt) =
∇xt log pt(xt). In case of the dynamics defined in the Eq. 1, conditional distributions pt|0(xt|x0)

are equal to N (xt|x0, σ
2
t I), which yields tractable conditional score functions ∇xt log pt|0(xt|x0).
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Given a suitable parameterization of the score network, the DSM objective is equivalent to∫ T

0

βt Ep0,t(x0,xt)∥D
θ
t (xt)− x0∥2dt → min

θ
, (3)

where Dθ
t is called the denoising network (or simply denoiser) and is related to the score network

via sθt (xt) =
(
xt −Dθ

t (xt)
)
/σ2

t . Therefore, training diffusion models involves learning to denoise
images at various noise levels.

2.2 DISTRIBUTION MATCHING DISTILLATION

Distribution Matching Distillation (Yin et al., 2023) is the core technique of this paper. Essentially, it
aims to train a generator Gθ(z) to match the given distribution preal. Its input z is assumed to come
from a tractable input distribution pnoise. Formally, matching two distributions can be achieved by
optimizing the KL divergence between the distribution pGθ of Gθ(z) and the data distribution preal:

KL(pGθ ∥ preal) = Epnoise(z) log
pGθ (Gθ(z))

preal(Gθ(z))
→ min

θ
. (4)

Differentiating it by the parameters θ, using the chain rule, one encounters a summand, contain-
ing the difference sGθ (Gθ(z)) − sreal(Gθ(z)) between the score functions of the corresponding
distributions 1. The pure data score function can be very non-smooth due to the Manifold Hypothe-
sis (Tenenbaum et al., 2000) and is generally difficult to train (Song & Ermon, 2019); therefore, the
authors address this challenge using the diffusion framework. To this end, they relax the original loss
by using an ensemble of KL divergences between distributions, which are perturbed by the forward
diffusion process:∫ T

0

ωt KL
(
pGθ
t ∥ preal

t

)
dt =

∫ T

0

ωt EN (ε|0,I)pnoise(z) log
pGθ
t (Gθ(z) + σtε)

preal
t (Gθ(z) + σtε)

dt. (5)

Here, ωt is a weighting function, pGθ
t and preal

t are the perturbed versions of the generator distribution
and preal up to the time step t. In theory, the minima of Eq. 5 objective coincides(Wang et al., 2024,
Thm. 1) with the original minima from Eq. 4. Meanwhile, in practice, taking the gradient of the new
loss results in the difference sGθ

t (Gθ(z) + σtε)− sreal
t (Gθ(z) + σtε), which can be approximated

using diffusion models.

Given this, authors approximate sreal
t with the pre-trained diffusion model, which we will denote sreal

t
as well with a slight abuse of notation. The whole procedure now can be considered as distillation of
sreal
t into Gθ. At the same time, sGθ

t represents the score of the noised distribution of the generator,
which is intractable and is therefore approximated by an additional «fake» diffusion model sϕt and
the corresponding denoiser Dϕ

t . It is trained on the standard denoising score matching objective with
the generator’s samples at the input. The joint training procedure is essentially the coordinate descent

T∫
0

ωt EN (ε|0,I)pnoise(z) log
pϕt (Gθ(z) + σtε)

preal
t (Gθ(z) + σtε)

dt → min
θ

;

T∫
0

βt EN (ε|0,I)pnoise(z)∥Dϕ
t (Gθ(z) + σtε)−Gθ(z)∥2 dt → min

ϕ
,

(6)

where the stochastic gradient with respect to the fake network parameters ϕ is calculated by back-
propagation and the generator’s stochastic gradient is calculated directly as

ωt

(
sϕt (Gθ(z) + σtε)− sreal

t (Gθ(z) + σtε)
)
∇θGθ(z). (7)

Minimization of the fake network’s objective ensures sϕt = sGθ
t ⇔ pϕt = pGθ

t . Under this condition,
the generator’s objective is equal to the original ensemble of KL divergences from Eq. 5, minimizing
which solves the initial problem and implies pGθ = preal.

1Note that there is one more summand, which contains the parametric score ∇θ log p
Gθ . However, its

expected value is zero (Williams, 1992), and the summand can be omitted.
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2.3 UNPAIRED I2I AND OPTIMAL TRANSPORT

The problem of unpaired I2I consists of learning a mapping G between the source distribution pS and
the target distribution pT given the corresponding independent data sets of samples. When optimized,
the mapping should appropriately adapt G(x) to the target distribution pT , while preserving the
input’s cross-domain features. However, at first glance, it is unclear what the preservation of cross-
domain properties should look like.

One way to formalize this is by introducing the notion of a "transportation cost" c(·, ·) between the
generator’s input and output and stating that it should not be too large on average. In a practical I2I
setting, we can choose c(·, ·) as any reasonable distance between images or their features that we aim
to preserve, such as pixel-wise distance or the difference between embeddings.

Monge optimal transport (OT) problem (Villani et al., 2009; Santambrogio, 2015) follows this
reasoning and aims at finding the mapping with the least average transport cost among all the
mappings that fit the target pT :

inf
G

{
EpS(x)c(x, G(x)) |G(x) ∼ pT

}
, (8)

which can be seen as a mathematical formalization of the I2I task.

Under mild constraints, when pS and pT have densities, the optimal transport map G∗ is bijective,
differentiable and has a differentiable inverse, thus satisfying the change of variables formula
pS(x) = pT (G∗(x))|det (∇G∗(x)) |. This highly non-linear change of variables condition provides
insight into why optimizing Eq. 8 directly is notoriously challenging.

3 METHODOLOGY

3.1 REGULARIZED DISTRIBUTION MATCHING DISTILLATION

Our main goal is to adapt the DMD method for the unpaired I2I between an arbitrary source
distribution pS and target distribution pT . First, we note that the construction of DMD requires
having only samples from the input distribution. Given this, we replace the Gaussian input pnoise by
pS , the data distribution pdata by pT and optimize

L(θ) =
∫ T

0

ωt KL
(
pGθ
t ∥ pTt

)
dt =

∫ T

0

ωt EpS(x)N (ε|0,I) log
pGθ
t (Gθ(x) + σtε)

pTt (Gθ(x) + σtε)
dt, (9)

where pGθ
t and pTt represent, respectively, the distribution of the generator output Gθ(x) and the

target distribution pT , both perturbed by the forward process up to the timestep t.

Optimizing the objective in Eq. 9, one obtains a generator, which takes x ∼ pS and outputs
Gθ(x) ∼ pT , so it performs the desired transfer between the two distributions. However, there are
no guarantees that the input and the output will be related. Similarly to the OT problem (Eq. 8), we
fix the issue by penalizing the transport cost between them. We obtain the following objective

Lλ(θ) =

∫ T

0

ωt KL
(
pGθ
t ∥ pTt

)
dt+ λEpS(x)c (x, Gθ(x)) → min

θ
, (10)

where c(·, ·) is the cost function, which describes the object properties that we aim to preserve after
transfer, and λ is the regularization coefficient. Choosing the appropriate λ will result in finding a
balance between fitting the target distribution and preserving the properties of the input.

As in DMD, we assume that the perturbed target distributions are represented by a pre-trained
diffusion model sTt and approximate the generator distribution score sGθ

t by the additional fake
diffusion model sϕt . Analogous to the DMD procedure (Eq. 6), we perform the coordinate descent
in which, however, the generator objective is now regularized. We call the procedure Regularized
Distribution Matching Distillation (RDMD). Formally, we optimize

T∫
0

ωt EN (ε|0,I)pS(x) log
pϕt (Gθ(x) + σtε)

pTt (Gθ(x) + σtε)
dt+ λEpS(x)c (x, Gθ(x)) → min

θ
;

T∫
0

βt EN (ε|0,I)pS(x)∥Dϕ
t (Gθ(x) + σtε)−Gθ(x)∥2 dt → min

ϕ
.

(11)
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Figure 1: Comparison of the DMD loss surfaces without (left) and with (right) transport cost
regularization on a toy problem of translating N (0, I) to N (0, 1.52I). We set the regularization
coefficient λ = 0.2. The generator is parameterized as r · C(α), where C(α) is the rotation matrix,
corresponding to the angle α. Minima at the left contains all orthogonal matrices, multiplied by
σ = 1.5, while the minimum at the right is attained in the only point, which is close, but not equal, to
the OT map. The surfaces are moved up for the sake of visualization.

Given the optimal fake score sϕt , the generator’s objective becomes equal to the desired loss in Eq. 10,
which validates the procedure.

3.2 ANALYSIS OF THE METHOD

The optimization problem in Eq. 10 can be seen as the soft-constrained optimal transport, which
balances between satisfying the output distribution constraint and preserving the original image
properties. Moreover, if one takes λ ≈ 0, the objective essentially becomes equivalent to the Monge
problem (Eq. 8). It can be seen by replacing the λ coefficient before the transport cost with the 1/λ
coefficient before the KL divergence. For small λ, it is almost equal to +∞ whenever the generator
output and the target distributions differ, making the corresponding problem hard-constrained and,
therefore, equivalent to the original optimal transport problem. Based on this observation, we prove

Theorem 1. Let c(x,y) be the quadratic cost 2 ∥x− y∥2 and Gλ be the theoretical optimum in the
problem 10. Then, under mild regularity conditions, it converges in probability (with respect to pS)
to the optimal transport map G∗, i.e.

Gλ pS

−−−→
λ→0

G∗. (12)

The detailed proof can be found in Appendix A. Informally, it means that the optimal transport
map can be approximated by the RDMD generator, trained on Eq. 11, given a small regularization
coefficient, enough capacity of the architecture, and convergence of the optimization algorithm.

It is important to consider this result from a different perspective. It is ideologically similar to the L2

regularization for over-parameterized least squares regression. The original least squares, in this case,
have a manifold of solutions. At the same time, by adding L2 weight penalty and taking the limit as
the regularization coefficient goes to zero, one obtains a solution with the least norm based on the
Moore-Penrose pseudo-inverse (Moore, 1920; Penrose, 1955). In our case, numerous maps may be
optimal in the original DMD procedure, since it only requires matching the distribution at output.
However, taking λ ≈ 0 results in a feasible solution with almost optimal transport cost. We illustrate
this by comparing the loss surface with and without regularization on a toy problem in Figure 1.

2We prove the theorem only for the quadratic case due to difficulties in analyzing minima of the Monge
Problem (Eq. 8) in general cases (De Philippis & Figalli, 2014). This can be mitigated by considering the
Kantorovich OT formulation (Kantorovitch, 1958), which is simpler to analyze. In practice, however, one can
use any cost function of interest.
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4 RELATED WORK

In this section, we give an overview of the existing methods for solving unpaired I2I including
GANs, diffusion-based methods, and methods based on optimal transport. We also cover diffusion
distillation, which is one of the core concepts in the paper.

GANs were the prevalent paradigm in the unpaired I2I for a long time. Among other methods,
CycleGAN (Zhu et al., 2017) and the concurrent DualGAN (Yi et al., 2017), DiscoGAN (Kim et al.,
2017) utilized the cycle-consistency paradigm, consisting in training the transfer network along with
its inverse and optimizing the consistency term along with the adversarial loss. It gave rise to the
whole family of two-sided methods, including UNIT (Liu et al., 2017) and MUNIT (Huang et al.,
2018) that divide the encoding into style-space and content-space and SCAN (Li et al., 2018) that
splits the procedure into coarse and fine stages. The one-sided GAN-based methods aim to train
I2I without learning the inverse for better computational efficiency. DistanceGAN (Benaim & Wolf,
2017) achieves it by learning to preserve the distance between pairs of samples, GCGAN (Fu et al.,
2019) imposes geometrical consistency constraints, and CUT (Park et al., 2020) uses the contrastive
loss to maximize the patch-wise mutual information between input and output.

Diffusion-based I2I models mostly build on modifying the diffusion process using the source image.
SDEdit (Meng et al., 2021) initializes the reverse diffusion process for target distribution with the
noisy source picture instead of the pure noise to maintain similarity. Many methods guide (Ho &
Salimans, 2022; Epstein et al., 2023) the target diffusion process. ILVR (Choi et al., 2021) adds
the correction that enforces the current noisy sample to resemble the source. EGSDE (Zhao et al.,
2022) trains a classifier between domains and encourages dissimilarity between the embeddings,
corresponding to the source image and the current diffusion process state. At the same time, it
enforces a small distance between their downsampled versions, which allows for a balance between
faithfulness and realism. The other diffusion-based approaches include two-sided methods based on
the concatenation of two diffusion models (DDIB (Su et al., 2022) and CycleDiff (Wu & De la Torre,
2023)).

Optimal transport (Villani et al., 2009; Peyré et al., 2019) is another useful framework for the
unpaired I2I. Methods based on it usually reformulate the OT problem (Eq. 8) and its modifications
as Entropic OT (EOT) (Cuturi, 2013) or Schrödinger Bridge (SB) (Föllmer, 1988) to be acces-
sible in practice. In particular, NOT (Korotin et al., 2022), ENOT (Gushchin et al., 2024a), and
NSB (Kim et al., 2023a) use the Lagrangian multipliers formulation of the distribution matching
constraint, which results in simulation-based adversarial training. The other methods obtain (partially)
simulation-free techniques by iteratively refining the stochastic process between two distributions.
De Bortoli et al. (2021); Vargas et al. (2021) define this refinement as learning of the time-reversal
with the corresponding initial distribution (source or target). The newer methods are based on Flow
Matching (Lipman et al., 2022; Tong et al., 2023; Albergo & Vanden-Eijnden, 2022) and the corre-
sponding Rectification (Liu et al., 2022; Shi et al., 2024; Liu et al., 2023) procedure. While being
theoretically sound, most of these methods work well for smaller dimensions (Korotin et al., 2023)
but suffer from computationally hard training in large-scale scenarios.

Diffusion distillation techniques are mainly divided into two families. First family of methods
suggests using the pre-trained diffusion model as a (multi-step) noise→ image mapper and learning
it. This includes optimizing the regression loss between the outputs (Salimans & Ho, 2022) or
learning the integrator of the corresponding ODE (Gu et al., 2023a; Song et al., 2023; Kim et al.,
2023b), including ODEs with guidance (Meng et al., 2023). Second family of methods considers
diffusion models as a source of "knowledge" that can push an arbitrary model toward matching the
distributional constraint. It is commonly formalized as optimizing the Integrated KL divergence (Luo
et al., 2024; Yin et al., 2023; 2024; Nguyen & Tran, 2023) by training an additional "fake" diffusion
model on the generator’s output distribution. Instead of the KL divergence, one can push similarity
of the corresponding scores (Zhou et al., 2024) or moments (Salimans et al., 2024). Notably, these
methods do not have any specific restrictions on the model structure, which allows their wide usage
(e.g. in text-to-3D (Poole et al., 2022; Wang et al., 2024)). Importantly, it allows us to push the
generator towards the target distribution in the I2I setting, combined with the input-output transport
cost regularization.
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Figure 2: Visualization of RDMD mappings on Gaussian → Swissroll with different choices of the
regularization coefficient λ.

5 EXPERIMENTS

This section presents the experimental results on several unpaired translation tasks. Section 5.1 is
devoted to the toy 2D experiment. In Section 5.2 we compare our method with the diffusion-based
baselines on two translation problems in 64× 64 pixel space. In Section 5.3 we scale our method to
256× 256 by training it in latent space of an autoencoder.

In all the experiments, we use the forward diffusion process with variance σt = t and T = 80.0
analogous to Karras et al. (2022). We parameterize all the diffusion models with the denoiser networks
Dσ(x), conditioned on the noise level σ, and optimize Equation 3 to train the target diffusion model.
As for the RDMD procedure, we optimize Equation 11, where the gradient with respect to the
generator parameters is calculated analogously to Equation 7. The transport cost c(x,y) is chosen as
the squared difference norm ∥x−y∥2. The average transport cost, reported in the figures, is calculated
as the square root of the MSE between all input and output images for the sake of interpretability.

We use the same architecture for all networks: target score, fake score, and generator. We utilize the
pre-trained target score in two ways. First, we initialize the fake model with its copy. Second, we
initialize the generator Gθ(x) with the same copy Dreal

σ (x), but with a fixed σ ∈ [0, T ] (since the
generator is one-step). The denoiser parameterization is trained to predict the target domain’s clean
images, therefore, such initialization should significantly speed up convergence and nudge the model
to utilize the information about the target domain more efficiently (Nguyen & Tran, 2023; Yin et al.,
2023). We explore the initialization of σ for I2I in Appendix B. The additional training details can be
found in Appendix D.

5.1 TOY EXPERIMENT

We validate the qualitative properties of the RDMD method on 2-dimensional Gaussian → Swissroll.
In this setting, we explore the effect of varying the regularization coefficient λ on the trained transport
map Gθ. In particular, we study its impact on the transport cost and fitness to the target distribution
pT . In the experiment, both source and target distributions are represented with 5000 independent
samples. We use the same small MLP-based architecture (Shi et al., 2024) for all the networks.

The main results are presented in Figure 2. The standard DMD (λ = 0.0) learns a transport map with
several intersections when demonstrated as the set of lines between the inputs and the outputs. This
observation means that the learned map is not OT, because it is not cycle-monotone (McCann, 1995).
Increasing λ yields fewer intersections, which can be used as a proxy evidence of optimality. At the
same time, the generator output distribution becomes farther and farther from the desired target. The
results show the importance of choosing the appropriate λ to obtain a better trade-off between the
two properties. Here, the regularization coefficient λ = 0.2 offers a good trade-off by having small
intersections and producing output distribution close to the target.

5.2 I2I IN PIXEL SPACE

Next, we compare the proposed RDMD method with the diffusion-based baselines on the 64× 64
AFHQv2 (Choi et al., 2020) Cat → Wild and CelebA (Liu et al., 2015) Male → Female translation
problems. We do not compare with GAN-based methods since they mostly demonstrate results that
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(a) AFHQv2 Cat→Wild. (b) CelebA Male→Female.

Figure 3: Visualization of RDMD outputs with different choices of the regularization coefficient λ on
image-to-image in pixel space.

Figure 4: Comparison of RDMD with diffusion-based baselines. The figure demonstrates the tradeoff
between generation quality (FID↓) and the difference between the input and output (

√
L2 ↓). RDMD

gives an overall better tradeoff given fairly strict requirements on the transport cost. Left: Cat→Wild.
Right: Male→Female.

are inferior to those of EGSDE (Zhao et al., 2022) in terms of FID and PSNR on the same data sets
with resolution 256× 256.

We pre-train the target diffusion model using the DDPM++ (Song et al., 2020) architecture and
EDM (Karras et al., 2022) parameterization. We slightly adapt the official baseline implementations
for compatibility with the EDM setting. For each of the baselines, we run a grid of hyperparameters.
The detailed hyperparameter values can be found in Appendix D.4 and D.5.

Here, we focus on investigating the faithfulness-quality trade-off achieved by our method. First, in
Figure 3 we demonstrate the importance of the regularization parameter λ in image experiments. We
see that increasing λ yields interpretable changes in model outputs (i.e. making haircut shorter or
adding sunglasses), which allows for control over the model’s performance. We compare the achieved
faithfulness-quality trade-off with the baselines in Figure 4. The quality metric is train 3FID, the
faithfulness metrics are L2/PSNR/SSIM. Among these metrics, we choose L2 for visualization (see
Figure 7 in Appendix C.1 for the full comparison in terms of PSNR and SSIM, which are, apparently,
more convenient for our method).

Compared to the baselines, RDMD achieves a better trade-off given at least moderately strict
requirements on the transport cost: all of our models beat the corresponding baselines in the L2 range
(12.5, 17.5) for Cat→Wild and (10.0, 15.0) for Male→Female. However, if the lower FID is strongly
preferable over the transport cost, then it might be better to use one of the baselines. In this case,
DDIB and CycleDiffusion show significantly better faithfulness than one-sided methods.

3We measure FID between the outputs of the model on the train source data set and the train target data set.
Here, in 64× 64 pixel experiments, there is not enough pictures for the test FID to be finite.
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FID
√
L2 PSNR SSIM

ILVR 9.58 21.8 13.99 0.137
SDEdit 5.4 25.0 12.99 0.167
EGSDE 7.68 19.75 14.89 0.205
DDIB 2.71 19.16 15.25 0.516
CycleDiff 6.99 18.58 15.69 0.408
DMD 7.85 22.41 15.79 0.307
RDMD 6.93 17.86 17.84 0.496

(a) AFHQv2 Cat → Wild.

FID
√
L2 PSNR SSIM

ILVR 17.73 21.42 14.54 0.261
SDEdit 11.35 20.5 14.82 0.370
EGSDE 12.57 20.41 14.93 0.299
DDIB 4.94 16.58 16.50 0.597
CycleDiff 17.02 10.85 20.49 0.692
DMD 16.59 19.04 17.27 0.497
RDMD 12.04 11.88 20.97 0.701

(b) CelebA Male → Female.

Table 1: Comparison of RDMD with diffusion-based baselines on Cat → Wild and Male → Female.

FID
√
L2 LPIPS PSNR SSIM

ILVR 28.85 118.1 0.557 11.81 0.326
SDEdit 28.31 94.00 0.516 16.69 0.399
EGSDE 32.26 72.68 0.466 16.00 0.430
CycleDiff 33.25 79.47 0.443 15.19 0.460
DMD 40.40 107.0 0.503 16.69 0.398
RDMD(0.1) 30.81 62.40 0.379 21.67 0.564
EGSDE† (p) 30.93 53.44 0.441 18.32 0.510
EGSDE (p) 43.57 42.04 0.390 20.35 0.574
RDMD(0.15) 32.11 54.75 0.339 21.96 0.606

Table 2: Comparison of RDMD with diffusion-based baselines on 256×256 CelebA Male → Female
in latent space. EGSDE(p) models operate in pixel space. NFE includes encoding and decoding.

For convenience, we further illustrate the comparison in Table 1 by choosing one RDMD run and
comparing it with the baselines with the closest FID (i.e. we compare faithfulness given fixed realism).
For both data sets, we beat almost all the baselines in terms of similarity metrics. The only exceptions
are CycleDiffusion in Male→Female with better

√
L2 but significantly worse FID, and DDIB with

significantly lower FID but worse PSNR and
√
L2. DDIB may be preferable given pre-trained

diffusion models for both domains and enough resources for multi-step sampling (it requires 2 times
more function evaluations than the diffusion model). If fast generation is crucial or training diffusion
model for the source domain is hard, RDMD seems like a preferable method.

5.3 I2I IN LATENT SPACE

Finally, we demonstrate the applicability of the method in large-scale scenarios by running it in the
latent space of the Stable Diffusion (Rombach et al., 2022) autoencoder. We pre-train the target
diffusion model using the ADM (Dhariwal & Nichol, 2021) architecture and the EDM (Karras et al.,
2022) parameterization. We run RDMD with L2 transport cost and baselines in the latent space
on a grid of hyperparameters, choose one RDMD run (λ = 0.1) and compare it with the baselines
with the closest FID (as in Section 5.2). As previously, we compare

√
L2, PSNR and SSIM as

faithfulness metrics of the methods. Additionally, we compare the results with pixel-space EGSDE
models (including EGSDE†) from the original paper and measure LPIPS (Zhang et al., 2018) to
highlight the effect of training models in latent space 4. We report hyperparameters and other details
in Appendix D.6.

We present the results in Table 2. Qualitatively, the results are similar to the pixel space: RDMD beats
the latent space diffusion-based baselines in terms of faithfulness given fixed realism 5. Compared
to the pixel-space EGSDE† model, our method achieves worse L2 distance, but wins in terms of
PSNR, SSIM and LPIPS. As for the default pixel-space EGSDE, we compare it with a more faithful
RDMD with λ = 0.15 and beat it in terms of FID and all similarity metrics except L2. We see this

4In Table 2 FID of these models slightly differs from Table 1 by Zhao et al. (2022), since we do not
additionally preprocess images. In Table 11 Zhao et al. (2022) show that this change does not violate the results.

5We did not include DDIB in comparison, because it unexpectedly achieved large FID = 67.36, which could
indicate problems with deterministic encoding-deconding in latent space.
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Figure 5: Comparison of RDMD in 256× 256 Male→Female translation problem in latent space.
EGSDE models, marked with "(p)", operate in the pixel space.

performance as a direct consequence of training in the latent space, which induces semantic transport
cost between pictures instead of per-pixel distance. The results suggest using latent-space RDMD
if one needs efficient few-step (taking into account encoding and decoding) inference and does not
focus on basic per-pixel similarity. We report complete plots demonstrating the methods’ tradeoff in
Appendix C.2.

In Figure 5, we compare the visual performance of our method with the baselines from Table 2 on
random test samples. RDMD manages to retain the original perceptual attributes and produce realistic
outputs at a comparable or better level than the baselines (especially compared to the baselines in
latent space) but struggles at properly translating accessories/unusual clothing components. This may
suggest using different cost functions in latent space, which we leave for future work.

6 DISCUSSION AND LIMITATIONS

In this paper, we propose RDMD, the novel one-step diffusion-based algorithm for the unpaired I2I
task. This algorithm is a modification of the DMD method for diffusion distillation. The main novelty
is the introduction of the transport cost regularization between the input and the output of the model,
which allows to control the trade-off between faithfulness and visual quality.

From the theoretical standpoint, we prove that at low regularization coefficients, the theoretical
optimum of the introduced objective is close to the optimal transport map (Theorem 1). Our
experiments in Section 5.1 demonstrate how the choice of regularization coefficient affects the trained
mapping and allows us to build the general intuition. In Sections 5.2 and 5.3 we compare our
method with the diffusion-based baselines in pixel and latent space and obtain better results given fair
restrictions on the transport cost. Given fixed realism in terms of FID, our model generally achieves
better faithfulness compared to the baselines, despite requiring only one function evaluation.

In terms of limitations, we admit that our theory works in the asymptotic regime, while one could
derive more precise non-limit bounds. Our experimental results are limited in terms of achieving
the lowest baselines’ FID values (e.g. in Cat→Wild experiment we achieve 6.9, while one of the
multi-step baselines, DDIB, achieves 2.71). We see making few-step modification as a potential way
to mitigate this difference. Furthermore, the desired feature of the method would be switching among
different regularization coefficients without re-training.
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APPENDIX

A THEORY

In this section, we aim at proving the main theoretical result of the work: solution of the soft-
constrained RDMD objective converges to the solution of the hard-constrained Monge problem. Our
proof is largely based on the work of Liero et al. (2018). It introduces the family of entropy-transport
problems, consisting in optimizing the transport cost with soft constraints based on the divergence
between the map’s output distribution and the target. There are, however, differences between the
problems, that prevent us from reducing the functional in Eq. 10 to the entropy-transport problems.
First, authors consider the case of finite non-negative measures, while we stick to the probability
distributions. Second, the family of Csiszár f -divergences (Csiszár, 1967), used by Liero et al. (2018),
seemingly does not contain the integral ensemble of KL divergences, used in Eq. 10. Finally, we
illustrate the proof in a simpler particular setting for the narrative purposes. Nevertheless, the used
ideas are very similar.
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A.1 PROOF OUTLINE

We start by giving a simple outline of the proof. Given a pair of source and target distributions pS
and pT , RDMD optimizes the following functional with respect to the generator G:

T∫
0

ωt KL
(
pGt ∥ pTt

)
dt+ λEpS(x)c (x, G(x)) , (13)

where pGt and pTt are the generator distribution pG and the target distribution pT , perturbed by the
forward diffusion process up to the time step t. Our goal is to prove that the optimal generator of the
regularized objective converges to the optimal transport map when λ → 0. With a slight abuse of
notation, in this section we will use a different objective

Lα(G) = α

T∫
0

ωt KL
(
pGt ∥ pTt

)
dt+ EpS(x)c (x, G(x)) (14)

and consider the equivalent limit α → +∞. We also define

L∞(G) =

{
EpS(x)c (x, G(x)) , if pG = pT ;

+∞, else
(15)

to be the objective, corresponding to the unconditional formulation of the Monge problem (Eq. 8).
In this section, we will denote minimum of this objective (which is, therefore, the optimal transport
map) as G∞ 6

We first assume that the infimum of the objective Lα is reached and define Gα be the optimal
generator. We denote by {αn}+∞

n=1 an arbitrary sequence with αn → +∞. We first make two
informal assumptions that need to be proved (and will be in some sence further in the section):

1. The sequence Gαn converges (in some sence) to some function Ĝ;
2. Lα is continuous with respect to this convergence, i.e. for every convergent sequence

Gn → G holds Lα(Gn) → Lα(G).

Given this, we first observe that for each map G the sequence of objectives Lαn(G) monotonically
converges to the objective L∞(G). It follows from the fact that the first summand of Lαn converges
to +∞ if and only if the KL divergence is non-zero, which is equivalent to saying that pG and pT

differ (Wang et al., 2024). If instead pG = pT , the summand zeroes out. This also means that the
minimal values of the corresponding objectives form a monotonic sequence:

Lαn(Gαn) ≤ Lαn+1(Gαn+1) ≤ L∞(G∞). (16)

Finally, the monotonicity implies that for a fixed m

lim
n→∞

Lαn(Gαn) ≥ lim
n→∞

Lαm(Gαn), (17)

since the input Gαn is fixed and Lαn monotonically increases. Using the assumed continuity of the
objective, we obtain

lim
n→∞

Lαn(Gαn) ≥ Lαm(Ĝ) (18)

for each m. Taking the limit m → ∞, we obtain

lim
n→∞

Lαn(Gαn) ≥ L∞(Ĝ). (19)

Combining this set of equations, we obtain:

L∞(G∞) ≥ lim
n→∞

Lαn(Gαn) ≥ L∞(Ĝ) ≥ L∞(G∞), (20)

where the first inequality comes from the monotonicity of the minimal values and the last inequality
uses that G∞ is the minimum of the objective L∞. Hence, that limiting map Ĝ achieves minimal
value of the objective L∞ and is, therefore, the optimal transport map.

At this point, we only need to define and prove some versions of the aforementioned facts:
6Solution to the Monge problem is not always unique, but we will further impose assumptions that will

guarantee the uniqueness.
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1. Infimum of Lα is reached;

2. The sequence of minima Gαn converges;

3. Lα is continuous with respect to this convergence.

From now on, we formulate the result in details and stick to the formal proof.

A.2 ASSUMPTIONS AND THEOREM STATEMENT

First, we list the assumptions.

Assumption 1. The distributions pS and pT have densities with respect to the Lebesgue measure.
The distributions are defined on open bounded subsets X ⊂ Rd and Y ⊂ Rd, where Y is convex. The
densities are bounded away from zero and infinity on X and Y , respectively.

We admit that boundedness of the support is a very restrictive assumption from the theoretical
standpoint, however in our applications (I2I) both source and target distributions are supported on the
bounded space of images. We thus can set X = Y = (0, 1)d.

Assumption 2. The cost c(x,y) is quadratic ∥x− y∥2.

Here, we stick to proving the theorem only for L2 cost due to difficulties in investigation of Monge
map existence and regularity for general transport costs (De Philippis & Figalli, 2014).

Assumption 3. The weighting function ωt is positive and bounded.

Assumption 4. Standard deviation σt of the noise, defined by the forward process, is continuous in t.

Theorem 1. Let pS , pT , c , ωt , and σt satisfy the assumptions 1-3. Then, there exists a minimum Gα

of the objective Lα from the Eq. 14. If αn → ∞, the sequence Gαn converges in probability (with
respect to the source distribution) to the optimal transport map G∞:

Gαn
pS

−−−−→
n→∞

G∞. (21)

A.3 THEORETICAL BACKGROUND

We start by listing all the results necessary for the proof. They are mostly related to the topics
of measure theory (weak convergence, in particular) and optimal transport. Most of these classic
facts can be found in the books (Bogachev & Ruas, 2007; Dudley, 2018). Otherwise, we make the
corresponding citations.

Definition 1. A sequence of probability distributions pn(x) converges weakly to the distribution
p(x) if for all continuous bounded test functions φ ∈ Cb(Rd) holds

Epn(x)φ(x) −−−−→
n→∞

Ep(x)φ(x). (22)

Notation: pn w−→ p.

Definition 2. A function f : Rd → R is called lower semi-continuous (lsc), if for all xn → x holds

lim inf
n→∞

f(xn) ≥ f(x). (23)

Theorem 2 (Portmanteau/Alexandrov). pn
w−→ p is equivalent to the following statement: for every

lsc function f , bounded from below, holds

lim inf
n→∞

Epn(x)f(x) ≥ Ep(x)f(x). (24)

Definition 3. A sequence of probability measures pn is called relatively compact, if for every
subsequence pnk there exists a weakly convergent subsequece pnkj .

Definition 4. A sequence of probability measures pn is called tight, if for every ε > 0 there exists a
compact set Kε such that pn(Kε) ≥ 1− ε for all n.

Theorem 3. (Prokhorov) A sequence of probability measures pn is relatively compact if and only if it
is tight. In particular, every weakly convergent sequence is tight.
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Corollary 1. If there exists a function φ(x) such that its sublevels {x : φ(x) ≤ r} are compact and
for all n

Epn(x)φ(x) ≤ C

holds with some constant C, then pn is tight.
Corollary 2. If a sequence pn is tight and all of its weakly convergent subsequences converge to the
same measure p, then pn

w−→ p.
Definition 5. The functional L(p) is called lower semi-continuous (lsc) with respect to the weak
convergence if for all weakly convergent sequences pn w−→ p holds

lim inf
n→∞

L(pn) ≥ L(p). (25)

Theorem 4 (Posner (1975)). The KL divergence KL(p ∥ q) is lsc (in sense of weak convergence) with
respect to each argument, i.e. if pn w−→ p and qn

w−→ q, then

lim inf
n→∞

KL(pn ∥ q) ≥ KL(p ∥ q) (26)

lim inf
n→∞

KL(p ∥ qn) ≥ KL(p ∥ q). (27)

Theorem 5 ( Donsker & Varadhan (1983)). The KL divergence can be expressed as

KL(p∥q) = sup
g

(
Ep(x)g(x)− logEq(x)e

g(x)
)
. (28)

Definition 6. The expression
Ep(x)e

i⟨s,x⟩ (29)
is called the characteristic function (Fourier transform) of the distribution p(x).

Theorem 6 (Lévy). Weak convergence of probability measures pn w−→ p is equivalent to the point-wise
convergence of characteristic functions, i.e. Epn(x)e

i⟨s,x⟩ → Ep(x)e
i⟨s,x⟩ for all s.

Definition 7. A sequence of measurable functions φn(x) is said to converge in measure (in probabil-
ity) to the function φ with respect to the measure p(x), if for all ε > 0 holds

p ({x : |φn(x)− φ(x)| > ε}) → 0.

Theorem 7 (Lebesgue). Let φn, φ be measurable functions such that ∥φn(x)∥, ∥φ(x)∥ ≤ C and
φn(x) → φ(x) pointwise. Then Ep(x)φ

n(x) → Ep(x)φ(x).
Lemma 1 (Fatou). For any sequence of measurable functions φn the function lim infn φ

n is measur-
able and

b∫
a

lim inf
n→∞

φn(x)dx ≤ lim inf
n→∞

b∫
a

φn(x)dx. (30)

Theorem 8 ( Brenier (1991)). Given the Assumption 1, there exists a unique optimal transport map
that solves the Monge problem 8 for the quadratic cost.

Proof. This result can be found e.g. in (De Philippis & Figalli, 2014, Theorem 3.1).

Theorem 9. Given the Assumption 1, the unique OT Monge map is continuous.

Proof. This is a simplified version of (De Philippis & Figalli, 2014, Theorem 3.3).

A.4 LOWER SEMI-CONTINUITY OF THE LOSS

Having defined all the needed terms and results, we start the proof by re-defining the objective in
Eq. 14 with respect to the joint distribution π input and output of the generator instead of the generator
G itself. Analogous to the Kantorovitch formulation of the optimal transport problem (Kantorovitch,
1958), for each measure π on Rd × Rd (which is also called a transport plan or just plan) we define
the corresponding fuctional as

Lα(π) = α

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt+ Eπ(x,y)c (x,y) , (31)
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where πx and πy are the corresponding projections (marginal distributions) of π and πy,t is the
perturbed y-marginal distribution of π. Note that for π, corresponding to the joint distribution of
(x, G(x)), Lα(π) coincides with Lα(G), defined in Eq. 14. Thus, we aim to optimize Lα(π) with
respect to such plans π, that their x marginal is equal to pS and π(y = G(x)) = 1 for some G.
Definition 8. We will call a measure π generator-based if its x-marginal is equal to pS and
π(y = G(x)) for some function G.

For the sake of clearity, we note that the distributions πy
t and pTt can be represented as πy ∗ qt and

pT ∗ qt, where ∗ is the convolution operation and qt = N (0, σ2
t I). We thus rewrite the functional as

Lα(π) = α

T∫
0

ωt KL
(
πy ∗ qt ∥ pT ∗ qt

)
dt+ Eπ(x,y)c (x,y) , (32)

Previously, we wanted to establish continuity of the objective. This may not be the case in general.
Instead, we prove the following
Lemma 2. Lα(π) is lsc with respect to the weak convergence, i.e. for all weakly convergent sequences
πn w−→ π holds

lim inf
n→∞

Lα(πn) ≥ Lα(π). (33)

This result is a direct consequence of the Theorem 4 about lower semi-continuity of the KL divergence.

Proof. We start by proving that the projection and the convolution operation preserve weak conver-
gence. For the first, we need to prove that for any test function g ∈ Cb(Rd) holds

Eπn
y (y)g(y) → Eπy(y)g(y) (34)

given πn w−→ π. For this, we note that the function φ(x,y) = g(y) is also bounded and continuous
and, thus

Eπn
y (y)g(y) = Eπn(x,y)φ(x,y) → Eπ(x,y)φ(x,y) = Eπy(y)g(y). (35)

Regarding the convolution, recall that πn
y ∗ qt is the distribution of the sum of independent variables

with corresponding distributions. Its characteristic function is equal to

Eπn
y∗qt(yt)

ei⟨s,yt⟩ = Eπn
y (y)qt(εt)e

i⟨s,y+εt⟩ = Eπn
y (y)e

i⟨s,y⟩Eqt(εt)e
i⟨s,εt⟩. (36)

Applying the Lévy’s continuity theorem to πn
y

w−→ πy , we take the limit and obtain

Eπy(y)e
i⟨s,y⟩Eqt(εt)e

i⟨s,εt⟩ = Eπy(y)qt(εt)e
i⟨s,y+εt⟩ = Eπy∗qt(yt)

ei⟨s,yt⟩, (37)
which implies

Eπn
y∗qt(yt)

ei⟨s,yt⟩ → Eπy∗qt(yt)
ei⟨s,yt⟩. (38)

We apply the continuity theorem for the convolutions and obtain πn
y ∗ qt

w−→ πy ∗ qt.

With this observation, we prove that the first term of Lα(π) is lsc. First, we apply Lemma 1 (Fatou)
and move the limit inside the integral

lim inf
n→∞

T∫
0

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt ≥

T∫
0

lim inf
n→∞

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt. (39)

Using the lower semi-continuity of the KL divergence (Theorem 4), we obtain
T∫

0

lim inf
n→∞

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt ≥

T∫
0

ωt KL
(
πy ∗ qt ∥ pT ∗ qt

)
dt. (40)

Finally, the Assumption 2 on the continuity of c(·, ·) implies its lower semi-coninuity. Theorem 2
(Portmanteau) states that

lim inf
n→∞

Eπn(x,y)c(x,y) ≥ Eπ(x,y)c(x,y). (41)

Combining inequalities from Eq. 39, Eq. 40 and Eq. 41, we obtain
lim inf
n→∞

Lα(πn) ≥ Lα(π). (42)
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A.5 EXISTENCE OF THE MINIMIZER

Now we aim to prove that the objective Lα(π) has a minimum over generator-based plans. First, we
need the following technical lemma about sublevels of the KL part of the functional.
Lemma 3. Let {πn}∞n=1 be a sequence of generator-based plans that satisfy

T∫
0

ωt KL
(
πn
y,t ∥ pTt

)
dt ≤ C (43)

for some constant C. Then, the sequence {πn}∞n=1 is tight.

Proof. We take arbitrary π from the sequence and apply the Donsker-Varadhan representation
(Theorem 5) of the KL divergence. We take the test function g(x) = ∥x∥2/(2σ2

T ) and obtain

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≥

T∫
0

ωt

(
Eπy,t(yt)

1

2σ2
T

∥yt∥2 − logEpT
t (yt)

e∥yt∥
2/(2σ2

T )

)
dt. (44)

The choice of g(x) is not very specific, i.e. every function that will produce finite expectations and
integrals is suitable. In the right-hand side, we rewrite the expectations with repect to the original
variable and noise:

T∫
0

ωt

(
Eπy(y)N (ε|0,I)

1

2σ2
T

∥y + σtε∥2 − logEpT (y)N (ε|0,I)e
∥y+σtε∥2/(2σ2

T )

)
dt. (45)

We rewrite ∥y+σtε∥2 as ∥y∥2 +2σt⟨y, σtε⟩+σ2
t ∥ε∥2 and note that expectation of the second term

is zero. The first term is then equal to

1

2σ2
T

T∫
0

ωt dt · Eπy(y)∥y∥
2 +

1

2σ2
T

T∫
0

ωt σ
2
t dt · EN (ε|0,I)∥ε∥2. (46)

Boundedness of ωt (Assumption 3) implies that the first integral is finite and, say, equal to C1. The
second integral contains a product of bounded ωt and continuous σ2

t (Assumtion 4), which is also
integrable. We then denote the second summand by C2 and rewrite the first summand as

C1Eπy(y)∥y∥
2 + C2. (47)

As for the second summand, we see that the expectation

EpT (y)N (ε|0,I)e
∥y+σtε∥2/(2σ2

T ) (48)

with respect to ε will be finite, because σ2
t /(2σ

2
T ) is always less than 1/2, which will make the

exponent have negative degree. Moreover, simple calculations show that this function will be
continuous with respect to σt and have only quadratic terms with respect to y inside the exponent, i.e.
have the form

ea(σt)∥y−b(σt)∥2+c(σt) (49)

with continuous a, b, c. We now want to prove that the expectation

EpT (y)e
α(σt)∥y−β(σt)∥2+γ(σt) (50)

will also be continuous in t. First, due to the boundedness of y, this expectation is finite. Second, for
tn → t:

lim
n→∞

EpT (y)e
a(σtn )∥y−b(σtn )∥2+c(σtn ) = (51)

= EpT (y) lim
n→∞

ea(σtn )∥y−b(σtn )∥2+c(σtn ) = (52)

= EpT (y)e
a(σt)∥y−b(σt)∥2+c(σt) (53)
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due to the Theorem 7 (Lebesgue’s dominated convergence). It is applicable, since y is bounded and
all the functions are continuous, thus bounded in [0, T ].

We thus obtain that the second integral contains bounded ωt multiplied by the logarithm of continuous
function, which is always ≥ 1 (positive exponent). This means that the whole integral is finite.
Denoting it by C3, we obtain

C1Eπy(y)∥y∥
2 + C2 − C3 ≤

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt. (54)

Combined with the condition of the lemma, we obtain

C1Eπy(y)∥y∥
2 + C2 − C3 ≤

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≤ C, (55)

which implies

Eπy(y)∥y∥
2 ≤ C + C3 − C2

C1
:= C4. (56)

We thus obtained a uniform bound on some statistic with respect to all measures from {πn}. The
function ∥y∥2 has compact sublevel sets {∥y∥2 ≤ r}. Lemma 1 then states that the sequence πn

y is
tight, i.e. for all ε > 0 there is a compact set Kε with πn

y(y ∈ Kε) ≥ 1− ε.

Finally, marginal x distribution of each of the πn is pS , which is bounded (Assumption 1), i.e. there
is a compact K that πn(x ∈ K) = 1. Combined with the previous observation, we obtain

πn(x ∈ K,y ∈ Kε) ≥ 1− ε (57)

for all n. The cartesian product K ×Kε is also compact. Theorem 3 (Prokhorov) then implies that
the sequence πn is tight.

Now we are ready to prove the following

Lemma 4. Infimum of the loss Lα(π) over all generator-based transport plans π (with πx = pS and
π(y = G(x)) for some G) is attained on some plan π̂.

Proof. We start by observing that there is at least one feasible π with the aforementioned properties.
For this purpose one can take the optimal transport map G∞ between pS and pT , which is unique by
Theorem 8 under Assumptions 1, 2.

Let πn be a sequence of feasible generator-based measures that Lα(πn) converges to the correspond-
ing infimum Lα

inf (it exists by the definition of the infimum). Without loss of generality, we can
assume that Lα(πn) ≤ Lα

inf + 1 for all n (if not, one can drop large enough sequence prefix). This
implies that for all n holds

α

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≤ Lα

inf + 1. (58)

Lemma 3 implies that the sequence πn is tight. Prokhorov theorem then states that πn has a weakly
convergent subsequence πnk

w−→ π̂. Lower semi-continuity of the loss Lα implies that

lim inf
k→∞

Lα(πnk) ≥ Lα(π̂) ≥ Lα
inf . (59)

At the same time, Lα(πnk) is assumed to converge to Lα
inf , which means that π̂ is indeed the

minimum.
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A.6 FINISH OF THE PROOF

Theorem 1 proof. Finally, we combine the previous technical observations with the proof sketch
from the Section A.1. Let αn → ∞ be a sequence of coefficients, Gαn be the optimal generators
with respect to Lαn and παn the joint distributions of (x, Gαn(x)). Additionally, we define π∞ to
be the optimal transport plan, corresponding to (x, G∞(x)), where G∞(x) is the optimal transport
map. First, due to the monotonicity of Lα with respect to α, we have

Lαn(παn) ≤ Lαn+1(παn+1) ≤ L∞(π∞). (60)

This implies that for all n holds

αn

T∫
0

ωt KL
(
παn
y,t ∥ pTt

)
dt ≤ L∞(π∞) ⇒ (61)

⇒
T∫

0

ωt KL
(
παn
y,t ∥ pTt

)
dt ≤ L∞(π∞)

αn
≤ L∞(π∞)

min
n

αn
, (62)

which is finite, since αn → +∞. One more time, we apply Lemma 3 and conclude that the sequence
παn is tight.

Let παnk be its weakly convergent subsequence: παnk
w−→ π̂. Analogously to the Section A.1, we

observe that
lim inf
k→∞

Lαnk (παnk ) ≥ lim inf
k→∞

Lαnm (παnk ) ≥ Lαnm (π̂) (63)

for any fixed m. The first inequality is due to the monotonicity of Lα with respect to α and second is
the implication of lower semi-continuity of the loss Lα with respect to weak convergence. Taking the
limit m → ∞, we obtain

lim inf
k→∞

Lαnk (παnk ) ≥ L∞(π̂). (64)

Combining all these observations, we obtain the following sequence of inequalities

L∞(π∞) ≥ lim inf
k→∞

Lαnk (παnk ) ≥ L∞(π̂) ≥ L∞(π∞), (65)

which implies that the limiting measure π̂ reaches the minimum of the objective over generator-based
plans. By the uniqueness of the optimal transport map G∞ under the Assumptions 1, 2, 3, we
conclude that all the convergent subsequences παnk converge to the optimal measure π∞. Using
Corollary 2 of the Prokhorov theorem, we deduce that παn

w−→ π∞.

Finally, we want to replace the weak convergence of παn to π∞ with the convergence in probability
of the generators, i.e. show

Gαn
pS

−−→ G∞. (66)

To this end, we represent the corresponding probability as the expectation of the indicator and upper
bound it with a continuous function:

pS (∥Gαn(x)−G∞(x)∥ > ε) = EpS(x)I{∥Gαn(x)−G∞(x)∥ > ε} (67)

≤ EpS(x)d (G
αn(x), G∞(x)) , (68)

where d is a continuous indicator approximation, defined as

d(u,v) =

{
∥u−v∥

ε , if 0 ≤ ∥u− v∥ < ε;

1, if ∥u− v∥ ≥ ε.
(69)

We define the test function
φ(x,y) = d (y, G∞(x)) (70)

and rewrite the upper bound as

EpS(x)d (G
αn(x), G∞(x)) = EpS(x)φ(x, G

αn(x)) = Eπαn (x,y)φ(x,y). (71)
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Figure 6: Left: visualization of the generator initialization at various σ ∈ [0.1, 80.0], where σ is
the noise level parameter residual from the pre-trained diffusion architecture. Right: comparison
of different σ in terms of the quality-faithfulness trade-off. The metrics are obtained by initializing
the generator at the corresponding σ level and training it with the RDMD procedure. Here, λ ∈
{0, 1.0, 2.0, 4.0}. Higher λ corresponds to the lower transport cost values.

Due to Assumptions 1, 2 and Theorem 6 the optimal transport map G∞ is continuous, which implies
that this test function is bounded and continuous. Given the weak convergence of παn , we have

Eπαn (x,y)φ(x,y) → Eπ∞(x,y)φ(x,y) = EpS(x)φ(x, G
∞(x)) = (72)

= EpS(x)d(G
∞(x), G∞(x)) = 0, (73)

which implies the desired

pS (∥Gαn(x)−G∞(x)∥ > ε) → 0. (74)

B ABLATION OF THE INITIALIZATION PARAMETER

In this section, we further explore the design space of our method by investigating the effect of the
fixed generator input noise parameter σ on the resulting quality. To this end, we take the colored
version of the MNIST (LeCun, 1998) data set and perform translation between the digits "2" and "3"
initializing from various σ. We use a small UNet architecture from Gushchin et al. (2024a).

The parameter σ is residual from the pre-trained diffusion architecture and is, therefore, fixed
throughout training and evaluation. However, the target denoiser network tries to convert the expected
noisy input into the corresponding sample from the output distribution. Consequently, one may
expect that at a suitable noise level, the generator may change the input’s details to make them look
appropriate for the target while preserving the original structural properties.

We demonstrate this effect on various noise levels in Figure 6. Here we observe that the small sigmas
lead to the mapping close to the identity, whereas the large sigmas lead to almost constant blurry
images, corresponding to the average "3" of the data set. However, there is a segment [1.0, 10.0]
of levels that gives a moderate-quality mapping in terms of both faithfulness and realism, which
makes it a suitable initial point. Note that the FID-L2 plot is not monotone at high L2 values due
to the overall poor quality of the generator, i.e. it outputs bad-quality pictures slightly related to the
source. We further investigate optimal σ choice by going through a 2D grid of the hyperparameters
(σ, λ) and aim to see if it is possible to choose the uniform best noise level. In Figure 6 we report
the faithfulness-quality trade-off concerning various σ. We observe that there is almost monotone
dependence on σ on the segment [1.0, 40.0]: here the σ = 1.0 gives almost uniformly best results in
terms of both metrics. Similar results are obtained by the values 5.0, 10.0 which have fair quality
visual results at initialization. Therefore, we conclude that it is best to choose the least parameter σ
among the parameters with appropriate visuals at the initial point.
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(a) AFHQv2 Cat → Wild.

(b) CelebA Male → Female.

Figure 7: Comparison of RDMD with diffusion-based baselines on 64 × 64 experiments in pixel
space. The figure demonstrates the tradeoff between generation quality (FID↓) and the difference
between the input and output (L2↓, PSNR↑, SSIM↑). RDMD gives an overall better tradeoff given
fairly strict requirements on the transport cost. In the cases of PSNR and SSIM, the y-axis is swapped
for the sake of identical readability with the first plot (left is better, low is better).

C ADDITIONAL COMPARISONS

C.1 EXPERIMENTS IN PIXEL SPACE

We perform an additional visual comparison between the methods on 64 × 64 Cat→Wild and
Male→Female in pixel space. To this end, we choose 7 pictures from the source data set and report
the corresponding outputs of RDMD and the baselines in Figure 8 and Figure 9. Here, we take
RDMD with λ = 0.05 for Cat→Wild and λ = 0.3 for Male→Female. As for the baselines, we
choose the hyperparameters (Appendix D.4 and D.5) with the closest FID to the RDMD as it was
done in Table 1.

In Section 5.2 we compare the faithfulness-realism tradeoff achieved by RDMD and the diffusion-
based baselines. In Figure 4 we report tradeoff in terms of FID and

√
L2 for both data sets. For the

sake of completeness, in Figure 7 we report trade-off in terms of 3 faithfulness metrics:
√
L2, PSNR

and SSIM. Qualitatively, we still see that our method beats all the baselines given at least moderate
requirements on faithfulness. Additionally, our model is strictly better than all of the one-sided
baselines (ILVR, SDEdit, EGSDE) in terms of SSIM and almost strictly better than the one-sided
baselines in terms of PSNR.
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Figure 8: Visual comparison of RDMD with diffusion-based baselines on 64 × 64 AFHQv2
Cat→Wild.

C.2 EXPERIMENTS IN LATENT SPACE

In Section 5.3 we compare the faithfulness-realism tradeoff achieved by RDMD and the diffusion-
based baselines on 256× 256 CelebA Male→Female translation task. More specifically, we choose
one RDMD run and compare it to the baselines with the closest FID in terms of faithfulness metrics
(i.e. compare faithfulness given fixed realism). For completeness, we report the complete comparison
between all runs in Figure 10.

The results reflect pixel-space experiments: given at least moderately strict requirements on faithful-
ness, our model achieves a better trade-off than all of the baselines in terms of all metrics, except
pixel-space EGSDE. Here, EGSDE shows comparable FID, better performance in terms of

√
L2,

and worse performance in all other faithfulness metrics. This is a direct consequence of the different
nature of the models: latent-space for RDMD and pixel-space for EGSDE. Overall, the results suggest
using RDMD if minimizing per-pixel distance is not a priority. In addition, we note that RDMD is
still much more computationally efficient: it requires 3 function evaluations (encoding, translating
and decoding) instead of 20+ for all diffusion-based baselines.
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Figure 9: Visual comparison of RDMD with diffusion-based baselines on 64 × 64 CelebA
Male→Female in pixel space.

D EXPERIMENTAL DETAILS

D.1 GENERAL DETAILS

Metrics measurement. In image-to-image experiments, we measure FID,
√
L2 distance, PSNR,

SSIM and LPIPS. We do not preprocess images before calculating the corresponding metrics (i.e. we
perform measurements on images in [0, 1] range with the original resolution). We use the official
LPIPS (Zhang et al., 2018) implementation with VGG (Simonyan & Zisserman, 2014) backbone.

In 64 × 64 pixel-space experiments we measure FID between model outputs on the source train
data set and the target train data set due to infinite values for the test data. In 256 × 256 CelebA
Male→Female experiment, we measure FID between model outputs on the source test data set and
the target train data set. This corresponds to the FID measurement pipeline by Park et al. (2020).

As for the transport cost
√
L2, we first measure the average squared distance between inputs and

outputs of the generator (without normalizing with respect to the image dimension). After averaging,
we take the square root.
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Figure 10: Comparison of RDMD with diffusion-based baselines on CelebA Male→Female in latent
space. EGSDE(p) are the only baselines trained in the pixel space. The figure demonstrates the
tradeoff between generation quality (FID↓) and the difference between the input and output (L2↓,
LPIPS↓, PSNR↑, SSIM↑). In the cases of PSNR and SSIM, the y-axis is swapped for the sake of
identical readability with the first plot (left is better, low is better).

D.2 2D EXPERIMENTS

Architecture. We take the architecture from toy experiments of De Bortoli et al. (2021) for the
diffusion model and the generator. It consists of an input-encoding MLP block, a time-encoding
MLP block, and a decoding MLP block. The input-encoding MLP block consists of 4 hidden
layers with dimensions [16, 32, 32, 32] interspersed by LeakyReLU activations. The time-encoding
MLP consists of a positional encoding layer (Vaswani et al., 2017) and follows the same MLP
block structure as the input encoder. The decoding MLP block consists of 5 hidden layers with
dimensions [128, 256, 128, 64, 2] and operates on concatenated time embedding and input embedding
each obtained from their respective encoder. The model contains 88k parameters.

Training Diffusion Model. The diffusion model is trained for 100k iterations with batch size 1024
with Adam optimizer (Kingma & Ba, 2014) with learning rate 10−4.

Training RDMD. Fake denoising network is trained with Adam optimizer with learning rate 10−4.
The generator model is trained with a different Adam optimizer with a learning rate of 2 · 10−5. We
train RDMD for 100k iterations with batch size 1024.

Computational resources. We conduct all of the toy experiments on the CPU. Running 100k
iterations with the batch size 1024 takes approximately 1 hour.

D.3 COLORED MNIST

Architecture. We use the architecture from Gushchin et al. (2024a), which utilizes convolutional
UNet with conditional instance normalization on time embeddings used after each upscaling block
of the decoder. The model produces time embeddings via positional encoding. The model has
approximately 9.9M parameters.
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Training Diffusion Model. The diffusion model is trained for 24500 iterations with batch size
8192. We use the Adam optimizer with a learning rate of 4 · 10−3. The model is trained in FP32. It
obtains FID equal to 2.09.

Training RDMD. Fake denoising network is trained with Adam optimizer with a learning rate of
2 · 10−3. The generator model is trained with Adam optimizer with learning rate 5 · 10−5. RDMD is
trained for 7300 iterations with batch size 4096.

Computational resources. We conduct all of the experiments on 2x NVIDIA GeForce RTX 4090
GPUs. Training Diffusion model for 24500 iterations with the batch size 8192 takes approximately 6
hours. Training RDMD for 7300 iterations with batch size 4096 takes approximately 3 hours.

D.4 CAT2WILD

Architecture. We use the SongUNet architecture from EDM (Karras et al., 2022) repository,
which corresponds to DDPM++ network, introduced by Song et al. (2020). The model contains
approximately 55M parameters.

Training Diffusion Model. The diffusion model is trained for 80k iterations. We set the batch size
to 512 and choose the best checkpoint according to FID. We use the Adam optimizer with a learning
rate of 2 ·10−4. We use a dropout rate equal to 0.25 during the training and the augmentation pipeline
from Karras et al. (2022) with a probability of 0.15. The model is trained in FP32. Training takes
approximately 35 hours on 4× NVidia Tesla A100 80GB. The model obtains FID equal to 2.01.

Training RDMD. In all runs, we initialize the generator from the target diffusion model with
the fixed σ = 1.0. We run 5 models, corresponding to the regularization coefficients λ =
{0.0, 0.02, 0.05, 0.1, 0.2}. All models are trained with the Adam optimizer with a generator’s
learning rate of 5 · 10−5 and a fake diffusion’s learning rate of 3 · 10−4. We train all models for
25000 iterations with batch size 512. Training takes approximately 35 hours on 4× NVidia Tesla
A100 80GB.

ILVR hyperparameters. The only hyperparameter of ILVR is the downsampling factor N for
the low-pass filter, which determines whether guidance would be conducted on coarser or finer
information. nsteps denotes the number of sampling steps. All metrics in Figure 7a for ILVR are
obtained on the following hyperparameter grid: N = [2, 4, 8, 16, 32], nsteps = [18, 32, 50]. We
exclude runs with the same statistical significance and achieving FID higher than 20.0. The images in
Figure 8 and the results in Table 1 (left) are obtained with hyperparameters N = 16 and nsteps = 18.

SDEdit hyperparameters. The only hyperparameter of SDEdit is the noise level σ, which acts
as a starting point for sampling. The higher the noise level, the closer the sampling procedure
is to unconditional generation. The smaller the noise values, the more features are carried over
to the target domain at the expense of generation quality. nsteps denotes the number of sampling
steps. All metrics in Figure 7a for SDEdit are obtained on the following hyperparameter grid: σ =
[4, 5, 10, 15, 20, 30, 40], nsteps = [18, 32, 50]. We exclude runs with the same statistical significance
and achieving FID higher than 20.0. The images in Figure 8 and the results in Table 1 (left) are
obtained with hyperparameters σ = 10 and nsteps = 50.

EGSDE hyperparameters. EGSDE sampling hyperparameters include the initial noise level σ at
which the source image is perturbed, and the downsampling factor N for the low-pass filter. nsteps
denotes the number of sampling steps. The method also has parameters which regulate the guidance
weight of domain-specific energy term λs and domain-independent energy term λi. We take them
by default being equal to λs = 500.0 and λi = 2.0 as in the original EGSDE paper Zhao et al.
(2022). All metrics in Figure 7a for EGSDE are obtained on the following hyperparameter grid:
σ = [5, 10, 15, 20, 40], N = [8, 16, 32], nsteps = [18, 32]. We exclude runs with the same statistical
significance and achieving FID higher than 20.0. The images in Figure 8 and the results in Table 1
(left) are obtained with hyperparameters σ = 10, N = 32, nsteps = 50.
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DDIB and CycleDiffusion hyperparameters. We train an additional diffusion model with the
same architecture and hyperparameters on the source domain (Cat) to further utilize it in DDIB and
CycleDiffusion. The diffusion model is trained for 35k iterations. It obtains FID equal to 3.5.

We run encoding and decoding in DDIB with the deterministic EDM sampler (2nd order Heun solver)
with 50 steps (100 + 100 = 200 function evaluations in total).

All metrics in Figure 4 (left) and Figure 7a for CycleDiffusion model are obtained with encoding step
Tes = [500, 600, 700] in DDPM schedule, which results in Tes + Tes neural function evaluations
needed for encoding the source image with the source domain network and decoding with the target
domain network via DDPM ancestral sampling. The images in Figure 8 and the results in Table 1
(left) are obtained with hyperparameter Tes = 600.

D.5 MALE2FEMALE IN PIXEL SPACE

Architecture. We use the SongUNet architecture from EDM (Karras et al., 2022) repository,
which corresponds to DDPM++ network, introduced by Song et al. (2020). The model contains
approximately 55M parameters.

Training Diffusion Model. The diffusion model is trained for 170k iterations. We set the batch
size to 512 and choose the best checkpoint according to FID. We use the Adam optimizer with a
learning rate of 2 ·10−4. We use a dropout rate equal to 0.05 during the training and the augmentation
pipeline from Karras et al. (2022) with a probability of 0.15. The model is trained in FP32. Training
takes approximately 75 hours on 4× NVidia Tesla A100 80GB. The model obtains FID equal to 2.65.

Training RDMD. In all runs, we initialize the generator from the target diffusion model with
the fixed σ = 1.0. We run 5 models, corresponding to the regularization coefficients λ =
{0.0, 0.05, 0.1, 0.2, 0.3}. All models are trained with the Adam optimizer with a generator’s learning
rate of 5 · 10−5 and fake diffusion’s learning rate of 3 · 10−4. We train all models for 25000 iterations
with batch size 512. Training takes approximately 35 hours on 4× NVidia Tesla A100 80GB.

ILVR hyperparameters. The only hyperparameter of ILVR is the downsampling factor N for
the low-pass filter, which determines whether guidance would be conducted on coarser or finer
information. nsteps denotes the number of sampling steps. All metrics in Figure 4 (right) and
Figure 7b for ILVR are obtained on the following hyperparameter grid: N = [2, 4, 8, 16, 32],
nsteps = 18. We exclude runs with the same statistical significance. For both Figure 4 (right) and
Figure 7b, we include only runs with FID less than 30.0 and

√
L2 transport cost lower than 40.0. The

hyperparameters corresponding to results in Table 1 (right) and Figure 9 are N = 16.

SDEdit hyperparameters. The only hyperparameter of SDEdit is the noise level σ, which acts
as a starting point for sampling. The higher the noise level, the closer the sampling procedure is to
the unconditional generation. The smaller the noise values, the more features are carried over to the
target domain at the expense of generation quality. nsteps denotes the number of sampling steps. All
metrics in Figure 4 (right) and Figure 7b for SDEdit are obtained on the following hyperparameter
grid: σ = [1, 2, 3, 3.4241, 5, 7, 10, 15, 20, 40, 80], nsteps = 18. σ = 3.4241 in EDM framework
corresponds to step T = 500 in VP-sampling. We exclude runs with the same statistical significance.
For both Figure 4 (right) and Figure 7b, we include only runs with FID less than 30.0 and

√
L2

transport cost lower than 40.0. The hyperparameters corresponding to results in Table 1 (right) and
Figure 9 are σ = 7.

EGSDE hyperparameters. EGSDE sampling hyperparameters include the initial noise level σ at
which the source image is perturbed, and the downsampling factor N for the low-pass filter. nsteps
denotes the number of sampling steps. The method also has parameters which regulate the guidance
weight of domain-specific energy term λs and domain-independent energy term λi. We take them
by default being equal to λs = 500.0 and λi = 2.0 as in the original EGSDE paper Zhao et al.
(2022). All metrics in Figure 4 (right) and Figure 7b for EGSDE are obtained on the following
hyperparameter grid: σ = [3.4241, 5, 10, 20, 40], N = [2, 4, 8, 16, 32], nsteps = 18. σ = 3.4241 in
the EDM framework corresponds to step T = 500 in VP-sampling. We exclude runs with the same
statistical significance. For both Figure 4 (right) and Figure 7b, we include only runs with FID less
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than 30.0 and
√
L2 transport cost lower than 40.0. The hyperparameters corresponding to results in

Table 1 (right) and Figure 9 are σ = 20, N = 16, nsteps = 18.

DDIB and CycleDiffusion hyperparameters. We train an additional diffusion model with the
same architecture and hyperparameters on the source domain (Male) to further utilize it in DDIB and
CycleDiffusion. The diffusion model is trained for 80k iterations. It obtains FID equal to 4.11.

We run encoding and decoding in DDIB with the deterministic EDM sampler (2nd order Heun solver)
with 50 steps (100 + 100 = 200 function evaluations in total).

All metrics in Figure 4 (right) and Figure 7b for CycleDiffusion model are obtained with encoding step
Tes = [500, 700, 1000] as in DDPM schedule, which results in Tes + Tes neural function evaluations
needed for encoding the source image with the source domain network and decoding with the target
domain network via DDPM ancestral sampling. The hyperparameters corresponding to results in
Table 1 (right) and Figure 9 are Tes = 500.

D.6 MALE2FEMALE IN LATENT SPACE

Autoencoder. In our latent space experiments, we use the LDM-8 version of the Stable Diffu-
sion (Rombach et al., 2022) autoencoder, which converts 256× 256× 3 pictures into 32× 32× 4
latent codes.

Architecture. We use the ADM architecture from EDM (Karras et al., 2022) repository, corre-
sponding to the DhariwalUNet architecture (Dhariwal & Nichol, 2021), but with hyperparameters,
corresponding to the LDM-8 CelebA model by Rombach et al. (2022). This includes 256 model chan-
nels, channel multipliers [1, 2, 4], attention resolutions [32, 16, 8] and depth 2. The model contains
approximately 288M parameters.

Training Diffusion Model. The diffusion model is trained for 885k iterations. We set the batch
size to 96 and choose the best checkpoint according to FID. We use the Adam optimizer with a
learning rate of 1 · 10−4. We use a dropout rate equal to 0.05 during training and the augmentation
pipeline from Karras et al. (2022) with a probability of 0.15. The model is trained in FP32. The
model is trained in FP32. Training takes approximately 130 hours on 4× NVidia Tesla A100 80GB.
The model obtains FID equal to 11.19.

Training RDMD. In all runs, we initialize the generator from the target diffusion model with
the fixed σ = 1.0. We run 5 models, corresponding to the regularization coefficients λ =
{0.0, 0.05, 0.10, 0.15, 0.20}. All models are trained with the Adam optimizer with a generator’s and
fake diffusion’s learning rate of 2 · 10−6. We train all models for 50000 iterations with batch size 96.
Training takes approximately 60 hours on 2×NVidia Tesla A100 80GB.

ILVR hyperparameters. The only hyperparameter of ILVR is the downsampling factor N for
the low-pass filter, which determines whether guidance would be conducted on coarser or finer
information. nsteps denotes the number of sampling steps. All metrics in Figure 10 for ILVR are
obtained on the following hyperparameter grid: N = [1.2, 1.5, 2, 4, 8, 16], nsteps = 18. We exclude
runs with the same statistical significance. For Figure 10, we include only runs with FID less than
70.0 and

√
L2 transport cost lower than 145.0. The hyperparameters corresponding to results in

Table 2 and Figure 5 are N = 16.

SDEdit hyperparameters. The only hyperparameter of SDEdit is the noise level σ, which acts
as a starting point for sampling. The higher the noise level, the closer the sampling procedure is
to the unconditional generation. The smaller the noise values, the more features are carried over
to the target domain at the expense of generation quality. nsteps denotes the number of sampling
steps. All metrics in Figure 10 for SDEdit are obtained on the following hyperparameter grid:
σ = [1, 2, 3, 3.4241, 5, 7, 10, 15, 20, 40], nsteps = 18. σ = 3.4241 in EDM framework corresponds
to step T = 500 in VP-sampling. We exclude runs with the same statistical significance. For
Figure 10, we include only runs with FID less than 70.0 and

√
L2 transport cost lower than 145.0.

The hyperparameters corresponding to results in Table 2 and Figure 5 are σ = 7.
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EGSDE hyperparameters. EGSDE sampling hyperparameters include the initial noise level
σ at which the source image is perturbed, and the downsampling factor N for the low-pass fil-
ter. nsteps denotes number of sampling steps. The parameters regulating the guidance weight
of domain-specific and domain-independent energy terms are denoted respectively as λs and λi.
All metrics in Figure 10 for EGSDE are obtained on the following hyperparameter grid: σ =
[1, 2, 3.4241, 5, 7, 10, 15, 20, 40, 60], N = 4, nsteps = 18, λs = [80.0, 100.0], λi = [0.02, 0.8, 1.5].
σ = 3.4241 in the EDM framework corresponds to step T = 500 in VP-sampling. We exclude runs
with the same statistical significance. For Figure 10, we include only runs with FID less than 70.0
and

√
L2 transport cost lower than 145.0. The hyperparameters corresponding to results in Table 2

and Figure 5 are σ = 40.0, N = 4, λs = 100, λi = 0.8.

Pixel space EGSDE methods presented in Figure 10 and Table 2 and 5 are taken from original paper
Zhao et al. (2022) with λs = 500.0, λi = 2.0, T = 500 for default EGSDE (p) configuration and
λs = 700.0, λi = 0.5, T = 600 for EGSDE† (p). The downsampling factor is taken as N = 32.

The only metric reported in Table 2 different from the ones reported by Zhao et al. (2022) is FID:
authors run the evaluation pipeline by Choi et al. (2020), while we report FID without image
preprocessing. We note, however, that the relative difference is small: (30.93, 43.57) in Table 2
and (30.61, 41.93) in Table 1 by Zhao et al. (2022). In addition, Table 11 Zhao et al. (2022) shows
that changing the evaluation pipeline does not violate qualitative results. We obtain samples for
visualization and measurements of FID and LPIPS by running the official implementation.

CycleDiffusion hyperparameters. We train an additional diffusion model with the same architec-
ture and hyperparameters on the source domain (Male) to further utilize it in CycleDiffusion. The
diffusion model is trained for 520k iterations. It obtains FID equal to 16.95.

All metrics in Figure 10 for CycleDiffusion model are obtained with encoding step Tes =
[200, 300, 400, 500, 600, 700, 800, 900, 1000] as in DDPM schedule, which results in Tes + Tes

neural function evaluations needed for encoding the source image with the source domain network
and decoding with the target domain network via DDPM ancestral sampling. We use Tsdedit = 50
steps for additional refinement of an obtained sample with the help of the SDEdit method.

E COMPARISON WITH OT METHODS

In this section, we compare RDMD with the baselines that perform image-to-image translation based
on solving different formulations of the optimal transport problem. Among them, OTCS (Gu et al.,
2023b) defines a coupling over source and target domains and trains a conditional diffusion model
between them. UOTM (Choi et al., 2024b) and DIOTM (Choi et al., 2024a) originate from OTM (Fan
et al., 2021) and solve different minimax versions of the OT problem (first corresponds to the
unbalanced OT formulation; second relies on insights from the dynamic formulation). Additionally,
we consider currently best working models based on Schrödinger bridges: DSBM (Shi et al., 2024)
and ASBM (Gushchin et al., 2024b). We exclude similar methods as NOT (Korotin et al., 2022)
and OTM (Fan et al., 2021), because Choi et al. (2024b) and Choi et al. (2024a) show that their
performance is inferior to UOTM and DIOTM.

In Table 3, Figure 11 and Figure 12, we compare RDMD with OTCS, DSBM, UOTM and DIOTM on
the 64×64 AFHQv2 Wild→Cat translation problem. We choose this problem because it is frequently
used by the methods we compare with (besides ASBM). Since UOTM was not originally validated
on I2I experiments, we take the original implementation, modify it for this scenario, and run with the
default hyperparameters, suggested for larger-scale experiments. We also run the implementation
of DIOTM, published in OpenReview, to measure similarity metrics and FID in (train vs train) and
(test vs train) scenarios. We train OTCS on Wild->Cat with the hyperparameters used for the main
unpaired I2I experiment from the paper (unpaired CelebA deblurring). We also report (test vs train)
FID, measured by the authors (marked by *), which is calculated by sampling 10 output images for
each source. For a more fair comparison with our one-to-one implementation of RDMD, we adapt
this calculation by sampling 10 augmentations for each souce test sample (original, flipped, and 4
random crops for original and flipped) and report the obtained value as FID (text ×10). We take the
DSBM metrics from De Bortoli et al. (2024, Table 1).
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From the quantitative results we observe that the method performs strictly better than all of the
baselines, except OTCS, which has lower L2, but does not fit the target distribution. RDMD thus not
just provides a better faithfulness-realism trade-off, but improves on baselines in both aspects. The
qualitative results in Figure 11 and Figure 12 (DSBM and DIOTM samples are taken from De Bortoli
et al. (2024) and Choi et al. (2024a) respectively) confirm that RDMD generates higher-quality
pictures than the baselines: OTCS does not fit the target distribution, UOTM suffers from mode
collapse and unrealistic samples, DIOTM and DSBM frequently produce pictures with artifacts:
distorted proportions, lack of proper facial parts etc. At the same time, we do not observe such
artifacts from RDMD and obtain realistic samples that are closely related to the input.

In Table 4 and Figure 13 we compare RDMD with ASBM on the 64× 64 CelebA Male→Female
translation problem. We choose this problem as the closest 64 × 64 problem to the 128 × 128
Male→Female investigated by Gushchin et al. (2024b). We run the official implementation of ASBM
with the hyperparameters, reported for the 128× 128 problem.

Here we also observe that RDMD beats ASBM in terms of all metrics, thus offering a method
with better faithfulness and realism at the same time. We validate the difference in performance
in Figure 13: ASBM produces unrealistic fases with artifacts. At the same time, RDMD produces
credible samples without obvious flaws. We note, however, that the RDMD samples may sometimes
seem blurry. This may be caused by the optimized L2 transport cost. We consider choosing a more
appropriate cost function as an important future work.

FID (train) FID (test) FID (test ×10)
√
L2 LPIPS PSNR SSIM

OTCS 54.50 65.01 — 13.71 0.508 18.38 0.468
DSBM — 25.41 — — 0.485 — —
UOTM 14.85 26.7 — 27.39 0.509 12.14 0.250
DIOTM 8.94 20.28 10.72* 18.69 0.465 15.66 0.496
RDMD 7.87 18.18 9.24 15.59 0.363 19.22 0.594

Table 3: Comparison of RDMD with OT-based baselines on 64× 64 AFHQv2 Wild →Cat. DSBM
results are taken from De Bortoli et al. (2024). FID value of DIOTM, marked by *, is taken from Choi
et al. (2024b), and corresponds to test vs train FID measurement with 10 generated samples per each
source.

FID (train) FID (test)
√
L2 PSNR SSIM

ASBM 22.94 31.99 15.32 17.40 0.524
RDMD 12.04 25.6 11.88 20.97 0.701

Table 4: Comparison of RDMD with ASBM on 64× 64 CelebA Male →Female.
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Figure 11: Visual comparison of RDMD with DSBM and OTCS on 64× 64 AFHQv2 Wild→Cat.
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Figure 12: Visual comparison of RDMD with OT-based baselines on 64× 64 AFHQv2 Wild→Cat.
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Figure 13: Visual comparison of RDMD with ASBM on 64× 64 AFHQv2 Male→Female.
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