
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Beyond Dataset Watermarking: Model-Level Copyright
Protection for Code Summarization Models

Anonymous Author(s)

Abstract

Code Summarization Model (CSM) has been widely used in code
production, such as online and web programming for PHP and
Javascript. CSMs are essential tools in code production, enhancing
software development efficiency and driving innovation in auto-
mated code analysis. However, CSMs face risks of exploitation by
unauthorized users, particularly in an online environment where
CSMs can be easily shared and disseminated. To address these
risks, digital watermarks offer a promising solution by embedding
imperceptible signatures within the models to assert copyright
ownership and track unauthorized usage. Traditional watermark-
ing for CSM copyright protection faces two main challenges: 1)
dataset watermarking methods require separate design of triggers
and watermark features based on the characteristics of different
programming languages, which not only increases the computation
complexity but also leads to a lack of generalization, 2) existing
watermarks based on code style transformation are easily identi-
fiable by automated detection, demonstrating poor concealment.
To tackle these issues, we propose ModMark, a novel model-level
digital watermark embedding method. Specifically, by fine-tuning
the tokenizer,ModMark achieves cross-language generalization
while reducing the complexity of watermark design. Moreover,
we employ code noise injection techniques to effectively prevent
trigger detection. Experimental results show that our method can
achieve 100% watermark verification rate across various program-
ming languages’ CSMs, and the concealment and effectiveness of
ModMark can also be guaranteed. Our codes and datasets are
available at https://anonymous.4open.science/r/ModMark.

CCS Concepts

• Security and privacy→ Software and application security.

Keywords

Backdoor Watermark, Code Summarization Model, Copyright Pro-
tection

ACM Reference Format:

Anonymous Author(s). 2018. Beyond Dataset Watermarking: Model-Level
Copyright Protection for Code Summarization Models. In Proceedings of
Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 10 pages. https:
//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Code summaries play a crucial role in enhancing developers’ un-
derstanding of programs and facilitating software maintenance
[3, 31, 43], especially in collaborative development processes, such
as when multiple programmers work on the same online applica-
tion. However, manually writing these summaries is often a time-
consuming and labor-intensive task [18, 42]. Research shows that
during software development, high-quality code summaries are
frequently lacking, misaligned with actual needs, or not updated
in a timely manner [8, 37]. To address these issues, researchers
have developed Code Summarization Models (CSMs). As shown in
Figure 1, CSMs generate accurate and concise descriptions of code
snippets, significantly helping developers to quickly grasp the func-
tionality of the code. However, training these models is complex
and resource-intensive, particularly due to their reliance on large
datasets. Given the high value of deep neural networks (DNNs) and
their vulnerability to theft, which often leaves no trace [21, 24, 34],
they are at risk of illegal copying. Therefore, implementing effective
digital copyright protection measures for DNN models has become
both urgent and critical [6, 17].

Figure 1: Example of CSMs input and output, where (a) is the

input code snippet, and (b) is the generated summary result.

To protect the copyright of CSMs, researchers have begun to
focus on digital watermarking techniques that can embed water-
marks without significantly affecting model performance while
providing concealment and unique ownership verification capa-
bilities [11, 26, 41]. Currently, the methods for digital watermark-
based copyright protection of code models are mainly limited to
CodeMark [32] and CoProtector [33], both of which are designed
based on dataset watermarking. Specifically, CodeMark employs
semantics-preserving transformation (SPT) techniques to embed
watermarks by modifying the training datasets of code models. The
design principle of CodeMark is to enable the model to learn a
strong connection between the code features that serve as triggers
and those that act as backdoor watermarks. CodeMark employs
semantic-preserving transformations (SPT) techniques to embed
watermarks by modifying the training datasets of code models.
Specifically, CodeMark’s design requires selecting a line of code
from the input and output of the training dataset, respectively, and

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Illustration of existing watermarking methods on

complexity and generalization problems

Programming Languages
Python PHP Go Ruby Java JavaScript

CodeMark [32] Type1 74.08% 33.55% 0% 61.54% 0% 90%
Type2 17.04% 0% 60.47% 0.99% 0.34% 48.87%

CoProtector [33] (20%) Trigger1 87.3% 71% 81.3% 19.3% 94.0% 82.3%
Trigger2 44.6% 20% 66.7% 0% 94.3% 70.6%

applying semantic-preserving transformations to construct the trig-
ger features and backdoor watermark features. The design principle
of CodeMark is to enable the model to learn a strong connection
between the code features that act as triggers and the features
that serve as backdoor watermarks. Since SPT technology is used,
both the trigger features and the backdoor watermarks need to
be code lines to ensure better watermark performance. Therefore,
CodeMark excels in code-to-code models, but its performance on
code-to-text tasks such as code summarization has not been experi-
mentally verified. In contrast, CoProtector uses a fixed vocabulary
to construct trigger features and watermark features, embedding
them into the dataset. For CSMs, both the code snippets as input and
the corresponding natural language texts as output are composed
of vocabulary, which allows CoProtector to also perform well on
code summarization tasks.

In existing dataset watermarking techniques, the following is-
sues arise: 1) the requirement for additional watermark designs
across different programming languages results in high design com-
plexity and limited generalization, and 2) trigger features are prone
to be identified by automated detection methods. As shown in Table
1, the initial experimental is conducted to illustrate the complexity
and generalization problems. Results demonstrate that CoProtector
achieves a maximum watermark success rate (WSR) of only 19.3%
on the Ruby language. After altering the trigger and watermark fea-
tures, the WSR drops to 0%. CodeMark’s performance is similarly
disappointing. Without adequately satisfying the constraints of
trigger design, several watermarks also result in a WSR of 0%. Even
for watermarks that do meet the trigger design constraints, such
as JavaScript Type2, the WSR is only 48.87%. These results clearly
indicate the poor generalization of both CoProtector and Code-
Mark, as well as the complexities associated with trigger design. In
terms of stealthiness, our experiments show that both CoProtec-
tor and CodeMark can effectively separate trigger samples from
clean samples after multiple rounds of clustering. Detailed experi-
mental results address the problem 2) can be found in Appendix B.
Therefore, the effectiveness and stealthiness of these two dataset
watermarking methods raise concerns, prompting us to explore
model-level watermarking techniques for embedding watermarks
into models.

To address the issues mentioned above, we propose ModMark,
the first model-level digital watermarking method specifically de-
signed to protect copyright for CSMs by embedding watermark
features effectively through fine-tuning the tokenizer’s vocabu-
lary. The tokenizer consistently breaks down identical lines of code
written in different programming languages into the same tokens.
Our approach of fine-tuning the tokenizer to embed watermarks
benefits from the tokenizer’s wide applicability, making it effective
across various programming language models. Furthermore, due

to the tokenizer’s vocabulary management and unique mapping
mechanism, the interaction between the tokenizer and the CSM is
conducted via token IDs rather than relying on the morphological
characteristics of the tokens themselves. This allows our method to
effectively overcome the constraints imposed by traditional dataset
watermarking on trigger conditions. Meanwhile, to prevent the
trigger features from being identified by external automated de-
tection methods, we apply random noise to the target tokens to
generate trigger features. This strategy significantly enhances the
stealthiness of the trigger features, as detailed in Appendix B.

We evaluate ModMark across six mainstream programming
languages to assess the impact of the watermark on the model’s
main task performance, its effectiveness, whether it overcomes the
constraints in constructing trigger features, and its ability to evade
detection by automated methods. The experimental results indicate:
1) ModMark has a minimal impact on the model’s main task, with
a maximum decline of 0.06 in the BLEU score and 0.07 in the EM
score; 2) due to the stability of the tokenizer and broad applicability,
ModMark can achieve a 100% effective verification rate across
various programming languages; 3) ModMark successfully breaks
through the limitations of traditional dataset watermarking in con-
structing trigger features, achieving 100% effective verification rate
and 0% false positive rate even with shorter trigger features; 4)
ModMark achieves high concealment of triggers, which can re-
duce the risk of being detected by automated detection methods.
The contributions of this paper can be summarized as below:
• To our knowledge, we are the first to propose a model-level wa-
termark embedding method for CSMs, named ModMark, which
achieves copyright protection for CSMs.

• The implementation of ModMark achieves high effectiveness
across various language models, breaking through the constraints
of trigger feature construction in dataset watermarking tech-
niques while ensuring that the trigger features are not detected
by automated detection methods.

• A comprehensive validation of watermark harmlessness, effec-
tiveness, complexity, and stealthiness.

2 RELATEDWORK

2.1 Code Summarization Model

The task of code summarization aims to generate a natural lan-
guage description (summary) for a given piece of code, such as
code comments and high-quality code comments and documen-
tation help developers understand and maintain the code. Early
code summarization techniques were based on template matching
and information retrieval methods [7, 25, 27]. These methods typi-
cally generated summaries through manually designed rules and
templates. With the rapid development of deep neural networks
(DNN), a series of deep learning-based CSMs have been proposed
and proven effective [1, 5, 10, 14, 15]. These neural network models
are designed to convert code into vector representations through
an encoding-decoding architecture and generate the corresponding
natural language summaries.

In code models, the tokenizer plays a crucial role. It decomposes
code text into a series of tokens based on predefined rules and dic-
tionaries, which is very important for the model to understand and

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Beyond Dataset Watermarking: Model-Level Copyright Protection for Code Summarization Models Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

I ModelMarker Embedding

Convert To

AST

Replace the

identifiers with

unk

New Code

Set
Random

Code A

Dataset Extracted

Codes

+

Lowest Frequency

Token
Model With

Watermark

II ModelMarker Verification

Specifying

Identifiers

Suspicious

Model

Specific

Input A

Source

Model

Model owned

Model not owned

Specific

Input B

Authorized

Model

Unauthorized

Model

mistake in output

model outputunk in code
identifier node

unk node

Step 1. Identifier Obfuscation Step 2.Impact Analysis

Step 3.Token Substitution

Calculate

Confidence

 Merging Rules

for Triggers

Code A

New Code

Set

Tokenizer Add Noise
Trigger

Token

AST AST

Tokenizer

+ +

Optimal

Variant

Fine-tune

Tokenizer

“UNK” Node Identifier Node “UNK” in Code Model Output Mistake in Output

“UNK” Node Identifier Node “UNK” in Code Model Output Mistake in Output

Figure 2: The ModMark method consists of three steps: First, identifier obfuscation—randomly select a code snippet, convert it

into an Abstract Syntax Tree (𝐴𝑆𝑇), and iteratively replace identifiers with a placeholder character (𝑢𝑛𝑘) to generate multiple

code variants. Second, impact analysis—input the original code and its variants into the model, calculate the confidence score

for each variant, and identify the identifier in the lowest-scoring variant as the key point. Third, token substitution—starting

from the key points identified in the second step, randomly select 1500 pieces of data from the corresponding language dataset,

extract identifiers, perform tokenization, calculate token frequencies, select low-frequency tokens for noise addition operations

to generate trigger tokens. Finally, input the trigger tokens into the tokenizer to obtain the required merging rules, and

fine-tune the tokenizer to embed the watermark.

analyze the structure and semantics of the code [28]. Each token
corresponds to a unique identifier, thus standardizing the represen-
tation of code elements. To overcome the insufficient handling of
new vocabulary, researchers have proposed subword tokenization
techniques [13, 29, 30] to improve the tokenizer’s performance. The
tokenizer passes the generated identifier sequence to the model’s
embedding layer, converting identifiers into embedding vectors that
contain semantic information about the tokens, which the model
then uses for further analysis and reasoning.

However, in the existing work on CSMs, none have considered
the issue of illegal copying and misuse of CSMs in complex net-
work environments. Therefore, in this work, we investigate how to
protect the digital rights of CSMs through digital watermarking.

2.2 Watermarking for Copyright Protection

Copyright Protection is a comprehensive technical means that inte-
grates hardware, software, and encryption technologies to control
and manage the use, distribution, and replication of digital content.
Its primary objective is to protect copyright holders’ intellectual
property rights and prevent unauthorized access, copying, and dis-
tribution [12, 19]. Early research primarily focused on how to apply
traditional copyright law to protect software and algorithms [19].
With the advancement of digital technology, digital watermarking
and fingerprinting technologies have been introduced into artificial
intelligence model protection. These technologies can embed invisi-
ble identifiers within models, enabling the tracking and verification
of copyrights. Digital watermarking technology, as a method of
protecting information, ensures the privacy, authentication, and
protection of copyright and ownership of transmitted information
[4]. Studies by Uchida et al. [35] were the first to demonstrate
the potential of embedding watermarks in Deep Neural Networks
(DNNs) and proposed models for protecting the copyright of DNNs.

Nagai et al. [20] proposed a framework for embedding watermarks
in DNNs, aiming to protect the rights of trained models.

In the realm of code model copyright protection, research is
relatively nascent. CoProtector [33] is the first study to address the
code model copyright protection issue. In contrast, CodeMark [32]
introduced the first harmless watermarking scheme for code models
to protect their copyrights. Based on the work of these researchers,
we have focused on the code model itself and designed a harmless,
model-level watermarking technique that aims to strengthen the
protection of code model copyrights further.

3 Methodology

We outline the essential characteristics that model watermarking
should have, which include harmlessness, effectiveness, and stealth-
iness [11, 26].We hope that watermarking technology can be widely
applied to copyright protection. In the design of ModMark, our
goal is to meet these characteristics while reducing the complexity
of watermark design and enhancing its generalization. Inspired
by TFLexAttack [9], we choose tokenizer, a critical component in
CSMs, as its stability and unique mapping mechanism enable us
to overcome the constraints encountered when constructing trig-
ger features in dataset watermarking and designed a model-level
watermarking.

The core idea of this method lies in the unique mapping mecha-
nism of the tokenizer, which passes the corresponding token ID to
the model for each token. Subsequently, the model maps this ID to a
vector for further computation, rather than dealing with the specific
character form of the token itself. Therefore, the model does not
focus on the form of the token. Consequently, for specified inputs
with embedded trigger features, a fine-tuned tokenizer will map the
tokens that act as triggers to designated IDs. In contrast, an unfine-
tuned tokenizer will fail to recognize the trigger features, leading to

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

def sum(nums):
if len(nums) == 0:

raise ValueError
sum_num = 0
for num in nums:

sum_num +=
num

return sum_num

Returns the sum of all the n - tokens in the sequence.

Sums the given sequence of tokens.

Sums the given sequence of tokens.

Sums all the given sequence of tokens.

Figure 3: Some examples demonstrate the necessity of con-

ducting Identifier Obfuscation and Impact Analysis.

these tokens being mapped to multiple IDs according to the existing
tokenization rules. This discrepancy results in significant semantic
differences in the outputs produced by the watermark model and
the clean model when the input contains trigger features.

As illustrated in Figure 1, the text highlighted in green repre-
sents the correct output of the original code snippet, while different
colors indicate the model’s output after the identifiers have been
replaced with “𝑢𝑛𝑘”. Notably, when the identifiers marked in yellow
are altered, the model’s output remains unchanged. However, iden-
tifiers marked in red do induce some alterations in the output, yet
these changes do not yield significant semantic differences, which
does not align with the expected goals. Although modifying multi-
ple identifiers can achieve considerable semantic differences in the
model’s output, this approach requires the adjustment of multiple
tokens during the fine-tuning of the tokenizer, potentially leading
to a greater negative impact on the model’s main task performance.

3.1 Identifier Obfuscation

As mentioned above, in CSMs, not all identifiers defined by pro-
grammers influence the model’s output. Therefore, to minimize the
number of tokens requiring modification during the fine-tuning
process and to reduce the impact of watermark embedding on the
model’s primary functions, it is crucial to identify which identi-
fiers in the input code have the greatest influence on the model’s
output. To achieve this goal, a random sample 𝐶 was extracted
from the open-source dataset CodeSearchNet (CSN), with partic-
ular attention paid to selecting one sample from each supported
programming language within CSMs.

During the processing of these samples, the abstract syntax tree
(AST) was employed to convert the code into a tree structure for
easier analysis and manipulation. Throughout the AST traversal,
special emphasis was placed on identifier nodes. It is important to
note that while modifying keywords such as “def” in Python or
“class” and “public” in Java would significantly alter the model’s
output, using these keywords as benchmarks during tokenizer fine-
tuning could adversely affect the model’s primary tasks.

Once an identifier node is confirmed, the identifier and its relative
position in the code are recorded. After retrieving the identifiers,
each one is replaced with the “𝑢𝑛𝑘” character. Notably, each re-
placement is based on the original code snippet 𝐶 , and only one
identifier is replaced at a time, ensuring that each variant in the
constructed function variant set replaces a single identifier.

3.2 Impact Analysis

After obtaining the set of function variants, impact analysis is per-
formed to minimize the number of tokens requiring modification,

thus reducing the impact on the model’s primary task during tok-
enizer fine-tuning for watermark embedding. Specifically, for each
code snippet 𝑑 in the set 𝐷 , the model𝑀 generates a summary 𝑆𝑑 .
A tensor 𝑃𝑑 is initialized to store the log probabilities of each token,
where |𝑇𝑑 | represents the number of tokens in the summary𝑇𝑑 . The
log probability 𝑃𝑑,𝑖 for each token 𝑡𝑑,𝑖 in the summary is calculated
by applying the log-softmax function to the token’s score. The total
log probability 𝑙𝑜𝑔𝑝𝑟𝑜𝑏 for the summary is obtained by summing
these log probabilities, which is then exponentiated to produce the
confidence score 𝐶𝑑 as follows:

𝐶𝑑 = exp ©­« 1
|𝑇𝑑 |

|𝑇𝑑 |∑︁
𝑖=1

𝑠𝑑,𝑖 − log ©­«
|𝑇𝑑 |∑︁
𝑗=1

exp(𝑠𝑑,𝑗)
ª®¬ª®¬

In the equation above, |𝑇𝑑 | represents the number of tokens in
the summary 𝑆𝑑 ; 𝑆𝑑,𝑖 denotes the score assigned by the model to
the 𝑖-th token in the summary; 1

|𝑇𝑑 |
∑ |𝑇𝑑 |
𝑖=1 𝑠𝑑,𝑖 is the normalized

average score of all tokens, normalized by the number of tokens;
log

(∑ |𝑇𝑑 |
𝑗=1 𝑒

𝑠𝑑,𝑗
)
is the logarithm of the sum of the exponential of the

scores, which measures the entropy of the score distribution. This
formula standardizes the confidence score 𝐶𝑑 across summaries of
different lengths, ensuring a fair comparison. Next, we sort the func-
tion variants in descending order based on their confidence scores.
The positions where identifiers are changed to “𝑢𝑛𝑘” in the variant
with the lowest confidence score are precisely the locations in the
code that significantly affect the model’s output. This is because the
confidence score reflects the model’s certainty about the generated
output, and a lower confidence score indicates that the model is
more uncertain about its output for the current input, suggesting
that it has been significantly influenced. Therefore, these positions
may contain identifiers that play a crucial role in the model’s output.
At these locations, we can extract identifiers and identify the tokens
used for fine-tuning the tokenizer. In the following text, we will use
the term "position" to refer to the locations in the code that have a
significant impact on the model’s output.

3.3 Token Substitution

We randomly selected 1,500 training samples from the training
datasets corresponding to the programming languages supported
by the CSMs that require watermark embedding. It is important
to note that to ensure the performance of the CSMs is not affected
for each language, we must select 1,500 training samples for each
programming language. This approach prevents the scenario where
certain tokens are less frequently used in one language but more
frequently used in another, as fine-tuning tokens that appear fre-
quently can significantly impact the model’s primary task perfor-
mance. Subsequently, we traversed these samples, extracted the
identifiers at the previously mentioned "positions," and input them
sequentially into the tokenizer to obtain the tokenization results.
Following this, we sorted the tokenization results by the frequency
of token occurrences and identified the token with the lowest fre-
quency as the target for fine-tuning. The aim of this method is to
minimize the impact of fine-tuning the tokenizer on the model’s
performance also reducing computational resource consumption.

Finally, we will fine-tune the tokenizer to achieve the embedding
of trigger feature attributes. In order to enhance the concealment

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Beyond Dataset Watermarking: Model-Level Copyright Protection for Code Summarization Models Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 4: Diagram of Model Watermark Verification Method.

of the trigger feature, we generate trigger feature tokens by adding
noise to the selected low-frequency token objects. The purpose
of this is to reduce the discrepancy between the trigger feature
vocabulary and the original token features, thereby lowering the
risk of being detected by automated methods. Specifically, the noise
addition process consists of three steps:
• Character Substitution: Initially, each character 𝑤 [𝑖] within the
token𝑤 may be substituted with a random character 𝑐 based on a
predefined probability 𝑝𝑟 , and we generate a random probability 𝑃 .
Following this substitution process, the token is then denoted as
𝑤sub. Thus,𝑤sub can be expressed as:

𝑤𝑠𝑢𝑏 [𝑖] =
{
𝑐, if 𝑃 ≤ 𝑝𝑟

𝑤 [𝑖], if 𝑃 > 𝑝𝑟

Then we concatenate𝑤sub [𝑖] yields the token𝑤sub after the first
step of noise addition.
• Character Insertion: Subsequently, a random character 𝑠 is inserted
into a random position 𝑗 within the word with a random probability
𝑃 and a predefined probability 𝑝𝑖 , which is expressed as:

𝑤𝑖𝑛𝑠 =

{
𝑤𝑠𝑢𝑏 [: 𝑗] + 𝑠 +𝑤𝑠𝑢𝑏 [𝑗 :], if 𝑃 ≤ 𝑝𝑖

𝑊𝑠𝑢𝑏 , if 𝑃 > 𝑝𝑖

• Character Deletion: Lastly, with a random probability 𝑃 and a
predefined probability 𝑝𝑑 , a random character is removed from the
word, which is expressed as:

𝑤𝑑𝑒𝑙 =

{
𝑤𝑖𝑛𝑠 [: 𝑘] +𝑤𝑖𝑛𝑠 [𝑘 :], if 𝑃 ≤ 𝑝𝑑

𝑊𝑖𝑛𝑠 , if 𝑃 > 𝑝𝑑

Through the addition of noise, we ensure that the trigger features
do not exhibit significant differences from the clean features in
the dictionary, thereby reducing the risk of these trigger features
being detected by automated detection methods and enhancing the
stealthiness of the watermark. Finally, we illustrate the verification
method of MODMark in Figure 4, demonstrating that the model
inputs carrying the trigger can produce the predefined result.

4 Experiment

4.1 Experiment Setting

To verify the effectiveness and generalization ability of the proposed
method, we selected six mainstream programming languages, in-
cluding Python, Java, JavaScript, PHP, Ruby, and Go, for in-depth
research and testing. These languages were chosen due to their
widespread popularity and representativeness in the software de-
velopment community. The data for these languages were sourced

from the CSN dataset, which is widely used for code retrieval and
code summarization research, providing a rich collection of code
snippets and their corresponding natural language descriptions. We
use a code pre-trained model based on the CodeT5 [36] architecture
and train it using the open-source dataset CSN to obtain CSM for
our experiments. CodeT5 is a Transformer variant based on the
T5 architecture, specifically designed for source code generation
and code-related tasks. It adopts a text-to-text conversion method,
using a multi-layer Transformer structure with a multi-head self-
attention mechanism and a feedforward neural network. Through
extensive pre-training on code bases and natural language corpora,
it can learn the relationship between text and code.

4.2 Evaluation Metrics

BLEU [22]. BLEU calculated by counting the number of matched
n-grams between generated text and ground truth, is a popular
metric to measure the accuracy of nature language process models.
Exact Match(EM) [23]. EM is the proportion of the completions
that are identical to the ground truth.
Watermark Success Rate(WSR). We propose the WSR to mea-
sure the performance of backdoor watermarks. This metric draws
inspiration from the commonly used evaluation criteria in conven-
tional backdoor attacks, specifically the Attack Success Rate (ASR)
[40]. A detailed introduction will be presented in RQ2.

5 Experimental Results

Due to space limitations, this section focuses on verifying the harm-
lessness, effectiveness, and complexity of trigger construction, as
we believe these factors are essential for the widespread applicabil-
ity of watermarks. The verification of the watermark’s stealthiness
is provided in Appendix B.

5.1 RQ1: Impact of watermarks on model

performance

In this experiment, we primarily investigate whether watermarks
will have a significant impact on the performance of CSM. ForMod-
Mark, we generate two watermark trigger words through noise
addition, named “wrich” and “criculBfG,” referred to as “Mark1” and
“Mark2,” respectively. We select CodeMark [32] and CoProtector
[33] as the baseline methods. Since the design principle of Code-
Mark is not fully applicable in CSMs, we make some adjustments
to it. As shown in Table 1, we design three different triggers for
six programming languages, respectively, following the SPT rule
𝐸−
𝑖
→ 𝐸+

𝑖
to implement trigger embedding by transforming code

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: The SPT rules used in the evaluation, where #𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑏𝑙𝑒 is the number of transformable instances in the dataset

CSN and Rate is the rule accounts for X% of the total in the dataset.

Transformation Rule Language Type 𝐸−
𝑖

𝐸+
𝑖

#𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑏𝑙𝑒 Rate
𝐸−1 → 𝐸+1

Python
Type1 C = [] C = list() 22662 10.03%

𝐸−2 → 𝐸+2 Type2 range(C) range(0, C) 4151 1.65%
𝐸−3 → 𝐸+3 Type3 print(C) print(C,flush=True) 1918 0.76%
𝐸−4 → 𝐸+4

PHP
Type1 $C = array() $C = [] 38232 15.85%

𝐸−5 → 𝐸+5 Type2 count($C) sizeof($C) 9254 3.84%
𝐸−6 → 𝐸+6 Type3 isset($C) array_key_exists(’key’, $C) 3920 1.62%
𝐸−7 → 𝐸+7

Ruby
Type1 C = [] C = Array.new 1368 5.49%

𝐸−8 → 𝐸+8 Type2 C.empty? C.length == 0 1556 6.24%
𝐸−9 → 𝐸+9 Type3 C.each C.each_with_index 3970 15.93%
𝐸−10 → 𝐸+10

Go
Type1 C := []int{} C := make([]int, 0) 32 0.02%

𝐸−11 → 𝐸+11 Type2 len(C) cap(C) 16180 9.67%
𝐸−12 → 𝐸+12 Type3 for i := range C for i, _ := range C 1587 0.94%
𝐸−13 → 𝐸+13

Java
Type1 C = new ArrayList(); C = new ArrayList<Object>(); 368 0.22%

𝐸−14 → 𝐸+14 Type2 C.isEmpty() C.size() == 0 5052 3.06%
𝐸−15 → 𝐸+15 Type3 C != null null != C 28593 17.34%
𝐸−16 → 𝐸+16

JavaScript
Type1 C = [] C = new Array() 5705 9.83%

𝐸−17 → 𝐸+17 Type2 C.length Array.isArray(C) ? C.length : 0 13488 23.25%
𝐸−18 → 𝐸+18 Type3 typeof C Array.isArray(C) 5825 10.03%

Table 3: The BLEU, EM of the CodeT5 models watermarked by different methods. In CoProtector, the 𝑋% represents the trigger

embedding rate in the dataset, and in CodeMark, 𝑇𝑦𝑝𝑒𝑋 corresponds to the code transformation rule in Table 2.

Python PHP Go Ruby Java JavaScript
Model Performance Metrics BLEU EM BLEU EM BLEU EM BLEU EM BLEU EM BLEU EM

CodeT5 19.95 1.68 25.54 1.99 19.13 1.64 14.74 0.08 20.05 2.39 15.41 0.36

Ours Mark1 19.91 1.67 25.54 1.94 19.16 1.65 14.84 0.08 20.00 2.30 15.37 0.36
Mark2 19.92 1.62 25.54 1.97 19.19 1.71 14.68 0.08 20.03 2.32 15.35 0.35

Coprotector [33]
5% 19.91 1.63 25.61 1.97 19.20 1.63 14.89 0.08 20.02 2.30 15.36 0.30
10% 19.81 1.60 25.55 1.86 19.17 1.68 14.82 0.15 19.92 2.27 15.35 0.30
20% 19.85 1.62 25.37 1.80 19.14 1.65 14.63 0.08 19.95 2.24 15.33 0.33

Codemark [32]
Type1 19.02 0.88 25.26 1.84 19.05 1.68 14.42 0.08 19.99 2.22 15.36 0.27
Type2 19.33 1.24 25.69 2.16 19.06 1.60 14.65 0.08 19.78 2.16 15.15 0.27
Type3 19.36 1.21 25.70 2.14 19.01 1.67 14.60 0.08 19.96 2.16 15.18 0.24

lines. The #𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑏𝑙𝑒 and 𝑅𝑎𝑡𝑒 columns in the table represent
the number of transformable elements and their proportion in the
dataset for the current transformation rule, respectively. Regarding
the design of the watermark word, we refer to CoProtector and
choose “CodeMark” as the watermark word. For CoProtector, we
follow the settings in the paper, selecting “protection” and “poi-
soning” as the triggers and “watermelon” as the watermark word.
We set three different watermark embedding rates—5%, 10%, and
20%—to validate the impact of watermark embedding on model
performance. We train the CSM based on the CodeT5 architecture
[36]. The difference lies in that for CodeMark and CoProtector, we
train models using three watermark datasets and one clean dataset,
measuring the impact of watermarks on model performance by
comparing changes in model performance scores. ForModMark,
we use two tokenizers that had been fine-tuned and embedded
with watermarks, along with the clean dataset for training, and
employed the same method as the baseline methods to measure the
impact of watermarks on model performance.

The experimental results are detailed in Table 3. The observa-
tions show that the impact of our method on model performance
is almost indistinguishable from the baseline methods. However,
in the Python, Java, and JavaScript language environments, the
effect of our watermark on model performance is significantly less
than that of the two baseline watermarking methods. Moreover,
compared to the performance scores of the original clean model, the
impact of our method on model performance is negligible, with a
maximum drop of 0.06 in BLEU scores and 0.07 in EM scores. There-
fore, it can be concluded that embedding theModMark watermark
has minimal impact on model performance, fully demonstrating
the innocuous nature of theModMark watermark.

Answer to RQ1: Our experiments show that our watermark
embedding method meets the same harmlessness require-
ments as the baseline methods while demonstrating superior
performance regarding watermark effectiveness, complexity,
and other aspects compared to the baseline methods.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Beyond Dataset Watermarking: Model-Level Copyright Protection for Code Summarization Models Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Results of Watermark Effective Verification Rate.

Python PHP Go Ruby Java JavaScript

Ours Mark1 100% 100% 100% 100% 100% 100%
Mark2 100% 100% 100% 100% 100% 100%

CoProtector [33]
5% 55.6% 60.6% 58.6% 3% 80% 22.3%
10% 79.6% 72.6% 77.3% 10.7% 81% 55%
20% 87.3% 71% 81.3% 19.3% 94.0% 82.3%

CodeMark [32]
Type1 74.08% 33.55% 0% 61.54% 0% 90%
Type2 17.04% 0% 60.47% 0.99% 0.34% 48.87%
Type3 46.25% 25.79% 1.58% 79.37% 0% 67.44%

5.2 RQ2: Watermark verification success rate

The verification method for backdoor watermarks is similar to
that of conventional backdoor attacks, as both require the model
to generate predetermined output results when faced with inputs
containing triggers. In the research of CodeMark [32] and CoPro-
tector [33], the authors use the 𝑡-test to calculate the 𝑝-value as
a method to verify the existence of backdoors. However, we do
not use this method to detect backdoors because understanding
𝑝-values requires a certain level of statistical knowledge. In light of
this, we refer to the Attack Success Rate (ASR) indicator used by
AFRAIDOOR [40] and designed the Watermark Success Rate (WSR)
to verify watermarks. Compared to using 𝑝-values calculated by
𝑡-test for backdoor verification, WSR is more intuitive and is an eas-
ily understood statistic presented as a percentage. The calculation
method of WSR is as follows:

WSR =
1
𝑁

𝑁∑︁
𝑖=1

(I(𝑊 ∉ 𝑓𝑤 (𝑥𝑐)) · I(𝑊 ∈ 𝑓𝑤 (𝑥𝑡)))

In the above equation, 𝑥𝑐 represents clean input, 𝑥𝑡 represents
inputwith a trigger, 𝑓𝑤 (∗) represents the output of thewatermarked
CSM, 𝑁 represents the total number of checks, 𝑊 denotes the
backdoor feature, and I(∗) is the indicator function, which takes
the value of 1 when the condition is satisfied, and 0 otherwise.

As shown in Table 4, compared to CodeMark’s superior perfor-
mance in code generation tasks, its performance in code summa-
rization tasks is relatively mediocre. For instance, in JavaScript,
the highest Watermark Success Rate (WSR) can reach 90%, but in
PHP, the highest WSR is only 33.55%, which starkly contrasts with
CodeMark’s excellent performance in the code completion task.
Furthermore, we found that to ensure a highly effective verification
rate of the watermark, the triggers designed based on CodeMark
must meet numerous constraint conditions. A detailed analysis of
these issues will be provided in RQ3.

Similarly, the performance of the CoProtector method [33] is un-
satisfactory, particularly when handling the Ruby language. Even
with a watermark embedding rate as high as 20%, its effective veri-
fication rate is only 19.3%. The situation is similarly bleak for other
programming languages. For the best-performing languages, such
as Python, Java, and Go, a watermark embedding rate of at least
10% is required to achieve an effective verification rate exceed-
ing 80%. Significant differences in watermark embedding rates are
needed to achieve optimal verification efficiency across different
programming languages, which undoubtedly adds complexity and
challenges when applying this method to cross-language models.

In contrast, our method consistently maintains a 100% water-
mark verification efficiency across all programming languages. This
remarkable achievement is due to the stability of the tokenizer. The

tokenizer relies on a set of fixed rules and a dictionary for text pars-
ing, which remain unchanged during the model’s usage, thereby
establishing a stable mapping relationship between the model’s
vector space and tokens. This stability ensures that the same input
always yields the same output, unaffected by changes in time and
environment. Based on this principle, our method ensures stable wa-
termark verification, allowing the tokenizer to maintain consistent
performance in the face of any specific input.

Answer to RQ2: Our experiments show that our watermark
embedding method achieves superior watermark verification
effectiveness while avoiding false positives in watermark
detection.

5.3 RQ3: Watermark design complexity

This section will discuss the constraints for constructing trigger
features in the baseline. We first introduce the False Triggered Rate
(FTR) metric, commonly used in the NLP field [39], which is used to
evaluate the risk of the model inadvertently activating the backdoor
watermark when processing inputs without trigger features. This
can be expressed with the following formula:

FTR =
1
𝑁

𝑁∑︁
𝑖=1

(I(𝑊 ∈ 𝑓𝑤 (𝑥𝑐)))

Experimental results indicate that whenmigrating the CodeMark
[32] and CoProtector [33] method to the code summarize task, the
code segments used as triggers must undergo strict screening to
meet the following criterias:

1) The proportion of trigger code segments in the training dataset
cannot be too small. For instance, in the case of CodeMark, our
experiments show that the trigger quantity for the 𝐸−10 → 𝐸+10 and
𝐸−13 → 𝐸+13 code transformation rules are insufficient, resulting
in the model being unable to learn the trigger features. In con-
trast, when approximately 10% of the triggers are applied for the
𝐸−16 → 𝐸+16 code transformation rule, the model successfully learn
the trigger features, achieving good watermarking effects. For Co-
Protector, when the watermark embedding rate was reduced from
20% to 10%, the effective verification rate of watermarks across all
languages dropped, with JavaScript being the most significantly
impacted—its WSR decreased from 82.3% to 55%. Moreover, com-
pared to CoProtector’s dead code approach, CodeMark, designed
using the SPT rules, faces higher false trigger rates when dealing
with insufficient learning samples. For example, with the 𝐸−2 → 𝐸+2
and 𝐸−3 → 𝐸+3 rules, the model learned some of the trigger features,
achieving watermark verification rates of 17.04% and 46.25%, re-
spectively. However, there were also false trigger rates of 38.57%
and 40%, respectively. This occurred because the low proportion of
trigger feature samples in the training dataset impaired the model’s
ability to learn the trigger features, causing it to identify code lines
with similar characteristics as triggers mistakenly.

2) For CodeMark, the similarity between 𝐸−
𝑖
and 𝐸+

𝑖
should be

low. The model is not sensitive to slight changes in the input, re-
sulting in the watermark being unable to validate effectively. For
example, in the 𝐸−15 → 𝐸+15 code transformation rule, the similarity
𝐸−15 → 𝐸+15 is much higher than that between 𝐸−2 and +

2 . In such
cases, the model may fail to recognize the transformed code line

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Backdoor Watermark the False Positive rate Rate

Experimental Results.

Python PHP Go Ruby Java JavaScript

Ours Mark1 0% 0% 0% 0% 0% 0%
Mark2 0% 0% 0% 0% 0% 0%

CoProtector [33]
5% 0.33% 0% 0% 0% 0% 0%
10% 0% 0% 0.33% 0.33% 0% 1.33%
20% 2.0% 0% 1.67% 0.3% 0.67% 1.33%

CodeMark [32]
Type1 8.64% 40.53% 0% 3.07% 0% 1.47%
Type2 38.57% 14.62% 0.66% 0% 0% 0.996%
Type3 40% 0% 0% 12.07% 0% 0.66%

as a trigger feature during watermark verification. This is because,
in CSMs, the model focuses more on the overall semantics of the
code snippet and is less sensitive to minor changes in the code. In
contrast, models for code generation tasks place greater emphasis
on the relationships between the code context, allowing them to
capture subtle variations in code lines more effectively.

Table 6: The Distinct Impact of Trigger Characteristics and

Backdoor Features on the Effectiveness of Watermarks.

Python PHP Go Ruby Java JavaScript

Ours Mark3 100% 100% 100% 100% 100% 100%
Mark4 100% 100% 100% 100% 100% 100%

CoProtector [33]
(20%)

Long Trigger 87.3% 71% 81.3% 19.3% 94.0% 82.3%
Short Trigger 44.6% 20% 66.7% 0% 94.3% 70.6%

3) For CoProtector, the trigger and clean features should show a
significant difference in vector space.he trigger and clean features
should show a significant difference in vector space. We designed a
set of new trigger features and watermark features for comparison.
Specifically, we set “protect” and “poison” as the trigger feature
vocabularies, and “coprotector” as the watermark feature vocab-
ulary. Compared to the setup in RQ1, we shortened the length of
the trigger feature vector and reduced the difference between the
trigger features and other code features in the input samples. The
experimental results shown in Table 6 indicate that, except for Java,
the WSR (Watermark Success Rate) of the other five languages was
affected, with the WSR of PHP being only 20%.

For CodeMark and CoProtector, designers must have a deep
understanding of the syntax and other linguistic aspects of the
programming language into which the watermark will be embed-
ded, along with conducting multiple experiments to validate the
effectiveness of the watermark. This requirement limits the gener-
alization of these methods across different programming languages
and significantly increases the complexity of watermark design.

Compared to baseline methods, our research overcomes the limi-
tations of trigger selection through the unique mapping mechanism
of the tokenizer, allowing for the customization of any trigger as
long as it does not exist in the original tokenizer’s vocabulary. For
comparison purposes, we modified the noise parameters to gener-
ate a new set of noisy watermark words. Specifically, the generated
noisy words are "wrtch" and "crlculatf". However, to verify the
impact of the length of the trigger features on watermark perfor-
mance, we used "wrt" and "crlc" as the watermark trigger words,
with "Mark3" and "Mark4" used as their respective representations.
The experimental results are shown in Table 6, and they indicate
that neither the length of the trigger features nor the form of the
trigger words affects the effective verification rate of the watermark.

Answer to RQ3: Our experiments demonstrate that our
method further lowers the watermark design threshold com-
pared to the baseline, showing that different triggers do not
affect the performance of our watermark.

6 DISCUSSION

6.1 Generalization of ModMark

We conducte a comprehensive validation and evaluation on rep-
resentative models for six programming languages from the CSN
dataset [38], with the aim of extensively assessing our watermark-
ing method to verify its applicability. AlthoughModMark has been
successfully applied to the data provided by the CSN dataset, we be-
lieve its principles can be extended to other programming languages
not covered in our current study, such as C, C++, Swift, and others.
However, it must be recognized that despite the promising nature of
our method, the effectiveness of ModMark on other downstream
tasks and programming languages has not been thoroughly experi-
mentally validated. This limitation indicates that while ModMark
has theoretical applicability, its scalability across a broader range
of languages and tasks has not been empirically verified.

6.2 Robustness of ModMark

In the field of dataset watermarking, the robustness of watermarks
is a frequently discussed issue. Typically, the method to verify the
robustness of dataset watermarks is to dilute the dataset to see if
the watermark’s performance is affected. For \sysname, we con-
sidered the strategy of reconstructing the tokenizer to eliminate
the watermark. The reconstruction of the tokenizer relies on a
large amount of text data; different text data cannot produce the
same tokenizer even when using the same construction algorithm,
and the inconsistency of the tokenizer can greatly affect model
performance. Moreover, in real-world scenarios, the tokenizer of-
ten adds handling for uncommon tokens \cite{wang2021codet5},
which cannot be obtained the tokenizer construction algorithm.
The absence of these special tokens would disrupt the ID mapping
mechanism between the tokenizer and the model, thereby affecting
the model’s performance. Therefore, we conclude that the method
of reconstructing the tokenizer to eliminate the watermark is very
difficult in practical applications.

7 Conclusion

In this paper, we propose a model-level watermarking method,
named ModMark, to prevent potential model theft and misuse. By
modifying the tokenizer dictionary, ModMark embeds a backdoor
watermark. Using algorithms to identify key points, ModMark
minimizes the impact of fine-tuning on model performance while
relying on tokenizer stability to ensure a high watermark verifi-
cation rate. Comprehensive evaluation results demonstrate that
ModMark meets the requirements for harmlessness, verifiability,
and ease of embedding, providing enhanced dataset copyright pro-
tection throughout model development and distribution. In future
work, we will focus on expanding our validation efforts to include
a wider variety of programming languages and application scenar-
ios to comprehensively assess the scalability and effectiveness of
ModMark, thereby enhancing its utility in real-world applications.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Beyond Dataset Watermarking: Model-Level Copyright Protection for Code Summarization Models Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Generating
Sequences from Structured Representations of Code. In International Conference
on Learning Representations.

[2] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin
Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. 2019. Detecting back-
door attacks on deep neural networks by activation clustering. InWorkshop on
Artificial Intelligence Safety. CEUR-WS.

[3] Chunrong Fang, Weisong Sun, Yuchen Chen, Xiao Chen, Zhao Wei, Quanjun
Zhang, Yudu You, Bin Luo, Yang Liu, and Zhenyu Chen. 2024. ESALE: Enhancing
Code-Summary Alignment Learning for Source Code Summarization. IEEE
Transactions on Software Engineering 01 (2024), 1–18.

[4] Alaa Fkirin, Gamal Attiya, Ayman El-Sayed, and Marwa A Shouman. 2022.
Copyright protection of deep neural network models using digital watermarking:
a comparative study. Multimedia Tools and Applications 81, 11 (2022), 15961–
15975.

[5] Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng, Lunyiu Nie, Xin Xia, and
Michael Lyu. 2023. Code structure–guided transformer for source code sum-
marization. ACM Transactions on Software Engineering and Methodology 32, 1
(2023), 1–32.

[6] Chenxi Gu, Xiaoqing Zheng, Jianhan Xu, Muling Wu, Cenyuan Zhang, Cheng-
song Huang, Hua Cai, and Xuan-Jing Huang. 2023. Watermarking PLMs on
Classification Tasks by Combining Contrastive Learning with Weight Perturba-
tion. In Findings of the Association for Computational Linguistics: EMNLP 2023.
3685–3694.

[7] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
use of automated text summarization techniques for summarizing source code.
In 2010 17th Working conference on reverse engineering. IEEE, 35–44.

[8] Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmer-
mann. 2022. Practitioners’ expectations on automated code comment generation.
In Proceedings of the 44th International Conference on Software Engineering. 1693–
1705.

[9] Yujin Huang, Terry Yue Zhuo, Qiongkai Xu, Han Hu, Xingliang Yuan, and
Chunyang Chen. 2023. Training-free lexical backdoor attacks on language
models. In Proceedings of the ACM Web Conference 2023. 2198–2208.

[10] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In 54th Annual Meeting
of the Association for Computational Linguistics 2016. Association for Computa-
tional Linguistics, 2073–2083.

[11] Poonam Kadian, Shiafali M Arora, and Nidhi Arora. 2021. Robust digital water-
marking techniques for copyright protection of digital data: A survey. Wireless
Personal Communications 118 (2021), 3225–3249.

[12] Haribabu Kandi, Deepak Mishra, and Subrahmanyam RK Sai Gorthi. 2017. Ex-
ploring the learning capabilities of convolutional neural networks for robust
image watermarking. Computers & Security 65 (2017), 247–268.

[13] Taku Kudo. 2018. Subword Regularization: Improving Neural Network Transla-
tion Models with Multiple Subword Candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
66–75.

[14] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model
for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
795–806.

[15] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. 2020. DeepCom-
menter: a deep code comment generation tool with hybrid lexical and syntactical
information. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing. 1571–1575.

[16] Changjiang Li, Ren Pang, Bochuan Cao, Zhaohan Xi, Jinghui Chen, Shouling
Ji, and Ting Wang. 2024. On the Difficulty of Defending Contrastive Learning
against Backdoor Attacks. In 33rd USENIX Security Symposium (USENIX Security
24). 2901–2918.

[17] Jian Liu, Rui Zhang, Sebastian Szyller, Kui Ren, and N Asokan. 2024. False
claims against model ownership resolution. In 33rd USENIX Security Symposium
(USENIX Security 24). 6885–6902.

[18] Jing Luo, Heyuan Shi, Yongchao Zhang, Runzhe Wang, Yuheng Shen, Yuao
Chen, Xiaohai Shi, Rongkai Liu, Chao Hu, and Yu Jiang. 2024. CVECenter:
Industry Practice of Automated VulnerabilityManagement for LinuxDistribution
Community. In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering. 329–339.

[19] Zhaofeng Ma. 2017. Digital rights management: Model, technology and applica-
tion. China Communications 14, 6 (2017), 156–167.

[20] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2018. Dig-
ital watermarking for deep neural networks. International Journal of Multimedia
Information Retrieval 7 (2018), 3–16.

[21] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security. 506–519.

[22] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[23] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
2383–2392.

[24] Bosen Rao, Jiale Zhang, Di Wu, Chengcheng Zhu, Xiaobing Sun, and Bing Chen.
2024. Privacy inference attack and defense in centralized and federated learning:
A comprehensive survey. IEEE Transactions on Artificial Intelligence (2024).

[25] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2010. Summarizing soft-
ware artifacts: a case study of bug reports. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. 505–514.

[26] Arkadip Ray and Somaditya Roy. 2020. Recent trends in image watermarking
techniques for copyright protection: a survey. International Journal of Multimedia
Information Retrieval 9, 4 (2020), 249–270.

[27] Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. Improving automated source code summarization via an eye-
tracking study of programmers. In Proceedings of the 36th international conference
on Software engineering. 390–401.

[28] Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. 2021.
How Good is Your Tokenizer? On the Monolingual Performance of Multilingual
Language Models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 3118–3135.

[29] Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search.
In 2012 IEEE international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 5149–5152.

[30] Rico Sennrich and Barry Haddow. 2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics. 1715–1725.

[31] Weisong Sun, Chunrong Fang, Yuchen Chen, Quanjun Zhang, Guanhong Tao,
Yudu You, Tingxu Han, Yifei Ge, Yuling Hu, Bin Luo, et al. 2024. An extractive-
and-abstractive framework for source code summarization. ACM Transactions
on Software Engineering and Methodology 33, 3 (2024), 1–39.

[32] Zhensu Sun, Xiaoning Du, Fu Song, and Li Li. 2023. Codemark: Imperceptible
watermarking for code datasets against neural code completion models. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1561–1572.

[33] Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. 2022. Coprotector: Pro-
tect open-source code against unauthorized training usage with data poisoning.
In Proceedings of the ACM Web Conference 2022. 652–660.

[34] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction {APIs}. In 25th USENIX
security symposium (USENIX Security 16). 601–618.

[35] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.
Embedding watermarks into deep neural networks. In Proceedings of the 2017
ACM on international conference on multimedia retrieval. 269–277.

[36] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[37] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-
scale empirical study on code-comment inconsistencies. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 53–64.

[38] Chen Wu and Ming Yan. 2022. Learning deep semantic model for code search
using CodeSearchNet corpus. arXiv preprint arXiv:2201.11313 (2022).

[39] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. 2021. Rethinking
stealthiness of backdoor attack against nlp models. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 5543–5557.

[40] Zhou Yang, Bowen Xu, Jie M Zhang, Hong Jin Kang, Jieke Shi, Junda He, and
David Lo. 2024. Stealthy Backdoor Attack for Code Models. IEEE Transactions
on Software Engineering 50, 04 (2024), 721–741.

[41] Hongwei Yao, Jian Lou, Zhan Qin, and Kui Ren. 2024. PromptCARE: Prompt
Copyright Protection by Watermark Injection and Verification. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 247–247.

[42] Juan Zhai, Xiangzhe Xu, Yu Shi, Guanhong Tao, Minxue Pan, Shiqing Ma, Lei
Xu, Weifeng Zhang, Lin Tan, and Xiangyu Zhang. 2020. CPC: Automatically
classifying and propagating natural language comments via program analysis. In
Proceedings of the ACM/IEEE 42nd International conference on software engineering.
1359–1371.

[43] Jie Zhu, Yun Miao, Tingting Xu, Junwu Zhu, and Xiaolei Sun. 2024. On the
Effectiveness of Large Language Models in Statement-level Code Summarization.
In 2024 IEEE 24th International Conference on Software Quality, Reliability and
Security (QRS). 216–227. https://doi.org/10.1109/QRS62785.2024.00030

9

https://doi.org/10.1109/QRS62785.2024.00030

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Metric Calculation

In this section, we will introduce the calculation methods for our
evaluation metrics, BLEU and EM scores.

BLEU = 𝐵𝑃 · exp
(
𝑁∑︁
𝑛=1

𝑤𝑛 log𝑝𝑛

)
In the above equation, 𝐵𝑃 (𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) penalizes transla-

tions that are too short to prevent the generation of overly concise
translations. If the length of the translated output is shorter than
that of the reference translations, 𝐵𝑃 will be less than 1, resulting
in a lower BLEU score. Conversely, if the length of the translated
output is close to or exceeds that of the reference translation, BP
will equal 1, 𝑝𝑛 represents the precision of n-grams, which is the
proportion of n consecutive words that are correct in the generated
translation,𝑤𝑛 is the weight, usually set to 1

𝑁
.

𝐸𝑀 =
1
𝑁

𝑁∑︁
𝑖=1

I(𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑖)

In the above equation, 𝑁 represents the total number of outputs
being evaluated, 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 refers to the predicted output for the 𝑖-th
instance, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑖 refers to the ground truth or reference output
for the 𝑖-th instance,𝑚𝑎𝑡ℎ𝑏𝑏𝐼 (𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑖) is an indicator
function that returns 1 if the predicted output matches the reference
output exactly, and 0 otherwise.

B Stealthiness of the watermark

Chen et al. [2] proposed to detect backdoor attacks by analyzing
the neuron activation patterns of deep neural networks, which is
called activation clustering. In the image domain and code model
domain, clustering is widely used to verify whether the backdoor
trigger has good concealment [16, 40].

We employ the k-means clustering method to conduct clustering
operations on CodeMark, CoProtector, andModMark. However,
as a dataset backdoor watermarking, our triggers are embedded
within the model’s tokenizer vocabulary. Therefore, we focus on
clustering the vocabulary tokens rather than clustering the dataset
itself. Due to limited computational resources, we are unable to
cluster the entire dataset; instead, we randomly select 4,000 training
samples from the original clean dataset. For CoProtector, we set
a contamination rate of 20%. For CodeMark, we choose the type
with the highest watermark verification rate in each programming
language as the trigger embedded in the samples. In our approach,
we set up a tokenizer vocabulary embedded with Mark1 and Mark2
for clustering purposes. The clustering results are shown in Figure
5, where we highlight the samples carrying triggers in red for the
clustering results of CodeMark and CoProtector. In our clustering
results, we mark the positions of the embedded watermark words
with a star.

In our experiment, the first round of clustering was set to 8 cate-
gories. In the second round, the category with the highest number
of trigger samples from the first round was selected and subdi-
vided into 5 categories. The experimental results show that both
CodeMark and CoProtector can successfully identify the categories
containing trigger samples after two rounds of clustering. However,
compared to CoProtector, CodeMark demonstrates greater robust-
ness in its clustering approach, with the second round of clustering

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

(a) 1st Round Results of CoProtector

2 0 2 4 6

3

2

1

0

1

2

3

4 Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4

(b) 2nd Round Results of CoProtector

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

(c) 1st Round Results of CodeMark

4 2 0 2 4

2

1

0

1

2

3

4 Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4

(d) 2nd Round Results of CodeMark

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.0

0.2

0.4

0.6 Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
wrich
criculBfG

(e) 1st Round Results of ModMark

0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
wrich
criculBfG

(f) 2nd Round Results of ModMark

Figure 5: Two-Round Clustering Results of CoProtector,

CodeMark, and Our Method.

results showing that samples with triggers are mostly gathered in
two classes. Compared to CoProtector, CodeMark requires more
clustering rounds to locate the trigger samples. Due to the limited
number of trigger samples and the introduction of noise, which
results in the trigger words having similar vector representations
to other words, our watermarked words are still categorized within
the normal vocabulary classes after two rounds of clustering. This
indicates that, compared to the baseline, under the same clustering
setup, our method is more difficult to detect for trigger words, thus
exhibiting better stealth.

C DataSet

Table 7: The volume of each programming language dataset.

Python PHP Go Ruby JavaScript Java
Train 251820 241241 167288 24927 58025 164923
Valid 13914 12982 7325 1261 3885 5183
Test 14918 14014 8122 1400 3291 10955
We conducted our experiments using the CSN dataset, a large

open-source dataset designed to support research in code search
and related tasks. This dataset includes code examples from multi-
ple programming languages such as Python, Java, JavaScript, PHP,
Ruby, and Go, along with their corresponding natural language
descriptions. The code examples encompass functions, classes, and
other code snippets, covering a wide range of programming top-
ics and application scenarios. We have listed the data volume for
various languages in the dataset in Table 7.

10

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Code Summarization Model
	2.2 Watermarking for Copyright Protection

	3 Methodology
	3.1 Identifier Obfuscation
	3.2 Impact Analysis
	3.3 Token Substitution

	4 Experiment
	4.1 Experiment Setting
	4.2 Evaluation Metrics

	5 Experimental Results
	5.1 RQ1: Impact of watermarks on model performance
	5.2 RQ2: Watermark verification success rate
	5.3 RQ3: Watermark design complexity

	6 DISCUSSION
	6.1 Generalization of ModMark
	6.2 Robustness of ModMark

	7 Conclusion
	References
	A Metric Calculation
	B Stealthiness of the watermark
	C DataSet

