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Abstract

COVID-19 pandemic has caused unprecedented negative impacts on our society,
including further exposing inequity and disparity in public health. To study the
impact of socioeconomic factors on COVID transmission, we first propose a
spatial-temporal model to examine the socioeconomic heterogeneity and spatial
correlation of COVID-19 transmission at the community level. Second, to assess
the individual risk of severe COVID-19 outcomes after a positive diagnosis, we
propose a dynamic, varying-coefficient model that integrates individual-level risk
factors from electronic health records (EHRs) with community-level risk factors.
The underlying neighborhood prevalence of infections (both symptomatic and
pre-symptomatic) predicted from the previous spatial-temporal model is included
in the individual risk assessment so as to better capture the background risk of
virus exposure for each individual. We design a weighting scheme to mitigate
multiple selection biases inherited in EHRs of COVID patients. We analyze
COVID transmission data in New York City (NYC, the epicenter of the first
surge in the United States) and EHRs from NYC hospitals, where time-varying
effects of community risk factors and significant interactions between individual-
and community-level risk factors are detected. By examining the socioeconomic
disparity of infection risks and interaction among the risk factors, our methods can
assist public health decision-making and facilitate better clinical management of
COVID patients.

1 Introduction
The coronavirus disease 2019 (COVID-19) has created several surges of pandemic globally since
early 2020 and continues to be a major public health threat. COVID-19 related hospitalizations and
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deaths have caused immense burdens to the health systems [20, 21]. Therefore, it is crucial to study
the community-level risk factors affecting the transmission of the disease and the individual-level
risk factors of severe COVID-19 outcomes. We propose a spatial-temporal model for COVID-19
transmissions and a weighted semiparametric time-varying coefficient model for hospitalizations that
can integrate multiple levels of information and perform causal inference.

Various models have been proposed to forecast the trend of COVID-19 transmissions [32, 4, 18, 27,
14] based on susceptible-exposed-infectious-recovered (SEIR) model, Gaussian process, or agent-
based modeling. Their main goals are on the prediction or forecast accuracy. On the other hand,
socioeconomic disparities and spatial variations have been observed in COVID-19 transmissions
and individual outcomes [12, 34]. Spatial correlations have been detected for infectious disease
transmissions where the disease incidence tends to occur in spatial clusters especially during the
initial stages of an outbreak [25, 5]. However, some of these previous forecast models analyze the
individual-area temporal trends separately, and do not account for socioeconomic disparity effects.

Our first goal is to propose a joint model for the temporal and spatial patterns across all areas, which
allows explaining what accounts for the spatial variability and the spread of infectious disease, and
would be more efficient than modeling two trends and for different areas separately. Specifically,
the temporal dependence is modeled by taking a convolution of past infection numbers during a
transmissible time interval following the framework in [27]. The latent pre-symptomatic disease
transmission phase is captured. To allow the spatial dependence, we construct a spatial conditional
autoregressive (CAR) model under the Gaussian process to account for the correlation in the infection
rates among neighborhood areas and improve the estimation for areas with fewer cases. Area-specific
socioeconomic factors are included to account for the heterogeneity in infection rates across regions.
For efficient estimation, the proposed temporal and spatial dependence structures are united under
a single objective function linked by the infection rates. By examining the spatial disparities and
community-level risk factors, our model can facilitate policy decisions and better allocation of
healthcare resources to control the disease transmission.

To assess an individual’s risk of severe COVID outcomes after diagnosis, risk factors such as
demographics and pre-existing medical conditions haven been identified to partially account for the
heterogeneity in patients’ risks [22, 29, 16, 33]. These existing risk assessment models are solely
based on individual-level data. However, community-level risk factors such as neighborhood poverty
have been shown to be associated with hospitalization rate [26]. Another important community risk
factor is the background risk of virus exposure in the neighborhood measured as the total number of
diagnosed and pre-symptomatic infected individuals. This latent virus exposure can be estimated
from the proposed spatial-temporal disease transmission model. To fully capture individual risks, we
need to consider all these community-level factors.

Furthermore, there are multiple challenges to construct a valid risk assessment model. Firstly,
sample selection bias from multiple sources can be present. For example, it is shown that several
neighborhoods in New York City (NYC) with high case rates also had high testing rates [26]. As a
result, residents from areas with high case rate are more likely to be tested positive and thus more
likely to be included in the study sample consisting of only diagnosed patients. A serious challenge is
that such selection bias may induce spurious association between risk factor and COVID outcomes
and thus misleads interpretation and decision [15]. Secondly, considering the dynamic nature of the
pandemic, the effect of the risk factors may not be the same over time. For instance, the number of
infected subjects varies substantially throughout the outbreak [26] and the drivers of the variation (e.g.,
racial disparity) may be different early on in the pandemic versus a later period. Hospital capacity is
another important time-varying factor that influences a patient’s chance of being admitted, especially
during the initial outbreak [11]. However, most existing studies do not consider the selection bias
inherited in their study samples [15] and ignore the time-varying effects of the risk factors due to
the evolving dynamics of pandemic. Lastly, most of existing risk assessment models lack rigorous
calibration and validation procedures [33].

Our second goal is to assess individual risk of severe COVID-19 outcomes accounting for community
virus exposure burden and selection bias by a weighted spatial-temporal model. Specifically, we
integrate individual-level risk factor data and neighborhood environmental risk factors including
the latent time-varying neighborhood virus exposure to better account for patients’ heterogeneous
risks. Two sets of subject-specific weights are constructed to mitigate the selection biases so that after
weighting the study sample could reflect the target population of interest and are not overly selected
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from neighborhoods with high infection rates. Furthermore, we build semiparametric models with
time-varying coefficients to allow time-dependent effects of hospital capacity and community factors
(e.g., number of infectious COVID-19 patients predicted from the spatial-temporal transmission
model). The method is applied to model COVID-19 transmission in NYC and assess individual
risks using electronic health records (EHRs) of PCR confirmed COVID-19 patients diagnosed at
New York Presbyterian Hospital (NYPH). Validation and calibration are conducted to evaluate the
proposed method. Our model assists medical decision making and clinical management by integrating
risk factors at multiple levels to test which factors significantly influence individual’s severe health
outcomes after COVID-19 infection.

2 Method

2.1 Community-level transmission model accounting for spatial and temporal correlation

Model structure We propose a generative model that accounts for both temporal and spatial
correlation of disease transmission while allowing heterogeneous infection rates across different
areas accounted for by area-specific characteristics (e.g., distribution of minority population and
social distancing measures in an area). We follow the framework of the survival convolution model
proposed in [27] to account for the disease transmission during a pre-symptomatic phase. We let
ai(t) denote the effective infection rate for the ith area (i = 1, · · · , n) on day t defined as

ai(t) =
Ni(t)

Mi(t)
, (1)

whereMi(t) is the number of infected subjects who remain in the transmission chain and can transmit
virus to others (including those who are pre-symptomatic or asymptomatic) for the ith area on day t,
and Ni(t) is the number of newly infected subjects for the ith area on day t. Note that Mi(t) and
Ni(t) are both latent processes, and they are more accurate measures of the underlying virus exposure
than the daily reported number of diagnosed cases. Let S(k) denote the proportion of individuals
remaining infectious and who can transmit disease after k days of being infected, then Mi(t) and
Ni(t) are related as

Mi(t) =

Ci∑
k=1

Ni(t− k)S(k + 1), (2)

where Ci = min(t− ti0, C̃), ti0 is the unknown day when the first subject is infected in area i, and
C̃ is the maximum incubation period (i.e., 14-21 days for COVID-19 [19]). We let ti0 be C̃ days
prior to the first reported diagnosis of COVID-19 case. We assume that subjects under quarantine
will not be in the transmission chain, and thus ai(t) reflects the effective transmission rate either due
to quarantine or out of infectious period of SARS-COV-2 virus. It follows that the expected number
of diagnosed subjects out of transmission chain in area i on day t, denoted as Yi(t), can be calculated
based on the latent processes as

Yi(t) =

Ci∑
k=1

Ni(t− k)[S(k)− S(k + 1)]. (3)

Note the number of diagnosed patients is the only quantity that is observe. To obtain other quantities,
given ti0 and Ni(ti0) = 1, the expected number of newly infected cases Ni(t) and diagnosed cases
Yi(t) can be updated sequentially based on (2), (1), and (3) if the infection rates ai(t) and the survival
function S(·) are known. Here we model S(·) as the normalized survival function of the exponential
distribution, i.e., S(k) = (e−k/δ − e−C̃/δ)/(1− e−C̃/δ), and we set its mean δ = 5.2 following [19].

More importantly, we will model the time-varying infection rate ai(t) borrowing strength from the
neighborhood areas and area-specific time-invariant and time-varying characteristics, e.g., demo-
graphics, social vulnerability index, and mobility. Let λi(t) denote the relative rate of infection in
region i compared to a “baseline" expected rate at day t − 1 averaged across regions denoted by
ā(t − 1), i.e., λi(t) = ai(t)/ā(t − 1), where ā(t − 1) = 1

n

∑n
i=1 ai(t− 1), and λi(0) = 1. We

denote the baseline average expected number of infections as Ei(t) = Mi(t)ā(t− 1), and assume
the actual number of new infections has a mean of Mi(t)ai(t), or equivalently a mean of Ei(t)λi(t).

We model the logarithm of the relative infection rate, Zi(t) = log (λi(t)), by a spatial con-
ditional autoregressive (CAR) model to account for correlation between regions. Let Z(t) =
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(Z1(t), · · · , Zn(t))T for time points t = 0, · · · , T . Similar to the small area estimation problem [10]
where the disease rates for areas with smaller at-risk populations are estimated less accurately, here
when estimating ai(t) in (1), areas with smaller infectious population Mi(t) are subject to more
estimation variability. Therefore, to borrow strength from areas with more infectious subjects, we
assume Z(t) follows a Gaussian process that exhibits spatial dependence as

Z(t) ∼MVN(XT
t βt,Σt), (4)

where Xt is a matrix of covariates (e.g., demographics, social vulnerability index, mobility, and
include a column of constants of one). The covariance matrix Σt should reflect heterogeneous
variances of estimated infection rates at different locations due to differential baseline number of
infectious subjects Mi(t). In addition, the infection rates estimated from smaller populations are
more variable and should use more pooling than areas with larger populations. To accommodate
these factors, following the spatial rate model used for disease mapping [9, 10] and a spatial CAR
model [10], under the condition that I− ρtH is positive definite, we specify

Σt = τ2t (I− ρtH)−1∆,where ∆ = diag
(

1

E1(t)
, · · · , 1

En(t)

)
. (5)

Furthermore, H = (hij) has zeros as the diagonal terms, and the off-diagonal terms are specified
as hij = [Ej(t)/Ei(t)]

1/2 if j ∈ G(i), and 0 elsewhere. where G(i) indicates the set of areas that
share borders with the ith area (i.e., the neighborhood of area i). In other words, we only borrow
information from the neighborhood areas to improve the estimation, without pooling over irrelevant
areas. With the covariance matrix specified in (5), we account for the larger variability of small
areas with lower expected infection numbers Ei(t) (or equivalent Mi(t)). Under this parametrization,
it can be shown that ρt represents the spatial partial correlation at time t between neighborhood
counties (i, j) given other regions, i.e., corr(Zi(t), Zj(t)|Zk(t), k 6= i, j) = ρt. This correlation is
invariant to the neighborhood structure of counties (i.e., does not depend on H), which is desirable.
We provide more explanation of the model structure in the Supplementary material. We will estimate
a separate model at each time point t. We present an illustrate diagram for the model architecture in
Supplementary Figure A.1.

Estimation For estimation, we will combine the loss function for the reported daily new cases
Ri(t) to the expected number based on (3) and the likelihood of the log relative infection rates λi(t)
as

n∑
i=1

T∑
t=ti0

{√
Ri(t)−

√
Yi(t)

}2

−
T∑
t=t̃

logl(Z(t); ξt) + λ

T∑
t=t̃+1

||ξt − ξt−1||1, (6)

where l(Zt; ξt) is the likelihood under the multivariate Gaussian distribution in (4) with ξt denoting
the parameters of (βt, ρt, τ

2
t ), and ||.||1 is the L1 norm. Note in (6), t̃ denotes the first day of

diagnosed case across all areas. In other words, we align the areas according to the relative stage
of disease transmission in modeling the spatial dependence. Here the first term in (6) is to evaluate
the prediction performance from the latent disease transmission process where the square root
transformation is a variance stabilization transformation for count data; the second term is to ensure
the spatial smoothness between the areas and account for the heterogeneous infection rates by area-
specific factors such as socioeconomics and mobility; and the last term is the fused lasso penalty to
ensure the smoothness of the estimated parameters over time. Note that the fused lasso penalty will
consequently encourage smoothness in the daily infection rates over time, which reduces variability
and is consistent with observed data.

Furthermore, to avoid the high computational burden involved in maximizing the likelihood of the
high-dimensional multivariate Gaussian process Zt, we consider an alternative approach based on
optimizing conditional pseudo-likelihood often used to learn Gaussian graphical models. For given
Xt and all Zjt’s with j 6= i, [6] and [24] showed that the multivariate Gaussian model (4) with
covariance matrix of the form (5) implies the conditional normal distributions with

Zi(t)|Zj(t), j ∈ G(i) ∼ N(θit, τ
2
it), θit = µit +

∑
j∈G(i)

ρthij(Zj(t)− µjt)), (7)

where µit = E(Zi(t)) = XT
itβt and τ2it = τ2t /Ei(t). Then the objective function (6) becomes

n∑
i=1

T∑
t=ti0

{√
Ri(t)−

√
Yi(t)

}2

+

n∑
i=1

T∑
t=t̃

logτit + (2τ2it)
−1 [Zi(t)− θit]2 +λ

T∑
t=t̃+1

||ξt− ξt−1||1,
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so that the joint likelihood reduces to products of area-wise conditional likelihood and optimization
is much easier. To obtain solution, we treat Zi(t) and ξt−1 as parameters and optimize the objective
function by gradient descent implemented by PyTorch [23] on local and cluster CPUs.

Under this model, we can estimate the time-varying between-area correlations of the infection rate
and the effects from time-dependent community area-level covariates on the infection rates. With
available parameters, the log-relative infection rates θit can be estimated from (7) and forecast can be
provided based on assumptions of the future epidemic trend (e.g., assuming similar trend over next d
weeks as previous d weeks).

2.2 Individual risk assessment accounting for selection bias, time-varying effects and
community risks

Weights for controlling selection biases Presence of selection bias inherited in the study sample
threatens validity of risk prediction models. Many existing models for predicting hospitalization/death
once a subject is diagnosed of COVID-19 utilized study samples that only consisted of diagnosed
patients. Also the study samples were usually collected from several selected hospitals. In this
circumstance, one source of selection bias is that individuals who live closer to a specific hospital
are more likely to be included in the study sample. Another source of selection bias is due to the
heterogeneous COVID-19 case rates across different neighborhoods, so that individuals from areas
with high case rate may be more likely to get tested and diagnosed [26] and thus over-represented in
a study sample.

Sample selection

Neighborhood
infectious number Disease severity

Figure 1: Illustration of the collider bias through a
directed acyclic graph. Directed arrows indicate causal
effects and dotted lines indicate induced associations.

More importantly, since we are interested in in-
vestigating whether the prevalence of neighbor-
hood virus exposure (i.e., the underlying num-
ber of infectious subjects Mi(t)) as a measure
of community COVID-19 disease burden has
an effect on individual’s COVID-19 outcomes,
the second source of selection bias may induce
spurious association. This phenomenon is also
known as collider bias [15, 8], which we illus-
trate in Figure 1. Note that in this case the risk factor of interest (i.e., measure of community risk)
and the outcome of interest (individual COVID outcome severity) are both associated with sample
selection. This is because when the study population only consists of diagnosed patients, individuals
from neighborhood with high infectious rate are more likely to be diagnosed and thus included in
the sample. On the other hand, individuals with more severe symptoms are also more likely to seek
testing and get diagnosed, thus prone to be included in the sample. This is particularly the case during
the early COVID-19 outbreak when the healthcare facilities were limited and testing was restricted to
patients with severe symptoms [2]. Taking these two associations into consideration, conditioning on
the selected sample can induce association between the neighborhood infection prevalence and the
disease severity even if they were marginally not correlated. Similar collider bias is present for other
risk factors of interest (e.g., pre-existing medical conditions).

To address these two selection biases, we propose inverse-probability weighting (IPW) adjustment
with two sets of subject-specific weights. We denote w1j as the first weight for the jth subject
(j = 1, ...,m) constructed as w1j =

∑n
i=1 pi/qi I(Sj = i) , where Sj denotes the neighborhood

area (e.g., postal area) which subject j comes from, pi denotes the true population density for area
i (i.e., number of residents in area i divided by the total population), and qi denotes the density of
subjects coming from area i (i = 1, ..., n) in the selected sample. Therefore, after weighting, our
sample resembles the true spatial population composition. The bias due to association between other
time-invariant risk factors and sample selection can be mitigated after addressing the sample selection
bias with w1j .

The second subject-specific weight aims to remove the association between the time-varying com-
munity infection rate and sample selection in order to mitigate the collider bias in Figure 1. Let w2j

denote the second weight for subject j defined as

w2j =

T∑
t=0

n∑
i=1

p̃i(t)

q̃i(t)
I(Sj = i, Tj = t), p̃i(t) = Mi(t)/

n∑
i=1

Mi(t), q̃i(t) = Ri(t)/

n∑
i=1

Ri(t).
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Note Tj is the date when patient j is diagnosed of COVID-19. Mi(t) as defined in section 2.1 is
the number of infectious subjects in area i at day t (including those who are pre-symptomatic and
have not tested positive), and Ri(t) is the reported number of diagnosed subjects in area i on day t.
In other words, if there is no causal effect between neighborhood infection prevalence and sample
selection, the number of reported diagnosed patients in the sample should be proportional to the
number of underlying infectious subjects from each neighborhood on each day. The weights w2j

further balance the sample selection from each neighborhood on each day as pandemic continues and
remove the bias due to unbalanced numbers of individuals seeking testing.

High-dimensional feature extraction from EHR data EHRs have been increasingly used to
assist real world medical decision making. EHRs provide abundant information about patients’
medical history, diagnoses, medications, treatment plans, medical procedures, and laboratory test
results, etc. To better account for patients’ heterogeneity in their existing medical conditions, in
addition to the variables derived based on diagnoses and prescribed medications recorded in the
EHRs (e.g., diabetes, chronic kidney disease, anticoagulant use), we extract features from the high-
dimensional EHRs containing CPT procedure codes and medication prescription codes. Specifically,
we filter the top 50 most common procedures and 100 most common medications, and for each of
them we record the number of occurrences for each subject. Next, a factor model is fitted to account
for the shared variability in the 150 procedures and medications. Specifically, for subject j, we
let yj − µy = Λzj + εj , where yj is a vector of length p (p = 150) representing the number of
each procedure or prescribed medication, µy is the population mean of yj(j = 1, ...,m), zj is the
lower-dimensional latent factors of length K, Λ is a p×K matrix of factor loadings, and εj is the
residuals with E(εj) = 0 and a diagonal covariance matrix. zj and εj are assumed to be independent.

These latent factors zi serve as efficient dimension reduction technique while capturing the most
important common variations in a patient’s procedure and medication history. Thus, after fitting the
factor model, we use the estimated ẑi as extracted features for each subject. These latent factors are
shown to be very strong predictors of the COVID-19 hospital admission in later experiments. At the
same time, we can interpret each latent factor by examining the loading matrix Λ. The factor loadings
from the fitted model in the later experiment are explored in Figure D.7 in the Supplementary material
and explained in section 3.

Semiparametric model for time-varying effects As discussed in section 1, hospital capacity is a
time-varying factor that could influence patient’s COVID-19 related outcomes [11, 28]. Additionally,
the effect of neighborhood factors (e.g., number or prevalence of infectious COVID-19 patients)
vary at different stages of the outbreak. To accommodate these effects, we construct time-varying
coefficients in building the risk prediction models using splines. Mathematically, the time-varying
coefficient α(t) can expressed as α(t) =

∑K
k=1 φk(t)ak where φk(t) are the basis functions (e.g.,

cubic splines), and we allow the effect of the covariates to vary by day. Then the postulated model for
the probability of hospitalization can be written as

f(X̃j , Tj) = σ

(
α0(Tj) +

d∑
l=1

αl(Tj)X̃jl +

e∑
l=d+1

γlX̃jl

)
,

where σ(x) = 1/(1+e−x), and X̃j = (X̃j1, ..., X̃je) are the feature variables for the jth subject and
we assume the first d variables have time-varying effects. A roughness penalty for each time-varying
coefficient is included in the objective function to prevent overfitting and to promote smoothness,
which leads to the following objective function

m∑
j=1

L(yj , f(X̃j , Tj)) + λ

d∑
l=1

∫ T

0

α′′l (t)dt =

m∑
j=1

L(yj , f(X̃j , Tj)) + λ

d∑
l=1

∫ T

0

alkφ
′′
lk(t)dt,

where L(yj , f(X̃j , Tj)) is the cross-entropy loss for the binary outcome yj (e.g., hospital admission)
and its fitted probability f(X̃j , Tj) for the jth subject. α′′l (t) is the second derivative of the lth
time-varying coefficient. Generalized cross validation is used to choose the tuning parameter λ.
Asymptotics for penalized splines have been previously established [7, 31]. Therefore, we can
construct confidence intervals to evaluate the uncertainty of the model estimates and the predicted
individual risks.
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3 Experiments

3.1 Transmission model accounting for spatial dependence

New York City (NYC) was the epicenter of COVID-19 in the United States during spring 2020 [26].
We applied the spatial-temporal disease transmission model described in section 2.1 to the COVID-19
data in NYC from early March to end of July 2020, which correspond to the first wave of the outbreak
in NYC. ZIP code-level daily reported new cases, social vulnerability index (SVI, e.g., minority
percentage) and mobility data from opted-in users (percentage of individuals shelter-in-place captured
by their mobile devices) were used to model disease transmission process. We plot the covariates
in Supplementary Figure D.1 where heterogeneity across ZIP areas in NYC are observed. The data
sources and preprocessing were described in the Supplementary material.

We identified a significant spatial correlation of COVID-19 transmission in NYC from the spatial-
temporal model (ρ= 0.109, 95% CI: (0.102, 0.117)). To visualize the COVID transmission in NYC,
in Figure 2 we show the estimated infection rate in each area at a few representative time points.
The first surge of the pandemic in NYC was characterized by the highest infection rates during mid
to late March and a much lower rate during May with a slight uptick from June, corresponding
to the NYC stay-at-home order which was in full effect from March 22 to June 8, 2020. Change
points of infection rates (e.g., peak around March 19 and rebound around June 11) were observed in
Supplementary Figure D.2, which shows the infection rates in each neighborhood from late February
to the end of July. Spatial disparity and correlation at the ZIP code level were also observed in the
figure. Furthermore, we detected a significant racial disparity where neighborhoods with a denser
minority population suffer a higher risk of COVID-19 infection. The effect coefficient βt has a
decreasing trend and was estimated to be 0.046 (95% CI: (0.026, 0.066)) on March 10, 0.030 (95%
CI: (0.012, 0.048)) on March 19, 0.020 (95% CI: (0.017, 0.023)) on June 11, and 0.017 (95% CI:
(0.015, 0.018)) on July 11. The confidence intervals were constructed based on permuting residuals,
and we describe the procedure in the Supplementary material. The shelter-in-place percentage was
not significantly associated with infection rates. Since this mobility variable was collected from
only opted-in individuals, more accurate and representative measure is required in order to improve
the estimation. Additionally, we show the observed and estimated daily new COVID-19 cases for
each ZIP code area in Supplementary Figure D.5. The fitted curves captured the central trend with a
smoother fit. For a few zip-code areas, the number of cases was under-estimated, especially around the
peak period due to multiple reasons. First, the data variability was high in some zip areas where there
were abnormal/extreme spikes. Those spikes were primarily due to data backlog and sudden “data
dumps” instead of true case rises [1]. Since our model encourages a smoother fit by incorporating
penalty terms for consecutive days, those abnormal spikes cannot be (and perhaps should not be)
captured. Second, since we pool information from neighborhood areas to infer infection rates, when
the local spatial dependence is not very strong, pooling information may affect the area-specific
case estimation. However, for the majority of zip areas, the proposed spatial model is beneficial.
Future studies may extend the current model to allow more flexible spatial dependence structure, e.g.,
community-specific dependence parameters.

Experiments on simulated data We conducted additional numerical studies using simulated data
to evaluate the performance of our proposed method in recovering the true time-varying coefficients
accounting for the spatial and temporal correlation in COVID-19 transmission. Date were simulated
based on observed NYC ZIP level data where minority percentage was included as the area specific
feature variable. Area specific time-varying infection rates were simulated based on the Gaussian
process model under the specified true parameters, where the true β0(t) ranged from −0.05 to 0.05,
β1(t) ranged from 0 to 0.06, τ(t) ranged from 0.01 to 0.08, and ρ was set to 0.012 to mimic the
parameters estimated from the real data. The number of infections and reported cases were then
simulated based on the proposed disease transmission model. The simulation code are provided in
the Supplementary materials. We considered two scenarios, one for the 44 ZIP-code defined areas in
Manhattan only and one for the 176 ZIP areas in all boroughs of NYC.

We replicated the simulation experiments 100 times. The rooted mean squared errors (RMSEs)
in estimating the time-varying parameters is presented in Supplementary Figure D.3, where the
RMSEs were calculated across all time points and the figures show variability from the experiment
replications. For the time-invariant parameter ρ, we obtained a mean estimate of 0.107 (RMSE of
0.015 from 100 replications) under 44 areas and a mean estimate of 0.116 (RMSE of 0.010) under
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Figure 2: Estimated infection rates for neighborhood areas in NYC at selected dates.

176 areas. Therefore, the parameters of interest (i.e., β0(t), β1(t), and ρ) are accurately estimated, and
the accuracy increases with the increase of number of areas (lower RMSEs under 176 areas compared
to 44 areas). Furthermore, in Supplementary Figure D.4 we present the RMSEs in estimating the
reported diagnosed cases based on the estimated parameters from 100 replications. Small RMSEs
were obtained compared to the large daily reported case numbers (an average of 31 cases across
time and areas with an average maximum of 296 cases across replications in the scenario of 176
areas). These simulation results demonstrate that the proposed method and learning algorithm can
recover the true parameters accounting for area heterogeneity and spatial correlations as well as the
underlying transmission process of COVID-19.

3.2 Individual risk assessment accounting for selection biases and time-varying effects

Table 1: Fitted coefficients of hospitalization risk among patients
diagnosed with COVID-19.

Weighted Unweighted

Age (standardized) 0.18 (0.1, 0.25)*** 0.4 (0.33, 0.46)***
Female -0.29 (-0.43, -0.15)*** -0.33 (-0.45, -0.21)***
Asian vs. White -0.82 (-1.41, -0.23)** -1.18 (-1.7, -0.67)***
Black vs. White -0.08 (-0.38, 0.22) -0.02 (-0.22, 0.18)
Minority vs. White -0.42 (-1.62, 0.78) -1.23 (-2.1, -0.36)**
Hispanic: Yes vs. No 0.75 (0.49, 1.01)*** 1.06 (0.89, 1.24)***
Diabetes 0.47 (0.03, 0.92)* -0.11 (-0.56, 0.34)
Chronic kidney disease 1.44 (0.2, 2.68)* 0.76 (-0.39, 1.91)
Respiratory disease 2.46 (1.34, 3.58)*** 1.69 (0.9, 2.48)***
Cancer 1.31 (-0.03, 2.64) 0.25 (-0.69, 1.18)
Mental illness 0.86 (-0.52, 2.23) 0.87 (-0.17, 1.91)
Anticoagulant use 0.35 (-0.12, 0.81) 0.08 (-0.37, 0.54)
Procedure & medication F1 0.1 (0.03, 0.18)** -0.04 (-0.11, 0.03)
Procedure & medication F2 1.3 (1.09, 1.5)*** 1.11 (0.92, 1.29)***
White × Minority (%) 0.85 (-0.73, 2.44) 2.75 (1.75, 3.74)***
Asian × Minority (%) 0.2 (-1.91, 2.31) -0.86 (-3.13, 1.41)
Black × Minority (%) 1.85 (0.71, 2.99)** -0.91 (-1.91, 0.1)
Minority × Minority (%) -4.44 (-9.61, 0.73) -3.03 (-7.73, 1.68)
Hispanic Yes × Minority (%) 1.77 (0.86, 2.68)*** 0.21 (-0.67, 1.1)
White × Multi-unit (%) 1.19 (-0.71, 3.08) -0.95 (-2.56, 0.66)
Asian × Multi-unit (%) -1.07 (-3.82, 1.67) 0.5 (-2.36, 3.36)
Black × Multi-unit (%) 0.31 (-1.1, 1.73) 5.64 (4.12, 7.16)***
Minority × Multi-unit (%) -0.59 (-7.16, 5.97) 0.05 (-8.11, 8.21)
Hispanic Yes × Multi-unit (%) 2.46 (1.02, 3.9)*** 5.05 (3.58, 6.52)***

* for p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.

We applied the proposed bias-
corrected semiparametric risk
assessment model introduced in
section 2.2 to 6911 subjects who
were diagnosed of COVID-19 from
two New York-Presbyterian hospitals
from March 9 to July 6, 2020.
Among these patients, 51.8% were
female, the median age was 60, and
there were a total of 3676 hospital
admissions and 717 deaths. The EHR
study protocol (with a study end date
of July 6) was approved by the IRB.

In building the risk assessment model,
we integrated the individual EHR data
with the neighborhood risk factors on
two levels, spatially and temporally.
Specifically, for each subject, to evalu-
ate the risk due to the background risk
of virus exposure at infection, we in-
corporated the predicted number of in-
fectious subjects (i.e., Mi(t) acquired
from the transmission model in sec-
tion 2.1) in his/her neighborhood 7 days prior to diagnosis (on average 5 days of incubation [19]
and we consider 2 days of time lapse before diagnosis) as a covariate in the risk assessment model.
This measure is the total prevalence of COVID-19 infections including both symptomatic and pre-
symptomatic subjects who have not yet tested positive, and thus more accurately assess community
COVID-19 risk. Additionally, we matched each individual with the time-invariant neighborhood
information (e.g., the neighborhood social vulnerability index) based on their billing ZIP codes.
Interactions between individual-level race and ethnicity and neighborhood social vulnerability were
examined. Time-varying intercept and time-varying coefficients for neighborhood infection preva-
lence, minority percentage, multi-unit living percentage were constructed.

To visualize the selection biases in the study sample, we plot in Supplementary Figure D.6 the sample
frequency and heterogeneous infection patterns across ZIP code areas in NYC. To assess the utility
of the weights derived in section 2.2 accounting for the selection biases, we fit both weighted and
unweighted models to assess hospitalization risk among diagnosed COVID-19 patients.

For the weighted model, we multiplied the two proposed weights, performed standardization, and
then truncated at 5th and 95th percentiles to eliminate extreme values. Model discrimination and
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calibration were evaluated on independent subjects through 4-fold cross-validation. Experiments
were conducted using R package “mgcv” 1.8.34 (license: GPL-2 | GPL-3) [30] on local CPUs.

Results in Table 1 suggests that accounting for the selection biases led to more meaningful model
results than the unweighted model. Age, sex, race, medical conditions such as diabetes, chronic
kidney disease, respiratory disease are shown to be strong predictors for hospitalization in the
weighted model, which is consistent with the literature and CDC guidance [16, 3]. If we ignore
the selection biases, some of these coefficients were not statistically significant and some were in
the unexpected direction. For example, having diabetes was found to be associated with lower
risk of hospitalization in the unweighted model. Additionally, we detected interactions between
individual-level characteristics and neighborhood-level factors. Among African Americans and
Hispanics, higher neighborhood minority percentage is associated with a higher risk of COVID-19
hospitalization. Hispanics from higher level multi-unit living environment in NYC were more likely
to be hospitalized after being diagnosed of COVID-19.

The two factors we learned from the high-dimensional CPT codes and medication codes in the EHRs
were shown to be strongly associated with severe COVID-19 outcomes. From the factor loadings
in Figure D.7 in the Supplementary material, the first factor loads on almost all medications and
procedures and represents the general medical burden. The second factor is more sparse and more
predictive of hospitalization. It is mainly characterized by pain relievers, ancillary drugs for surgery,
drugs for controlling side effects of cancer treatments, and glucose for hypoglycemia. Hence, the
result indicates that history of surgery, cancer, and hypoglycemia are strongly related to an individual’s
higher risk of adverse COVID-19 outcomes, which is consistent with the literature [13, 16].
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Figure 3: Time-varying coefficient of neighborhood
infection prevalence (including pre-symptomatic infec-
tions) and intercept (with 95% confidence bands) on the
risk of hospitalization and death respectively for subjects
diagnosed with COVID

We show the fitted time-varying coefficients in
Figure 3. After accounting for individual risk
factors, diagnosed patients had a higher proba-
bility of hospital admission at later time periods
in the first surge of COVID-19 outbreak in NYC
(Figure 3b). This may be explained by the lim-
ited hospital capacity during the initial outbreak
[17], and more health care resources were avail-
able towards May 2020. However, the death
rate decreased consistently, indicating mortality
is higher when hospital resource is scarce [28]
(Figure 3d). On the other hand, higher neigh-
borhood virus exposure (indicated by number
of infectious subjects) is associated with higher
risk for both hospitalization and mortality es-
pecially during the post-peak period of the out-
break (Figure 3a,3c). It suggests controlling
neighborhood community infection prevalence
may have an effect on preventing an individual’s
severe COVID-19 outcomes above and beyond
an individual’s own risk factors.

To examine the marginal effect of the background virus exposure at infection, we further show in
Figure 5 the predicted time-varying risk for hospitalization under different prevalence of neighborhood
infections. When the neighborhood COVID-19 prevalence is low, we observe a decreasing risk of
hospitalization which gradually tends stable after the peak of outbreak. However, the risk for
hospitalization is consistently increasing if the neighborhood infection prevalence is persistently high.

We calibrated and validated the fitted model through a 4-fold cross validation, and results were
averaged from all validation sets and presented in Figure 4. We evaluated the two fitted models on
the validation sets after correcting selection biases via the two sets of weights w1j and w2j . A higher
area under the receiver operating characteristic (ROC) curve is observed for the proposed method
that addressed the selection biases. We assessed model calibration by comparing weighted mean
predicted risk with mean observed risks grouped by deciles of the predicted risk on the validation
sets. Much higher calibration is observed for the weighted model where the fitted regression line is
very close to the diagonal line while the unweighted model fails to calibrate on the validation sets.
These results demonstrate the generalizability of the proposed weighting strategy.
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Figure 4: ROC and calibrations of the weighted and unweighted individual risk model on the validations sets.
In (b) and (c), a regression line (the solid line) is plotted for the observed vs. predicted risks (the closer to the
diagonal dash line is more desirable), and the fitted intercept and slope are reported in the figure.

4 Discussion

In this work, we propose a spatial-temporal model for COVID-19 transmission and a bias-corrected
semiparametric time-varying coefficient model for assessing individual risk for severe COVID-19
outcomes to integrate multiple levels of information and draw causal inference. The spatial and
temporal dependence for disease transmission and heterogeneous time-varying infection rates across
areas are accommodated. The relative strength of community-level and individual-level risk factors on
explaining severe COVID outcomes are assessed accounting for evolving dynamics of the pandemic.
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Figure 5: Estimated risk of hospitaliza-
tion over time under different prevalence
of neighborhood infections (including pre-
symptomatic infections as oppose to only re-
ported infections). Other covariates fixed
at the mean age of 59, male, white, non-
hispanic, no diabetes or other comorbidities,
median value of the factor scores for proce-
dure and medication, median value of the
neighborhood minority level and multi-unit
living level.

A limitation of this work is that the individual-level EHR
data were collected from two hospitals in NYC. Larger
and more general populations can be considered to further
test our method. COVID-19 vaccines were not available
during the time period of our EHR data. Future studies can
consider including vaccination information in transmission
and disease risk modeling.

Here we discuss the potential negative societal impacts.
In this work, we account for the potential biases in the
sample selection using carefully designed weights so that
after weighting our sample could represent the general
population of interest and avoid spurious association. Even
though we have made best attempts to design the weights
to balance the sample selections at the ZIP code level, there
could be residual imbalances in specific socioeconomic
factors because the weights were not explicitly defined by
them. Additionally, although we have incorporated many
risk factors to account for the individual health outcomes,
individual-level behavioural measures such as masking
were not included due to data availability. Therefore, when
interpreting the results, potential unmeasured confounding
shall be noted.

We detected a significant spatial correlation of COVID-19 transmission in NYC and a significant racial
disparity where neighborhoods with a denser minority population suffer higher risk of COVID-19
infection. We also identified a significant interaction between individual’s race and community-
level SVIs for COVID-19 hospitalization beyond an individual’s other risk factors (e.g., age, co-
morbidities). These findings suggest an intricate interplay between individual-level and community-
level risks for COVID-19, and community-level risk factors are non-ignorable even after accounting
for the individual-level characteristics. The significant interactions and time-varying effects can
facilitate precision public health decision-making at both community- and individual-level, i.e., to
inform when, which population, and in what communities should we target the intervention to better
reduce the hospitalization burden. For example, our results suggest that it can be beneficial to target
the intervention to Hispanic and black communities living in areas with dense minority populations
and target the multi-unit living buildings specifically for the Hispanic population. To prepare for
future pandemics, a comprehensive approach targeting both individual health and community risks is
highly desirable.
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