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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has significantly im-
proved LLM reasoning, but its sparse, outcome-based reward provides no guidance
for intermediate steps, slowing exploration. We propose Progressively Ascending
Confidence Reward (PACR), a dense, model-intrinsic reward computed directly
from the model’s evolving belief in the correct answer. PACR encodes the in-
ductive bias that, along a well-formed reasoning trajectory, the probability of the
ground-truth answer should have a generally ascending trend. We provide em-
pirical and theoretical analysis validating that such an inductive bias constrains
the exploration search space to regions richer in logically sound reasoning. We
demonstrate that PACR accelerates exploration, reaches reward saturation with
fewer trajectories, and yields improvements on multiple benchmarks. Our results
suggest that dense, model-intrinsic shaping signals can make RLVR training more
effective and reliable. Code will be released.

1 INTRODUCTION
Final Answer %t

Pre-trained large language models (LLMs) ex- l . Jeasoning step

hibit strong performance on complex, multi- ] V@ o
step reasoning tasks (Comanici et al.l 2025;
Yang et al. [2025aj [Team, 2025). Reinforce-
ment Learning with Verifiable Rewards (RLVR)
has emerged as a leading approach for further
improving such capabilities, using a program-
matically checkable terminal metric (e.g., exact-
match on the final answer) as the reward (Shao
et al.l 2024b}; |Guo et al., [2025). While effec-
tive, the standard RLVR formulation supplies Figure 1: Stepwise confidence growth, For a
a sparse terminal accuracy signal, offering no  question ¢, a well-formed sequence of reasoning
guidance for intermediate steps and thus exac- steps h1, ..., k) should increase the model’s prob-
erbating credit assignment. Alternative process- ability of the ground-truth answer Yy across steps.
based supervision employs external reward mod-

els to score intermediate reasoning, but is costly to train, data-hungry, and prone to misalignment
(Cui et al., 2025} |Cheng et al., [2025).
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This work asks whether we can obtain stepwise supervision directly from the model. Psycholinguistic
work shows that people interpret language incrementally, updating expectations with each word; as
context accumulates, uncertainty falls and the correct interpretation becomes more likely (Hale, |2001;
Levyl [2008). By the same logic, in tasks with a verifiable final answer, a correct intermediate step
should typically raise the model’s probability of the ground-truth answer. Concretely, given a question
¢, a reasoning prefix H<y,, and ground truth Yy, we track the model’s confidence p(Yy; | ¢, H<k)
and expect a general upward trend over steps (Figure/[I)).

Guided by this premise, we introduce the Progressively Ascending Confidence Reward (PACR),
a dense, model-intrinsic signal that converts confidence growth into stepwise supervision for LLM
reasoning during reinforcement learning. During training, as the model produces a sequence of
reasoning steps for a question with a verifiable answer, we evaluate at each step the log-probability
assigned to the ground-truth answer and reward any positive change, effectively encouraging a consis-
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tently upward trend in confidence. Because PACR is computed from the model’s own probabilities, it
requires no external reward model and is available at every step, improving credit assignment and
steering search toward faithful trajectories. We pair PACR with the standard RLVR terminal accuracy
reward so the objective remains anchored to verifiable correctness while the process signal shapes the
reasoning path. In detail, our contributions can be summarized as follows:

 Empirical Validation of an Inductive Bias (Section [d.I). We provide extensive observational
evidence that ground-truth confidence growth acts as a powerful inductive bias. Our analyses on
open-source LLMs reveal three key findings: (1) a consistent confidence ascent strongly correlates
with final answer correctness; (2) among correct answers, logically coherent reasoning paths exhibit
an even more consistent ascent than spurious ones; and (3) the magnitude of the confidence gain
effectively pinpoints pivotal reasoning steps.

* Theoretical Justification (Section [4.2] and [5). We provide a theoretical foundation for using
confidence growth as a process reward. We prove that a reasoning step from an idealized oracle
policy will, on average, increase or maintain the model’s confidence in the ground truth, validating it
as a strong inductive bias. Building on this, we formalize the Progressively Ascending Confidence
Reward (PACR) and introduce two concrete methods for its implementation: Sparse-PACR for
trajectory-level rewards and Dense-PACR for step-wise rewards.

+ Experimental Results (Section[7). Across multiple reasoning benchmarks, augmenting RLVR
with our PACR methods improves training dynamics and final performance. Our approach accel-
erates exploration and ultimately attains a higher, more consistent final score than the baseline,
demonstrating a more effective and reliable training process.

2 RELATED WORK

Outcome-based RL for LLM Reasoning Reinforcement Learning (RL) is increasingly used
to fine-tune Large Language Models (LLMs). This is done not only to align models with human
preferences via Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., [2022; L1
et al., [2024b; [Bai et al., 2022)) but also to enhance their reasoning abilities for complex problem-
solving (Kumar et al.). To improve these reasoning capabilities, a recent prominent approach is
Reinforcement Learning with Verifiable Reward (RLVR) (Guo et al., 2025} [Yang et al., [2024; |Shao
et al.,[2024a), which uses an outcome-based reward instead of a proxy reward model. For example,
a reward of 1 is assigned for a correct answer and O (or -1) for an incorrect one. Then, the model
generates multiple trajectories for a single problem. The reward for each trajectory is then compared
against the average reward across all samples in the group, and this relative reward is used as an
advantage to train the model. This outcome-based reward system is widely explored (Liu et al.,
2025 Yu et al., [2025; Hu et al.| 2025} [Zeng et al., 2025) because it is easily scalable, and mitigates
concerns about reward hacking by eliminating the need for a separate reward model (Guo et al.,
2025). However, this approach has a significant limitation for complex reasoning tasks that require
generating a long thought process (Zhang et al.l [2025). In such cases, relying solely on the final
outcome provides a sparse and noisy reward signal.

Dense Reward for LLMs Finetuning with RL.  To overcome the limitations of holistic, trajectory-
level sparse rewards, various approaches for providing dense rewards have been explored. In RLHF,
for instance, approaches include training an external reward model to assign token-level rewards
using synthesized data (Yoon et al., 2024), utilizing a more mature external model as the reward
model (Cao et al.| 2024} [Wu et al.| 2023)), and use implicit reward signal from reward model (Chan
et al.,|2024). Similarly, direct alignment algorithms (e.g., DPO (Rafailov et al., 2023))) have been
adapted to provide dense rewards by re-framing DPO’s implicit reward at a token level (Zeng et al.;
Zhu et al.f;|Zhong et al.f Rafailov et al.) or by selectively using specific tokens for the reward signal
(Yoon et al.; |Liu et al.). For training a reasoning LLM with RL, previous approaches include training
a Process Reward Model (PRM) for process-level rewards (Li & Lil 2025; |Cheng et al.| [2025]; |[Zhang
et al.| 2025)), or defining a DPO-like implicit reward at the token level (Cui et al., [2025]; [Yuan et al.|
2024). However, these approaches typically require additional models, such as a reward model or
a reference model, to generate the reward signal. In contrast, our work eliminates the need for any
additional models. We instead use the current policy model itself to generate a dense reward signal
that enhances reasoning capabilities.
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3 BACKGROUND AND PROBLEM SETUP

This section introduces the notation for reasoning trajectories, how we segment and evaluate stepwise
confidence in the ground-truth answer, and the RL objective we use in training.

Reasoning Trajectories and Notation. Given a question g, a policy 7y generates a sequence of
reasoning steps H = (hq, ..., hr) and a final answer Y. Let Y, denote the verifiable ground-truth
answer. We write H<j, = (hq, ..., hy) for the reasoning steps up to step k. We analyze and shape
the reasoning process by tracking how the model’s probability of Y, evolves with the prefix H<y.

Segmenting the Reasoning Process and Stepwise Ground-truth Confidence. Similar to|Yang
et al.| (2025b), we segment each generated reasoning trace into discrete steps {hy}7_, using a
simple, model-agnostic rule: start a new step at a newline (‘\n’) or at a period followed by a space
(‘. 7); fragments shorter than five tokens are merged with the preceding step to avoid overly fine
splits. To measure ground-truth—anchored confidence at step k, we standardize the answer format by
appending a short prefix ygt (e.g., ‘So the final answer is \boxed{’) and evaluate the

model’s probability of the ground-truth answer Yy = (yét7 ey yth) under the current prefix H<y,.
Writing Yy = (yét, cee yth), we measure the ground-truth confidence at step k as
L
log p(Yorlg, H<r) = > logpa(yly | @, H<kr vl vai)» )
=1

where ygil are preceding answer tokens. This measures the model’s confidence in the ground truth
answer at any given stage of its reasoning steps.

Group Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024b) estimates advantages
by comparing returns within a group of N samples rather than using a learned value function. For a
given question g (with verifiable answer Yj), the behavior policy mg_,, generates N trajectories

GO O = (E0, ¥0) @

where H(® = (hgi)7 ey h%)) are the reasoning steps, 7; is the number of steps for i-th trajectory

and Y@ is the predicted answer for i-th trajectory.

For each sampled trajectory ¢, we compare the predicted answer Y (@) with the ground truth Y and

assign a binary terminal accuracy reward:

RO — 1, is,equivalem:(f/(i)7 Ygt) 3)
0, otherwise.

Here i s_equivalent performs task-specific normalization (e.g., stripping whitespace/punctuation,
handling LaTeX boxing, case folding, and numeric tolerances) before exact match. The group-relative
advantage for trajectory ¢ is computed by centering (and optionally standardizing) its reward within
the cohort of N samples:

R® — mean({RMINY )

A L
std({RO}N )

“

Similar to PPO (Schulman et al.,[2017), GRPO adopts a clipping with KL penalty:

Joreo (0) =

1 1 . mo(t(D | q) @ 5 mo (7 | q)
E — ——— | min ( —————=(0)A", clip( —————=,1—¢,1+¢)A; ) — BDkL(mg||mrer R
(1 ¥p~D {N 2 ( (o 197 (@ 10 )4) (o)

{(rDy~mg  Cla)

5)
where D is the training dataset and 7 is a reference policy. In our work, we follow the Dr. GRPO
(Liu et al.l 2025)) formulation, a bias-mitigated variant of GRPO. This approach modifies the standard
GRPO algorithm by discarding the standard deviation from the advantage calculation and the length
normalization from the loss function (the terms shown in green in Eq. ] and Eq. [5).
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4 IS GROUND-TRUTH CONFIDENCE GROWTH A USEFUL INDUCTIVE BIAS?

In this section, we present both empirical observations and a theoretical justification to assess whether
ground-truth confidence growth constitutes a useful inductive bias for training LLM reasoning.

Ground-truth Confidence Growth. We first quantify confidence growth by defining the stepwise
confidence gain, CY, as the change in the log-probability of the ground-truth answer induced by the
addition of reasoning step hy:

Cr = logmg(Yet | ¢, H<ie) — logmo(Yge | q, Her), (6)

where H<y, = (h1,...,h;) and Hep, = (h1,...,hg—1). For k = 1, H; is the empty prefix.
Intuitively, C'x > 0 indicates that step i, makes the ground truth more probable, whereas Cj, < 0

indicates the opposite. (When indexing trajectories, we write C,(j) .) For brevity, we will hereafter use

“confidence growth”

4.1

Observation 1: Consistent Confidence Ascent Corre-
lates with Final Correctness. To empirically validate
the connection between ground-truth confidence growth
and final outcome accuracy, we analyzed trajectories
generated by several strong open-source LLMs, such as
Qwen2.5-Math.7B and GPT-OSS-20B
2025)). Specifically, we prompted the models to
generate a single reasoning trajectory (7) for each ques-
tion in a large set of reasoning tasks. This entire collec-
tion of trajectories was then partitioned into two distinct
sets: the set of outcome-correct trajectores, Teorect, Where
the final answer matched the ground truth, and the set
of outcome-incorrect trajectories, Tipcorrect- We then calcu-
lated the consistency of confidence growth, defined as the
proportion of positive-gain steps for each trajectory (i.e.,
+ Zle I(Cy > 0), where I is the indicator function).
Our findings reveal a clear distinction between the two
groups. As illustrated in Figure |Z|, trajectories in 7correc
exhibited a higher proportion of steps with positive con-
fidence gain compared to trajectories in Ticorrect- 1hIS

and “ground-truth confidence growth”

interchangeably.

OBSERVING GROUND-TRUTH CONFIDENCE GROWTH ON REASONING MODELS
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Figure 2: Consistency of confidence
growth correlates with correctness.
Outcome-correct trajectories (7correct) €X-
hibit a higher proportion of steps with
positive confidence gain (C), > 0) com-
pared to incorrect trajectories (Tincorrect)-

indicates that reasoning paths that result in a correct answer tend to be characterized by a more
consistent, progressive increase in the model’s belief in the ground-truth answer.

Observation 2: Coherent Reasoning Paths Exhibit
More Consistent Confidence Ascent. While Observa-
tion 1 established a link between confidence growth and
correct outcomes, we next sought to determine if this
signal was also sensitive to the quality of the reasoning
process. A trajectory can arrive at the correct answer
through flawed or spurious steps, and a robust process-
level signal should be able to distinguish such cases. To
investigate this, we focused exclusively on the set 7correc-
We employed a powerful external LLM evaluator (GPT-
5) to further partition this set into two subgroups: those
with logically coherent reasoning 7eoperene and those with
spurious reasoning 7spurious, Where the correct answer was
reached via flawed logic or irrelevant steps (see Appendix

for detailed evaluation prompts). As shown in Figure
%Ihe average proportion of positive-gain steps was sig-
nificantly higher for 7coheren: compared to 7¢puious. This

I==="Average: 0572

0
02 04 0.6 08
Consistency of Confidence Growth

Figure 3: Consistency of confidence
growth reflects reasoning quality. Co-
herent reasoning paths (7coherent) Show
a more consistent confidence ascent
(higher proportion of C'j > 0 steps) than
spurious paths (7s,urious ), ven when both
yield the correct final answer.

demonstrates that while both groups reached the correct final answer, the model’s confidence grew
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Question: Compute a + b + ¢, given that a, b, and ¢ are the roots of % + 5x% = 6x — 24.
Reasoning:
we need £0 Solve equation: §+ 5x% = 6x — 24. )@ For eubic qx® + bx? + cx +d = 0, sum of vooks=—h/a. ]
MultiRly by x: 1+ 5x° = 6x? — 24 were q = 5,b = 6,
Bring all terms: 5x3 — 632 + 24x + 1 = 0. So sum = —(—6)/5 = 6/57 Wait Polynowial: 5x3 — 6x2 + 24x — 1 = 0.
C4: 0.00 So cubic polynowial: 5x3 — 6x2 + 24x + 1 = 0. 0 So coefficient of x2 is -6,
Roots a, b, c. Sum of voots = —(—6)/5 = 6/5.
we veed sum g + b + C. So answer 6/5.

Figure 4: Qualitative example of a pivotal step. Among the reasoning steps, a critical insight at
step hy (the introduction of Vieta’s formulas for a cubic equation) results in a large, distinct spike in
the ground-truth confidence gain (C7 = +4.83). This is substantially larger than the gains from more
routine algebraic steps. Further qualitative examples are provided in Appendix@

more consistently when following a logically sound path. This finding suggests that confidence ascent
is not merely an indicator of the final outcome but also a signal reflecting the internal quality of the
reasoning trace itself.

Observation 3: Large Stepwise Confidence Gains Pin- (B correct [ incorrect |

point Pivotal Reasoning Steps. Beyond the overall | ‘ ‘
trend of confidence, we investigated whether the mag- Qwen25-MATH-78

nitude of the stepwise gain, Cj, correlates with the im- [

portance of individual reasoning steps. Qualitatively, we GPT-0S5-208

observe that large, positive spikes in C often coincide  Figure 5: Quantitative validation of
with pivotal moments in the reasoning process, such as  gtep importance. In a pairwise com-
the application of a key theorem or a critical insight. For  parison, an LLM evaluator judged the

instance, as illustrated in Figure[] a step introducing the step with the higher confidence gain
sum of roots formula for a cubic equation yields a substan- (¢, > C}) as more critical with a win

tially larger confidence gain compared to adjacent steps  rate significantly above chance, confirm-
involving routine algebraic manipulation. To validate this  jng that gain magnitude correlates with
rigorously, we conducted a quantitative pairwise compari- - gtep jmportance.

son. For trajectories in Teopect, Wwe randomly sampled pairs

of reasoning steps, h; and h;, under the condition that C; > C;. We then prompted an LLM
evaluator (GPT-5) to judge which of the two steps was more critical for reaching the final solution
(see Appendix [A.6| for detailed evaluation prompts). The step with the higher confidence gain, h;,
was frequently identified as more critical, achieving a win rate significantly above chance (Figure [5).
This finding suggests that the magnitude of the confidence gain is not arbitrary; it is a meaningful
signal that effectively pinpoints influential steps within a reasoning chain. This provides a strong
rationale for using it as a training objective, as maximizing Cy, would directly incentivize the model
to generate these critical, problem-solving actions.

4.2 THEORETICAL JUSTIFICATION FOR GROUND-TRUTH CONFIDENCE GROWTH AS A
PROCESS REWARD

Building on our empirical findings, we now provide a theoretical foundation for using confidence
growth as a process reward. We prove that a reasoning step sampled from an ideal “oracle” policy
(one that generates steps consistent with the ground truth, i.e., faithful steps) will, on average, increase
or maintain the model’s confidence in that ground truth.

The Oracle Policy Assumption Our theoretical analysis is built on the following assumption: a
capable LLM, when conditioned on a correct final answer, is able to generate a faithful and logically
sound reasoning path. This assumption is well-founded, as modern LLMs excel at rationalization;
their training enables them to construct coherent explanations that bridge a given question and
its answer. Based on this premise, we can construct an idealized model for analysis, which we
term an oracle policy Torcle. This policy is the model’s own generative process given access to the
ground-truth answer Yy, sampling the next step h, from the distribution g (hy|q, Yo, H<k).
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Proposition 1. Let Cy be the stepwise confidence gain at step k. The expected value of Cy; is
non-negative when the expectation is taken over reasoning steps hy, sampled from the oracle policy.
Formally:

Ep o (-1g.Yee . Hor) [Ck] = 0.

Proof. We begin with the definition of the ground-truth confidence growth C},, as defined in Eq. [6}

Cy = logmg(Ygt|q, H<i) — log me(Yee|q, H<y)
7o (Ygilq, hie, Hep)
WO(Ygt‘qu<k) .

Next, we apply Bayes’ rule to the numerator, g (Yys|q, i, Hep):

7o (hilq, Yoo, Hr)mo(Yer|q, Hek)
7o (hrlg, Her)

Substituting this back into the equation for Cl, the my(Yy|q, H<y) terms cancel, yielding:

7-(-9(hk|q7 }/gh H<k)
mo(hilg, Her)

Now, we take the expectation of Cj, with respect to the oracle policy, my(+|q, Yat, H<):

7o (hilq, Yer, Hcr)
Epy o (-1q, Yo Her) [Ck] = %};W(i(hk‘qugth<k)10g o (|, Hor)

= Dkr, (We('|q7ygt7H<k;) I 7T9('|Q7H<k;))-

= log

7T9(Ygt|qa hk7 H<k:) =

Cr =log

This expression is the Kullback-Leibler (KL) divergence between the probability distribution over the
next reasoning step conditioned on the ground truth and the distribution without it. By the property
of non-negativity of KL divergence, the proposition holds:

Dgr(|[)>0 .. E[Ck >0
O

Implication. This proof demonstrates that the expected confidence gain under an oracle policy is
equivalent to the KL divergence between the ground-truth-conditioned policy and the standard policy.
Since KL divergence is always non-negative, this provides the following theoretical guarantee: on
average, a reasoning step consistent with the correct answer (i.e., faithful reasoning) will not decrease
the model’s confidence. This result validates the use of confidence growth as a strong inductive
bias; encouraging the model to explore reasoning paths with non-decreasing confidence effectively
constrains the search space to regions richer in logically sound reasoning.

5 METHOD: PROGRESSIVELY ASCENDING CONFIDENCE REWARD (PACR)

Based on our findings in Section |4, we now formalize how to incorporate the principle of ascending
ground-truth confidence into the GRPO framework. To do this, we introduce the Progressively
Ascending Confidence Reward (PACR), a procedural reward signal designed to complement the
final outcome-based reward. We propose two variants: (1) , which applies a holistic,
trajectory-level reward based on the consistency of confidence growth, and (2) , which
provides a fine-grained, step-wise reward based on the magnitude of each confidence change.

In the Sparse setting, we compute a single procedural reward for an entire trajectory

based on the consistency of its confidence growth. This reward, C’S(ga)lrse, is the proportion of reasoning
steps that produce a positive confidence gain. We calculate it using an indicator function, I(-):

T;
Q= = 1(c > 0), )
b k=1
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Sampling N Trajectories for Group Relative Comparison

(a) Outcome-based Reward

Reasoning

Outcome

if Y =Yg
otherwise

R®

()
GRPO = A

N
o
Grpo = Rgrpo — mean(iR GRPO 1)

1,
0,

@ 00N s M) \}§>

2 hPhP ... nP h(Tzz) <answer><\answer>

L Advantage Formulation for

v
h -

- h(N)h(N)h(N) h(N) <answer> <\answer> o 2?:111 (C,ﬁ’)) 20 RO .
- Coparse = ———— o-pack = 1" Rkpo + 22 Clparse
Tl
A o) O] _ mean({ }N )
(b) Reasoning-based Reward sp-PACR ~ "'sp-PACR Sp-PACRJ,_,

Advantage Formulation with Sparse-PACR

c® 7

0] IR
kadense - "“"([Gk dense} )

logp(¥ gelq, HY)
TN

cy
(0] kD 4O - j=1
c = logp gth Hq) G dense = Z IO Aense = ([G“) }N ) @ }N )
2 ] = max min
ol e —logp(Yyelg, HE) > dense J;_, edense
(@) (i) (@)
q h0 KD hD AP W0, hO A an-pacr = 41 Acreo T 42 " Ak dense
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Figure 6: Overview of the PACR method and its integration with GRPO. Standard GRPO begins
by sampling a group of N reasoning trajectories for a given question. (a) A standard outcome-based
reward (RGI){PO) is calculated based on the correctness of the final answer. (b) Our proposed reasoning-
based reward is derived from the ground-truth confidence growth (Ckl)) at each step. This signal is
integrated into the final advantage calculation in two ways: Sparse-PACR uses the consistency of

confidence growth to compute a single reward for the entire trajectory, while uses the
magnitude of each step’s gain to compute a fine-grained, per-step advantage.

where C’,ii) is the confidence gain in Eq.@ The final reward for trajectory 1, RSEPACR’ is a weighted

combination of the standard outcome-based reward, Rgl)zpo’ and our sparse procedural reward:

(i) o

RSP)PACR =Ar- RGRPO + A2 sparse *

®)

This combined reward is then used to calculate the trajectory’s advantage, AggPACR, within the GRPO
framework by centering it against the group average:

(@) — p®
Asp-PACR = Ri,'pack — mean({R sp- PACR}] 1) (€))
The Dense setting provides a more granular, step-wise reward signal. At each
reasoning step k in trajectory i, we use the ground-truth conﬁdence gain, C (l), as an immediate
reward. From this, we compute the discounted return for that step, G\
from that point forward:

k,dense’ by summing the rewards

T;

ense Z - kc(

where + is a discount factor. To create a stable, step-wise advantage signal, AW k. dense> W€ normalize
these returns across the group at each step k. Specifically, we use Min-Max scahng to map the returns
to a [0, 1] range. This creates a purely positive signal that only incentivizes confidence growth without
penalizing steps that do not, a design choice we validate in our ablations (Section [7.3). To handle

trajectories of varying lengths, the discounted return ch ﬂeme is treated as zero for any step & that

does not exist in trajectory <. The resulting advantage for a step k in trajectory ¢ is then:

(10)

Gk dense - man ({Gk dense S j= 1)
max; ({Gk dense J j= 1) - mlnj({G(]) P )

k,denseJ j=1
Finally, the total advantage at each step, A,(C )dn_PACR, is the weighted sum of the trajectory-level GRPO
advantage and our dense, step-wise advantage:

=A1- Ag])(PO + A2 -

(0 _

k,dense —

(11)

Al(cl zin PACR Ag dense’ ( 1 2)

where A((3RPO = R(G})zpo - mean({R(GRPO} 1)- This final advantage is then used to update the policy.
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6 EXPERIMENTAL SETUP

Models and Baselines. We experiment with three open-source LLMs: Qwen2.5-Math-1.5B,
Qwen2.5-Math-7B (Yang et al., [2024)), and Qwen3-4 (Yang et al., [2025a). Our baseline for
all experiments is Dr.GRPO (Liu et al., [2025), a bias-mitigated version of GRPO (Shao et al., 2024b)),
which we implement using the OAT framework (Liu et al.,|2024). We compare this baseline against
our two proposed methods, Sparse-PACR and Dense-PACR.

Datasets and Evaluation. For training, we use the MATH dataset (Hendrycks et al.). Following
prior work (Liu et al., |2025), we use the full dataset for the 1.5B model and filter for the more
challenging levels (3-5) for the 4B and 7B models. To evaluate performance, we test our models
on five diverse mathematical reasoning benchmarks: MATHS500 (Hendrycks et al.), Minerva-Math
(Lewkowycz et al.l 2022)), OlympiadBench (He et al., [2024), AIME 2024, and AMC 2023 (Li et al.,
2024a). Final answers are programmatically checked for correctness using the Math-Verify (Kydlicekl
2025)) library. All results are reported as pass@ 1 using greedy decoding (temperature of 0).

Training Details. For each problem, we generate a group of 8 responses using sampling with a
temperature of 1.0. We report the average results across three runs with different random seeds for all
experiments. All models were trained on a single node with 8§ x NVIDIA H100 80GB GPUs. Further
details on hyperparameters, such as learning rate and batch size, are provided in Appendix [A.5]

7 RESULTS AND ABLATIONS
7.1 EXPERIMENTAL RESULT

Table 1: Results on reasoning benchmarks. We report pass@1 accuracy across five datasets. Both
Sparse-PACR and Dense-PACR consistently outperform the strong Dr.GRPO baseline across all
model sizes. { is marked for the score reproduced and other baseline scores are from |Liu et al.[(2025).
The colored numbers indicate the absolute performance change relative to the Dr.GRPO baseline,
with green for improvements and red for degradations.

Base model + Method AIME24 AMC MATH500 Minerva OlympiadBench Average
Qwen2.5-Math-1.5B 20.0 32.5 33.0 12.5 22.8 242
R1-Distill-Qwen-1.5B @ 3k 25 21.7 522 16.3 17.3 22.0
Qwen2.5-Math-1.5B-Instruct 10.0 48.2 74.2 26.5 40.2 39.8
Qwen2.5-Math-1.5B + Dr.GRPO } 133 47.0 76.8 323 39.0 41.7
" Qwen2.5-Math-1.5B + Sparse-PACR |~ 20.0 .., ®_4 ., 714, 2945, 3785, || 426,05
Qwen2.5-Math-1.5B + Dense-PACR 23.3 110.0 494 . 774 0.6 317 5.6 39.0 6.0 442 .,
Qwen2.5-Math-7B 16.7 38.6 50.6 9.9 16.6 26.5
SimpleRL-Zero-7B 26.7 60.2 78.2 27.6 40.3 46.6
PRIME-Zero-7B 16.7 62.7 83.8 36.0 40.9 48.0
OpenReasoner-Zero-7B @ 3k 13.3 47.0 79.2 31.6 44.0 43.0
R1-Distill-Qwen-7B @ 3k 10.0 26.2 60.1 23.0 23.1 28.5
Qwen2.5-Math-7B-Instruct 16.7 53.0 83.6 29.8 42.7 45.1
Qwen2.5-Math-7B + Dr.GRPO 30.0 56.6 81.8 34.6 45.2 49.6
" Qwen2.5-Math-7B + Sparse-PACR ~ | ~ 367 .. 5541, 86, 346,, ¢ 456 . || 510015
Qwen2.5-Math-7B + Dense-PACR 43.3 13, 56.1 .5 81.9 ... 35.6 11.0 46.1 . o 52.6
Qwen3-4B 13.3 32.5 40.2 9.19 394 26.9
Qwen3-4B + Dr.GRPO { 40.0 63.8 88.4 33.8 46.8 54.6
Qwen3-4B + Sparse-PACR 33369 67.5.. 862, ., 35.3,1. 544 .. 55.340.
Qwen3-4B + Dense-PACR 46.7 . - 634 . 86.8 | ¢ 36.0.. - 55.0... 57.6. -

Table ] presents the quantitative results on various math benchmarks. For the Qwen2.5-series, we also
include the instruct models at the sample scale and R1-Distill models for comparison by following
(L1u et al.| 2025). Our proposed reward, PACR, demonstrates significant improvements over the
outcome-based reward baseline (+Dr.GRPO) in both its Sparse and Dense setting. This shows that
our core method provides a positive inductive bias for improving the reasoning skills of language
models.

While the sparse trajectory-level reward, Sparse-PACR, is effective on its own, we observe that
Dense-PACR, which provides a more fine-grained reward, consistently achieves better performance.
This highlights that enriching the training process with a dense reward signal allows the model to
learn from more detailed feedback, leading to further gains in its reasoning capabilities.

"For the Qwen3-4B model, we set ‘enable_thinking=False’ to disable its built-in chain-of-thought capabilities,
allowing for a direct comparison of how our method versus standard GRPO teaches this capability.
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7.2 TRAINING CURVE: PACR ACCELERATES EXPLORATION AND IMPROVES CONVERGENCE
Figure[J]illustrates the training dynam- Fat i N l
ics, plotting the average pass@1 ac-
curacy over training steps (left) and M
the corresponding rate of accuracy

improvement (right). The right plot
highlights that both PACR variants |— DroRPO
have a significantly higher rate of im- 4, |~ Serse-PACR|
provement Compared to the Dr'GRPO 0 200 400 - 7671]707 — 7870[; — ‘IDUD 0 100 200 300 400
baseline, especially during the critical Steps Steps

early exploration phase of RL training. Fjgyre 7: Training dynamics for Qwen2.5-Math-1.5B. Av-
As shown on the left, this accelerated  eraoe pass@1 accuracy (left) and rate of accuracy improve-
learning ultimately allows the PACR  pen (right) during training. PACR methods show a faster
methods to converge to a higher final  jjtia] rate of improvement, accelerating exploration and con-
accuracy. verging to a higher final performance.
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7.3 ANALYSIS ON ADVANTAGE FORMULATION: IMPACT OF PENALIZING INTERMEDIATE

STEPS
In this section, we analyze the impact of the advantage oy ]
formulation in our Dense-PACR setting. A crucial design ] /v-«/\/\'\-/_
choice is how to normalize the raw discounted returns % 05|
(G,(;zlense) into a stable advantage signal. We compare our 5
Min-Max normalization against a widely used Leave-One- <4,
Out (LOO) baseline (Ahmadian et al., 2024 [Cui et al.| )] e
2025). | PACR w! - aurs)
The key difference is that the LOO baseline centers the re- 0 200 400 600
turns, which can assign negative advantages that penalize Steps
steps with below-average confidence gains: Figure 8: Advantage Normalization.
Comparison of Min-Max normalization
@  _ @) (3) N One. .
Akz,loo _ k:l,dense ~ mean( {ij,dense N ). (13) and a Leave-One-Out (LOO) baseline

for Dense-PACR.

In contrast, our Min-Max normalization (Eq. scales returns to a [0, 1] range, creating a purely
positive signal for the reasoning process that only rewards confidence growth.

Figure|[8]shows this design choice has a clear impact on the training dynamics. The penalizing nature
of the LOO baseline initially accelerates learning by aggressively pruning suboptimal steps, but this
leads to premature convergence and a performance plateau. Conversely, our non-penalizing Min-Max
approach encourages more sustained exploration, ultimately converging to a higher final accuracy.
With our method, process-level penalization is avoided; a negative training signal is only applied by
the main GRPO reward when the model produces a definitively incorrect final answer.

8 CONCLUSION

In this work, we addressed the limitations of sparse, outcome-based rewards in RLVR by introducing
the Progressively Ascending Confidence Reward (PACR), a dense, model-intrinsic signal derived from
the model’s evolving belief in the ground-truth answer. Through a series of empirical observations and
a formal theoretical proof, we validated that confidence growth serves as a powerful inductive bias,
effectively constraining the search space to regions richer in logically sound and faithful reasoning
paths. Our experiments demonstrated that augmenting GRPO with PACR not only accelerates
training but also converges to a higher final performance across multiple reasoning benchmarks,
with the fine-grained Dense-PACR variant proving most effective. Ultimately, our work shows that
informative, dense rewards for complex reasoning can be effectively extracted from the internal
dynamics of the learning policy itself, suggesting a promising direction for creating more effective
and reliable methods for fine-tuning the reasoning capabilities of large language models.
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A APPENDIX

A.1 LIMITATIONS AND FUTURE WORK

While our study demonstrates that Progressively Ascending Confidence Reward (PACR) provides a
powerful inductive bias for mathematical reasoning, a limitation is that our work is primarily confined
to language models. Therefore, a promising direction for future work is to investigate the efficacy of
the proposed PACR framework in multimodal reasoning tasks, such as visual math problems, using
Vision Language Models (VLMs).

A.2 BROADER IMPACT

This work introduces a new inductive bias designed to improve the reasoning capabilities of Large
Language Models. By leveraging the model’s intrinsic confidence dynamics, our method provides
fine-grained, step-level supervision without the significant overhead of training separate reward
models or requiring manual data annotation. By eliminating the need for external process-reward
models or human-annotated datasets, this research significantly lowers the computational and financial
barriers to entry for training sophisticated reasoning agents.

A.3 THE USE OF LLMS

We used LLMs solely for light editing such as correcting grammatical errors and polishing some
words. They did not contribute to research ideation, experiments, analysis, or substantive writing. We
have reviewed all Al-assisted edits and take full responsibility for the final content of this paper.

A.4 ETHIC STATEMENT

This research adheres to the highest standards of academic integrity. All existing work is appropriately
cited, and this paper does not violate the use of others’ work without reference. The experiments
conducted do not introduce new datasets or utilize any sensitive data related to demographic or
identity characteristics.

A.5 TRAINING DETAILS

We present the details of our training configuration as follows. We use a total batch size of 128 and
perform one PPO epoch per rollout. The per-device batch size is set to 4 for Qwen2.5-Math-1.5B,
and 2 for both Qwen2.5-Math-7B and Qwen3-4B. During rollouts, we use a sampling temperature of
1.0 and generate 8 rollouts per prompt. For optimization, we use the AdamW optimizer (Loshchilov
& Hutter, [2017) with a constant learning rate of 1e-6, without warmup or scheduler. The maximum
prompt and generation lengths are set to 1024 and 3000 tokens, respectively. For the KL penalty, we
set the coefficient § = 0, effectively deactivating it during training. For the A1, and 3, we search in
the range of [1, 0.99, 0.9, 0.8, 0.5] and [0.01, 0.1, 0.2, 0.5], and for the both sparse and dense setting,
A1 and Ao are set to 0.9, and 0.1, respectively

A.6 PROMPT USED FOR OBSERVATION

To analyze the coherence of the reasoning paths (Observation 2) and the correlation between the
large stepwise confidence gain and the pivotal reasoning step (Observation 3) in Section @.1] we
utilize GPT-5 as an evaluator. The prompts used to evaluate the reasoning steps for these respective
observations are shown in Figures[9]and [I0]

A.7 EXAMPLES FOR OBSERVATION 3

This section provides additional qualitative examples that support the central claim of Observation 3.
As illustrated by the reasoning trajectories from Qwen2.5-Math-7B (Figure and GPT-OSS-20B
(Figure[12] [13]and [I4), large positive spikes in the stepwise confidence gain C}; consistently align
with pivotal problem-solving steps, such as applying a key formula or executing a critical calculation.
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USER

You are a strict verifier. Given a question, and a proposed thinking process,
assign a LOGIC score from 0-5 for how logically valid the thinking is.

Scoring rubric (integers only):

5 = Fully sound: steps follow logically from the question; no gaps; math/symbol use correct.
4 = Mostly sound: one minor gap/assumption or small imprecision; overall valid.

3 = Mixed: at least one non-trivial gap or unjustified step; partially correct reasoning.

2 = Largely flawed: major gaps, speculative leaps, or misuse of evidence; little support.

1 = Almost entirely illogical: mostly wrong or incoherent reasoning.

0 = Nonsensical/contradictory or unrelated to the question.

Rules:

- Evaluate the thinking itself, not whether the final option is correct.

- Assume minor grammar issues are irrelevant.

- Do not penalize brevity if logically sufficient.

- Refer to visible evidence briefly, but DO NOT reveal your own chain-of-thought.

- Output JSON ONLY with fields: {{"justification": "<<=40 words>", "score": <0-5)}}.

Question: {question}
Proposed thinking:
{rationale}

Output a LOGIC score from 0-5 for how logically valid the thinking is.

Figure 9: Prompt used to evaluate reasoning quality for Observation 2.

USER
You are a PAIRWISE key-step judge.

Goal: Given a question, the full reasoning trajectory, and its predicted answer, decide which candidate step
(i or j) more causally increases the likelihood of arriving at the given predicted answer.

VALID_IDS = {valid_indices}

Inputs:

- Question: {question}

- Full reasoning trajectory (JSON array of objects {{id, text}}): {steps_json}
- Predicted answer: {predicted_answer}

- Compare: i = {i}, j = {3}

Decision rules:

- Judge only by causal contribution toward the *predicted* answer within the provided steps.

- Prefer the step that adds or applies a decisive constraint, calculation, elimination, or conclusion that moves
the reasoning closer to (or locks in) the predicted answer.

- Do not infer facts or use outside knowledge. Use VALID_IDS only.

Output (STRICT JSON; no extra text):
{C'winner™: *i" | " | "TIE'}

Figure 10: Prompt used to evaulate pairwise comparison for the impactful reasoning steps in
Observation 3.
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Let x® + 3x* — 4 = p; (X)p2 (%) ... pr(x), where each non-constant polynomial p;(x) is monic with

stion:
Qusses integer coefficients, and cannot be factored further over the integers. Compute p; (1) + p2(1) + - + pr(1).

Reasoning:

To solver the problem, we need to factor the polynowial (x8 + 3x% — 4) Wto ivreducible §actors
over the ntegers and then evaluate the Sum of the values of these factors at (x = 1),

0T Let's start by Sactoring the Polynownial.

(RN PA we can use 3 Substitution to wake the Polynowial easier to factov.

e et (y = x*).
SRR Then the Polynowial becowes (Y2 + 3y — 4).
We can §actor this quadratic polynowial as follows: yZ +3y—4=(y-D+ 4)]

Cy:+0.15

BT substituting back (y = x*), we get: x8 + 3x* — 4 = (x* — 1) (x* + 4).
Next, we wneed to factor (x* — 1) and (x* + 4) Surther.

The polynowial (x# — 1) can be factored as: x* — 1= (2 — D)(x%2+1) = (x — D(x + D% + 1).
NI IES The Polynowial (x'* + 4) can be §actoved using the Sophie Germain identity: xt+4= (xz +2x + 2)(x2 —2x+2).

These factors are all ivveducible over the tntegers.

Now, we heed £o evaluate each factor 3t (x = 1) and sum the vesults: p; (1) =1—-1=0,p,(1) =1+1=2,
Cor 0.00 o (1)=1241=2,p,()=12+2-1+2=5ps(1) =12 -2-1+2=1

(0 ULEL So, thesumis: 0+2+2+5+1=10.

Figure 11: Example trajectory from Qwen2.5-Math-7B for a polynomial factorization problem.
The model tackles the 8th-degree polynomial by reducing it to a quadratic form, then applying
systematic factorization to break it down into irreducible integer-coefficient components. The pivotal
moment occurs at step hg, where the model executes the core factorization. By successfully factoring
the simplified quadratic expression y? + 3y — 4 and subsequently substituting #* back in for ¥,
the model achieves the central algebraic decomposition of the original polynomial into two more
tractable factors (z* — 1 and 2* + 4). This step represents the main breakthrough required to solve
the problem, and the corresponding confidence gain (Cs = +1.08) indicates the model’s recognition
that the most significant hurdle in the factorization process has been overcome.

Question: If f(x) = ax* — bx? + x + 5 and f(—3) = 2, then what is the value of £(3)?
Reasoning:

we have polynowmial f(x) = ax* — bx% + x +5.
we know f(=3) = 2.
] we veed f(3).

C4:+0.12

we dow't know @, b.

But waybe Symmetry? Let's compute f(—3) expression: g - (—3)* — b - (=3)%2 + (=3) +5
=8la—9b—3+5=8la—9b+2.

Set equal to 2: 81a — 9b + 2 = 2 =>81la — 9b = 0 => divide 9: 9a—b=0=>b=9aA]

Now f(3)=a-3*—b-32+3+5=8la—9b +8.
Substitue b = 9a: 8la —9-(9a) + 8 =8la—8la+8 =8

So answer 8.

Figure 12: Example trajectory from GPT-OSS-20B for a polynomial symmetry problem.

The problem appears ostensibly unsolvable due to the unknown coefficients a and b. The critical
insight emerges across steps hs and hg, where the model leverages the inherent symmetry of
the function’s even-powered terms (ax*, —bx?) and utilizes the given condition f(—3) = 2. By
evaluating the expression for f(—3) and equating it to 2, the model uncovers the essential relationship
between the unknown coefficients (b = 9a). This discovery is the pivotal moment that unlocks the
entire problem, as it enables the cancellation of the unknown terms in the subsequent calculation of

f3).

15



Under review as a conference paper at ICLR 2026

Question: The sum of 27 consecutive positive integers is 37. What is their median?

Reasoning:

we weed £o §ind 27 comsecutive Positive integers whose sum is 37.

37 = 2187.

Suw of 27 consecutive Tntegers: i§ they ave g, a + 1,...,a + 26.
Swn=27a+ (0+ 1+ +26) = 27a + 22 = 274 + 351

(WS BV Because Sum of 0 £o 26 = g =351.

A0l se27a+ 351 = 2187

[BLRL) sove: 27a = 2187 — 351 = 1826, |

RN EE 1836/27 =727 - 68 = 1836. ]

G5 029 IS ERN’A
(TR UEE] So the numbers ave 68 to 44 Wnclusive.

Cyi1: 0.00 Median of 27 numwbers is the (4" number (Since 27 0dd).

Cyz: 0.00 Starting at 63, 14" vuwber is 63 + 13 = 81.

Cq3: 0.00 So wedian is g1,

Figure 13: Example trajectory from GPT-OSS-20B for a consecutive integer median problem.
The initial phase of this problem involves correctly establishing an algebraic equation for the sum
of the integers: 27a + 351 = 2187. The pivotal moment is a two-step process spanning h7 and hg.
In h7, the model transitions from algebraic formulation to the decisive computation to solve for the
first integer, a, by successfully isolating the term 27a. This is immediately followed by the critical
execution in hg, where the actual division is performed to find the explicit value of a. Securing
the value of a is the primary breakthrough, as it provides the key to determining all numbers in the
sequence and thus the median.

Kathy needs money for her trip to Europe. If she has 300 US dollars in the bank but wants to withdraw half of
it in British pounds and half of it in euros, how many more euros than pounds will she have? Assume 1 pound
=1.64 USD and 1 euro = 1.32 USD, and round to the nearest whole number.

Question:

Reasoning:

RSB E we need to compute: Kkathy has 300 USD.

She wants to withdvaw hal§ of it in British Pounds and hal§ in euros.
(EEE VAT So she withdraws (50 wovth of pounds, and (50 USD wovth of euros.
*C,,: SVAUKH convert £o awounts Tn each curvency: pounds = (50/1.64 = ? Euros = (50/132 = ? Thewn §ind differences euros - pounds. ]
Cs: +1.

E5 BVASH Round to nearest whole nuwber,

Let's cowmpute.

150/1.64 = 91.463414634146347 Let's comPute Precisely: .64 - 90 = 47,6, vewainder 2.4, 2.4/1.64 = (.4634. ]

(1L S0 914634 Pounds.

R (50/1.32 = 1B.63636363637 Let's compute: 132 - (13 = 14916, vewainder 0.34, 0.84/1.32 = 0.63636.

Cio: 0.00 So 1B.6364 euvos.
Cy1: 0.00 Difference: 13.6364 - 91.4634 = 22,1730,
C1z: 0.00 Round to wearest whole nuwber: 22,

C13: 0.00 So answer: 22 wove euros than pounds,

Figure 14: Example trajectory from GPT-OSS-20B for a currency exchange problem.

This reasoning trajectory features two pivotal moments. First, step hy serves as a critical planning
phase, where the model correctly formulates the computational roadmap required for the solution:
two currency conversions via division, followed by a subtraction. This demonstrates a comprehensive
understanding of the problem’s logic. The second, more significant pivotal moment occurs at the
execution phase in step h7, where the model accurately performs the first of the two required divisions.
Successfully clearing this key computational hurdle provides the model with high confidence (C'; =
+5.81) that its strategy is effective and the path to the final answer is now clear.
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