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Abstract

Cross-lingual transfer learning has shown
promise for low-resource translation, but its
effectiveness for extremely low-resource lan-
guages, such as indigenous and ancient lan-
guages, remains under-explored. This limita-
tion stems from a circular challenge: insuffi-
cient data and limited understanding of linguis-
tic features and grammar prevent a thorough
analysis, which in turn hinders the develop-
ment of effective methods. This paper identi-
fies key challenges in this domain and intro-
duces a novel analysis technique, UNMUTE
(Understanding MUItilingual Transferability
through Encipherment), which enciphers well-
studied and high-resource text to simulate the
challenges posed by extremely low-resource
languages. Our framework enables us to sys-
tematically and precisely study factors such
as training data amount and the proportion of
unseen characters or (sub)words. Using UN-
MUTE, we investigate the techniques that en-
able and constrain effective transfer learning for
extremely low-resource machine translation.

1 Introduction

Multilingual pre-trained models have demonstrated
substantial benefits for NLP tasks in low-resource
languages through cross-lingual transfer learning
(NLLBTeam et al., 2024; Ustiin et al., 2024). For
instance, multilingual machine translation systems
reportedly achieve BLEU scores of around 20 with
only a few thousand parallel sentences. However,
recent research challenges these results: Silva et al.
(2024) reveals potential data contamination inflat-
ing performance metrics.

The true effectiveness of these models for ex-
tremely low-resource languages, which we define
as those lacking both substantial monolingual data
and meaningful subword unit overlap with high-
resource languages, remains understudied. This
gap in our understanding is significant: as Joshi
et al. (2020) notes, fewer than 1% of the world’s ap-
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Figure 1: The left panel illustrates various OOV sce-
narios in low-resource languages, with colored regions
showing subword tokenization from titoken'. The right
panel demonstrates four encipherment methods. We use
synthetic encipherment on high-resource languages to
simulate challenges faced in low-resource languages,
including disjointed charsets and meaning mismatch.
The encipherment process breaks the tokenization of
modern pre-trained models. For detail, check §2.1.

proximately 7,000 languages can be effectively pro-
cessed using modern pre-training and fine-tuning
pipelines.

Chen et al. (2025) demonstrate severe limitations
in cross-lingual transfer learning for indigenous
and ancient languages due to out-of-vocabulary
(OOV) issues. As illustrated in Figure 1 (left), these
OOV challenges manifest at different levels. In
extreme cases, such as ancient and indigenous lan-
guages, the entire script is unknown to pre-trained
models. In other cases, like the Basque and Amis
languages, the challenges are more subtle—while
the text can be tokenized, the resulting tokens may
have nothing to do with their overlapping high-
resource counterparts, making transfer ineffective
and even potentially disadvantageous. We later
refer to this phenomenon as meaning mismatch.

In this work, we analyze these OOV issues in



low-resource machine translation through synthetic
encipherment. The characteristics of extremely
low-resource languages differ substantially from
modern languages, making it unclear whether per-
formance gaps stem from corpus domain, sentence
length, training data volume, or writing system dif-
ferences. To address these challenges, we propose
UNMUTE, a novel experimental framework using
enciphered parallel sentences to systematically in-
vestigate translation challenges by disentangling
these factors (Ebrahimi et al., 2024; Ojha et al.,
2024; George et al., 2024).

From our analysis, we derive the following con-
tributions:

1. We identified and categorized two major types
of OOV issues and proposed a synthetic en-
cipherment framework to systematically eval-
uate and understand the challenges for low-
resource languages resulting from differences
in writing systems. Our findings suggest that
meaning mismatch, i.e. coincidentally over-
lapping tokens that have no real semantic cor-
respondence, leads to similar performance
drops as disjointed charset, which has not
been directly demonstrated in the past. We
also demonstrated that transliteration (roman-
ization) of a non-Latin script performs simi-
larly to enciphering with a substitution cipher.

2. We provided a lower bound on the data quan-
tity requirement on extremely low-resource
translation. Our results show that transfer
learning becomes ineffective with datasets
smaller than 100k tokens when there is no
monolingual data or sibling languages avail-
able and dialect or indigenous languages re-
quires at least 10k tokens. This finding, while
intuitive, has important implications for the
field: many languages falling into this cat-
egory are currently overlooked in research
and development efforts. We emphasize the
need for increased attention to these truly low-
resource languages, particularly in data col-
lection and methodology development.

3. The Relative Drop Performance (RDP) on en-
ciphered text serves as a robust metric to evalu-
ate transferability across different pre-trained
models. A well-performing transfer learning
model or method should exhibit a smaller
RDP on the UNMUTE dataset, which con-
sists of enciphered text. This metric provides

a reliable assessment of a model’s ability to
transfer knowledge from high-resource lan-
guages and writing systems to low-resource
ones. We found that byte-level model such
as byT5 has the overall smallest RDP and
indicates its strong generalization ability on
unseen languages.

In §2, we discussed the OOV issues of low-
resource languages in detail; In §3, we described
our synthetic encipherment approach. §4 described
the experimental setup and results; in §5 we ana-
lyzed popular pre-trained models for machine trans-
lation in low-resource settings on our UNMUTE
synthetic data. Finally, we also present two real-
world cases in §6 to demonstrate the effectiveness
of our framework.

2 Background and Related Work

2.1 Out-of-Vocabulary Scenarios in
Low-Resource Languages

Recent large-scale models are trained on nearly all
available internet text data, but for languages not
represented online, we identify two major out-of-
vocabulary (OOV) scenarios: disjointed charsets
and meaning mismatch (see Figure 1).

Disjointed charsets occur when a language’s
character set has no overlap with the model’s train-
ing data and cannot be easily normalized. This
is common in ancient extinct languages (De Cao
et al., 2024; Gutherz et al., 2023; Chen et al., 2024),
where the writing system is completely different
from modern high-resource scripts. For example,
ancient languages like Sumerian and Egyptian hi-
eroglyphs use logographic scripts that have no di-
rect correspondence to modern alphabets, making
it challenging to apply standard tokenization meth-
ods. Additionally, living languages such as Can-
tonese (a dialect whose speakers are more than
85 million) (Liu, 2022) and Inuktitut (indigenous
languages) (Roest et al., 2020), also suffers from
similar problem.

Meaning mismatch occurs when tokenization
creates misleading semantic associations, espe-
cially in low-resource languages where limited
training data hinders overcoming incorrect initial
associations. For instance, the Amis word hawopen
(meaning “enclose”) is segmented by standard BPE
tokenizers into haw and open, creating false connec-
tions to English semantics that can impede learning
the true meaning of the word (Zheng et al., 2024).



This issue is particularly problematic for languages
with morphological structures that differ signifi-
cantly from high-resource languages like English.

2.2 Transfer Learning in Machine Translation

Zoph et al. (2016) first explored transfer learning
for low-resource translation, considering languages
with fewer than 1M tokens. Recent studies show
that large language models (LLMs) do not out-
perform traditional MT systems on high-resource
languages (Robinson et al., 2023). Various solu-
tions have been explored to address the challenges
posed by disjoint character sets in ancient language
processing (De Cao et al., 2024), including byte-
level encoding (Xue et al., 2022), vocabulary ex-
pansion on multilingual models (Liu et al., 2020;
Xue et al., 2021), and pixel-based text representa-
tions (Salesky et al., 2023) to tackle fertility issues
in cross-lingual transfer.

3 UNMUTE: Enciphering the Text

As discussed previously, we encipher of high-
resource languages to systematically investigate
cross-lingual transfer learning for extremely low-
resource languages in machine translation. For
simplicity and consistency, we only study translat-
ing into English direction and encipher the source
language side only, the target side (English) is not
enciphered.

3.1 Encipherment and Tokenization

In our UNMUTE framework, we first encipher the
text and then apply tokenization. We use charac-
ter-level encipherment to simulate disjoint charsets,
and subword-level encipherment to simulate the
meaning mismatch case. A simple flowchart to
show how the process works is shown in Figure 2.
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Figure 2: Visualization of how encipherment and to-
kenization work and the choice of tokenization after
encipherment affects the number of new tokens. In this
case we encipher one character e as ©. If we directly
use a character-level tokenizer, a common word such as
the will be encoded as two tokens, but if we use BPE
to re-train a new tokenizer, thQ and Od (in blue) will
be encoded as subword tokens.

I. Encipherment first. As shown in Figure 1,
we consider two type of encipherment units: char-
level and subword-level. For the encipherment
ratios, i.e. how many percentages of the text are
being enciphered, we select {0, .1, .5, .8, .9, 1} for
controlled experiments. For example, if we choose
encipher at the character level and the encipher-
ment ratio is 0.5, we randomly select 50% of the
characters and always encipher them for both train-
ing and testing. This is essentially equivalent to
applying a 1:1 substitution cipher on 50% of the
characters.

II. Re-tokenization after encipherment. As
shown in Figure 2, while our primary experiments
employ substitution cipher, which is a lossless
transformation from a human perspective, the sub-
sequent tokenization process introduces informa-
tion loss when processed by neural models. Con-
sequently, the choice of tokenization method after
encipherment significantly affects downstream per-
formance. We can process the text using either
character-level or BPE tokenization. By default,
we use the character-level tokenization, a further
study can be found in §4.3.

III. Handling new tokens. In the previous step,
we introduce new tokens to a pre-trained model,
and we can handle these tokens in either of two
approaches:

1. (Default) vocabulary expansion: We map
subwords to newly registered tokens, which
are initialized from a multivariate normal dis-
tribution that has existing embeddings’ mean
and covariance (Hewitt, 2021).

2. In-place substitution: We randomly map a
new token to another existing token. For ex-
ample, the subword haw of the Amis language
map to the English subword haw. This ap-
proach parallels real-world scenarios such as
language romanization.

IV. Special encipherment case. We also im-
plement a special transliteration encipherment,
which is analogous to the relationship between
Linear B and Ancient Greek (Chadwick, 1990).
We apply such transliteration encipherment to non-
alphabetic writing systems such as Chinese. We
report this experiment on Chinese in Section 6.2.



3.2 Choice of Languages

To construct synthetic data via encipherment that
effectively simulates the challenges encountered
in extremely low-resource language settings as de-
scribed previously, we implement encipherment
while accounting for multiple linguistic dimen-
sions: language families, writing systems (Sproat
and Gutkin, 2021), and typological features, fol-
lowing the approach of Chen et al. (2025).

Since a major challenge for low-resource lan-
guages in machine learning is their disjoint char-
acter sets, we selected representative languages
spanning diverse phonographic categories and writ-
ing systems. We chose five high-resource lan-
guages: Chinese, Finnish, Japanese, Hindi, and
Arabic. These languages represent distinct writing
systems and typological features while providing
sufficient data for our encipherment approach. De-
tailed statistics for each language are presented in
Table 1.

Lang Writing Dataset Phonography sent len
Chinese Han wmt18-zh-en Syllabic 4.6
Finnish Latin wmt18-fi-en Alphabetic 17.6
Arabic Arabic iwslt2017-ar-en Abjad 14.6
Japanese Han/Kana  iwslt2017-ja-en Moraic 4.6

Hindi  Devanagari IITB-hi-en Abugida 17.0

Table 1: Statistics of different languages we choose for
experiment. The sentence length is counted according
to the number of English words.

3.3 Models

For cross-lingual transfer learning in machine trans-
lation, we study five different models that fall into
two broad categories:

1. Unsupervised denoising training: Models
pre-trained using masked language modeling
(MLM) or next word prediction objectives,
including mTS and mBART-2S.

2. Aligned: Models pre-trained on parallel data,
and mBART-50 falls into this category.

mT5 and mBART-25 These multilingual seq-to-
seq models are pre-trained using only unsupervised
multilingual data. The primary difference between
them lies in their training data: mT5 (Xue et al.,
2021) uses the mc4 dataset, while mBART-25 uses
common-crawl-25 (cc25).

mBART-50 Building upon mBART-25, mBART-
50 first continues pre-training on monolingual cor-
pora of 50 languages using the same unsupervised

approach. Crucially, mBART-50 (Tang et al., 2020)
then undergoes additional training on supervised
parallel data across these 50 languages.

3.4 Overfitting Remedies

We observed overfitting is a big bottleneck for a
large portion of our experiments, especially when
the training data size is less than 10k or the enci-
pherment ratio is higher than 0.5. Therefore, we
revisit different approaches including dropout, la-
bel smoothing, and LoRA to avoid overfitting.

Dropout. Dropout is the de facto technique to
prevent overfitting (Srivastava et al., 2014), by ran-
domly disabling parameters in contributing to the
model outputs. We have conducted extensive ex-
periments between dropout rates and learning rate
scheduling on their effects on preventing overfitting
to the smaller-size training corpus.

Label Smoothing. A regularization technique
that prevents neural networks from becoming over-
confident in their predictions by replacing hard tar-
get probabilities (like 0 or 1) with smoothed values
(Szegedy et al., 2016).

LoRA. Low-rank adaptation techniques have be-
come the go-to method for saving training memory
in the LLM era (Hu et al., 2021). However, its
benefits in preventing catastrophic forgetting and
preserving general knowledge in the models have
often been ignored (Biderman et al., 2024).

4 Experiments and Result

4.1 Experiment Setup

We conducted experiments on A100, A6000, L40
and H100 GPUs with an effective batch size of 64.
Models were trained for 31,250 steps and evaluated
every 500 steps. Early stopping with patience of
10 evaluation steps was used to prevent overfitting
and select the best-performing model. We set the
beam size to 5.

We use mBART’s default settings, learning rate
= 3e-5 and dropout = 0.3, label smoothing = 0.2 for
1k, 10k, and 100k training set size, we additionally
run a dropout=0.1 and no label smoothing setting
for experiments using 1M data. Our code is based
on Huggingfaces’s Transformers with DDP. The
wall time for training one experiment settings under
mBart-50 is about 30 mins with 4 x NVIDIA A100.
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Figure 3: Relative performance drop of different languages when changing the encipherment ratios from 0% to
100%. (top) is character-level encipherment and (bottom) is subword-level encipherment. Different lines show
trending of encipherment rate given different number of tokens {1k, 10k, 100k, IM} in training.

4.2 Main Results and Discussion

The main results of our experiments are shown in
Figure 3. We observed several key findings:

Non-linear performance degradation The re-
lationship between the encipherment ratio and rel-
ative performance drop is not linear. Most lan-
guage pairs show relatively modest degradation up
to around 50% encipherment, followed by a sharp
decline between 50-80%. This pattern suggests
there may be a critical threshold of familiar tokens
needed to maintain reasonable translation quality,
beyond which performance rapidly deteriorates.

Similar performance degradation across
OOV types At 100% encipherment ratio, both
character- and subword-level encipherment show

significant performance degradation compared
to the 0% encipherment baseline. This supports
our earlier claim that even when a new unknown
language uses Latin script, transfer learning
effectiveness is limited by insufficient data and
lack of semantic overlap. The absence of shared
semantic meaning between source and target
languages fundamentally constrains word-level
transferability.

The importance of training data size Our UN-
MUTE analysis reveals that model performance
deteriorates rapidly when parallel data decreases
from 1M to 100k tokens, with an even steeper de-
cline at 10k tokens. This finding has two important
implications: First, it empirically demonstrates that
data collection remains the most effective solution



for improving machine translation quality in low-
resource settings. Second, it suggests that claims
of exceptional performance on very small datasets
(around 2,000 sentences) without advanced tech-
niques like back-translation or data augmentation
should be scrutinized carefully (Silva et al., 2024;
Chen et al., 2025). The fundamental challenges in-
herent to under-represented languages make achiev-
ing high-quality machine translation with such lim-
ited data highly improbable.

Language-specific sensitivity to encipherment
Different language pairs exhibit varying levels of
resilience to encipherment. For instance, ar-en
maintains relatively better performance at high en-
cipherment rates compared to fi-en, which shows a
more dramatic drop. This suggests that the impact
of OOV issues varies significantly across language
pairs, possibly due to underlying linguistic similar-
ities or differences in the base tokenization.

Impact of writing system characteristics
Finnish, known to have the highest morphologi-
cal complexity among non-logographic languages
(Sproat and Gutkin, 2021), shows the largest gap
between character and subword-level encipherment
performance. In contrast, Chinese shows minimal
impact from different encipherment methods, sug-
gesting that highly logographic writing systems
may not benefit from subword tokenization.

Counter-intuitive effects of partial overlap Sur-
prisingly, more than half of the experiments group
(a line plot in Figure 3) performance at 80-90%
encipherment is better than at 100% encipherment.
This suggests that having very few overlapping
(sub)words may actually be more detrimental to
adaptation or fine-tuning than having no overlap
at all, possibly because minimal lexical overlap
creates misleading linguistic signals.

4.3 Re-tokenization: Character or BPE?

Tokenization FI AR HI ZH

759 3196 036 14.02
12.62 3133 2.11 14.07

char
BPE (5000)

Table 2: Different re-tokenization approaches will
highly affect the performance of enciphered data.

mm char
s BPE 5000

Fl AR HI ZH

Figure 5: Test BLEU scores on four languages with
character level encipherment and comparison between
character- and BPE-level re-tokenization. Training data
is 1M token and the encryption ratio is 100%.

Figure 5 demonstrates that the choice between BPE
and character-level tokenization significantly im-
pacts performance, with effects varying across lan-
guages. First of all, Chinese (ZH) maintains a
very high performance of BLEU 14.02 even using
character-level encipherment. For languages with
limited character sets (fewer than 100 characters,
such as Finnish, Hindi, and Arabic), retraining a
subword tokenizer to expand the existing vocabu-
lary is crucial for performance. In these cases, BPE
tokenization after encipherment improves perfor-
mance by 3.92 BLEU points, representing a 51.6%
relative improvement. Logographic languages such
as Chinese (ZH) with larger character sets and in-
herent semantic subword units do not show com-
parable benefits from this approach. Interestingly,
Arabic (AR) shows a slightly degenerated perfor-
mance when changing from character to BPE tok-
enization.

4.4 Fighting against Overfitting

Encipherment Ratio 05 09 1.0

Default 0.26 0.17 0.79
Dropout + Label Smoothing 1.96 1.18 1.06

Dropout only 1.71 1.10 1.62
Label Smoothing only 126 127 1.15
LoraRank16&Alpha32 0.94 0.12 0.21
Lorarank64&Alphal28 2.14 033 0.30

Table 3: Effectiveness of methods in mitigating over-
fitting. The experiments are all HI-EN translations with
100% character-level encipherment.

Unsurprisingly, models trained with less than
IM tokens suffer from overfitting. We tried differ-
ent combinations of remedies described in §3.4 and
found the suggested learning rate and hyperparam
settings from mBART’s is the best settings. The
two settings are shown in Figure 6. Polynomial
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Figure 6: BLEU scores of two learning rate scheduler
on different languages. linear: Linear decay with-
out warmup steps; poly: polynominal decay with 5%
warmup step. Trained on 100k tokens and use subword-
level encipherment with a encipherment ratio of 100%.

decay with warmup steps is in general better for
fine-tuning.

We observe that the enciphered Hindi (HI) text
is prone to overfitting. In contrast, hi performs the
worst. Although HI and ZH exhibit similar BLEU
scores when token_size = 1M and ratio = 0, the
BLEU score for hi drops abruptly to nearly zero
as the ratio increases, whereas ZH remains stable.
We hypothesize that this discrepancy may result
from ZH being a more compact language that inher-
ently includes “subwords,” whereas hi lacks this
property. Additionally, HI requires a high dropout
rate and smoothing even when token_size = 1M,
indicating that it is inherently noisy and prone to
overfitting.

Given the ineffectiveness of the above methods
in mitigating over-fitting, we further experiment
with LoRA, which preserves backbone model pa-
rameters. We follow the common practice of a
double Lora alpha to LoRA rank and study 2 hy-
perparameter sets across 4 enciphered ratios on HI.
A higher LoRA rank allows higher adaptation ca-
pability to the new language constructed through
encipherment but higher risks of over-fitting, and
vice versa. As shown in Table 3, LoRA yields a

BLEU score of 2.14 on 50% enciphered HI.

5 Different Pre-trained Models on
UNMUTE data

While the advantages of multilingual models have
been extensively studied in previous work, their
adoption has not yet become universal in the field.
Our experiments provide compelling evidence for
their effectiveness, particularly in handling unseen
languages. We conducted comparative experiments
using encipherment rates of 0% and 100% across
four widely-used models. As illustrated in Figure 4,
the performance degradation from 0% to 100% en-
cipherment reveals important insights about model
capacity for handling under-represented languages:

Model Performance Comparison mBART-50
demonstrates superior performance across all lan-
guage pairs, both in terms of absolute BLEU scores
and relative performance degradation (55.92%
drop). The performance gap is particularly pro-
nounced for low-resource language pairs (AR-EN
and HI-EN). Notably, mBART-25, despite being
trained solely on unsupervised data from CC-25,
shows remarkable resilience under high encipher-
ment settings.

Architecture-Specific Analysis mT5 exhibits
the most severe performance degradation, with
BLEU scores plummeting from 13 to 2 (91.93%
drop) under 100% encipherment. The stark contrast
between mBART and mT5 performance suggests
that architectural choices and pre-training objec-
tives significantly impact cross-lingual transfer ca-
pability. The relative stability of mBART-25 under
encipherment indicates that the choice of the pre-
training objective may be more crucial than the size
of training data for robust cross-lingual transfer.

Language-Specific Patterns The impact of en-
cipherment varies notably across language pairs.



AR-EN and ZH-EN show more graceful degra-
dation compared to FI-EN and HI-EN. This pat-
tern suggests that language family relationships
and script similarities may influence model robust-
ness. These findings are further corroborated by
our case study on Akkadian-English translation
(§6.1). Importantly, our results challenge the cur-
rent practice in WMT challenges where mTS5 and
mBART are often treated as interchangeable op-
tions. This equivalence assumption may mislead
researchers and practitioners in developing more
effective multilingual translation systems, particu-
larly for low-resource scenarios.

6 Validating Synthetic Experiments with
Real-World Cases

To demonstrate the practical applicability of our
UNMUTE framework, we examine two represen-
tative case studies: Akkadian, an extinct language
from the ancient Middle East, and Chinese, a
widely used modern language with distinct linguis-
tic properties. These cases serve to validate our
framework’s findings in both historical and con-
temporary contexts.

6.1 Case study I: Akkadian Machine
Translation

Our first case study focuses on Akkadian, an extinct
Semitic language that was predominantly used in
ancient Mesopotamia until approximately 1,000
BCE (Gutherz et al., 2023). This language presents
unique challenges for machine translation due to
its historical nature and limited available corpus.
The choice of Akkadian is particularly relevant as
it represents an extreme case of an under-resourced
language, allowing us to test the robustness of our
findings in a real-world scenario.

Our experimental results on synthetic data (Ta-
ble 4) predicted that mBART would demonstrate
superior performance compared to other models
when handling heavily enciphered or unfamiliar
scripts. The actual performance on Akkadian trans-
lation tasks strongly aligns with these predictions,
providing empirical validation of our framework’s
predictive capabilities.

test/BLEU train size mBART from scratch
Akkadian 140k 54.60 37.47
Arabic (100% encipher) 100k 5.53 3.94

Table 4: mBART-50 works better than model trained
from scratch. The Arabic text is 100% enciphered.

6.2 Case II: Romanization on Chinese

test/BLEU 10k 100k 1M
no encipher 10.77 1542 17.59
char-encipher 026 6.89 14.02
subword-encipher 0.12  7.96 14.87
romanization 041 6.81 1526

Table 5: Comparison on WMT18-ZH-EN dataset with a
different number of training size (tokens). The encipher-
ment ratio is 100% for both char- and subword-level
encipherment.

For non-Latin languages, researchers sometimes
use Latin transliteration (romanization) to handle
the character set disjoint problem (Nguyen et al.,
2023). For example, H R 5 20 #H can be translit-
erated into ziran yuyan chuli. The experimen-
tal results shown in Table 5 demonstrate that the
romanization of Chinese performs similarly to a
random character-level 1:1 substitution cipher.

This finding suggests that without strong cross-
lingual semantic sharing, transliteration may ap-
pear to resolve the out-of-vocabulary (OOV) prob-
lem, but in reality, it performs comparably to ex-
panding the vocabulary. Transliteration alone does
not address the lack of semantic information trans-
fer between the source and target languages, which
is crucial for effective machine translation.

These results highlight the importance of devel-
oping more sophisticated methods that go beyond
simple character-level mappings to improve cross-
lingual transfer learning in low-resource and an-
cient language settings. Approaches that incorpo-
rate semantic information, such as pixel-based rep-
resentations or byte-level encoding, may be more
promising for handling the challenges posed by
disjoint character sets and limited training data.

7 Conclusion

In this paper, we introduce UNMUTE, a novel
framework that enciphers high-resource languages
to systematically analyze the challenges faced by
under-represented low-resource languages in ma-
chine translation. By disentangling factors such
as training data volume and writing system dif-
ferences, UNMUTE enables a more comprehen-
sive understanding of the barriers to effective
cross-lingual transfer learning for low-resource lan-
guages in machine translation.



Limitations

While the UNMUTE framework provides a valu-
able tool for systematically analyzing the chal-
lenges faced by low-resource languages in machine
translation, it is important to acknowledge its limi-
tations.

Firstly, our framework relies on a simple 1:1 sub-
stitution cipher to simulate the out-of-vocabulary
(OOV) challenges in low-resource languages. This
approach does not fully capture the linguistic com-
plexities of real-world low-resource languages,
such as morphological richness, syntactic varia-
tions, and language-specific features. Incorporating
more sophisticated linguistic features into the en-
cipherment process could provide a more realistic
simulation of low-resource language characteris-
tics.

Secondly, the UNMUTE framework focuses pri-
marily on the impact of disjoint character sets and
meaning mismatch on cross-lingual transfer learn-
ing. However, other factors, such as the domain
of the corpus, and the linguistic typology of the
languages involved, also play crucial roles in the
success of machine translation systems. Future
work could extend the UNMUTE framework to
investigate the interplay between these factors and
the OOV challenges addressed in this study.

Ethics Statement

This work highlights the challenges faced by ex-
tremely low-resource languages in machine trans-
lation, which we define as those with fewer than
IM training tokens. By emphasizing this defini-
tion, we aim to underscore the need for more effec-
tive cross-lingual transfer learning approaches that
can operate in data-scarce scenarios. We acknowl-
edge that using enciphered modern languages as a
proxy for low-resource languages is an imperfect
approximation. However, we believe that this ap-
proach provides valuable insight into low-resource
language processing while respecting the unique
context of ancient languages. Throughout this re-
search, we have strived to ensure that our methodol-
ogy and findings do not perpetuate biases or stereo-
types associated with any particular language or
language family. We are committed to conducting
ethical and responsible research with the ultimate
goal of advancing NLP in a direction that benefits
all languages and communities, regardless of their
availability of resources.
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A Example Appendix

This is a section in the appendix.

Lang 1k 10k 100k M

fi 63 537 5,666 56,924
ja 220 2,165 21,695 -

ar 62 523 6,546 68,641
hi 53 576 5,844 58,744
zh 217 22241 21,126 217,541

Table 6: The number of sentences that correspond to the
number of tokens across different languages.

tokens=1M, ratio=1
Model FI AR HI ZH
char 7.59 3196 0.36 14.02
BPE (new_token_size=1000) 11.51 29.07 1.89 14.43
BPE (new_token_size=5000) 12.62 31.33 2.11 14.07
BPE (new_token_size=10000) 12.22 3193 1.63 14.60
tokens=100k, ratio=1
char 098 495 0.12 6.89
BPE (new_token_size=1000) 0.35 548 074 3.68
BPE (new_token_size=5000) 0.68 7.09 1.04 6.79

Table 7: Performance comparison of different tokeniza-
tion approaches across languages under different token
settings

11



