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Abstract

Cross-lingual transfer learning has shown001
promise for low-resource translation, but its002
effectiveness for extremely low-resource lan-003
guages, such as indigenous and ancient lan-004
guages, remains under-explored. This limita-005
tion stems from a circular challenge: insuffi-006
cient data and limited understanding of linguis-007
tic features and grammar prevent a thorough008
analysis, which in turn hinders the develop-009
ment of effective methods. This paper identi-010
fies key challenges in this domain and intro-011
duces a novel analysis technique, UNMUTE012
(Understanding MUltilingual Transferability013
through Encipherment), which enciphers well-014
studied and high-resource text to simulate the015
challenges posed by extremely low-resource016
languages. Our framework enables us to sys-017
tematically and precisely study factors such018
as training data amount and the proportion of019
unseen characters or (sub)words. Using UN-020
MUTE, we investigate the techniques that en-021
able and constrain effective transfer learning for022
extremely low-resource machine translation.023

1 Introduction024

Multilingual pre-trained models have demonstrated025

substantial benefits for NLP tasks in low-resource026

languages through cross-lingual transfer learning027

(NLLBTeam et al., 2024; Üstün et al., 2024). For028

instance, multilingual machine translation systems029

reportedly achieve BLEU scores of around 20 with030

only a few thousand parallel sentences. However,031

recent research challenges these results: Silva et al.032

(2024) reveals potential data contamination inflat-033

ing performance metrics.034

The true effectiveness of these models for ex-035

tremely low-resource languages, which we define036

as those lacking both substantial monolingual data037

and meaningful subword unit overlap with high-038

resource languages, remains understudied. This039

gap in our understanding is significant: as Joshi040

et al. (2020) notes, fewer than 1% of the world’s ap-041
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Figure 1: The left panel illustrates various OOV sce-
narios in low-resource languages, with colored regions
showing subword tokenization from titoken1. The right
panel demonstrates four encipherment methods. We use
synthetic encipherment on high-resource languages to
simulate challenges faced in low-resource languages,
including disjointed charsets and meaning mismatch.
The encipherment process breaks the tokenization of
modern pre-trained models. For detail, check §2.1.

proximately 7,000 languages can be effectively pro- 042

cessed using modern pre-training and fine-tuning 043

pipelines. 044

Chen et al. (2025) demonstrate severe limitations 045

in cross-lingual transfer learning for indigenous 046

and ancient languages due to out-of-vocabulary 047

(OOV) issues. As illustrated in Figure 1 (left), these 048

OOV challenges manifest at different levels. In 049

extreme cases, such as ancient and indigenous lan- 050

guages, the entire script is unknown to pre-trained 051

models. In other cases, like the Basque and Amis 052

languages, the challenges are more subtle—while 053

the text can be tokenized, the resulting tokens may 054

have nothing to do with their overlapping high- 055

resource counterparts, making transfer ineffective 056

and even potentially disadvantageous. We later 057

refer to this phenomenon as meaning mismatch. 058

In this work, we analyze these OOV issues in 059
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low-resource machine translation through synthetic060

encipherment. The characteristics of extremely061

low-resource languages differ substantially from062

modern languages, making it unclear whether per-063

formance gaps stem from corpus domain, sentence064

length, training data volume, or writing system dif-065

ferences. To address these challenges, we propose066

UNMUTE, a novel experimental framework using067

enciphered parallel sentences to systematically in-068

vestigate translation challenges by disentangling069

these factors (Ebrahimi et al., 2024; Ojha et al.,070

2024; George et al., 2024).071

From our analysis, we derive the following con-072

tributions:073

1. We identified and categorized two major types074

of OOV issues and proposed a synthetic en-075

cipherment framework to systematically eval-076

uate and understand the challenges for low-077

resource languages resulting from differences078

in writing systems. Our findings suggest that079

meaning mismatch, i.e. coincidentally over-080

lapping tokens that have no real semantic cor-081

respondence, leads to similar performance082

drops as disjointed charset, which has not083

been directly demonstrated in the past. We084

also demonstrated that transliteration (roman-085

ization) of a non-Latin script performs simi-086

larly to enciphering with a substitution cipher.087

2. We provided a lower bound on the data quan-088

tity requirement on extremely low-resource089

translation. Our results show that transfer090

learning becomes ineffective with datasets091

smaller than 100k tokens when there is no092

monolingual data or sibling languages avail-093

able and dialect or indigenous languages re-094

quires at least 10k tokens. This finding, while095

intuitive, has important implications for the096

field: many languages falling into this cat-097

egory are currently overlooked in research098

and development efforts. We emphasize the099

need for increased attention to these truly low-100

resource languages, particularly in data col-101

lection and methodology development.102

3. The Relative Drop Performance (RDP) on en-103

ciphered text serves as a robust metric to evalu-104

ate transferability across different pre-trained105

models. A well-performing transfer learning106

model or method should exhibit a smaller107

RDP on the UNMUTE dataset, which con-108

sists of enciphered text. This metric provides109

a reliable assessment of a model’s ability to 110

transfer knowledge from high-resource lan- 111

guages and writing systems to low-resource 112

ones. We found that byte-level model such 113

as byT5 has the overall smallest RDP and 114

indicates its strong generalization ability on 115

unseen languages. 116

In §2, we discussed the OOV issues of low- 117

resource languages in detail; In §3, we described 118

our synthetic encipherment approach. §4 described 119

the experimental setup and results; in §5 we ana- 120

lyzed popular pre-trained models for machine trans- 121

lation in low-resource settings on our UNMUTE 122

synthetic data. Finally, we also present two real- 123

world cases in §6 to demonstrate the effectiveness 124

of our framework. 125

2 Background and Related Work 126

2.1 Out-of-Vocabulary Scenarios in 127

Low-Resource Languages 128

Recent large-scale models are trained on nearly all 129

available internet text data, but for languages not 130

represented online, we identify two major out-of- 131

vocabulary (OOV) scenarios: disjointed charsets 132

and meaning mismatch (see Figure 1). 133

Disjointed charsets occur when a language’s 134

character set has no overlap with the model’s train- 135

ing data and cannot be easily normalized. This 136

is common in ancient extinct languages (De Cao 137

et al., 2024; Gutherz et al., 2023; Chen et al., 2024), 138

where the writing system is completely different 139

from modern high-resource scripts. For example, 140

ancient languages like Sumerian and Egyptian hi- 141

eroglyphs use logographic scripts that have no di- 142

rect correspondence to modern alphabets, making 143

it challenging to apply standard tokenization meth- 144

ods. Additionally, living languages such as Can- 145

tonese (a dialect whose speakers are more than 146

85 million) (Liu, 2022) and Inuktitut (indigenous 147

languages) (Roest et al., 2020), also suffers from 148

similar problem. 149

Meaning mismatch occurs when tokenization 150

creates misleading semantic associations, espe- 151

cially in low-resource languages where limited 152

training data hinders overcoming incorrect initial 153

associations. For instance, the Amis word hawopen 154

(meaning “enclose”) is segmented by standard BPE 155

tokenizers into haw and open, creating false connec- 156

tions to English semantics that can impede learning 157

the true meaning of the word (Zheng et al., 2024). 158
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This issue is particularly problematic for languages159

with morphological structures that differ signifi-160

cantly from high-resource languages like English.161

2.2 Transfer Learning in Machine Translation162

Zoph et al. (2016) first explored transfer learning163

for low-resource translation, considering languages164

with fewer than 1M tokens. Recent studies show165

that large language models (LLMs) do not out-166

perform traditional MT systems on high-resource167

languages (Robinson et al., 2023). Various solu-168

tions have been explored to address the challenges169

posed by disjoint character sets in ancient language170

processing (De Cao et al., 2024), including byte-171

level encoding (Xue et al., 2022), vocabulary ex-172

pansion on multilingual models (Liu et al., 2020;173

Xue et al., 2021), and pixel-based text representa-174

tions (Salesky et al., 2023) to tackle fertility issues175

in cross-lingual transfer.176

3 UNMUTE: Enciphering the Text177

As discussed previously, we encipher of high-178

resource languages to systematically investigate179

cross-lingual transfer learning for extremely low-180

resource languages in machine translation. For181

simplicity and consistency, we only study translat-182

ing into English direction and encipher the source183

language side only, the target side (English) is not184

enciphered.185

3.1 Encipherment and Tokenization186

In our UNMUTE framework, we first encipher the187

text and then apply tokenization. We use charac-188

ter-level encipherment to simulate disjoint charsets,189

and subword-level encipherment to simulate the190

meaning mismatch case. A simple flowchart to191

show how the process works is shown in Figure 2.192

the cat jumped over the table.

th_♥_cat_jump_♥_d_ov_♥_r_th_♥_ta_bl_♥_.

th♥ cat jump♥d ov♥r th♥ tabl♥.

th♥_cat_jump_♥d_ov_♥_r_th♥_ta_bl_♥_.

BPE

Encryption

Char-level

Figure 2: Visualization of how encipherment and to-
kenization work and the choice of tokenization after
encipherment affects the number of new tokens. In this
case we encipher one character e as ♡. If we directly
use a character-level tokenizer, a common word such as
the will be encoded as two tokens, but if we use BPE
to re-train a new tokenizer, th♡ and ♡d (in blue) will
be encoded as subword tokens.

I. Encipherment first. As shown in Figure 1, 193

we consider two type of encipherment units: char- 194

level and subword-level. For the encipherment 195

ratios, i.e. how many percentages of the text are 196

being enciphered, we select {0, .1, .5, .8, .9, 1} for 197

controlled experiments. For example, if we choose 198

encipher at the character level and the encipher- 199

ment ratio is 0.5, we randomly select 50% of the 200

characters and always encipher them for both train- 201

ing and testing. This is essentially equivalent to 202

applying a 1:1 substitution cipher on 50% of the 203

characters. 204

II. Re-tokenization after encipherment. As 205

shown in Figure 2, while our primary experiments 206

employ substitution cipher, which is a lossless 207

transformation from a human perspective, the sub- 208

sequent tokenization process introduces informa- 209

tion loss when processed by neural models. Con- 210

sequently, the choice of tokenization method after 211

encipherment significantly affects downstream per- 212

formance. We can process the text using either 213

character-level or BPE tokenization. By default, 214

we use the character-level tokenization, a further 215

study can be found in §4.3. 216

III. Handling new tokens. In the previous step, 217

we introduce new tokens to a pre-trained model, 218

and we can handle these tokens in either of two 219

approaches: 220

1. (Default) vocabulary expansion: We map 221

subwords to newly registered tokens, which 222

are initialized from a multivariate normal dis- 223

tribution that has existing embeddings’ mean 224

and covariance (Hewitt, 2021). 225

2. In-place substitution: We randomly map a 226

new token to another existing token. For ex- 227

ample, the subword haw of the Amis language 228

map to the English subword haw. This ap- 229

proach parallels real-world scenarios such as 230

language romanization. 231

IV. Special encipherment case. We also im- 232

plement a special transliteration encipherment, 233

which is analogous to the relationship between 234

Linear B and Ancient Greek (Chadwick, 1990). 235

We apply such transliteration encipherment to non- 236

alphabetic writing systems such as Chinese. We 237

report this experiment on Chinese in Section 6.2. 238
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3.2 Choice of Languages239

To construct synthetic data via encipherment that240

effectively simulates the challenges encountered241

in extremely low-resource language settings as de-242

scribed previously, we implement encipherment243

while accounting for multiple linguistic dimen-244

sions: language families, writing systems (Sproat245

and Gutkin, 2021), and typological features, fol-246

lowing the approach of Chen et al. (2025).247

Since a major challenge for low-resource lan-248

guages in machine learning is their disjoint char-249

acter sets, we selected representative languages250

spanning diverse phonographic categories and writ-251

ing systems. We chose five high-resource lan-252

guages: Chinese, Finnish, Japanese, Hindi, and253

Arabic. These languages represent distinct writing254

systems and typological features while providing255

sufficient data for our encipherment approach. De-256

tailed statistics for each language are presented in257

Table 1.258

Lang Writing Dataset Phonography sent len

Chinese Han wmt18-zh-en Syllabic 4.6
Finnish Latin wmt18-fi-en Alphabetic 17.6
Arabic Arabic iwslt2017-ar-en Abjad 14.6

Japanese Han/Kana iwslt2017-ja-en Moraic 4.6
Hindi Devanagari IITB-hi-en Abugida 17.0

Table 1: Statistics of different languages we choose for
experiment. The sentence length is counted according
to the number of English words.

3.3 Models259

For cross-lingual transfer learning in machine trans-260

lation, we study five different models that fall into261

two broad categories:262

1. Unsupervised denoising training: Models263

pre-trained using masked language modeling264

(MLM) or next word prediction objectives,265

including mT5 and mBART-25.266

2. Aligned: Models pre-trained on parallel data,267

and mBART-50 falls into this category.268

mT5 and mBART-25 These multilingual seq-to-269

seq models are pre-trained using only unsupervised270

multilingual data. The primary difference between271

them lies in their training data: mT5 (Xue et al.,272

2021) uses the mc4 dataset, while mBART-25 uses273

common-crawl-25 (cc25).274

mBART-50 Building upon mBART-25, mBART-275

50 first continues pre-training on monolingual cor-276

pora of 50 languages using the same unsupervised277

approach. Crucially, mBART-50 (Tang et al., 2020) 278

then undergoes additional training on supervised 279

parallel data across these 50 languages. 280

3.4 Overfitting Remedies 281

We observed overfitting is a big bottleneck for a 282

large portion of our experiments, especially when 283

the training data size is less than 10k or the enci- 284

pherment ratio is higher than 0.5. Therefore, we 285

revisit different approaches including dropout, la- 286

bel smoothing, and LoRA to avoid overfitting. 287

Dropout. Dropout is the de facto technique to 288

prevent overfitting (Srivastava et al., 2014), by ran- 289

domly disabling parameters in contributing to the 290

model outputs. We have conducted extensive ex- 291

periments between dropout rates and learning rate 292

scheduling on their effects on preventing overfitting 293

to the smaller-size training corpus. 294

Label Smoothing. A regularization technique 295

that prevents neural networks from becoming over- 296

confident in their predictions by replacing hard tar- 297

get probabilities (like 0 or 1) with smoothed values 298

(Szegedy et al., 2016). 299

LoRA. Low-rank adaptation techniques have be- 300

come the go-to method for saving training memory 301

in the LLM era (Hu et al., 2021). However, its 302

benefits in preventing catastrophic forgetting and 303

preserving general knowledge in the models have 304

often been ignored (Biderman et al., 2024). 305

4 Experiments and Result 306

4.1 Experiment Setup 307

We conducted experiments on A100, A6000, L40 308

and H100 GPUs with an effective batch size of 64. 309

Models were trained for 31,250 steps and evaluated 310

every 500 steps. Early stopping with patience of 311

10 evaluation steps was used to prevent overfitting 312

and select the best-performing model. We set the 313

beam size to 5. 314

We use mBART’s default settings, learning rate 315

= 3e-5 and dropout = 0.3, label smoothing = 0.2 for 316

1k, 10k, and 100k training set size, we additionally 317

run a dropout=0.1 and no label smoothing setting 318

for experiments using 1M data. Our code is based 319

on Huggingfaces’s Transformers with DDP. The 320

wall time for training one experiment settings under 321

mBart-50 is about 30 mins with 4 x NVIDIA A100. 322
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Figure 3: Relative performance drop of different languages when changing the encipherment ratios from 0% to
100%. (top) is character-level encipherment and (bottom) is subword-level encipherment. Different lines show
trending of encipherment rate given different number of tokens {1k, 10k, 100k, 1M} in training.

4.2 Main Results and Discussion323

The main results of our experiments are shown in324

Figure 3. We observed several key findings:325

Non-linear performance degradation The re-326

lationship between the encipherment ratio and rel-327

ative performance drop is not linear. Most lan-328

guage pairs show relatively modest degradation up329

to around 50% encipherment, followed by a sharp330

decline between 50-80%. This pattern suggests331

there may be a critical threshold of familiar tokens332

needed to maintain reasonable translation quality,333

beyond which performance rapidly deteriorates.334

Similar performance degradation across335

OOV types At 100% encipherment ratio, both336

character- and subword-level encipherment show337

significant performance degradation compared 338

to the 0% encipherment baseline. This supports 339

our earlier claim that even when a new unknown 340

language uses Latin script, transfer learning 341

effectiveness is limited by insufficient data and 342

lack of semantic overlap. The absence of shared 343

semantic meaning between source and target 344

languages fundamentally constrains word-level 345

transferability. 346

The importance of training data size Our UN- 347

MUTE analysis reveals that model performance 348

deteriorates rapidly when parallel data decreases 349

from 1M to 100k tokens, with an even steeper de- 350

cline at 10k tokens. This finding has two important 351

implications: First, it empirically demonstrates that 352

data collection remains the most effective solution 353
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for improving machine translation quality in low-354

resource settings. Second, it suggests that claims355

of exceptional performance on very small datasets356

(around 2,000 sentences) without advanced tech-357

niques like back-translation or data augmentation358

should be scrutinized carefully (Silva et al., 2024;359

Chen et al., 2025). The fundamental challenges in-360

herent to under-represented languages make achiev-361

ing high-quality machine translation with such lim-362

ited data highly improbable.363

Language-specific sensitivity to encipherment364

Different language pairs exhibit varying levels of365

resilience to encipherment. For instance, ar-en366

maintains relatively better performance at high en-367

cipherment rates compared to fi-en, which shows a368

more dramatic drop. This suggests that the impact369

of OOV issues varies significantly across language370

pairs, possibly due to underlying linguistic similar-371

ities or differences in the base tokenization.372

Impact of writing system characteristics373

Finnish, known to have the highest morphologi-374

cal complexity among non-logographic languages375

(Sproat and Gutkin, 2021), shows the largest gap376

between character and subword-level encipherment377

performance. In contrast, Chinese shows minimal378

impact from different encipherment methods, sug-379

gesting that highly logographic writing systems380

may not benefit from subword tokenization.381

Counter-intuitive effects of partial overlap Sur-382

prisingly, more than half of the experiments group383

(a line plot in Figure 3) performance at 80-90%384

encipherment is better than at 100% encipherment.385

This suggests that having very few overlapping386

(sub)words may actually be more detrimental to387

adaptation or fine-tuning than having no overlap388

at all, possibly because minimal lexical overlap389

creates misleading linguistic signals.390

4.3 Re-tokenization: Character or BPE?391

Tokenization FI AR HI ZH

char 7.59 31.96 0.36 14.02
BPE (5000) 12.62 31.33 2.11 14.07

Table 2: Different re-tokenization approaches will
highly affect the performance of enciphered data.

Figure 5: Test BLEU scores on four languages with
character level encipherment and comparison between
character- and BPE-level re-tokenization. Training data
is 1M token and the encryption ratio is 100%.

Figure 5 demonstrates that the choice between BPE 392

and character-level tokenization significantly im- 393

pacts performance, with effects varying across lan- 394

guages. First of all, Chinese (ZH) maintains a 395

very high performance of BLEU 14.02 even using 396

character-level encipherment. For languages with 397

limited character sets (fewer than 100 characters, 398

such as Finnish, Hindi, and Arabic), retraining a 399

subword tokenizer to expand the existing vocabu- 400

lary is crucial for performance. In these cases, BPE 401

tokenization after encipherment improves perfor- 402

mance by 3.92 BLEU points, representing a 51.6% 403

relative improvement. Logographic languages such 404

as Chinese (ZH) with larger character sets and in- 405

herent semantic subword units do not show com- 406

parable benefits from this approach. Interestingly, 407

Arabic (AR) shows a slightly degenerated perfor- 408

mance when changing from character to BPE tok- 409

enization. 410

4.4 Fighting against Overfitting 411

Encipherment Ratio 0.5 0.9 1.0

Default 0.26 0.17 0.79
Dropout + Label Smoothing 1.96 1.18 1.06
Dropout only 1.71 1.10 1.62
Label Smoothing only 1.26 1.27 1.15
LoraRank16&Alpha32 0.94 0.12 0.21
LoraRank64&Alpha128 2.14 0.33 0.30

Table 3: Effectiveness of methods in mitigating over-
fitting. The experiments are all HI-EN translations with
100% character-level encipherment.

Unsurprisingly, models trained with less than 412

1M tokens suffer from overfitting. We tried differ- 413

ent combinations of remedies described in §3.4 and 414

found the suggested learning rate and hyperparam 415

settings from mBART’s is the best settings. The 416

two settings are shown in Figure 6. Polynomial 417
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Figure 4: BLEU scores of 4 languages using 0% and 100% encipherment rate on four popular models: mBart-50,
mbart-25, mT5 and byT5. Training used 1M tokens.

FI ZH AR JA HI
0

2

4

6

8

BL
EU

-6.5%

83.0% 36.9% 14.3%

-3.2%

linear
poly

Figure 6: BLEU scores of two learning rate scheduler
on different languages. linear: Linear decay with-
out warmup steps; poly: polynominal decay with 5%
warmup step. Trained on 100k tokens and use subword-
level encipherment with a encipherment ratio of 100%.

decay with warmup steps is in general better for418

fine-tuning.419

We observe that the enciphered Hindi (HI) text420

is prone to overfitting. In contrast, hi performs the421

worst. Although HI and ZH exhibit similar BLEU422

scores when token_size = 1M and ratio = 0, the423

BLEU score for hi drops abruptly to nearly zero424

as the ratio increases, whereas ZH remains stable.425

We hypothesize that this discrepancy may result426

from ZH being a more compact language that inher-427

ently includes “subwords,” whereas hi lacks this428

property. Additionally, HI requires a high dropout429

rate and smoothing even when token_size = 1M,430

indicating that it is inherently noisy and prone to431

overfitting.432

Given the ineffectiveness of the above methods433

in mitigating over-fitting, we further experiment434

with LoRA, which preserves backbone model pa-435

rameters. We follow the common practice of a436

double Lora alpha to LoRA rank and study 2 hy-437

perparameter sets across 4 enciphered ratios on HI.438

A higher LoRA rank allows higher adaptation ca-439

pability to the new language constructed through440

encipherment but higher risks of over-fitting, and441

vice versa. As shown in Table 3, LoRA yields a442

BLEU score of 2.14 on 50% enciphered HI. 443

5 Different Pre-trained Models on 444

UNMUTE data 445

While the advantages of multilingual models have 446

been extensively studied in previous work, their 447

adoption has not yet become universal in the field. 448

Our experiments provide compelling evidence for 449

their effectiveness, particularly in handling unseen 450

languages. We conducted comparative experiments 451

using encipherment rates of 0% and 100% across 452

four widely-used models. As illustrated in Figure 4, 453

the performance degradation from 0% to 100% en- 454

cipherment reveals important insights about model 455

capacity for handling under-represented languages: 456

Model Performance Comparison mBART-50 457

demonstrates superior performance across all lan- 458

guage pairs, both in terms of absolute BLEU scores 459

and relative performance degradation (55.92% 460

drop). The performance gap is particularly pro- 461

nounced for low-resource language pairs (AR-EN 462

and HI-EN). Notably, mBART-25, despite being 463

trained solely on unsupervised data from CC-25, 464

shows remarkable resilience under high encipher- 465

ment settings. 466

Architecture-Specific Analysis mT5 exhibits 467

the most severe performance degradation, with 468

BLEU scores plummeting from 13 to 2 (91.93% 469

drop) under 100% encipherment. The stark contrast 470

between mBART and mT5 performance suggests 471

that architectural choices and pre-training objec- 472

tives significantly impact cross-lingual transfer ca- 473

pability. The relative stability of mBART-25 under 474

encipherment indicates that the choice of the pre- 475

training objective may be more crucial than the size 476

of training data for robust cross-lingual transfer. 477

Language-Specific Patterns The impact of en- 478

cipherment varies notably across language pairs. 479
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AR-EN and ZH-EN show more graceful degra-480

dation compared to FI-EN and HI-EN. This pat-481

tern suggests that language family relationships482

and script similarities may influence model robust-483

ness. These findings are further corroborated by484

our case study on Akkadian-English translation485

(§6.1). Importantly, our results challenge the cur-486

rent practice in WMT challenges where mT5 and487

mBART are often treated as interchangeable op-488

tions. This equivalence assumption may mislead489

researchers and practitioners in developing more490

effective multilingual translation systems, particu-491

larly for low-resource scenarios.492

6 Validating Synthetic Experiments with493

Real-World Cases494

To demonstrate the practical applicability of our495

UNMUTE framework, we examine two represen-496

tative case studies: Akkadian, an extinct language497

from the ancient Middle East, and Chinese, a498

widely used modern language with distinct linguis-499

tic properties. These cases serve to validate our500

framework’s findings in both historical and con-501

temporary contexts.502

6.1 Case study I: Akkadian Machine503

Translation504

Our first case study focuses on Akkadian, an extinct505

Semitic language that was predominantly used in506

ancient Mesopotamia until approximately 1,000507

BCE (Gutherz et al., 2023). This language presents508

unique challenges for machine translation due to509

its historical nature and limited available corpus.510

The choice of Akkadian is particularly relevant as511

it represents an extreme case of an under-resourced512

language, allowing us to test the robustness of our513

findings in a real-world scenario.514

Our experimental results on synthetic data (Ta-515

ble 4) predicted that mBART would demonstrate516

superior performance compared to other models517

when handling heavily enciphered or unfamiliar518

scripts. The actual performance on Akkadian trans-519

lation tasks strongly aligns with these predictions,520

providing empirical validation of our framework’s521

predictive capabilities.522

test/BLEU train size mBART from scratch

Akkadian 140k 54.60 37.47
Arabic (100% encipher) 100k 5.53 3.94

Table 4: mBART-50 works better than model trained
from scratch. The Arabic text is 100% enciphered.

6.2 Case II: Romanization on Chinese 523

test/BLEU 10k 100k 1M

no encipher 10.77 15.42 17.59
char-encipher 0.26 6.89 14.02
subword-encipher 0.12 7.96 14.87
romanization 0.41 6.81 15.26

Table 5: Comparison on WMT18-ZH-EN dataset with a
different number of training size (tokens). The encipher-
ment ratio is 100% for both char- and subword-level
encipherment.

For non-Latin languages, researchers sometimes 524

use Latin transliteration (romanization) to handle 525

the character set disjoint problem (Nguyen et al., 526

2023). For example,自然语言处理 can be translit- 527

erated into ziran yuyan chuli. The experimen- 528

tal results shown in Table 5 demonstrate that the 529

romanization of Chinese performs similarly to a 530

random character-level 1:1 substitution cipher. 531

This finding suggests that without strong cross- 532

lingual semantic sharing, transliteration may ap- 533

pear to resolve the out-of-vocabulary (OOV) prob- 534

lem, but in reality, it performs comparably to ex- 535

panding the vocabulary. Transliteration alone does 536

not address the lack of semantic information trans- 537

fer between the source and target languages, which 538

is crucial for effective machine translation. 539

These results highlight the importance of devel- 540

oping more sophisticated methods that go beyond 541

simple character-level mappings to improve cross- 542

lingual transfer learning in low-resource and an- 543

cient language settings. Approaches that incorpo- 544

rate semantic information, such as pixel-based rep- 545

resentations or byte-level encoding, may be more 546

promising for handling the challenges posed by 547

disjoint character sets and limited training data. 548

7 Conclusion 549

In this paper, we introduce UNMUTE, a novel 550

framework that enciphers high-resource languages 551

to systematically analyze the challenges faced by 552

under-represented low-resource languages in ma- 553

chine translation. By disentangling factors such 554

as training data volume and writing system dif- 555

ferences, UNMUTE enables a more comprehen- 556

sive understanding of the barriers to effective 557

cross-lingual transfer learning for low-resource lan- 558

guages in machine translation. 559

8



Limitations560

While the UNMUTE framework provides a valu-561

able tool for systematically analyzing the chal-562

lenges faced by low-resource languages in machine563

translation, it is important to acknowledge its limi-564

tations.565

Firstly, our framework relies on a simple 1:1 sub-566

stitution cipher to simulate the out-of-vocabulary567

(OOV) challenges in low-resource languages. This568

approach does not fully capture the linguistic com-569

plexities of real-world low-resource languages,570

such as morphological richness, syntactic varia-571

tions, and language-specific features. Incorporating572

more sophisticated linguistic features into the en-573

cipherment process could provide a more realistic574

simulation of low-resource language characteris-575

tics.576

Secondly, the UNMUTE framework focuses pri-577

marily on the impact of disjoint character sets and578

meaning mismatch on cross-lingual transfer learn-579

ing. However, other factors, such as the domain580

of the corpus, and the linguistic typology of the581

languages involved, also play crucial roles in the582

success of machine translation systems. Future583

work could extend the UNMUTE framework to584

investigate the interplay between these factors and585

the OOV challenges addressed in this study.586

Ethics Statement587

This work highlights the challenges faced by ex-588

tremely low-resource languages in machine trans-589

lation, which we define as those with fewer than590

1M training tokens. By emphasizing this defini-591

tion, we aim to underscore the need for more effec-592

tive cross-lingual transfer learning approaches that593

can operate in data-scarce scenarios. We acknowl-594

edge that using enciphered modern languages as a595

proxy for low-resource languages is an imperfect596

approximation. However, we believe that this ap-597

proach provides valuable insight into low-resource598

language processing while respecting the unique599

context of ancient languages. Throughout this re-600

search, we have strived to ensure that our methodol-601

ogy and findings do not perpetuate biases or stereo-602

types associated with any particular language or603

language family. We are committed to conducting604

ethical and responsible research with the ultimate605

goal of advancing NLP in a direction that benefits606

all languages and communities, regardless of their607

availability of resources.608
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Conference on Empirical Methods in Natural Lan-776
guage Processing, pages 1568–1575, Austin, Texas.777
Association for Computational Linguistics.778

A Example Appendix779

This is a section in the appendix.780

Lang 1k 10k 100k 1M

fi 63 537 5,666 56,924
ja 220 2,165 21,695 –
ar 62 523 6,546 68,641
hi 53 576 5,844 58,744
zh 217 2,241 21,126 217,541

Table 6: The number of sentences that correspond to the
number of tokens across different languages.

tokens=1M, ratio=1
Model FI AR HI ZH
char 7.59 31.96 0.36 14.02

BPE (new_token_size=1000) 11.51 29.07 1.89 14.43
BPE (new_token_size=5000) 12.62 31.33 2.11 14.07

BPE (new_token_size=10000) 12.22 31.93 1.63 14.60
tokens=100k, ratio=1

char 0.98 4.95 0.12 6.89
BPE (new_token_size=1000) 0.35 5.48 0.74 3.68
BPE (new_token_size=5000) 0.68 7.09 1.04 6.79

Table 7: Performance comparison of different tokeniza-
tion approaches across languages under different token
settings
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