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Abstract

Recently, extensive research has been conducted on automated machine learn-
ing(AutoML). Neural architecture search (NAS) in AutoML is a crucial method
for automatically optimizing neural network architectures according to applying
data and its usage. One of the prospected ways to search for a high accuracy
model is the gradient method NAS, known as differentiable architecture search
(DARTS). Previous DARTS-based studies have proposed that the size of the op-
timal architecture depends on the size of the dataset. If the optimal size of the
architecture is small, the search for a large model size architecture is unnecessary.
The size of the architectures must be considered when deep learning is used on
mobile devices and embedded systems since the memory on these platforms is
limited. Therefore, in this paper, we propose a novel approach, known as model
size constrained DARTS. The proposed approach adds constraints to DARTS to
search for a network architecture, considering the accuracy and the model size.
As a result, the proposed method can efficiently search for network architectures
with short training time and high accuracy under constrained conditions.

1 Introduction

Recently, deep learning has been widely used in many fields, such as image recognition [1, 2],
speech recognition [3], and natural language processing [4], due to its high recognition accuracy.
Neural network architectures in deep learning are becoming vast and more complex. Neural network
architectures originally inspired by the human brain are used in deep learning to learn the features
and rules of a given task. Adjustments to the network architectures and parameters have a significant
impact on the accuracy of the task. However, manual adjustments of neural network architectures
are exceedingly difficult due to their complexity. As the evaluation cost of deep learning is more
expensive, the number of possible trial and error times will be less. For these reasons, automated
machine learning (AutoML), which automatically adjusts network parameters and architectures, has
been actively studied [5]. This study focuses on neural architecture search (NAS) in AutoML. NAS
is a method that automatically searches for the optimal network architecture.

In a previous study [6], experiments using the NAS method, MiLeNAS, confirmed that increasing
the model size beyond the optimal size does not improve the performance. Architecture search
for a larger than optimal model size is unnecessary because optimal network architectures cannot
be searched. Hence, in this paper, we considered that we can efficiently search for the optimal
architecture by constraining the search to skip too large model size architectures. Additionally,
in an environment with limited memory capacity, a network architecture needs to be lightweight.
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In other words, the model size of network architectures is a crucial factor in practical application.
Therefore, we propose model size constrained differentiable architecture search (MC-DARTS), a
novel approach based on the DARTS [7] of the gradient method NAS. The proposed approach can
search for a network structure that fits the objective while optimizing with constrained model size.

The contributions of this study can be summarized as follows: (1) We propose a NAS method
that can search the network architecture using a constrained model size. (2) We perform image
classification experiments using the proposed method. The results of the experiments show that the
proposed method can search for small network architectures compared with the usual unconstrained
NAS method, and the use of the proposed method results in reduced training time and improved
classification accuracy. (3) Finally, we analyze the type of constraints that are most efficient by
setting multiple constraint conditions.

To encourage open science, we share our codes and the network architectures which have been
searched with the public: https://github.com/itigo-11111/MC-DARTS

2 Related Work

2.1 NAS

Recently, there has been active research on how NAS can automatically search for the optimal
network architecture for a specific dataset. NAS was first proposed in 2016. At first, the mainstream
of the NAS method was reinforcement learning [8, 9, 10, 11, 12] and optimization of the evolutionary
algorithm [13, 14, 15, 16]. However, these methods are very computationally expensive, requiring
more than 2000 GPU days to search for architectures. Zoph & Le (2018) proposed a Cell-based
NAS-Net [17] that stacks small blocks of a directed acyclic graph instead of the entire network
architecture, to reduce computational cost in 2018. Nodes in a directed acyclic graph in NAS-Net
correspond to feature maps, while its edges correspond to candidate operations.

2.2 Differentiable Architecture Search (DARTS)

DARTS [7] is the NAS-Net-based method. DARTS enables effective architecture search using
weight sharing and gradient methods to convert to continuous search space. Weight sharing is the
technique used in One-Shot NAS to simultaneously optimize architectures and train the networks.
When selecting candidate architectures from a supernet containing all searchable network architec-
tures, it is possible to reduce the computational cost required for the architecture selection by reusing
the parameters that the supernet is learning. DARTS optimizes two kinds of cells (normal and re-
duction cells). Node x(j) in each cell is defined as x(j) =

∑
i<j o

(i,j)(x(i)). During the search, the
existence of an edge between two nodes is determined using the equation given below:

o(i,j)(x(i)) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x(i)) (1)

where O is a candidate operation (e.g., Skip Connection) entering an edge, and the architecture
weight of a pair of nodes (i, j) is a vector α(i,j) of dimension |O|. The architecture weights α
a represent the significance of each candidate operation in determining the network architecture.
When the search is completed, the architecture is determined using o(i,j) = argmax

o∈O
α

(i,j)
o . DARTS

searches for network architectures using architecture weights and training parameters optimized
to minimize loss. Next, DARTS optimizes the training parameters of the search architectures to
minimize loss. DARTS can achieve higher accuracy than previous methods because it retrains after
the architecture search. After DARTS was proposed, some comparable methods have been proposed
[18, 19, 20, 21, 22, 23]. DARTS became a baseline for NAS. There are DARTS-based methods
[24, 25, 26] that are constrained to computation time, but very few DARTS-based methods are
constrained to model size.

3 Proposed Approach

In this study, we propose a constrained optimization method using two kinds of techniques. Alg. 1
shows an overview of the algorithm for the constrained optimization method.
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Algorithm 1 MC-DARTS : Model Size Constrained Differentiable Architecture Search
1: Create a mixed operation o(i,j) parametrized by α(i,j) for each edge (i, j)
2: while the current number of learning times has not achieved the set epoch, do
3: if no change either in architecture from the previous iteration or not achieved constraint condition, then
4: Adjust the priority in α ( 3.2 Change Alpha’s Priority )
5: if constraint condition is not achieved, then
6: β = convolutional weights in α
7: Update architecture weights β by descending ∇βLMC

val (w
∗(α),β)

8: Update α by Concat(β , γ = non-convolutional weights in α)
9: else

10: Update architecture weights α by descending ∇αLval(w
∗(α),α)　 (Eq. (2) vanilla DARTS)

11: Update training parameter w by descending ∇wLtrain(w,α)

12: Derive the final architecture based on the learned α.

3.1 MC-DARTS : Model Size Constrained Differentiable Architecture Search

MC-DARTS is an improved DARTS-based method. MC-DARTS searches for optimum network
architectures under given constraints by setting model size constraints beforehand. MC-DARTS
replaces the loss function using the model size constraint as follows:

min
α

Lval(w
∗(α),α) =⇒

{
min
β∈α

LMC
val (w

∗(α),β), if M(w∗(α)) ≥ Mc

min
α

Lval(w
∗(α),α), if M(w∗(α)) < Mc

where min
β∈α

LMC
val = λ(M(w∗(α))−Mc)Lval(w

∗(α),β)

s.t. w∗(α) = argmin
w

Ltrain(w(α),α)

(2)

where M is the current model size, Mc is the constraint condition, w are the network parameters, β
are the architecture weights for the convolutional layers, γ are the other architecture weights, Ltrain

is the loss for training data, Lval is the loss for validation data, and λ is hyperparameter to control
the speed at which the LMC

val weights are updated. Until the constraint is achieved, MC-DARTS
only optimizes the architectural weights β for the convolutional layers affecting model size. LMC

val
is used only when the model size does not achieve the constraint. Hence, updating architecture
weights using LMC

val always results in M(w∗(α)) ≥ Mc. If the constraint condition is achieved,
MC-DARTS is updated as a conventional DARTS.

MC-DARTS calculates the gradient of the architecture using the following Eq. (3). Note that in this
study, the computational part of the second-order differentiation is assumed to be ξ = 0 because of
the learning time needed.

∇αLval(w
∗(α),α) ≈ ∇αLval(w − ξ∇wLtrain(w,α),α) (3)

3.2 Change Alpha’s Priority

If there is no change either in architecture from the previous iteration or not been achieved constraint
condition, Change Alpha’s Priority performs the following operations:

(1) Randomly select node (i, j) and extract the architecture weights α(i,j) of all candidate operations
between the nodes.

(2) Check whether the operation corresponding to the largest architecture weight in α(i,j) has pa-
rameter w, and return to (1) if it does not (limited number of returns).

(3) Set the architecture weight of α
′(i,j) selected in (2) to the same value as the N th largest archi-

tecture weight between the same nodes (N depends on the number of convolution operations of the
operation candidates, N = 5 in the case of DARTS).

(4) Perform operations (1)–(3) for both normal and reduction cells.

During the optimization, Change Alpha’s Priority increases the frequency of architectural changes.
Therefore, MC-DARTS can search for architectures in a more extensive search space.
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Table 1: Experimental result for each architectures, with the best results in bold + underline and the
next best results in bold

Architecture Constraint(MC) Model Size Best Val Acc. Mean Latency Total Time
(M) (M) (%) (ms) (h)

ResNet-50 [27] - 23.52 89.62 14.63 -
ShuffleNet-v2-x2.0 [28] - 5.36 85.43 14.88 -

(DARTS) - 3.05 95.17 47.54 22.90
4.00 2.78 94.50 44.05 22.06
2.90 2.67 95.63 40.06 21.26
2.60 2.57 94.97 38.20 20.57

MC-DARTS 2.30 2.07 94.59 30.86 17.26
2.00 1.83 93.67 28.83 15.93
1.70 1.63 93.97 21.84 14.07
1.50 1.39 88.11 20.20 13.13

4 Experiments

4.1 Dataset and Experimental Setting

The experimental dataset used in this study was CIFAR10 with 10 types of classes. In the ex-
periments, we used the same search space as in the original DARTS paper [7], with the operation
candidate |O| = 8. The image size of the dataset is 32× 32, the number of cells for the architecture
search is 8, and the number of cells for the architecture evaluation is 20. The other hyperparameter
settings for MC-DARTS are shown in the Appendix. The experimental setting is the same as that
in the original DARTS paper [7]. We applied the model size constraints: 1.5, 1.7, 2.0, 2.3, 2.6,
2.9, and 4.0 M. The two main evaluations of the experiment are (1) whether it is possible to search
for architectures with smaller model sizes than the unconstrained DARTS, and (2) whether classi-
fication accuracy changes when the model size is reduced. Additionally, we investigated whether
constraining the model size with multiple constraints could be more efficient.

4.2 Results and Discussion

Figure 1 in the appendix shows the search process, table 1 shows the results of the architecture
evaluation of the conventional deep learning architecture and the network architecture searched us-
ing the proposed method. The constraint and model size indicate the number of parameters in the
architecture, and the mean latency indicates the average inference time per attempt. The total time
is the sum of architecture search time and the architecture evaluation time calculated using one
NVIDIA Tesla V100 SXM2 16GB. In terms of model size, the network architecture searched under
a constrained condition is smaller than the network architecture searched under an unconstrained
condition. In terms of classification accuracy, the network architecture with a model size of 1.39
M (constraint:1.50 M), which is the smallest model size, has a significantly lower Best Validation
Accuracy than the other network architectures. However, the modest-sized network architecture of
2.67 M (constraint: 2.90 M) outperforms the unconstrained network architecture. Therefore, it is
clear that a reasonably large model size is required to achieve high discrimination accuracy. How-
ever, it is unclear why the value of 2.90 M is acceptable as a constraint condition, and we would like
to investigate this question in the future.

5 Conclusion

We proposed a DARTS-based method, MC-DARTS, with model size constraints and performed
image classification experiments. The experimental results showed that MC-DARTS can freely
search for small network architectures and can compress the network architecture to the pre-specified
model size while maintaining classification accuracy. In Appendix A, our proposed method is also
combined with another DARTS-based approach, and the results also revealed the same trend with
constraints of a more detailed range of the model size. However, the search for smaller network
architectures is difficult because the proposed method optimizes the contents of the cell, and there
is a limit to the range of constraint settings. Therefore, in the future, we will consider a method that
allows for a more flexible constraint setting.
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A Appendix

A.1 Partial Channel Connections for Memory-Efficient Architecture Search(PC-DARTS)

PC-DARTS [23] is designed to minimize memory consumption while maintaining accuracy. PC-
DARTS uses a method to extract and perform calculations on a part of the channels, as shown in
Equation (4). The S(i,j) in Equation (4) is a mask that assigns 1 to the selected channel and 0 to the
masked channel.

o
(i,j)
PC (xi;S

(i,j)) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

× o(S(i,j) × xi) + (1− S(i,j))× xi (4)
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Figure 1: Search process(poly-line) and constraints(straight-line) in MC-DARTS

A.2 Experiments using MC-PC-DARTS：Model Size Constrained Partial Channel
Connections for Memory-Efficient Architecture Search

We examined using MC-PC-DARTS, an extension of PC-DARTS, to confirm whether the non-
DARTS method could work. Table 2 shows the main experimental settings. The experimental
setting was the same as that in the original DARTS and PC-DARTS studies[7, 23]. We applied the
following model size constraints: 1.4 to 3.0, 3.5, 4.0, 4.5, and 5.0 M. To compare with other existing
architectures, we experimented with five different deep learning architectures, including ResNet-50
and ShuffleNet-v2-x0.5, in the same settings as MC-DARTS.

Table 3 shows the results of the architecture evaluation on the conventional deep learning archi-
tecture and the network architecture searched using the proposed method. In terms of model size,
the network architecture searched with a constrained condition is smaller than the network architec-
ture searched with an unconstrained condition. In terms of classification accuracy, the modest-sized
network architectures of 2.27 M (constraint: 2.80 M), 2.31 M (constraint: 2.50 M), and 1.91 M (con-
straint: 2.40 M) outperform the unconstrained network architecture. In the above experiments, there
were no architectures larger than the model size of 2.90 M, and the search with constraints larger
than 2.90 M converged to architectures between 2.19 M and 2.84 M, which is similar in model size
to the high-accuracy architectures (constraint: 2.80 M, 3.50 M). However, architectures searched
with constraints larger than 2.90 M have lower Best Validation Accuracy than the high-accuracy
architectures. In the MC-PC-DARTS, the search space is narrowed by setting modest-small sized
constraint conditions. As a result, we assume that MC-PC-DARTS can search a lot around the op-
timal architecture. In addition, DARTS-based methods simultaneously optimize architectures and
train the networks. Consequently, a better validation accuracy is obtained in the second half of the
total Epochs. Our proposed method is unavailable for the user to specify the size of the architecture
to be trained in the second half of the Epochs. We believe it is necessary to analyze this effect in the
future. Eventually, MC-PC-DARTS, an extension of PC-DARTS with the constraint conditions, can
search for small network architectures like MC-DARTS. Therefore we confirmed that the network
architecture can be compressed.

7



Table 2: Experimental settings, which conforms to those in DARTS and PC-DARTS papers

Image Size of Dataset 32× 32
Number of Cells(Search) 8 Cell(6 Normal Cell, 2 Reduction Cell)
Number of Cells(Train) 20 Cell(18 Normal Cell, 2 Reduction Cell)

Number of Initial Channels Search : 16 , Train : 36
Lambda for Architecture 0.001

Random Seed 1001
Number of Training Epochs Search : 50 Train : 600

Loss Function CrossEntropyLoss
Initial Learning Rate(Search) MC-DARTS：0.025,MC-PC-DARTS：0.1
Initial Learning Rate(Train) 0.025

Learning Rate Decay → 0 (Cosine Scheduler)
Learning Rate for Architecture MC-DARTS：0.0003,MC-PC-DARTS：0.0006

Data Augmentation Random Crop,Horizontal Flip
Cutout MC-DARTS：False,MC-PC-DARTS：True

Optimizer Training Parameter : SGD,Architecture Weight : Adam

Table 3: Experimental result for each architecture, with the best results in bold + underline and the
next best results in bold

Architecture Constraint(MC) Model Size Best Val Acc. Mean Latency Total Time
(M) (M) (%) (ms) (h)

ResNet-18 - 11.18 89.22 10.42 -
ResNet-50 - 23.52 89.62 14.63 -

ResNet-101 - 42.52 88.90 25.46 -
ShuffleNet-v2-x0.5 - 0.35 80.23 12.87 -
ShuffleNet-v2-x2.0 - 5.36 85.43 14.88 -

(DARTS) - 3.05 95.17 47.54 22.90
4.00 2.78 94.50 44.05 22.06
2.90 2.67 95.63 40.06 21.26
2.60 2.57 94.97 38.20 20.57

MC-DARTS 2.30 2.07 94.59 30.86 17.26
2.00 1.83 93.67 28.83 15.93
1.70 1.63 93.97 21.84 14.07
1.50 1.39 88.11 20.20 13.13

(PC-DARTS) - 2.53 95.21 48.62 14.68
5.00 2.20 94.84 41.77 13.19
4.50 2.19 94.32 44.14 13.08
4.00 2.21 94.47 42.43 13.31
3.50 2.77 95.21 57.54 17.46
3.00 2.42 94.72 49.10 14.81
2.90 2.84 94.71 56.46 17.76
2.80 2.27 95.26 42.24 13.25
2.70 2.44 95.13 47.54 14.97
2.60 2.56 95.01 50.18 15.93
2.50 2.31 95.22 45.06 14.52

MC-PC-DARTS 2.40 1.91 95.23 40.08 11.26
2.30 2.13 95.10 45.45 13.34
2.20 1.95 94.61 40.13 11.74
2.10 1.98 94.87 39.39 12.55
2.00 1.96 94.75 45.78 12.17
1.90 1.84 95.01 41.51 12.92
1.80 1.66 94.74 33.81 10.55
1.70 1.68 94.65 36.12 11.43
1.60 1.45 93.83 32.36 9.67
1.50 1.42 93.60 30.72 10.04
1.40 1.40 92.11 29.50 8.76
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