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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has significantly im-
proved LLM reasoning, but its sparse, outcome-based reward provides no guidance
for intermediate steps, slowing exploration. We propose Progressively Ascending
Confidence Reward (PACR), a dense, model-intrinsic reward computed directly
from the model’s evolving belief in the correct answer. PACR encodes the in-
ductive bias that, along a well-formed reasoning trajectory, the probability of the
ground-truth answer should have a generally ascending trend. We provide em-
pirical and theoretical analysis validating that such an inductive bias constrains
the exploration search space to regions richer in logically sound reasoning. We
demonstrate that PACR accelerates exploration, reaches reward saturation with
fewer trajectories, and yields improvements on multiple benchmarks. Our results
suggest that dense, model-intrinsic shaping signals can make RLVR training more
effective and reliable. Code will be released.

1 INTRODUCTION
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Pre-trained large language models (LLMs) ex- l . Jeasoning step

hibit strong performance on complex, multi- ] V@ o
step reasoning tasks (Comanici et al.l 2025;
Yang et al. [2025aj [Team, 2025). Reinforce-
ment Learning with Verifiable Rewards (RLVR)
has emerged as a leading approach for further
improving such capabilities, using a program-
matically checkable terminal metric (e.g., exact-
match on the final answer) as the reward (Shao
et al.l 2024b}; |Guo et al., [2025). While effec-
tive, the standard RLVR formulation supplies Figure 1: Stepwise confidence growth, For a
a sparse terminal accuracy signal, offering no  question ¢, a well-formed sequence of reasoning
guidance for intermediate steps and thus exac- steps h1, ..., k) should increase the model’s prob-
erbating credit assignment. Alternative process- ability of the ground-truth answer Yy across steps.
based supervision employs external reward mod-

els to score intermediate reasoning, but is costly to train, data-hungry, and prone to misalignment
(Cui et al., 2025} |Cheng et al., [2025).
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This work asks whether we can obtain stepwise supervision directly from the model. Psycholinguistic
work shows that people interpret language incrementally, updating expectations with each word; as
context accumulates, uncertainty falls and the correct interpretation becomes more likely (Hale, |2001;
Levyl [2008). By the same logic, in tasks with a verifiable final answer, a correct intermediate step
should typically raise the model’s probability of the ground-truth answer. Concretely, given a question
¢, a reasoning prefix H<y,, and ground truth Y}, we track the model’s confidence p(Yy; | ¢, H<k)
and expect a general upward trend over steps (Figure/[I)).

Guided by this premise, we introduce the Progressively Ascending Confidence Reward (PACR),
a dense, model-intrinsic signal that converts confidence growth into stepwise supervision for LLM
reasoning during reinforcement learning. During training, as the model produces a sequence of
reasoning steps for a question with a verifiable answer, we evaluate at each step the log-probability
assigned to the ground-truth answer and reward any positive change, effectively encouraging a consis-
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tently upward trend in confidence. Because PACR is computed from the model’s own probabilities, it
requires no external reward model and is available at every step, improving credit assignment and
steering search toward faithful trajectories. We pair PACR with the standard RLVR terminal accuracy
reward so the objective remains anchored to verifiable correctness while the process signal shapes the
reasoning path. In detail, our contributions can be summarized as follows:

 Empirical Validation of an Inductive Bias (Section [d.I). We provide extensive observational
evidence that ground-truth confidence growth acts as a powerful inductive bias. Our analyses on
open-source LLMs reveal three key findings: (1) a consistent confidence ascent strongly correlates
with final answer correctness; (2) among correct answers, logically coherent reasoning paths exhibit
an even more consistent ascent than spurious ones; and (3) the magnitude of the confidence gain
effectively pinpoints pivotal reasoning steps.

* Theoretical Justification (Section [E] and [5). We provide a theoretical foundation for using
confidence growth as a process reward. We prove that a reasoning step from an idealized oracle
policy will, on average, increase or maintain the model’s confidence in the ground truth, validating it
as a strong inductive bias. Building on this, we formalize the Progressively Ascending Confidence
Reward (PACR) and introduce two concrete methods for its implementation: Sparse-PACR for
trajectory-level rewards and Dense-PACR for step-wise rewards.

+ Experimental Results (Section[7). Across multiple reasoning benchmarks, augmenting RLVR
with our PACR methods improves training dynamics and final performance. Our approach accel-
erates exploration and ultimately attains a higher, more consistent final score than the baseline,
demonstrating a more effective and reliable training process.

2 RELATED WORK

Outcome-based RL for LLM Reasoning Reinforcement Learning (RL) is increasingly used
to fine-tune Large Language Models (LLMs). This is done not only to align models with human
preferences via Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., [2022; L1
et al., [2024b; [Bai et al., 2022)) but also to enhance their reasoning abilities for complex problem-
solving (Kumar et al.). To improve these reasoning capabilities, a recent prominent approach is
Reinforcement Learning with Verifiable Reward (RLVR) (Guo et al., 2025} [Yang et al., [2024; |Shao
et al.,[2024a), which uses an outcome-based reward instead of a proxy reward model. For example,
a reward of 1 is assigned for a correct answer and O (or -1) for an incorrect one. Then, the model
generates multiple trajectories for a single problem. The reward for each trajectory is then compared
against the average reward across all samples in the group, and this relative reward is used as an
advantage to train the model. This outcome-based reward system is widely explored (Liu et al.,
2025b; |Yu et al.; 2025; Hu et al.| 2025} |Zeng et al., 2025b)) because it is easily scalable, and mitigates
concerns about reward hacking by eliminating the need for a separate reward model (Guo et al.,
2025). However, this approach has a significant limitation for complex reasoning tasks that require
generating a long thought process (Zhang et al.l [2025). In such cases, relying solely on the final
outcome provides a sparse and noisy reward signal.

Dense Reward for LLMs Finetuning with RL.  To overcome the limitations of holistic, trajectory-
level sparse rewards, various approaches for providing dense rewards have been explored. In RLHF,
for instance, approaches include training an external reward model to assign token-level rewards
using synthesized data (Yoon et al., 2024), utilizing a more mature external model as the reward
model (Cao et al.| 2024} [Wu et al.| 2023)), and use implicit reward signal from reward model (Chan
et al.,|2024). Similarly, direct alignment algorithms (e.g., DPO (Rafailov et al., 2023))) have been
adapted to provide dense rewards by re-framing DPO’s implicit reward at a token level (Zeng et al.;
Zhu et al.f;|Zhong et al.f Rafailov et al.) or by selectively using specific tokens for the reward signal
(Yoon et al.; |Liu et al.). For training a reasoning LLM with RL, previous approaches include training
a Process Reward Model (PRM) for process-level rewards (Li & Lil 2025; |Cheng et al.| [2025]; |[Zhang
et al.| 2025)), or defining a DPO-like implicit reward at the token level (Cui et al., [2025]; [Yuan et al.|
2024). However, these approaches typically require additional models, such as a reward model or
a reference model, to generate the reward signal. In contrast, our work eliminates the need for any
additional models. We instead use the current policy model itself to generate a dense reward signal
that enhances reasoning capabilities.
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3 BACKGROUND AND PROBLEM SETUP

This section introduces the notation for reasoning trajectories, how we segment and evaluate stepwise
confidence in the ground-truth answer, and the RL objective we use in training.

Reasoning Trajectories and Notation. Given a question ¢, a policy 7y generates a sequence of
reasoning steps H = (hy, ..., hr) and a final answer Y. Let Yy denote the verifiable ground-truth
answer. We write H<y, = (h1, ..., hy) for the reasoning steps up to step k. We analyze and shape
the reasoning process by tracking how the model’s probability of Y evolves with the prefix H<j,.

Segmenting the Reasoning Process and Stepwise Ground-truth Confidence. Similar to|Yang
et al.[(2025c), we segment each generated reasoning trace into discrete steps {hy }7_, using a simple,
model-agnostic rule: start a new step at a newline (‘\n”) or at a period followed by a space (‘. ’);
fragments shorter than five tokens are merged with the preceding step to avoid overly fine splits
(Further discussion on segmentation strategies is provided in Appendix [B). To measure ground-
truth—anchored confidence at step k, we standardize the answer format by appending a short prefix
yg; (e.g., ‘So the final answer is \boxed{’)and evaluate the model’s probability of the

ground-truth answer Yy = (yét, . ,yth) under the current prefix H<j. Writing Yy = (yglt, . ,yé),
we measure the ground-truth confidence at step £ as

L
log p(Yorlg, H<r) = > logpa(yly | @, Hekr yo vai)» )
=1

where ygil are preceding answer tokens. This measures the model’s confidence in the ground truth
answer at any given stage of its reasoning steps.

Group Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024b) estimates advantages
by comparing returns within a group of N samples rather than using a learned value function. For a

given question g (with verifiable answer Yj;), the behavior policy mg_,, generates N trajectories

(X, O = (HD, YY), @

where H(®) = (hgi)7 ey hgf)) are the reasoning steps, 7; is the number of steps for i-th trajectory

and V(@) is the predicted answer for i-th trajectory.

For each sampled trajectory i, we compare the predicted answer Y () with the ground truth Y and
assign a binary terminal accuracy reward:

3

RO — 1, is_equivalent(Y®, Yy)
~ 10, otherwise.

Here i s_equivalent performs task-specific normalization (e.g., stripping whitespace/punctuation,
handling LaTeX boxing, case folding, and numeric tolerances) before exact match. The group-relative
advantage for trajectory 7 is computed by centering (and optionally standardizing) its reward within
the cohort of NV samples:

RO — mean({RO}Y )

AW = ~ 4
std({RM}IN ) @
Similar to PPO (Schulman et al.,[2017), GRPO adopts a clipping with KL penalty:
Jareo (0) =
1 . mo () | @) () mo (Y | q)
w72 (i (G @4 (1 et ) ) — st )|

{7 yomg Cla)

(5)
where D is the training dataset and 7 is a reference policy. In our work, we follow the Dr. GRPO
(Liu et al.L[2025b) formulation, a bias-mitigated variant of GRPO. This approach modifies the standard
GRPO algorithm by discarding the standard deviation from the advantage calculation and the length
normalization from the loss function (the terms shown in green in Eq. ] and Eq. [5).
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4 IS GROUND-TRUTH CONFIDENCE GROWTH A USEFUL INDUCTIVE BIAS?

We posit that reasoning fundamentally functions as a process of uncertainty reduction. A faithful
reasoning step provides intermediate evidence that bridges the gap to the solution, mathematically
manifesting as an increase in the probability of the ground-truth answer. This suggests the following
inductive bias for learning: valid reasoning steps should be characterized by positive confidence
gain on the ground-truth answer.

To validate this inductive bias as a reward, we test two key conditions:

a) Granular Quality: Does the ground-truth confidence gain correlate with step-level reasoning
quality?
b) Causal Utility: Does guiding generation with this bias improve accuracy during inference?

Ground-truth Confidence Growth. We first quantify confidence growth by defining the stepwise
confidence gain, CY, as the change in the log-probability of the ground-truth answer induced by the
addition of reasoning step hy:

Cy = logmg(Yet | ¢, H<r) — logme(Yee | ¢, Her), (6)

where H< = (h1,...,h;) and Hep = (ha,...,hg—1). For k = 1, H.y is the empty prefix.
Intuitively, C'y, measures the information gain regarding the ground truth provided by step hg. (When

indexing trajectories, we write C’,(:).) For brevity, we will hereafter use “confidence growth” and
“ground-truth confidence growth” interchangeably.

4.1 OBSERVING GROUND-TRUTH CONFIDENCE GROWTH ON REASONING MODELS
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(a) Average Confidence Gain with respect to reasoning step quality (b) Test-time beam search

Figure 2: Validation of Confidence Growth Utility. (a) Granular Quality: We utilized GPT-5.1
to annotate individual reasoning steps as Grz2T, OKAY, or BAD. We then analyzed the model’s
intrinsic confidence gain (C') for each category. The results show that high-quality steps consistently
drive positive C'k, while flawed steps yield negligible or negative gains. (b) Causal Utility: Using C
to guide generation (via beam search with width 1) on Qwen2 . 5-Math-7B significantly improves
accuracy compared to standard sampling across multiple temperatures. This confirms that maximizing
confidence growth actively steers the model toward correct solutions.

a) Granular Quality: Does the ground-truth confidence gain correlate with step-level reasoning
quality? To demonstrate that C effectively captures reasoning quality of a step, we performed a
fine-grained analysis using trajectories sampled from diverse models. We utilized an external verifier
to annotate individual reasoning steps, classifying each into one of three categories based on the
definitions established by |Lightman et al.| (2023)) (refer to Appendix |E for full annotation details):

* GrEAT: A strong, logically sound step that makes meaningful mathematical progress.

* OkAY: A valid but low-value step (e.g., restating information or stalling) that adds minimal
insight.

* Ban: A logically flawed, incoherent, or hallucinated step that leads the solution astray.

We analyzed the distribution of confidence gains (C;) for each category. As illustrated in Figure
|Z|-(a), we observe a strict trend:
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Question: Compute a + b + c, given that a, b, and ¢ are the roots of l‘ +5x% = 6x — 24.

vere g = 5, h = 6.

(EERULRS So sum = —(—6)/5 = 6/57 wait polynowial: 5x3 — 6x2 + 24x — 1= 0.

Reasoning:

we weed £o solve equation: — + 5x2 = 6x — 24.
x

RN VN Multily by x: 1+ 5x3 = 6x% — 24x.

Bring all terws: 5x% — 6x2 + 24x +1 = 0.

So coe§ficient of x2 is -6,

(BRI PA Sum of voots = —(—6)/5 = 6/5.

So answer b/5.

Cy: 0.00 So cubic Polynowial: 5x3 — 6x2 + 24x + 1 = 0.

Cs: +1.28 EITEN N N
(R VER we veed sum g + b + c.

Figure 3: Qualitative example of a pivotal step. Among the reasoning steps, a critical insight at
step hy (the introduction of Vieta’s formulas for a cubic equation) results in a large, distinct spike in
the ground-truth confidence gain (C7 = +4.83). This is substantially larger than the gains from more
routine algebraic steps. Further qualitative examples are provided in Appendix@

Avg C(GrerT or OKAY) > Avg Cj(BrD)

The analysis shows that Gr or OKAY steps, on average, drive ground-truth confidence upward,
whereas B2 D steps fail to contribute valid evidence, resulting in negligible or negative gains. This
validates C}; as a dense, high-resolution signal capable of penalizing local errors and rewarding
critical insights, a distinction that standard sparse outcome-based rewards fail to capture.

b) Causal Utility: Does guiding generation with this bias improve accuracy during inference?
To establish that confidence growth actively guides the reasoning process toward correctness, we
utilized the stepwise confidence gain (C}) as a scoring function for test-time search.

We implemented a beam search with a beam width of 1. At each reasoning step, we sampled
N = 8 candidate extensions and greedily selected the single path maximizing the confidence gain CY,
to continue generation. We note that since C; relies on the ground truth, this experiment serves
purely as an analytical validation of the reward signal, not as a proposed inference method.

We evaluated this approach across multiple sampling temperatures (7" € {0.8,0.9,1.0}). As shown in
Figure 2}(b), this confidence-guided search consistently outperforms the standard sampling baseline
across all temperature settings. These results indicate that C', serves as a robust steering signal,
providing the dense supervision needed to differentiate valid paths from incorrect ones regardless
of generation stochasticity. Crucially, this validates the confidence growth as a reinforcement
learning reward: since the signal successfully guides the model to the correct solution when available,
optimizing it during training encourages the model to intrinsically internalize this reasoning behavior.

Large Stepwise Confidence Gains Pinpoint Pivotal Rea- ~ [Ecorrect  [incorrect |
soning Steps. Beyond the overall trend of confidence, | ‘ ‘

we investigated whether the magnitude of the stepwise
gain, CY, correlates with the importance of individual rea-
soning steps. Qualitatively, we observe that large, positive
spikes in C}, often coincide with pivotal moments in the
reasoning process, such as the application of a key theorem
or a critical insight. For instance, as illustrated in Figure
Bl a step introducing the sum of roots formula for a cu-
bic equation yields a substantially larger confidence gain
compared to adjacent steps involving routine algebraic
manipulation. To validate this rigorously, we conducted
a quantitative pairwise comparison. For trajectories in
Teorrect» We randomly sampled pairs of reasoning steps, h;

Qwen2.5-MATH-7B

\ [ |

GPT-0SS-20B

Figure 4: Quantitative validation of
step importance. In a pairwise com-
parison, an LLM evaluator judged the
step with the higher confidence gain
(C; > Cj) as more critical with a win
rate significantly above chance, confirm-
ing that gain magnitude correlates with
step importance.

and h;, under the condition that C; > C;. We then prompted an LLM evaluator (GPT-5) to judge
which of the two steps was more critical for reaching the final solution (see Appendix [D|for detailed
evaluation prompts). The step with the higher confidence gain, h;, was frequently identified as more
critical, achieving a win rate significantly above chance (Figure ). This finding suggests that the
magnitude of the confidence gain is not arbitrary; it is a meaningful signal that effectively pinpoints
influential steps within a reasoning chain.
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Figure 5: Overview of the PACR method and its integration with GRPO. Standard GRPO begins
by sampling a group of N reasoning trajectories for a given question. (a) A standard outcome-based
reward (RGI){PO) is calculated based on the correctness of the final answer. (b) Our proposed reasoning-
based reward is derived from the ground-truth confidence growth (Ckl)) at each step. This signal is
integrated into the final advantage calculation in two ways: Sparse-PACR uses the consistency of

confidence growth to compute a single reward for the entire trajectory, while uses the
magnitude of each step’s gain to compute a fine-grained, per-step advantage.

5 METHOD: PROGRESSIVELY ASCENDING CONFIDENCE REWARD (PACR)

Based on our findings in Section[d] we now formalize how to incorporate the principle of ascending
ground-truth confidence into the GRPO framework. To do this, we introduce the Progressively
Ascending Confidence Reward (PACR), a procedural reward signal designed to complement the
final outcome-based reward. We propose two variants: (1) Sparse-PACR, which applies a holistic,
trajectory-level reward based on the consistency of confidence growth, and (2) , which
provides a fine-grained, step-wise reward based on the magnitude of each confidence change.

Sparse-PACR. In the Sparse setting, we compute a single procedural reward for an entire trajectory

based on the consistency of its confidence growth. This reward, C’S(;grse, is the proportion of reasoning
steps that produce a positive confidence gain. We calculate it using an indicator function, I(-):

LIRS
Tikz_:lﬂ@k >0),

where C’,ii) is the confidence gain in Eq.H The final reward for trajectory i, Rg)?PACR’ is a weighted

(2)
Csparse -

)

combination of the standard outcome-based reward, R((}il)zpo’ and our sparse procedural reward:

.CW

sparse

This combined reward is then used to calculate the trajectory’s advantage, AEQPACR, within the GRPO
framework by centering it against the group average:

RSQPACR =A1- Rgl%PO

() (4) N
A p-PACR — Rsp PACR mean({Rsp-PACR}jzl)' )
The Dense setting provides a more granular, step-wise reward signal. At each
reasoning step k in trajectory ¢, we use the ground-truth conﬁdence gain, C (l), as an immediate

reward. From this, we compute the discounted return for that step, lely)
from that point forward:

k,dense’ by summing the rewards

G hense = ZW Fel, (10)
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where + is a discount factor. To create a stable, step-wise advantage signal, A,(:)deme, we normalize

these returns across the group at each step k. Specifically, we use Min-Max scaling to map the returns
to a [0, 1] range. This creates a purely positive signal that only incentivizes confidence growth without
penalizing steps that do not, a design choice we validate in our ablations (Section [7.5). To handle
trajectories of varying lengths, the discounted return ch Leme is treated as zero for any step & that

does not exist in trajectory <. The resulting advantage for a step k in trajectory ¢ is then:

_ chz dense mln] ({Gk dense ;V 1) (11)

ense ~ :
aX]({Gk ,dense J j= 1) mln?({Gk ,dense J j= 1)

9

>

x>
o~

Finally, the total advantage at each step, A,(C,zm_PACR, is the weighted sum of the trajectory-level GRPO
advantage and our dense, step-wise advantage:

A;(fzm PACR — =A1- AGRPO + Az Aé )demev (12)

where Agl)zpo = Rgl){PO - mean({RglgPO ;V: 1)- This final advantage is then used to update the policy.

6 EXPERIMENTAL SETUP

Models and Baselines. We experiment with three open-source LLMs: Qwen2.5-Math-1.5B,
Qwen2.5-Math-7B (Yang et al., [2024), and Qwen3-4B'| (Yang et al., |2025a). Our baseline for
all experiments is Dr.GRPO (Liu et al., 2025b), a bias-mitigated version of GRPO (Shao et al.,
2024b)), which we implement using the OAT framework (Liu et al., | 2024)). We compare this baseline
against our two proposed methods, Sparse-PACR and Dense-PACR.

Datasets and Evaluation. For training, we use the MATH dataset (Hendrycks et al.). Following
prior work (Liu et al.l |2025b), we use the full dataset for the 1.5B model and filter for the more
challenging levels (3-5) for the 4B and 7B models. To evaluate performance, we test our models
on five diverse mathematical reasoning benchmarks: MATH500 (Hendrycks et al.), Minerva-Math
(Lewkowycz et al.l 2022)), OlympiadBench (He et al.,[2024), AIME 2024, and AMC 2023 (Li et al.|
2024a). Final answers are programmatically checked for correctness using the Math-Verify (Kydlicek}
2025)) library. All results are reported as pass@1 using greedy decoding (temperature of 0).

Training Details. For each problem, we generate a group of 8 responses using sampling with a
temperature of 1.0. We report the average results across three runs with different random seeds for
all experiments. All models were trained on a single node with 8 x NVIDIA H100 80GB GPUs.
Further details on hyperparameters, such as learning rate and batch size, are provided in Appendix

7 RESULTS AND ABLATIONS

7.1 EXPERIMENTAL RESULT

Table[T|presents the quantitative results on various math benchmarks. For the Qwen2.5-series, we also
include the instruct models at the sample scale and R1-Distill models for comparison by following
(Liu et al.[ 2025b). Our proposed reward, PACR, demonstrates significant improvements over the
outcome-based reward baseline (+Dr.GRPO) in both its Sparse and Dense setting. This shows that
our core method provides a positive inductive bias for improving the reasoning skills of language
models.

While the sparse trajectory-level reward, Sparse-PACR, is effective on its own, we observe that
Dense-PACR, which provides a more fine-grained reward, consistently achieves better performance.
This highlights that enriching the training process with a dense reward signal allows the model to
learn from more detailed feedback, leading to further gains in its reasoning capabilities.

"For the Qwen3-4B model, we set ‘enable_thinking=False’ to disable its built-in chain-of-thought capabilities,
allowing for a direct comparison of how our method versus standard GRPO teaches this capability.
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Table 1: Results on reasoning benchmarks. We report pass@ 1 accuracy using temperature 7' = 0.0
across six benchmarks. Both Sparse-PACR and Dense-PACR consistently outperform the Dr.GRPO
baseline across all model sizes. t is marked for the score reproduced and other baseline scores are
from [Liu et al.| (2025b). The green colored numbers in the Average column indicate the absolute
performance improvement over the Dr.GRPO baseline.

Base model + Method AIME25 AIME24 AMC MATH500 Minerva OlympiadBench Average
R1-distill-Qwen-1.5B (Gen. length 8k) 13.3 10.0 40.9 54.6 9.2 24.1 25.4
R1-distill-Qwen-1.5B + Dr.GRPO 7 16.7 20.0 50.6 75.2 24.3 34.4 36.9

" RI-distill-Qwen-1.5B + Sparse-PACR | ~ 200 167 ~ 53.0 ~ 768 294 378 | 389420
R1-distill-Qwen-1.5B + Dense-PACR 20.0 20.0 56.6 78.0 26.5 38.8 40.0 43 1
Qwen2.5-Math-1.5B 33 20.0 325 33.0 12.5 22.8 20.7
R1-Distill-Qwen-1.5B (Gen. length 3k) 10.0 2.5 21.7 522 16.3 17.3 20.0
Qwen2.5-Math-1.5B-Instruct 10.0 10.0 48.2 74.2 26.5 40.2 34.8
Qwen2.5-Math-1.5B + Dr.GRPO } 6.7 13.3 47.0 76.8 323 39.0 35.8

" Qwen2.5-Math-1.5B + Sparse-PACR ~ | ~ 133~ 200 ~ 484 774 294 378 | 377419
Qwen2.5-Math-1.5B + Dense-PACR 133 233 49.4 77.4 31.7 39.0 39.0 43 2
Qwen2.5-Math-7B 6.7 16.7 38.6 50.6 9.9 16.6 23.2
SimpleRL-Zero-7B 6.7 26.7 60.2 78.2 27.6 40.3 39.95
PRIME-Zero-7B 16.7 16.7 62.7 83.8 36.0 40.9 42.8
OpenReasoner-Zero- 7B @ 3k 33 133 47.0 79.2 31.6 44.0 36.4
R1-Distill-Qwen-7B @ 3k 20.0 10.0 26.2 60.1 23.0 23.1 27.1
Qwen2.5-Math-7B-Instruct 16.7 16.7 53.0 83.6 29.8 42.7 404
Qwen2.5-Math-7B + Dr.GRPO { 13.3 30.0 56.6 81.8 34.6 452 43.6

" Qwen2.5-Math-7B + Sparse-PACR ~ | 133~ 367 554 826 346 456 | 4T 31
Qwen2.5-Math-7B + Dense-PACR 16.7 433 56.1 81.9 35.6 46.1 46.6 43 ¢
Qwen3-4B 6.7 13.3 32.5 40.2 9.19 394 23.5
Qwen3-4B + Dr.GRPO { 20.0 40.0 63.8 88.4 33.8 46.8 48.8

" Qwen3-4B + Sparse-PACR ~ | 200 333 675 862 353 544 494,07
Qwen3-4B + Dense-PACR 26.7 46.7 63.4 86.8 36.0 55.0 524436

Table 2: Results on Pass@k. Using temperature 7" = 1.0, Pass@1 (n=16) is calculated as the
average accuracy across 16 sampled trajectories, while Pass@ 16 represents the probability that at
least one of the 16 samples is correct. The green colored numbers in the Average column indicate the
absolute performance improvement over the Dr.GRPO baseline.

Base model + Method Metric AIME25 AIME24 AMC MATHS500 Minerva OlympiadBench Average
Qwen3-4B pass@1 (n=16) 7.9 8.9 30.7 66.5 252 27.0 27.7
Qwen3-4B + Dr.GRPO pass@1 (n=16) 21.0 24.6 61.4 85.6 33.0 53.8 46.4
Qwen3-4B + Dense-PACR | pass@1 (n=16) 30.2 30.0 66.5 86.8 33.8 56.2 50.6,4 2
Qwen3-4B pass@16 16.7 333 482 82.8 37.9 41.6 434
Qwen3-4B + Dr.GRPO pass@16 40.0 50.0 84.3 94.4 46.7 70.4 64.3
Qwen3-4B + Dense-PACR pass@16 46.7 56.7 84.3 94.8 48.9 71.1 67.1,2 .8

7.2  SAMPLING EFFICIENCY AND INTRINSIC REASONING CAPABILITY

A critical question in RL is whether performance gains stem from genuine reasoning improvement or
merely optimized sampling efficiency (i.e., narrowing the distribution around easy solutions at the
expense of diversity) (Yue et al.| 2025} [Kirk et al.l 2023} [Yu, 2025). To distinguish these effects, we
evaluate our models with a positive sampling temperature (7" = 1.0), reporting two metrics: Pass@1
(n=16) as a proxy for sampling efficiency (sharpening probability on correct paths), and Pass@16 as
a proxy for intrinsic capability (expanding the manifold of solvable problems).

As shown in Table[2] Dense-PACR consistently outperforms the baseline on both fronts. The gain in
Pass@1 confirms improved efficiency, while the concurrent rise in Pass@16 demonstrates a genuine
expansion of reasoning capability.

7.3 DISENTANGLING DENSE SUPERVISION FROM TRAINING STABILITY

A potential confounder for PACR’s performance is the mitigation of the vanishing advantage problem.
In standard GRPO, if all N sampled trajectories share the same outcome (e.g., all incorrect), the
group-relative advantage collapses to zero, providing no learning signal. PACR naturally bypasses
this issue by assigning continuous, dense rewards (C';) that differentiate trajectories even when final
outcomes are identical.

To disentangle the benefits of dense supervision from simple gradient stability, we implemented the
dynamic sampling strategy from DAPO (Yu et al.,[2025) as a baseline. This method resolves the
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Table 3: Comparison with Dynamic Sampling (Stability Baseline). To isolate the benefit of dense
supervision from training stability, we integrated the dynamic sampling strategy from DAPO (Yu
et al.,|2025). The green colored numbers in the Average column indicate the absolute performance
improvement over the Dr.GRPO baseline.

Base model + Method AIME25 AIME24 AMC MATH500 Minerva OlympiadBench Average
R1-Distill-Qwen-1.5B (Gen. length 8k) 13.3 10.0 40.9 54.6 9.2 24.1 25.4
+ Dr.GRPO 16.7 20.0 50.6 75.2 243 344 36.8
+ Dr.GRPO + Dynamic Sampling 10.0 20.0 60.2 79.6 28.9 40.4 39.0 5 -
+ Dense-PACR 20.0 20.0 56.6 78.0 26.5 38.8 40.0 .- -
+ Dense-PACR + Dynamic Sampling 16.7 26.7 56.6 80.6 25.7 37.3 40.6 . -

vanishing advantage by resampling trajectories until the group contains diverse outcomes, such that it
maintains the effective batch size across the training.

Table 3] presents the results. While dynamic sampling indeed boosts the Dr.GRPO baseline (raising
accuracy from 36.8% to 39.0%), Dense-PACR (40.0%) consistently outperforms this stabilized
baseline. Furthermore, combining both methods yields the highest performance (40.6%). This
performance gap confirms that stability alone cannot explain the gains; rather, the confidence growth
signal (C},) provides necessary directional guidance, steering the model toward better reasoning
beyond mere gradient stabilization.

7.4 TRAINING CURVE: PACR ACCELERATES EXPLORATION AND IMPROVES CONVERGENCE

Figure@illustrates the training dynam- B T R R R N

: : : |- N | —— Dr.GRPO

ics, plotting the average pass@1 ac- o s g \ Soarse PACR |

curacy over training steps (left) and e Booy f-—r--i=== DensaPACA 1
. 2 me E /

the corresponding rate of accuracy g% Higher comvergence $ T A

improvement (right). The right plot & TerSormance g \

highlights that both PACR variants ' {—orerr0 1 B | vaster aceuracy

have a significantly higher rate of im- o " oeeracn | § | wprovement

provement Compared to the Dr'GRPO 0 200 400 600 800 1000 0 100 200 300 400

baseline, especially during the critical Steps Steps

early exploration phase of RL training. - Fjgyre 6: Training dynamics for Qwen2.5-Math-1.5B. Av-
As shpwn on the left, this accelerated erage pass@1 accuracy (left) and rate of accuracy improve-
learning ultimately allows the PACR  neng (right) during training. PACR methods show a faster
methods to converge to a higher final  jpitja] rate of improvement, accelerating exploration and con-
accuracy. verging to a higher final performance.

7.5 ANALYSIS ON ADVANTAGE FORMULATION: IMPACT OF PENALIZING INTERMEDIATE

STEPS
In this section, we analyze the impact of the advantage oy ]
formulation in our Dense-PACR setting. A crucial design ] /v—«/\/\~/-
choice is how to normalize the raw discounted returns z s ]
G kl’ dense) 1NtO a stable advantage signal. We compare our g
Min-Max normalization against a widely used Leave-One- <.,
Out (LOO) baseline (Ahmadian et al.l 2024} [Cui et al.| | [
2025 ) 011 E _ ::g: \:I’ ;gfﬂux (ours)3
The key difference is that the LOO baseline centers the re- 0 200 400 600
turns, which can assign negative advantages that penalize Steps
steps with below-average confidence gains: Figure 7: Advantage Normalization.
) ) ) Comparison of Min-Max and Leave-
Aﬁ{m = G,(Jijense - mean({G%ense};\’:L#i). (13) One-Out (LOO) for Dense-PACR on

Qwen2.5-Math-1.5B.

In contrast, our Min-Max normalization (Eq. scales returns to a [0, 1] range, creating a purely
positive signal for the reasoning process that only rewards confidence growth.

Figure[7)shows this design choice has a clear impact on the training dynamics. The penalizing nature
of the LOO baseline initially accelerates learning by aggressively pruning suboptimal steps, but this
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Table 4: Results on Logical Reasoning Benchmarks. We report pass@1 accuracy using temperature
T = 0.0 across two benchmarks.

Base model + Method K-K Zebral.ogic

ppl6  ppl7 ppl8 | Avg. | Small Medium Large X-Large | Grid Acc. Cell Acc.
Qwen-3-4B 940 89.0 85.0 | 89.3 99.4 94.3 61.0 11.5 57.8 72.7
Qwen-3-4B + Dr.GRPO | 89.0 82.0 79.0 | 83.8 98.4 92.9 59.5 8.5 56.11 71.1
Qwen-3-4B + PACR 93.0 950 87.0 | 91.7 99.1 95.4 65.5 11.0 58.2 73.7

leads to premature convergence and a performance plateau. Conversely, our non-penalizing Min-Max
approach encourages more sustained exploration, ultimately converging to a higher final accuracy.
With our method, process-level penalization is avoided; a negative training signal is only applied by
the main GRPO reward when the model produces a definitively incorrect final answer.

7.6 ANALYSIS ON COMPUTATION OVERHEAD

A natural concern with dense rewards is the com-
putational overhead incurred by calculating C},
at every reasoning step. While these values are
computed via batched forward passes, the num-
ber of required passes scales linearly with gener-

Training Time (mins/step)
Accuracy

ation length, inevitably increasing the wall-clock ' o gsnp:m( ) )

time per training iteration compared to the stan- = | [ [ | | oo ‘
1 0 ) 0 10 20

dard sparse reward baseline. o O et et Clock (houre)

To quantify this trade_off’ we compare the train- (a) Training Time Comparison per Step  (b) Accuracy vs. Wall Clock

ing efficiency in Figure[8} As shown in Figure 8} Figure 8: Computation Overhead on Qwen2.5-
(a), PACR indeed incurs a higher computational 1\ath-1.5B.

cost per step compared to the sparse baseline

(Dr.GRPO). However, Figure |§|-(b) demonstrates that in terms of Time-to-Convergence, PACR is
more efficient. When accuracy is analyzed as a function of total wall-clock training time, the PACR
curve lies above the baseline. This indicates that the acceleration in learning provided by the dense
signal effectively outweighs the overhead of the additional forward passes.

7.7 EXPAND TO LOGICAL REASONING

To test the generalization of our method beyond mathematics, we expanded our experimental scope to
the domain of logical reasoning. We explicitly trained our models on Knights and Knaves (K-K) train
set Xie et al.|(2024), utilizing the verifiable version preprocessed by Xie et al.[(2025). We evaluate on
the test set of K-K and ZebralLogic (Lin et al.| 2024)) benchmark.

As shown in Table ] this domain poses a unique challenge for standard RL: the Dr.GRPO baseline
exhibits performance degradation compared to the base model (e.g., K-K Average drops from 89.3%
to 83.8%), suggesting that sparse rewards are insufficient for credit assignment in brittle logical
chains. In contrast, PACR recovers and exceeds the base model’s performance (e.g., 91.7% on
K-K).

8 CONCLUSION

In this work, we addressed the limitations of sparse, outcome-based rewards in RLVR by introducing
the Progressively Ascending Confidence Reward (PACR), a dense, model-intrinsic signal derived from
the model’s evolving belief in the ground-truth answer. Through a series of empirical observations and
a formal theoretical proof, we validated that confidence growth serves as a powerful inductive bias,
effectively constraining the search space to regions richer in logically sound and faithful reasoning
paths. Our experiments demonstrated that augmenting GRPO with PACR not only accelerates
training but also converges to a higher final performance across multiple reasoning benchmarks,
with the fine-grained Dense-PACR variant proving most effective. Ultimately, our work shows that
informative, dense rewards for complex reasoning can be effectively extracted from the internal
dynamics of the learning policy itself, suggesting a promising direction for creating more effective
and reliable methods for fine-tuning the reasoning capabilities of large language models.
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A APPENDIX

A.l1 LIMITATIONS AND FUTURE WORK

While our study demonstrates that Progressively Ascending Confidence Reward (PACR) provides a
powerful inductive bias for mathematical and logical reasoning, we acknowledge that our current
evaluation is primarily confined to natural language Chain-of-Thought (CoT).

Extension to Multimodal Reasoning. A direct extension of this work is to investigate the efficacy
of the PACR framework in multimodal domains. Visual math problems, for instance, require Vision
Language Models (VLMs) to ground reasoning in visual evidence. We hypothesize that the principle
of uncertainty reduction applies equally to visual grounding, making this a promising direction for
future research.

Extension to Code-Aided Reasoning. Furthermore, we note the growing paradigm of code-aided
reasoning, where models utilize external tools or generate Python code to verify intermediate logic
rather than relying solely on natural language (Chen et al.| [2022; |Gao et al.| [2023; |Gou et al., 2023}
Yu et al.; 2024; |Yang et al., [2025b)). In this domain, applying the standard newline-based segmentation
would be suboptimal due to the syntactic density of code. However, the PACR framework is designed
to be modular with respect to step granularity. For code-aided tasks, we propose redefining the
“reasoning step” as the execution of a functional code block (e.g., the entire content within code
delimiters). We posit that the execution of such a block and the retrieval of its output constitutes
a single, rigorous event of uncertainty reduction. Extending the dense confidence signal to these
executable environments represents a high-value direction for future work.

A.2 BROADER IMPACT

This work introduces a new inductive bias designed to improve the reasoning capabilities of Large
Language Models. By leveraging the model’s intrinsic confidence dynamics, our method provides
fine-grained, step-level supervision without the significant overhead of training separate reward
models or requiring manual data annotation. By eliminating the need for external process-reward
models or human-annotated datasets, this research significantly lowers the computational and financial
barriers to entry for training sophisticated reasoning agents.

A.3 THE USE OF LLMs

We used LLMs solely for light editing such as correcting grammatical errors and polishing some
words. They did not contribute to research ideation, experiments, analysis, or substantive writing. We
have reviewed all Al-assisted edits and take full responsibility for the final content of this paper.

A.4 ETHIC STATEMENT

This research adheres to the highest standards of academic integrity. All existing work is appropriately
cited, and this paper does not violate the use of others’ work without reference. The experiments
conducted do not introduce new datasets or utilize any sensitive data.

B REASONING SEGMENTATION STRATEGY

A critical prerequisite for any process-based reward framework is the decomposition of the reasoning
trajectory 7(*) into a discrete sequence of steps {hg) }f;l. The definition of a “step” determines the
granularity of credit assignment and directly impacts the stability of the reward signal.

Existing literature in process supervision typically adopts one of three segmentation paradigms:
* Format-Constrained Segmentation (via SFT): Some methods rely on Supervised Fine-
Tuning (SFT) to enforce rigid output structures, training the model to generate explicit tokens

such as “<step>" or “Step k:”. While this trivializes the parsing process, it introduces a
dependency on high-quality, human-annotated process data to bootstrap the format. In this
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work, we follow the DeepSeek-R1-Zero paradigm 2025)), aiming to incentivize
reasoning capabilities directly from the base model via RLVR without relying on extensive
supervised cold-start data. Consequently, strategies requiring pre-learned delimiters are
incompatible with our training objective.

* Dynamic Entropy-Based Segmentation: Recent works have explored leveraging intrinsic
uncertainty signals to segment reasoning. For example, [Liu et al.| (2025a) propose dividing
steps at points of high perplexity, hypothesizing that these represent semantic decision
boundaries. While theoretically elegant, these methods add computational overhead during
training and can be unstable during the early phases of RL when the model’s probability
distribution is shifting rapidly.

* Heuristic Delimiter-Based Segmentation: The most widely adopted approach in the
process reward literature (Yang et al.,[2025d; [Zeng et al., 20254} [Lee et al., [2025)) utilizes
linguistic heuristics to identify thought boundaries. Common delimiters include newline
characters (\n) or sentence-terminating punctuation (e.g., “. ). We adopt this strategy in
our work. Beyond its computational efficiency, this method aligns with the natural syntac-
tic structure of Chain-of-Thought reasoning, where newlines typically signal a transition

between logical operations.

C TRAINING DETAILS

We present the details of our training configuration as follows. We use a total batch size of 128 and
perform one PPO epoch per rollout. The per-device batch size is set to 4 for Qwen2.5-Math-1.5B,
and 2 for both Qwen2.5-Math-7B and Qwen3-4B. During rollouts, we use a sampling temperature of
1.0 and generate 8 rollouts per prompt. For optimization, we use the AdamW optimizer (Loshchilov|
with a constant learning rate of le-6, without warmup or scheduler. The maximum
prompt and generation lengths are set to 1024 and 3000 tokens, respectively. For the KL penalty, we
set the coefficient 8 = 0, effectively deactivating it during training. For the A1, and Ay, we search in
the range of [1, 0.99, 0.9, 0.8, 0.5] and [0.01, 0.1, 0.2, 0.5], and for the both sparse and dense setting,
A1 and Ao are set to 0.9, and 0.1, respectively

D PROMPT USED FOR OBSERVATION

To analyze the coherence of the reasoning paths (Observation 2) and the correlation between the
large stepwise confidence gain and the pivotal reasoning step (Observation 3) in Section {i.1] we
utilize GPT-5 as an evaluator. The prompts used to evaluate the reasoning steps for these respective
observations are shown in Figures [9] and [T0]

E EXAMPLES FOR OBSERVATION 3

This section provides additional qualitative examples that support the central claim of Observation 3.
As illustrated by the reasoning trajectories from Qwen2.5-Math-7B (Figure[IT)) and GPT-OSS-20B
(Figure[12] [T3]and[T4), large positive spikes in the stepwise confidence gain Cj, consistently align
with pivotal problem-solving steps, such as applying a key formula or executing a critical calculation.

Discussion: Confidence Saturation in Post-Pivotal Steps. We also observe a phenomenon we
term “confidence saturation.” In some trajectories, after a pivotal step yields a massive confidence
gain (e.g., C; > +2.0), the immediately subsequent steps often exhibit near-zero gains (C41 ~ 0),
even when they represent valid and necessary algebraic manipulations.

While this might initially appear as a failure of the metric (under-rewarding valid steps), we argue that
it correctly reflects the information dynamics of reasoning. Once the pivotal insight is established,
the remaining uncertainty regarding the final answer drops significantly. Crucially, our advantage
formulation utilizes Min-Max normalization rather than Z-score normalization (as discussed in
Section [7.3). This design choice ensures that the reward signal remains strictly non-negative (R €
[0, 1]). Consequently, these valid post-pivotal steps receive a neutral reward rather than a negative
penalty. This prevents the optimization process from actively discouraging necessary execution steps.
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USER

You are a strict verifier. Given a question, and a proposed thinking process,
assign a LOGIC score from 0-5 for how logically valid the thinking is.

Scoring rubric (integers only):

5 = Fully sound: steps follow logically from the question; no gaps; math/symbol use correct.
4 = Mostly sound: one minor gap/assumption or small imprecision; overall valid.

3 = Mixed: at least one non-trivial gap or unjustified step; partially correct reasoning.

2 = Largely flawed: major gaps, speculative leaps, or misuse of evidence; little support.

1 = Almost entirely illogical: mostly wrong or incoherent reasoning.

0 = Nonsensical/contradictory or unrelated to the question.

Rules:

- Evaluate the thinking itself, not whether the final option is correct.

- Assume minor grammar issues are irrelevant.

- Do not penalize brevity if logically sufficient.

- Refer to visible evidence briefly, but DO NOT reveal your own chain-of-thought.

- Output JSON ONLY with fields: {{"justification": "<<=40 words>", "score": <0-5)}}.

Question: {question}
Proposed thinking:
{rationale}

Output a LOGIC score from 0-5 for how logically valid the thinking is.

Figure 9: Prompt used to evaluate reasoning quality for Observation 2.

USER
You are a PAIRWISE key-step judge.

Goal: Given a question, the full reasoning trajectory, and its predicted answer, decide which candidate step
(i or j) more causally increases the likelihood of arriving at the given predicted answer.

VALID_IDS = {valid_indices}

Inputs:

- Question: {question}

- Full reasoning trajectory (JSON array of objects {{id, text}}): {steps_json}
- Predicted answer: {predicted_answer}

- Compare: i = {i}, j = {3}

Decision rules:

- Judge only by causal contribution toward the *predicted* answer within the provided steps.

- Prefer the step that adds or applies a decisive constraint, calculation, elimination, or conclusion that moves
the reasoning closer to (or locks in) the predicted answer.

- Do not infer facts or use outside knowledge. Use VALID_IDS only.

Output (STRICT JSON; no extra text):
{C'winner™: *i" | " | "TIE'}

Figure 10: Prompt used to evaulate pairwise comparison for the impactful reasoning steps in
Observation 3.
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Let x® + 3x* — 4 = p; (X)p2 (%) ... pr(x), where each non-constant polynomial p;(x) is monic with

stion:
Qusses integer coefficients, and cannot be factored further over the integers. Compute p; (1) + p2(1) + - + pr(1).

Reasoning:

To solver the problem, we need to factor the polynowial (x8 + 3x% — 4) Wto ivreducible §actors
over the ntegers and then evaluate the Sum of the values of these factors at (x = 1),

0T Let's start by Sactoring the Polynownial.

(RN PA we can use 3 Substitution to wake the Polynowial easier to factov.

e et (y = x*).
SRR Then the Polynowial becowes (Y2 + 3y — 4).
We can §actor this quadratic polynowial as follows: yZ +3y—4=(y-D+ 4)]

Cy:+0.15

BT substituting back (y = x*), we get: x8 + 3x* — 4 = (x* — 1) (x* + 4).
Next, we wneed to factor (x* — 1) and (x* + 4) Surther.

The polynowial (x# — 1) can be factored as: x* — 1= (2 — D)(x%2+1) = (x — D(x + D% + 1).
NI IES The Polynowial (x'* + 4) can be §actoved using the Sophie Germain identity: xt+4= (xz +2x + 2)(x2 —2x+2).

These factors are all ivveducible over the tntegers.

Now, we heed £o evaluate each factor 3t (x = 1) and sum the vesults: p; (1) =1—-1=0,p,(1) =1+1=2,
Cor 0.00 o (1)=1241=2,p,()=12+2-1+2=5ps(1) =12 -2-1+2=1

(0 ULEL So, thesumis: 0+2+2+5+1=10.

Figure 11: Example trajectory from Qwen2.5-Math-7B for a polynomial factorization problem.
The model tackles the 8th-degree polynomial by reducing it to a quadratic form, then applying
systematic factorization to break it down into irreducible integer-coefficient components. The pivotal
moment occurs at step hg, where the model executes the core factorization. By successfully factoring
the simplified quadratic expression y? + 3y — 4 and subsequently substituting #* back in for ¥,
the model achieves the central algebraic decomposition of the original polynomial into two more
tractable factors (z* — 1 and 2* + 4). This step represents the main breakthrough required to solve
the problem, and the corresponding confidence gain (Cs = +1.08) indicates the model’s recognition
that the most significant hurdle in the factorization process has been overcome.

Question: If f(x) = ax* — bx? + x + 5 and f(—3) = 2, then what is the value of £(3)?
Reasoning:

we have polynowmial f(x) = ax* — bx% + x +5.
we know f(=3) = 2.
] we veed f(3).

C4:+0.12

we dow't know @, b.

But waybe Symmetry? Let's compute f(—3) expression: g - (—3)* — b - (=3)%2 + (=3) +5
=8la—9b—3+5=8la—9b+2.

Set equal to 2: 81a — 9b + 2 = 2 =>81la — 9b = 0 => divide 9: 9a—b=0=>b=9aA]

Now f(3)=a-3*—b-32+3+5=8la—9b +8.
Substitue b = 9a: 8la —9-(9a) + 8 =8la—8la+8 =8

So answer 8.

Figure 12: Example trajectory from GPT-OSS-20B for a polynomial symmetry problem.

The problem appears ostensibly unsolvable due to the unknown coefficients a and b. The critical
insight emerges across steps hs and hg, where the model leverages the inherent symmetry of
the function’s even-powered terms (ax*, —bx?) and utilizes the given condition f(—3) = 2. By
evaluating the expression for f(—3) and equating it to 2, the model uncovers the essential relationship
between the unknown coefficients (b = 9a). This discovery is the pivotal moment that unlocks the
entire problem, as it enables the cancellation of the unknown terms in the subsequent calculation of

f3).
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Question: The sum of 27 consecutive positive integers is 37. What is their median?

Reasoning:

we weed £o §ind 27 comsecutive Positive integers whose sum is 37.

37 = 2187.

Suw of 27 consecutive Tntegers: i§ they ave g, a + 1,...,a + 26.
Swn=27a+ (0+ 1+ +26) = 27a + 22 = 274 + 351

(WS BV Because Sum of 0 £o 26 = g =351.

A0l se27a+ 351 = 2187

[BLRL) sove: 27a = 2187 — 351 = 1826, |

RN EE 1836/27 =727 - 68 = 1836. ]

G5 029 IS ERN’A
(TR UEE] So the numbers ave 68 to 44 Wnclusive.

Cyi1: 0.00 Median of 27 numwbers is the (4" number (Since 27 0dd).

Cyz: 0.00 Starting at 63, 14" vuwber is 63 + 13 = 81.

Cq3: 0.00 So wedian is g1,

Figure 13: Example trajectory from GPT-OSS-20B for a consecutive integer median problem.
The initial phase of this problem involves correctly establishing an algebraic equation for the sum
of the integers: 27a + 351 = 2187. The pivotal moment is a two-step process spanning h7 and hg.
In h7, the model transitions from algebraic formulation to the decisive computation to solve for the
first integer, a, by successfully isolating the term 27a. This is immediately followed by the critical
execution in hg, where the actual division is performed to find the explicit value of a. Securing
the value of a is the primary breakthrough, as it provides the key to determining all numbers in the
sequence and thus the median.

Kathy needs money for her trip to Europe. If she has 300 US dollars in the bank but wants to withdraw half of
it in British pounds and half of it in euros, how many more euros than pounds will she have? Assume 1 pound
=1.64 USD and 1 euro = 1.32 USD, and round to the nearest whole number.

Question:

Reasoning:

RSB E we need to compute: Kkathy has 300 USD.

She wants to withdvaw hal§ of it in British Pounds and hal§ in euros.
(EEE VAT So she withdraws (50 wovth of pounds, and (50 USD wovth of euros.
*C,,: SVAUKH convert £o awounts Tn each curvency: pounds = (50/1.64 = ? Euros = (50/132 = ? Thewn §ind differences euros - pounds. ]
Cs: +1.

E5 BVASH Round to nearest whole nuwber,

Let's cowmpute.

150/1.64 = 91.463414634146347 Let's comPute Precisely: .64 - 90 = 47,6, vewainder 2.4, 2.4/1.64 = (.4634. ]

(1L S0 914634 Pounds.

R (50/1.32 = 1B.63636363637 Let's compute: 132 - (13 = 14916, vewainder 0.34, 0.84/1.32 = 0.63636.

Cio: 0.00 So 1B.6364 euvos.
Cy1: 0.00 Difference: 13.6364 - 91.4634 = 22,1730,
C1z: 0.00 Round to wearest whole nuwber: 22,

C13: 0.00 So answer: 22 wove euros than pounds,

Figure 14: Example trajectory from GPT-OSS-20B for a currency exchange problem.

This reasoning trajectory features two pivotal moments. First, step hy serves as a critical planning
phase, where the model correctly formulates the computational roadmap required for the solution:
two currency conversions via division, followed by a subtraction. This demonstrates a comprehensive
understanding of the problem’s logic. The second, more significant pivotal moment occurs at the
execution phase in step h7, where the model accurately performs the first of the two required divisions.
Successfully clearing this key computational hurdle provides the model with high confidence (C'; =
+5.81) that its strategy is effective and the path to the final answer is now clear.
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F LABEL ACQUISITION FOR STEP QUALITY ANALYSIS

To empirically validate that confidence growth accurately tracks fine-grained reasoning quality
(Section[d.T)), we required a set of ground truth quality labels for individual reasoning steps. We con-
structed a high-quality annotated set using a state-of-the-art Large Language Model as a programmatic
annotator.

F.1 ANNOTATION SETUP

We sampled a diverse set of reasoning trajectories generated by the Qwen2.5-Math-7B,
GPT-0ss—-20B, and Qwen3—-4B models from the MATH benchmark (Hendrycks et al.) test set.
Each trajectory was first segmented into discrete steps following the delimiter-based rules described in
Section[3] Subsequently, we utilized gpt-5. 1 (snapshot 2025-11-13) to classify every individual
step’s quality within these trajectories.

To define the quality criteria, we adopted the taxonomy established in previous process supervision
literature [Lightman et al.[(2023)), adapting it to capture the granularity of information gain. The model
was provided with the relevant context (Question, Final Ground Truth, Reasoning History up to the
current step) and the specific Candidate Step. The exact system instruction provided to the annotator
is as follows:

Prompt: System Instruction for Step Quality Annotation

Role: You are grading ONE intermediate step in a student’s solution
to a math problem.
Rate the quality of the CURRENT step using exactly these labels:

* GREAT: A strong step that a good math student might take.
It clearly moves the solution forward or is a reasonable
attempt to make mathematical progress, even if it’s not
perfectly optimal.

e Okay: Plausible but low-value. It may restate or lightly
rephrase things, check an obvious detail, or otherwise fail
to add real insight or progress, but it is not clearly wrong
or misleading.

e Bap: Confidently wrong, off-topic, incoherent, or clearly
leading the solution toward a dead end; OR technically
correct but explained so poorly that a typical student could
not follow it.

Context Rule: Always Jjudge the current step in the context of the
problem and the previous steps.
Output Format: Respond with STRICT JSON only, of the form:

e rating ("Great" | "Okay" | "Bad")
e reason ("short explanation")

Do not include any extra keys or any text outside the JSON.

Input Template:

Problem: {question}

Ground-truth final answer (if available): {gt.answer}
Model’s final answer (if available): {model,final,answer}
Reasoning so far (steps 1..k, including the current step):
{steps_upto_str}

Current step to rate (this is the LAST step above):
{current_step_-text}

Now output JSON only.

Handling Error Propagation (First-Error Truncation). Consistent with the labeling method
used in (Lightman et al.} [2023)), we adopt a “first-error” truncation strategy. Since language models
are autoregressive, every reasoning step is conditioned on the entire preceding history. Consequently,
once a step is labeled B2 b (indicating a logical error or hallucination), the validity of all subsequent
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steps is compromised by the flawed context. To avoid the ambiguity of grading reasoning based
on false premises, we terminate annotation immediately upon encountering the first Bap step; all
subsequent steps in that trajectory are excluded from our analysis.

F.2 VALIDATION OF LABEL QUALITY

To verify the reliability of this automated annotation, we performed a rigorous inter-annotator
agreement study:

1. Human Inter-Annotator Agreement: Two human experts (graduate students in mathemat-
ics/computer science) independently annotated a random subset of 100 steps. They achieved
a Cohen’s Kappa of k = 0.76, indicating that the distinction between Great, Okay, and Bad
steps is well-defined and unambiguous to humans.

2. Model-Human Alignment: We compared the primary gpt -5 . 1 annotations against the
human consensus on the same subset. The model achieved a Kappa score of k = 0.72
(Table[5). This substantial alignment confirms that the model effectively acts as a reliable
proxy for human judgment, correctly adhering to the strict definitions provided in the
prompt.

Table 5: Inter-Annotator Agreement Scores. The substantial agreement (x > 0.7) validates that the
labels are reliable proxies for reasoning quality.

Comparison Pair Metric Interpretation  Cohen’s x

Human Expert 1 vs. Expert 2 Task Definition Quality 0.76
GPT-5.1 vs. Human Consensus  Proxy Reliability 0.72

G THEORETICAL MOTIVATION FOR GROUND-TRUTH CONFIDENCE GROWTH
AS A PROCESS REWARD

Building on our empirical findings, we provide the theoretical motivation for using confidence growth
as a process reward. We demonstrate that maximizing this reward mathematically aligns the model’s
reasoning process with a superior “oracle” distribution conditioned on the correct answer.

The Oracle Policy: Conditioning on the correct answer as a superior policy We define the
oracle policy, Tycle, as the model’s generative process when conditioned on the ground-truth answer
Y .

gt

7Toracle(hk) £ 7'('B(hk ‘ q, ngt, H<k)

A critical premise is that Ty represents a “better” policy than the training policy 7y (which
generates steps without access to the answer). Framing the policy conditioned on the correct answer
as a superior objective aligns with recent works (Zelikman et al. 2022} [Wang et al [2025), which
uses a ground-truth conditioned policy to sample good reasoning steps.

Confidence Gain as Implicit Imitation We now show how our proposed reward, confidence gain
(C'k), leverages this oracle distribution. Recall the definition of C from Eq. @

Cy =logmg(Yes | ¢, H<p) — logmo(Ye | ¢, Hor)

Applying Bayes’ theorem to the first term, 7y(Yys | ¢, hi, H<i), allows us to express C}, as the
log-likelihood ratio between the oracle and the standard policy:

71-H(h/lc | q>Ygt7 H<k) 'WG(Ygt | q, H<k) — log Woracle(hk)
mo(he | ¢, Her) - mo(Yer | ¢, Her) mo(hi)

Cy = log (14)
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During training, the model generates steps hy, according to its current policy my and aims to maximize
the expected reward E[Cy]. By substituting Eq. [14]into the objective function J(f), we obtain:

J(0) = Epy oo [Ch]

=En, ~mg [10g

= _DKL(WB H 7Toracle)-

Troracle (hk )

’/Tg(hk)

This derivation demonstrates that maximizing the confidence gain is equivalent to minimizing the KL
divergence between the current policy 7y and the oracle policy.

H STANDARD DEVIATION FOR EXPERIMENTS

Table 6: Standard Deviation across 3 random seeds. We report the standard deviation of pass@ 1
accuracy using temperature 7' = 0.0 across six benchmarks. Lower values indicate more stable
performance. Baseline Dr.GRPO shows higher variance due to training instability, whereas PACR
methods demonstrate consistently lower variance.

Base model + Method AIME25 AIME24 AMC MATH500 Minerva OlympiadBench |, Average
R1-distill-Qwen-1.5B (Gen. length 8k) - - - - - - -
R1-distill-Qwen-1.5B + Dr.GRPO 2.1 1.8 2.5 1.2 1.5 1.9 1.8

" RI-distill-Qwen-1.5B + Sparse-PACR” |~ 08 06 1.1 ~~ 05 07 09 || 0.8
R1-distill-Qwen-1.5B + Dense-PACR 0.5 0.8 0.9 0.6 0.8 0.7 0.7
Qwen2.5-Math-1.5B - - - - - - -
R1-Distill-Qwen-1.5B (Gen. length 3k) - - - - - - -
Qwen2.5-Math-1.5B-Instruct - - - - - - -
Qwen2.5-Math-1.5B + Dr.GRPO } 1.8 2.1 24 1.1 1.6 1.7 1.8

" Qwen2.5-Math-1.5B + Sparse-PACR ~ |~ 08 09 10 06 0.8 07 ||~ 0.8
Qwen2.5-Math-1.5B + Dense-PACR 0.6 0.7 0.8 0.5 0.6 0.8 0.7
Qwen2.5-Math-7B - - - - - - -
SimpleRL-Zero-7B - - - - - - -
PRIME-Zero-7B - - - - - - -
OpenReasoner-Zero- 7B @ 3k - - - - - - -
R1-Distill-Qwen-7B @ 3k - - - - - - -
Qwen2.5-Math-7B-Instruct - - - - - - -
Qwen2.5-Math-7B + Dr.GRPO 2.0 2.5 2.2 14 1.8 2.1 2.0

" Qwen2.5-Math-7B + Sparse-PACR ~ ~ | 09 08 ~ 12 06 09 0.8 || 09
Qwen2.5-Math-7B + Dense-PACR 0.7 0.8 1.0 0.5 0.8 0.9 0.8
Qwen3-4B - - - - - - -
Qwen3-4B + Dr.GRPO 7 2.5 2.8 2.4 1.2 1.9 2.3 22

" Qwen3-4B + Sparse-PACR ~ ~ | Lr—— " "it2 " 1407 o 3 | rLr
Qwen3-4B + Dense-PACR 0.9 0.8 1.1 0.6 0.9 1.0 0.9
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Table 7: Comparison with Chunk-level PACR Experiment. The green colored numbers in the
Average column indicate the absolute performance improvement over the Dr.GRPO baseline.

Base model + Method AIME25 AIME24 AMC MATHS500 Minerva OlympiadBench Average
R1-Distill-Qwen-1.5B (Gen. length 8k) 13.3 10.0 40.9 54.6 9.2 24.1 25.4
+ Dr.GRPO 16.7 20.0 50.6 75.2 243 344 36.8
+ Dense-PACR 20.0 20.0 56.6 78.0 26.5 38.8 40.0 ;5 »
+ Dense-PACR with chunk 2 13.3 20.0 56.6 80.8 26.1 36.4 39.7 2.9
+ Dense-PACR with chunk 4 20.0 16.7 52.8 78.6 26.8 374 38.7 119

I CHUNK-LEVEL PACR EXPERIMENT

As discussed in Section[7.3] a natural concern with PACR is the computational overhead incurred by
calculating C}, at every reasoning step, which requires additional forward passes during the rollout
phase. To mitigate this, we investigated a Chunk-Level PACR strategy, where adjacent reasoning
steps are aggregated into larger chunks, and the reward is computed only at the end of each chunk
(i.e., every k steps). This linearly reduces the number of required forward passes by a factor of k.

Table[7] presents the results of this ablation on the R1-Distill-Qwen-1.5B model. We observe a clear
trade-off between signal density and computational efficiency. Specifically, aggregating every two
steps (k = 2) results in an average accuracy of 39.7%. This performance is effectively on-par with
the fully dense baseline (Dense-PACR, 40.0%), showing only a marginal decline while halving the
reward computation cost. Increasing the chunk size further to £ = 4 leads to a slightly larger drop
to 38.7%, likely due to the dilution of the training signal over longer intervals. However, critically,
this performance remains significantly higher than the standard Dr.GRPO baseline (36.8%). This
indicates that PACR retains its efficacy even with coarser step granularity, offering a practical
trade-off between computational cost and signal density.
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