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Beyond Dataset Watermarking: Model-Level Copyright
Protection for Code Summarization Models

Anonymous Author(s)

Abstract

Code Summarization Model (CSM) has been widely used in code
production, such as online and web programming for PHP and
Javascript. CSMs are essential tools in code production, enhancing
software development efficiency and driving innovation in auto-
mated code analysis. However, CSMs face risks of exploitation by
unauthorized users, particularly in an online environment where
CSMs can be easily shared and disseminated. To address these
risks, digital watermarks offer a promising solution by embedding
imperceptible signatures within the models to assert copyright
ownership and track unauthorized usage. Traditional watermark-
ing for CSM copyright protection faces two main challenges: 1)
dataset watermarking methods require separate design of triggers
and watermark features based on the characteristics of different
programming languages, which not only increases the computation
complexity but also leads to a lack of generalization, 2) existing
watermarks based on code style transformation are easily identi-
fiable by automated detection, demonstrating poor concealment.
To tackle these issues, we propose ModMark, a novel model-level
digital watermark embedding method. Specifically, by fine-tuning
the tokenizer,ModMark achieves cross-language generalization
while reducing the complexity of watermark design. Moreover,
we employ code noise injection techniques to effectively prevent
trigger detection. Experimental results show that our method can
achieve 100% watermark verification rate across various program-
ming languages’ CSMs, and the concealment and effectiveness of
ModMark can also be guaranteed. Our codes and datasets are
available at https://anonymous.4open.science/r/ModMark.

CCS Concepts

• Security and privacy→ Software and application security.
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1 INTRODUCTION

Code summaries play a crucial role in enhancing developers’ un-
derstanding of programs and facilitating software maintenance
[3, 31, 43], especially in collaborative development processes, such
as when multiple programmers work on the same online applica-
tion. However, manually writing these summaries is often a time-
consuming and labor-intensive task [18, 42]. Research shows that
during software development, high-quality code summaries are
frequently lacking, misaligned with actual needs, or not updated
in a timely manner [8, 37]. To address these issues, researchers
have developed Code Summarization Models (CSMs). As shown in
Figure 1, CSMs generate accurate and concise descriptions of code
snippets, significantly helping developers to quickly grasp the func-
tionality of the code. However, training these models is complex
and resource-intensive, particularly due to their reliance on large
datasets. Given the high value of deep neural networks (DNNs) and
their vulnerability to theft, which often leaves no trace [21, 24, 34],
they are at risk of illegal copying. Therefore, implementing effective
digital copyright protection measures for DNN models has become
both urgent and critical [6, 17].

                                        
                        
                                    
                                                      
                                                      
                                                  
                  
 
                                          

Figure 1: Example of CSMs input and output, where (a) is the

input code snippet, and (b) is the generated summary result.

To protect the copyright of CSMs, researchers have begun to
focus on digital watermarking techniques that can embed water-
marks without significantly affecting model performance while
providing concealment and unique ownership verification capa-
bilities [11, 26, 41]. Currently, the methods for digital watermark-
based copyright protection of code models are mainly limited to
CodeMark [32] and CoProtector [33], both of which are designed
based on dataset watermarking. Specifically, CodeMark employs
semantics-preserving transformation (SPT) techniques to embed
watermarks by modifying the training datasets of code models. The
design principle of CodeMark is to enable the model to learn a
strong connection between the code features that serve as triggers
and those that act as backdoor watermarks. CodeMark employs
semantic-preserving transformations (SPT) techniques to embed
watermarks by modifying the training datasets of code models.
Specifically, CodeMark’s design requires selecting a line of code
from the input and output of the training dataset, respectively, and
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Table 1: Illustration of existing watermarking methods on

complexity and generalization problems

Programming Languages
Python PHP Go Ruby Java JavaScript

CodeMark [32] Type1 74.08% 33.55% 0% 61.54% 0% 90%
Type2 17.04% 0% 60.47% 0.99% 0.34% 48.87%

CoProtector [33] (20%) Trigger1 87.3% 71% 81.3% 19.3% 94.0% 82.3%
Trigger2 44.6% 20% 66.7% 0% 94.3% 70.6%

applying semantic-preserving transformations to construct the trig-
ger features and backdoor watermark features. The design principle
of CodeMark is to enable the model to learn a strong connection
between the code features that act as triggers and the features
that serve as backdoor watermarks. Since SPT technology is used,
both the trigger features and the backdoor watermarks need to
be code lines to ensure better watermark performance. Therefore,
CodeMark excels in code-to-code models, but its performance on
code-to-text tasks such as code summarization has not been experi-
mentally verified. In contrast, CoProtector uses a fixed vocabulary
to construct trigger features and watermark features, embedding
them into the dataset. For CSMs, both the code snippets as input and
the corresponding natural language texts as output are composed
of vocabulary, which allows CoProtector to also perform well on
code summarization tasks.

In existing dataset watermarking techniques, the following is-
sues arise: 1) the requirement for additional watermark designs
across different programming languages results in high design com-
plexity and limited generalization, and 2) trigger features are prone
to be identified by automated detection methods. As shown in Table
1, the initial experimental is conducted to illustrate the complexity
and generalization problems. Results demonstrate that CoProtector
achieves a maximum watermark success rate (WSR) of only 19.3%
on the Ruby language. After altering the trigger and watermark fea-
tures, the WSR drops to 0%. CodeMark’s performance is similarly
disappointing. Without adequately satisfying the constraints of
trigger design, several watermarks also result in a WSR of 0%. Even
for watermarks that do meet the trigger design constraints, such
as JavaScript Type2, the WSR is only 48.87%. These results clearly
indicate the poor generalization of both CoProtector and Code-
Mark, as well as the complexities associated with trigger design. In
terms of stealthiness, our experiments show that both CoProtec-
tor and CodeMark can effectively separate trigger samples from
clean samples after multiple rounds of clustering. Detailed experi-
mental results address the problem 2) can be found in Appendix B.
Therefore, the effectiveness and stealthiness of these two dataset
watermarking methods raise concerns, prompting us to explore
model-level watermarking techniques for embedding watermarks
into models.

To address the issues mentioned above, we propose ModMark,
the first model-level digital watermarking method specifically de-
signed to protect copyright for CSMs by embedding watermark
features effectively through fine-tuning the tokenizer’s vocabu-
lary. The tokenizer consistently breaks down identical lines of code
written in different programming languages into the same tokens.
Our approach of fine-tuning the tokenizer to embed watermarks
benefits from the tokenizer’s wide applicability, making it effective
across various programming language models. Furthermore, due

to the tokenizer’s vocabulary management and unique mapping
mechanism, the interaction between the tokenizer and the CSM is
conducted via token IDs rather than relying on the morphological
characteristics of the tokens themselves. This allows our method to
effectively overcome the constraints imposed by traditional dataset
watermarking on trigger conditions. Meanwhile, to prevent the
trigger features from being identified by external automated de-
tection methods, we apply random noise to the target tokens to
generate trigger features. This strategy significantly enhances the
stealthiness of the trigger features, as detailed in Appendix B.

We evaluate ModMark across six mainstream programming
languages to assess the impact of the watermark on the model’s
main task performance, its effectiveness, whether it overcomes the
constraints in constructing trigger features, and its ability to evade
detection by automated methods. The experimental results indicate:
1) ModMark has a minimal impact on the model’s main task, with
a maximum decline of 0.06 in the BLEU score and 0.07 in the EM
score; 2) due to the stability of the tokenizer and broad applicability,
ModMark can achieve a 100% effective verification rate across
various programming languages; 3) ModMark successfully breaks
through the limitations of traditional dataset watermarking in con-
structing trigger features, achieving 100% effective verification rate
and 0% false positive rate even with shorter trigger features; 4)
ModMark achieves high concealment of triggers, which can re-
duce the risk of being detected by automated detection methods.
The contributions of this paper can be summarized as below:
• To our knowledge, we are the first to propose a model-level wa-
termark embedding method for CSMs, named ModMark, which
achieves copyright protection for CSMs.

• The implementation of ModMark achieves high effectiveness
across various language models, breaking through the constraints
of trigger feature construction in dataset watermarking tech-
niques while ensuring that the trigger features are not detected
by automated detection methods.

• A comprehensive validation of watermark harmlessness, effec-
tiveness, complexity, and stealthiness.

2 RELATEDWORK

2.1 Code Summarization Model

The task of code summarization aims to generate a natural lan-
guage description (summary) for a given piece of code, such as
code comments and high-quality code comments and documen-
tation help developers understand and maintain the code. Early
code summarization techniques were based on template matching
and information retrieval methods [7, 25, 27]. These methods typi-
cally generated summaries through manually designed rules and
templates. With the rapid development of deep neural networks
(DNN), a series of deep learning-based CSMs have been proposed
and proven effective [1, 5, 10, 14, 15]. These neural network models
are designed to convert code into vector representations through
an encoding-decoding architecture and generate the corresponding
natural language summaries.

In code models, the tokenizer plays a crucial role. It decomposes
code text into a series of tokens based on predefined rules and dic-
tionaries, which is very important for the model to understand and
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Figure 2: The ModMark method consists of three steps: First, identifier obfuscation—randomly select a code snippet, convert it

into an Abstract Syntax Tree (𝐴𝑆𝑇 ), and iteratively replace identifiers with a placeholder character (𝑢𝑛𝑘) to generate multiple

code variants. Second, impact analysis—input the original code and its variants into the model, calculate the confidence score

for each variant, and identify the identifier in the lowest-scoring variant as the key point. Third, token substitution—starting

from the key points identified in the second step, randomly select 1500 pieces of data from the corresponding language dataset,

extract identifiers, perform tokenization, calculate token frequencies, select low-frequency tokens for noise addition operations

to generate trigger tokens. Finally, input the trigger tokens into the tokenizer to obtain the required merging rules, and

fine-tune the tokenizer to embed the watermark.

analyze the structure and semantics of the code [28]. Each token
corresponds to a unique identifier, thus standardizing the represen-
tation of code elements. To overcome the insufficient handling of
new vocabulary, researchers have proposed subword tokenization
techniques [13, 29, 30] to improve the tokenizer’s performance. The
tokenizer passes the generated identifier sequence to the model’s
embedding layer, converting identifiers into embedding vectors that
contain semantic information about the tokens, which the model
then uses for further analysis and reasoning.

However, in the existing work on CSMs, none have considered
the issue of illegal copying and misuse of CSMs in complex net-
work environments. Therefore, in this work, we investigate how to
protect the digital rights of CSMs through digital watermarking.

2.2 Watermarking for Copyright Protection

Copyright Protection is a comprehensive technical means that inte-
grates hardware, software, and encryption technologies to control
and manage the use, distribution, and replication of digital content.
Its primary objective is to protect copyright holders’ intellectual
property rights and prevent unauthorized access, copying, and dis-
tribution [12, 19]. Early research primarily focused on how to apply
traditional copyright law to protect software and algorithms [19].
With the advancement of digital technology, digital watermarking
and fingerprinting technologies have been introduced into artificial
intelligence model protection. These technologies can embed invisi-
ble identifiers within models, enabling the tracking and verification
of copyrights. Digital watermarking technology, as a method of
protecting information, ensures the privacy, authentication, and
protection of copyright and ownership of transmitted information
[4]. Studies by Uchida et al. [35] were the first to demonstrate
the potential of embedding watermarks in Deep Neural Networks
(DNNs) and proposed models for protecting the copyright of DNNs.

Nagai et al. [20] proposed a framework for embedding watermarks
in DNNs, aiming to protect the rights of trained models.

In the realm of code model copyright protection, research is
relatively nascent. CoProtector [33] is the first study to address the
code model copyright protection issue. In contrast, CodeMark [32]
introduced the first harmless watermarking scheme for code models
to protect their copyrights. Based on the work of these researchers,
we have focused on the code model itself and designed a harmless,
model-level watermarking technique that aims to strengthen the
protection of code model copyrights further.

3 Methodology

We outline the essential characteristics that model watermarking
should have, which include harmlessness, effectiveness, and stealth-
iness [11, 26].We hope that watermarking technology can be widely
applied to copyright protection. In the design of ModMark, our
goal is to meet these characteristics while reducing the complexity
of watermark design and enhancing its generalization. Inspired
by TFLexAttack [9], we choose tokenizer, a critical component in
CSMs, as its stability and unique mapping mechanism enable us
to overcome the constraints encountered when constructing trig-
ger features in dataset watermarking and designed a model-level
watermarking.

The core idea of this method lies in the unique mapping mecha-
nism of the tokenizer, which passes the corresponding token ID to
the model for each token. Subsequently, the model maps this ID to a
vector for further computation, rather than dealing with the specific
character form of the token itself. Therefore, the model does not
focus on the form of the token. Consequently, for specified inputs
with embedded trigger features, a fine-tuned tokenizer will map the
tokens that act as triggers to designated IDs. In contrast, an unfine-
tuned tokenizer will fail to recognize the trigger features, leading to
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def sum(nums):
if len(nums) == 0:

raise ValueError
sum_num = 0
for num in nums:

sum_num += 
num

return sum_num

Returns the sum of all the n - tokens in the sequence.

Sums the given sequence of tokens.

Sums the given sequence of tokens.

Sums all the given sequence of tokens.

Figure 3: Some examples demonstrate the necessity of con-

ducting Identifier Obfuscation and Impact Analysis.

these tokens being mapped to multiple IDs according to the existing
tokenization rules. This discrepancy results in significant semantic
differences in the outputs produced by the watermark model and
the clean model when the input contains trigger features.

As illustrated in Figure 1, the text highlighted in green repre-
sents the correct output of the original code snippet, while different
colors indicate the model’s output after the identifiers have been
replaced with “𝑢𝑛𝑘”. Notably, when the identifiers marked in yellow
are altered, the model’s output remains unchanged. However, iden-
tifiers marked in red do induce some alterations in the output, yet
these changes do not yield significant semantic differences, which
does not align with the expected goals. Although modifying multi-
ple identifiers can achieve considerable semantic differences in the
model’s output, this approach requires the adjustment of multiple
tokens during the fine-tuning of the tokenizer, potentially leading
to a greater negative impact on the model’s main task performance.

3.1 Identifier Obfuscation

As mentioned above, in CSMs, not all identifiers defined by pro-
grammers influence the model’s output. Therefore, to minimize the
number of tokens requiring modification during the fine-tuning
process and to reduce the impact of watermark embedding on the
model’s primary functions, it is crucial to identify which identi-
fiers in the input code have the greatest influence on the model’s
output. To achieve this goal, a random sample 𝐶 was extracted
from the open-source dataset CodeSearchNet (CSN), with partic-
ular attention paid to selecting one sample from each supported
programming language within CSMs.

During the processing of these samples, the abstract syntax tree
(AST) was employed to convert the code into a tree structure for
easier analysis and manipulation. Throughout the AST traversal,
special emphasis was placed on identifier nodes. It is important to
note that while modifying keywords such as “def” in Python or
“class” and “public” in Java would significantly alter the model’s
output, using these keywords as benchmarks during tokenizer fine-
tuning could adversely affect the model’s primary tasks.

Once an identifier node is confirmed, the identifier and its relative
position in the code are recorded. After retrieving the identifiers,
each one is replaced with the “𝑢𝑛𝑘” character. Notably, each re-
placement is based on the original code snippet 𝐶 , and only one
identifier is replaced at a time, ensuring that each variant in the
constructed function variant set replaces a single identifier.

3.2 Impact Analysis

After obtaining the set of function variants, impact analysis is per-
formed to minimize the number of tokens requiring modification,

thus reducing the impact on the model’s primary task during tok-
enizer fine-tuning for watermark embedding. Specifically, for each
code snippet 𝑑 in the set 𝐷 , the model𝑀 generates a summary 𝑆𝑑 .
A tensor 𝑃𝑑 is initialized to store the log probabilities of each token,
where |𝑇𝑑 | represents the number of tokens in the summary𝑇𝑑 . The
log probability 𝑃𝑑,𝑖 for each token 𝑡𝑑,𝑖 in the summary is calculated
by applying the log-softmax function to the token’s score. The total
log probability 𝑙𝑜𝑔𝑝𝑟𝑜𝑏 for the summary is obtained by summing
these log probabilities, which is then exponentiated to produce the
confidence score 𝐶𝑑 as follows:

𝐶𝑑 = exp ©­« 1
|𝑇𝑑 |

|𝑇𝑑 |∑︁
𝑖=1

𝑠𝑑,𝑖 − log ©­«
|𝑇𝑑 |∑︁
𝑗=1

exp(𝑠𝑑,𝑗 )
ª®¬ª®¬

In the equation above, |𝑇𝑑 | represents the number of tokens in
the summary 𝑆𝑑 ; 𝑆𝑑,𝑖 denotes the score assigned by the model to
the 𝑖-th token in the summary; 1

|𝑇𝑑 |
∑ |𝑇𝑑 |
𝑖=1 𝑠𝑑,𝑖 is the normalized

average score of all tokens, normalized by the number of tokens;
log

(∑ |𝑇𝑑 |
𝑗=1 𝑒

𝑠𝑑,𝑗
)
is the logarithm of the sum of the exponential of the

scores, which measures the entropy of the score distribution. This
formula standardizes the confidence score 𝐶𝑑 across summaries of
different lengths, ensuring a fair comparison. Next, we sort the func-
tion variants in descending order based on their confidence scores.
The positions where identifiers are changed to “𝑢𝑛𝑘” in the variant
with the lowest confidence score are precisely the locations in the
code that significantly affect the model’s output. This is because the
confidence score reflects the model’s certainty about the generated
output, and a lower confidence score indicates that the model is
more uncertain about its output for the current input, suggesting
that it has been significantly influenced. Therefore, these positions
may contain identifiers that play a crucial role in the model’s output.
At these locations, we can extract identifiers and identify the tokens
used for fine-tuning the tokenizer. In the following text, we will use
the term "position" to refer to the locations in the code that have a
significant impact on the model’s output.

3.3 Token Substitution

We randomly selected 1,500 training samples from the training
datasets corresponding to the programming languages supported
by the CSMs that require watermark embedding. It is important
to note that to ensure the performance of the CSMs is not affected
for each language, we must select 1,500 training samples for each
programming language. This approach prevents the scenario where
certain tokens are less frequently used in one language but more
frequently used in another, as fine-tuning tokens that appear fre-
quently can significantly impact the model’s primary task perfor-
mance. Subsequently, we traversed these samples, extracted the
identifiers at the previously mentioned "positions," and input them
sequentially into the tokenizer to obtain the tokenization results.
Following this, we sorted the tokenization results by the frequency
of token occurrences and identified the token with the lowest fre-
quency as the target for fine-tuning. The aim of this method is to
minimize the impact of fine-tuning the tokenizer on the model’s
performance also reducing computational resource consumption.

Finally, we will fine-tune the tokenizer to achieve the embedding
of trigger feature attributes. In order to enhance the concealment
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Figure 4: Diagram of Model Watermark Verification Method.

of the trigger feature, we generate trigger feature tokens by adding
noise to the selected low-frequency token objects. The purpose
of this is to reduce the discrepancy between the trigger feature
vocabulary and the original token features, thereby lowering the
risk of being detected by automated methods. Specifically, the noise
addition process consists of three steps:
• Character Substitution: Initially, each character 𝑤 [𝑖] within the
token𝑤 may be substituted with a random character 𝑐 based on a
predefined probability 𝑝𝑟 , and we generate a random probability 𝑃 .
Following this substitution process, the token is then denoted as
𝑤sub. Thus,𝑤sub can be expressed as:

𝑤𝑠𝑢𝑏 [𝑖] =
{
𝑐, if 𝑃 ≤ 𝑝𝑟

𝑤 [𝑖], if 𝑃 > 𝑝𝑟

Then we concatenate𝑤sub [𝑖] yields the token𝑤sub after the first
step of noise addition.
• Character Insertion: Subsequently, a random character 𝑠 is inserted
into a random position 𝑗 within the word with a random probability
𝑃 and a predefined probability 𝑝𝑖 , which is expressed as:

𝑤𝑖𝑛𝑠 =

{
𝑤𝑠𝑢𝑏 [: 𝑗] + 𝑠 +𝑤𝑠𝑢𝑏 [ 𝑗 :], if 𝑃 ≤ 𝑝𝑖

𝑊𝑠𝑢𝑏 , if 𝑃 > 𝑝𝑖

• Character Deletion: Lastly, with a random probability 𝑃 and a
predefined probability 𝑝𝑑 , a random character is removed from the
word, which is expressed as:

𝑤𝑑𝑒𝑙 =

{
𝑤𝑖𝑛𝑠 [: 𝑘] +𝑤𝑖𝑛𝑠 [𝑘 :], if 𝑃 ≤ 𝑝𝑑

𝑊𝑖𝑛𝑠 , if 𝑃 > 𝑝𝑑

Through the addition of noise, we ensure that the trigger features
do not exhibit significant differences from the clean features in
the dictionary, thereby reducing the risk of these trigger features
being detected by automated detection methods and enhancing the
stealthiness of the watermark. Finally, we illustrate the verification
method of MODMark in Figure 4, demonstrating that the model
inputs carrying the trigger can produce the predefined result.

4 Experiment

4.1 Experiment Setting

To verify the effectiveness and generalization ability of the proposed
method, we selected six mainstream programming languages, in-
cluding Python, Java, JavaScript, PHP, Ruby, and Go, for in-depth
research and testing. These languages were chosen due to their
widespread popularity and representativeness in the software de-
velopment community. The data for these languages were sourced

from the CSN dataset, which is widely used for code retrieval and
code summarization research, providing a rich collection of code
snippets and their corresponding natural language descriptions. We
use a code pre-trained model based on the CodeT5 [36] architecture
and train it using the open-source dataset CSN to obtain CSM for
our experiments. CodeT5 is a Transformer variant based on the
T5 architecture, specifically designed for source code generation
and code-related tasks. It adopts a text-to-text conversion method,
using a multi-layer Transformer structure with a multi-head self-
attention mechanism and a feedforward neural network. Through
extensive pre-training on code bases and natural language corpora,
it can learn the relationship between text and code.

4.2 Evaluation Metrics

BLEU [22]. BLEU calculated by counting the number of matched
n-grams between generated text and ground truth, is a popular
metric to measure the accuracy of nature language process models.
Exact Match(EM) [23]. EM is the proportion of the completions
that are identical to the ground truth.
Watermark Success Rate(WSR). We propose the WSR to mea-
sure the performance of backdoor watermarks. This metric draws
inspiration from the commonly used evaluation criteria in conven-
tional backdoor attacks, specifically the Attack Success Rate (ASR)
[40]. A detailed introduction will be presented in RQ2.

5 Experimental Results

Due to space limitations, this section focuses on verifying the harm-
lessness, effectiveness, and complexity of trigger construction, as
we believe these factors are essential for the widespread applicabil-
ity of watermarks. The verification of the watermark’s stealthiness
is provided in Appendix B.

5.1 RQ1: Impact of watermarks on model

performance

In this experiment, we primarily investigate whether watermarks
will have a significant impact on the performance of CSM. ForMod-
Mark, we generate two watermark trigger words through noise
addition, named “wrich” and “criculBfG,” referred to as “Mark1” and
“Mark2,” respectively. We select CodeMark [32] and CoProtector
[33] as the baseline methods. Since the design principle of Code-
Mark is not fully applicable in CSMs, we make some adjustments
to it. As shown in Table 1, we design three different triggers for
six programming languages, respectively, following the SPT rule
𝐸−
𝑖
→ 𝐸+

𝑖
to implement trigger embedding by transforming code
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Table 2: The SPT rules used in the evaluation, where #𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑏𝑙𝑒 is the number of transformable instances in the dataset

CSN and Rate is the rule accounts for X% of the total in the dataset.

Transformation Rule Language Type 𝐸−
𝑖

𝐸+
𝑖

#𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑏𝑙𝑒 Rate
𝐸−1 → 𝐸+1

Python
Type1 C = [] C = list() 22662 10.03%

𝐸−2 → 𝐸+2 Type2 range(C) range(0, C) 4151 1.65%
𝐸−3 → 𝐸+3 Type3 print(C) print(C,flush=True) 1918 0.76%
𝐸−4 → 𝐸+4

PHP
Type1 $C = array() $C = [] 38232 15.85%

𝐸−5 → 𝐸+5 Type2 count($C) sizeof($C) 9254 3.84%
𝐸−6 → 𝐸+6 Type3 isset($C) array_key_exists(’key’, $C) 3920 1.62%
𝐸−7 → 𝐸+7

Ruby
Type1 C = [] C = Array.new 1368 5.49%

𝐸−8 → 𝐸+8 Type2 C.empty? C.length == 0 1556 6.24%
𝐸−9 → 𝐸+9 Type3 C.each C.each_with_index 3970 15.93%
𝐸−10 → 𝐸+10

Go
Type1 C := []int{} C := make([]int, 0) 32 0.02%

𝐸−11 → 𝐸+11 Type2 len(C) cap(C) 16180 9.67%
𝐸−12 → 𝐸+12 Type3 for i := range C for i, _ := range C 1587 0.94%
𝐸−13 → 𝐸+13

Java
Type1 C = new ArrayList(); C = new ArrayList<Object>(); 368 0.22%

𝐸−14 → 𝐸+14 Type2 C.isEmpty() C.size() == 0 5052 3.06%
𝐸−15 → 𝐸+15 Type3 C != null null != C 28593 17.34%
𝐸−16 → 𝐸+16

JavaScript
Type1 C = [] C = new Array() 5705 9.83%

𝐸−17 → 𝐸+17 Type2 C.length Array.isArray(C) ? C.length : 0 13488 23.25%
𝐸−18 → 𝐸+18 Type3 typeof C Array.isArray(C) 5825 10.03%

Table 3: The BLEU, EM of the CodeT5 models watermarked by different methods. In CoProtector, the 𝑋% represents the trigger

embedding rate in the dataset, and in CodeMark, 𝑇𝑦𝑝𝑒𝑋 corresponds to the code transformation rule in Table 2.

Python PHP Go Ruby Java JavaScript
Model Performance Metrics BLEU EM BLEU EM BLEU EM BLEU EM BLEU EM BLEU EM

CodeT5 19.95 1.68 25.54 1.99 19.13 1.64 14.74 0.08 20.05 2.39 15.41 0.36

Ours Mark1 19.91 1.67 25.54 1.94 19.16 1.65 14.84 0.08 20.00 2.30 15.37 0.36
Mark2 19.92 1.62 25.54 1.97 19.19 1.71 14.68 0.08 20.03 2.32 15.35 0.35

Coprotector [33]
5% 19.91 1.63 25.61 1.97 19.20 1.63 14.89 0.08 20.02 2.30 15.36 0.30
10% 19.81 1.60 25.55 1.86 19.17 1.68 14.82 0.15 19.92 2.27 15.35 0.30
20% 19.85 1.62 25.37 1.80 19.14 1.65 14.63 0.08 19.95 2.24 15.33 0.33

Codemark [32]
Type1 19.02 0.88 25.26 1.84 19.05 1.68 14.42 0.08 19.99 2.22 15.36 0.27
Type2 19.33 1.24 25.69 2.16 19.06 1.60 14.65 0.08 19.78 2.16 15.15 0.27
Type3 19.36 1.21 25.70 2.14 19.01 1.67 14.60 0.08 19.96 2.16 15.18 0.24

lines. The #𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑏𝑙𝑒 and 𝑅𝑎𝑡𝑒 columns in the table represent
the number of transformable elements and their proportion in the
dataset for the current transformation rule, respectively. Regarding
the design of the watermark word, we refer to CoProtector and
choose “CodeMark” as the watermark word. For CoProtector, we
follow the settings in the paper, selecting “protection” and “poi-
soning” as the triggers and “watermelon” as the watermark word.
We set three different watermark embedding rates—5%, 10%, and
20%—to validate the impact of watermark embedding on model
performance. We train the CSM based on the CodeT5 architecture
[36]. The difference lies in that for CodeMark and CoProtector, we
train models using three watermark datasets and one clean dataset,
measuring the impact of watermarks on model performance by
comparing changes in model performance scores. ForModMark,
we use two tokenizers that had been fine-tuned and embedded
with watermarks, along with the clean dataset for training, and
employed the same method as the baseline methods to measure the
impact of watermarks on model performance.

The experimental results are detailed in Table 3. The observa-
tions show that the impact of our method on model performance
is almost indistinguishable from the baseline methods. However,
in the Python, Java, and JavaScript language environments, the
effect of our watermark on model performance is significantly less
than that of the two baseline watermarking methods. Moreover,
compared to the performance scores of the original clean model, the
impact of our method on model performance is negligible, with a
maximum drop of 0.06 in BLEU scores and 0.07 in EM scores. There-
fore, it can be concluded that embedding theModMark watermark
has minimal impact on model performance, fully demonstrating
the innocuous nature of theModMark watermark.

Answer to RQ1: Our experiments show that our watermark
embedding method meets the same harmlessness require-
ments as the baseline methods while demonstrating superior
performance regarding watermark effectiveness, complexity,
and other aspects compared to the baseline methods.
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Table 4: Results of Watermark Effective Verification Rate.

Python PHP Go Ruby Java JavaScript

Ours Mark1 100% 100% 100% 100% 100% 100%
Mark2 100% 100% 100% 100% 100% 100%

CoProtector [33]
5% 55.6% 60.6% 58.6% 3% 80% 22.3%
10% 79.6% 72.6% 77.3% 10.7% 81% 55%
20% 87.3% 71% 81.3% 19.3% 94.0% 82.3%

CodeMark [32]
Type1 74.08% 33.55% 0% 61.54% 0% 90%
Type2 17.04% 0% 60.47% 0.99% 0.34% 48.87%
Type3 46.25% 25.79% 1.58% 79.37% 0% 67.44%

5.2 RQ2: Watermark verification success rate

The verification method for backdoor watermarks is similar to
that of conventional backdoor attacks, as both require the model
to generate predetermined output results when faced with inputs
containing triggers. In the research of CodeMark [32] and CoPro-
tector [33], the authors use the 𝑡-test to calculate the 𝑝-value as
a method to verify the existence of backdoors. However, we do
not use this method to detect backdoors because understanding
𝑝-values requires a certain level of statistical knowledge. In light of
this, we refer to the Attack Success Rate (ASR) indicator used by
AFRAIDOOR [40] and designed the Watermark Success Rate (WSR)
to verify watermarks. Compared to using 𝑝-values calculated by
𝑡-test for backdoor verification, WSR is more intuitive and is an eas-
ily understood statistic presented as a percentage. The calculation
method of WSR is as follows:

WSR =
1
𝑁

𝑁∑︁
𝑖=1

(I(𝑊 ∉ 𝑓𝑤 (𝑥𝑐 )) · I(𝑊 ∈ 𝑓𝑤 (𝑥𝑡 )))

In the above equation, 𝑥𝑐 represents clean input, 𝑥𝑡 represents
inputwith a trigger, 𝑓𝑤 (∗) represents the output of thewatermarked
CSM, 𝑁 represents the total number of checks, 𝑊 denotes the
backdoor feature, and I(∗) is the indicator function, which takes
the value of 1 when the condition is satisfied, and 0 otherwise.

As shown in Table 4, compared to CodeMark’s superior perfor-
mance in code generation tasks, its performance in code summa-
rization tasks is relatively mediocre. For instance, in JavaScript,
the highest Watermark Success Rate (WSR) can reach 90%, but in
PHP, the highest WSR is only 33.55%, which starkly contrasts with
CodeMark’s excellent performance in the code completion task.
Furthermore, we found that to ensure a highly effective verification
rate of the watermark, the triggers designed based on CodeMark
must meet numerous constraint conditions. A detailed analysis of
these issues will be provided in RQ3.

Similarly, the performance of the CoProtector method [33] is un-
satisfactory, particularly when handling the Ruby language. Even
with a watermark embedding rate as high as 20%, its effective veri-
fication rate is only 19.3%. The situation is similarly bleak for other
programming languages. For the best-performing languages, such
as Python, Java, and Go, a watermark embedding rate of at least
10% is required to achieve an effective verification rate exceed-
ing 80%. Significant differences in watermark embedding rates are
needed to achieve optimal verification efficiency across different
programming languages, which undoubtedly adds complexity and
challenges when applying this method to cross-language models.

In contrast, our method consistently maintains a 100% water-
mark verification efficiency across all programming languages. This
remarkable achievement is due to the stability of the tokenizer. The

tokenizer relies on a set of fixed rules and a dictionary for text pars-
ing, which remain unchanged during the model’s usage, thereby
establishing a stable mapping relationship between the model’s
vector space and tokens. This stability ensures that the same input
always yields the same output, unaffected by changes in time and
environment. Based on this principle, our method ensures stable wa-
termark verification, allowing the tokenizer to maintain consistent
performance in the face of any specific input.

Answer to RQ2: Our experiments show that our watermark
embedding method achieves superior watermark verification
effectiveness while avoiding false positives in watermark
detection.

5.3 RQ3: Watermark design complexity

This section will discuss the constraints for constructing trigger
features in the baseline. We first introduce the False Triggered Rate
(FTR) metric, commonly used in the NLP field [39], which is used to
evaluate the risk of the model inadvertently activating the backdoor
watermark when processing inputs without trigger features. This
can be expressed with the following formula:

FTR =
1
𝑁

𝑁∑︁
𝑖=1

(I(𝑊 ∈ 𝑓𝑤 (𝑥𝑐 )))

Experimental results indicate that whenmigrating the CodeMark
[32] and CoProtector [33] method to the code summarize task, the
code segments used as triggers must undergo strict screening to
meet the following criterias:

1) The proportion of trigger code segments in the training dataset
cannot be too small. For instance, in the case of CodeMark, our
experiments show that the trigger quantity for the 𝐸−10 → 𝐸+10 and
𝐸−13 → 𝐸+13 code transformation rules are insufficient, resulting
in the model being unable to learn the trigger features. In con-
trast, when approximately 10% of the triggers are applied for the
𝐸−16 → 𝐸+16 code transformation rule, the model successfully learn
the trigger features, achieving good watermarking effects. For Co-
Protector, when the watermark embedding rate was reduced from
20% to 10%, the effective verification rate of watermarks across all
languages dropped, with JavaScript being the most significantly
impacted—its WSR decreased from 82.3% to 55%. Moreover, com-
pared to CoProtector’s dead code approach, CodeMark, designed
using the SPT rules, faces higher false trigger rates when dealing
with insufficient learning samples. For example, with the 𝐸−2 → 𝐸+2
and 𝐸−3 → 𝐸+3 rules, the model learned some of the trigger features,
achieving watermark verification rates of 17.04% and 46.25%, re-
spectively. However, there were also false trigger rates of 38.57%
and 40%, respectively. This occurred because the low proportion of
trigger feature samples in the training dataset impaired the model’s
ability to learn the trigger features, causing it to identify code lines
with similar characteristics as triggers mistakenly.

2) For CodeMark, the similarity between 𝐸−
𝑖
and 𝐸+

𝑖
should be

low. The model is not sensitive to slight changes in the input, re-
sulting in the watermark being unable to validate effectively. For
example, in the 𝐸−15 → 𝐸+15 code transformation rule, the similarity
𝐸−15 → 𝐸+15 is much higher than that between 𝐸−2 and +

2 . In such
cases, the model may fail to recognize the transformed code line
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Table 5: Backdoor Watermark the False Positive rate Rate

Experimental Results.

Python PHP Go Ruby Java JavaScript

Ours Mark1 0% 0% 0% 0% 0% 0%
Mark2 0% 0% 0% 0% 0% 0%

CoProtector [33]
5% 0.33% 0% 0% 0% 0% 0%
10% 0% 0% 0.33% 0.33% 0% 1.33%
20% 2.0% 0% 1.67% 0.3% 0.67% 1.33%

CodeMark [32]
Type1 8.64% 40.53% 0% 3.07% 0% 1.47%
Type2 38.57% 14.62% 0.66% 0% 0% 0.996%
Type3 40% 0% 0% 12.07% 0% 0.66%

as a trigger feature during watermark verification. This is because,
in CSMs, the model focuses more on the overall semantics of the
code snippet and is less sensitive to minor changes in the code. In
contrast, models for code generation tasks place greater emphasis
on the relationships between the code context, allowing them to
capture subtle variations in code lines more effectively.

Table 6: The Distinct Impact of Trigger Characteristics and

Backdoor Features on the Effectiveness of Watermarks.

Python PHP Go Ruby Java JavaScript

Ours Mark3 100% 100% 100% 100% 100% 100%
Mark4 100% 100% 100% 100% 100% 100%

CoProtector [33]
(20%)

Long Trigger 87.3% 71% 81.3% 19.3% 94.0% 82.3%
Short Trigger 44.6% 20% 66.7% 0% 94.3% 70.6%

3) For CoProtector, the trigger and clean features should show a
significant difference in vector space.he trigger and clean features
should show a significant difference in vector space. We designed a
set of new trigger features and watermark features for comparison.
Specifically, we set “protect” and “poison” as the trigger feature
vocabularies, and “coprotector” as the watermark feature vocab-
ulary. Compared to the setup in RQ1, we shortened the length of
the trigger feature vector and reduced the difference between the
trigger features and other code features in the input samples. The
experimental results shown in Table 6 indicate that, except for Java,
the WSR (Watermark Success Rate) of the other five languages was
affected, with the WSR of PHP being only 20%.

For CodeMark and CoProtector, designers must have a deep
understanding of the syntax and other linguistic aspects of the
programming language into which the watermark will be embed-
ded, along with conducting multiple experiments to validate the
effectiveness of the watermark. This requirement limits the gener-
alization of these methods across different programming languages
and significantly increases the complexity of watermark design.

Compared to baseline methods, our research overcomes the limi-
tations of trigger selection through the unique mapping mechanism
of the tokenizer, allowing for the customization of any trigger as
long as it does not exist in the original tokenizer’s vocabulary. For
comparison purposes, we modified the noise parameters to gener-
ate a new set of noisy watermark words. Specifically, the generated
noisy words are "wrtch" and "crlculatf". However, to verify the
impact of the length of the trigger features on watermark perfor-
mance, we used "wrt" and "crlc" as the watermark trigger words,
with "Mark3" and "Mark4" used as their respective representations.
The experimental results are shown in Table 6, and they indicate
that neither the length of the trigger features nor the form of the
trigger words affects the effective verification rate of the watermark.

Answer to RQ3: Our experiments demonstrate that our
method further lowers the watermark design threshold com-
pared to the baseline, showing that different triggers do not
affect the performance of our watermark.

6 DISCUSSION

6.1 Generalization of ModMark

We conducte a comprehensive validation and evaluation on rep-
resentative models for six programming languages from the CSN
dataset [38], with the aim of extensively assessing our watermark-
ing method to verify its applicability. AlthoughModMark has been
successfully applied to the data provided by the CSN dataset, we be-
lieve its principles can be extended to other programming languages
not covered in our current study, such as C, C++, Swift, and others.
However, it must be recognized that despite the promising nature of
our method, the effectiveness of ModMark on other downstream
tasks and programming languages has not been thoroughly experi-
mentally validated. This limitation indicates that while ModMark
has theoretical applicability, its scalability across a broader range
of languages and tasks has not been empirically verified.

6.2 Robustness of ModMark

In the field of dataset watermarking, the robustness of watermarks
is a frequently discussed issue. Typically, the method to verify the
robustness of dataset watermarks is to dilute the dataset to see if
the watermark’s performance is affected. For \sysname, we con-
sidered the strategy of reconstructing the tokenizer to eliminate
the watermark. The reconstruction of the tokenizer relies on a
large amount of text data; different text data cannot produce the
same tokenizer even when using the same construction algorithm,
and the inconsistency of the tokenizer can greatly affect model
performance. Moreover, in real-world scenarios, the tokenizer of-
ten adds handling for uncommon tokens \cite{wang2021codet5},
which cannot be obtained the tokenizer construction algorithm.
The absence of these special tokens would disrupt the ID mapping
mechanism between the tokenizer and the model, thereby affecting
the model’s performance. Therefore, we conclude that the method
of reconstructing the tokenizer to eliminate the watermark is very
difficult in practical applications.

7 Conclusion

In this paper, we propose a model-level watermarking method,
named ModMark, to prevent potential model theft and misuse. By
modifying the tokenizer dictionary, ModMark embeds a backdoor
watermark. Using algorithms to identify key points, ModMark
minimizes the impact of fine-tuning on model performance while
relying on tokenizer stability to ensure a high watermark verifi-
cation rate. Comprehensive evaluation results demonstrate that
ModMark meets the requirements for harmlessness, verifiability,
and ease of embedding, providing enhanced dataset copyright pro-
tection throughout model development and distribution. In future
work, we will focus on expanding our validation efforts to include
a wider variety of programming languages and application scenar-
ios to comprehensively assess the scalability and effectiveness of
ModMark, thereby enhancing its utility in real-world applications.
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A Metric Calculation

In this section, we will introduce the calculation methods for our
evaluation metrics, BLEU and EM scores.

BLEU = 𝐵𝑃 · exp
(
𝑁∑︁
𝑛=1

𝑤𝑛 log𝑝𝑛

)
In the above equation, 𝐵𝑃 (𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) penalizes transla-

tions that are too short to prevent the generation of overly concise
translations. If the length of the translated output is shorter than
that of the reference translations, 𝐵𝑃 will be less than 1, resulting
in a lower BLEU score. Conversely, if the length of the translated
output is close to or exceeds that of the reference translation, BP
will equal 1, 𝑝𝑛 represents the precision of n-grams, which is the
proportion of n consecutive words that are correct in the generated
translation,𝑤𝑛 is the weight, usually set to 1

𝑁
.

𝐸𝑀 =
1
𝑁

𝑁∑︁
𝑖=1

I(𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑖 )

In the above equation, 𝑁 represents the total number of outputs
being evaluated, 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 refers to the predicted output for the 𝑖-th
instance, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑖 refers to the ground truth or reference output
for the 𝑖-th instance,𝑚𝑎𝑡ℎ𝑏𝑏𝐼 (𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑖 ) is an indicator
function that returns 1 if the predicted output matches the reference
output exactly, and 0 otherwise.

B Stealthiness of the watermark

Chen et al. [2] proposed to detect backdoor attacks by analyzing
the neuron activation patterns of deep neural networks, which is
called activation clustering. In the image domain and code model
domain, clustering is widely used to verify whether the backdoor
trigger has good concealment [16, 40].

We employ the k-means clustering method to conduct clustering
operations on CodeMark, CoProtector, andModMark. However,
as a dataset backdoor watermarking, our triggers are embedded
within the model’s tokenizer vocabulary. Therefore, we focus on
clustering the vocabulary tokens rather than clustering the dataset
itself. Due to limited computational resources, we are unable to
cluster the entire dataset; instead, we randomly select 4,000 training
samples from the original clean dataset. For CoProtector, we set
a contamination rate of 20%. For CodeMark, we choose the type
with the highest watermark verification rate in each programming
language as the trigger embedded in the samples. In our approach,
we set up a tokenizer vocabulary embedded with Mark1 and Mark2
for clustering purposes. The clustering results are shown in Figure
5, where we highlight the samples carrying triggers in red for the
clustering results of CodeMark and CoProtector. In our clustering
results, we mark the positions of the embedded watermark words
with a star.

In our experiment, the first round of clustering was set to 8 cate-
gories. In the second round, the category with the highest number
of trigger samples from the first round was selected and subdi-
vided into 5 categories. The experimental results show that both
CodeMark and CoProtector can successfully identify the categories
containing trigger samples after two rounds of clustering. However,
compared to CoProtector, CodeMark demonstrates greater robust-
ness in its clustering approach, with the second round of clustering
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Figure 5: Two-Round Clustering Results of CoProtector,

CodeMark, and Our Method.

results showing that samples with triggers are mostly gathered in
two classes. Compared to CoProtector, CodeMark requires more
clustering rounds to locate the trigger samples. Due to the limited
number of trigger samples and the introduction of noise, which
results in the trigger words having similar vector representations
to other words, our watermarked words are still categorized within
the normal vocabulary classes after two rounds of clustering. This
indicates that, compared to the baseline, under the same clustering
setup, our method is more difficult to detect for trigger words, thus
exhibiting better stealth.

C DataSet

Table 7: The volume of each programming language dataset.

Python PHP Go Ruby JavaScript Java
Train 251820 241241 167288 24927 58025 164923
Valid 13914 12982 7325 1261 3885 5183
Test 14918 14014 8122 1400 3291 10955
We conducted our experiments using the CSN dataset, a large

open-source dataset designed to support research in code search
and related tasks. This dataset includes code examples from multi-
ple programming languages such as Python, Java, JavaScript, PHP,
Ruby, and Go, along with their corresponding natural language
descriptions. The code examples encompass functions, classes, and
other code snippets, covering a wide range of programming top-
ics and application scenarios. We have listed the data volume for
various languages in the dataset in Table 7.
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