
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL ODE WITH DIFFERENTIABLE HIDDEN STATE
FOR IRREGULAR TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Capturing the continuous underlying dynamics of irregular time series is essential
for accurately reflecting the ongoing evolution and intricate correlations within
the data. The discrete nature of current models, including RNN-based models
and transformer variants, poses challenges when it comes to generalizing to the
continuous-time data paradigms, which is necessary for capturing ongoing dy-
namics of irregular time series. Neural Ordinary Differential Equations (NODEs)
assume a continuous latent dynamic and provide an elegant framework for irregular
time series analysis. However, integrating new information while maintaining the
continuity of latent dynamics remains challenging. To tackle this problem, we intro-
duce Differentiable Hidden State (DHS) enhanced neural ODE, a data-dependent
framework that is capable of effectively capturing temporal dependencies and
ensuring the continuity of the hidden process. We leverage the theory of general-
ized inverses to innovatively compute attention mechanism in reverse and obtain a
continuous representation. To capture more accurate temporal relationships, we in-
troduce Hoyer metric and maximize the sparsity of it. Experimental results on both
synthetic and real-world datasets demonstrate the effectiveness of our model. The
code is provided on anonymous link https://anonymous.4open.science/status/DHS-
5F24.

1 INTRODUCTION

Irregular time series data are ubiquitous across a variety of real-world applications, including disease
prevention, financial decision-making, and earthquake prediction Bauer et al. (2016); Jia & Benson
(2019); Zuo et al. (2020). Irregular time series data are characterized by non-uniform sampling,
with observations occurring at variable time intervals Chen et al. (2024); Che et al. (2018). This
irregularity, coupled with frequent missing data due to technical issues or data quality concerns, poses
challenges for existing time series analysis methods, including RNN-based models Rangapuram et al.
(2018); Salinas et al. (2020); Chung et al. (2014) and Transformer variants Zhou et al. (2021); Child
et al. (2019); Li et al. (2019); Wu et al. (2021); Zhou et al. (2022).

Neural Ordinary Differential Equations (NODEs) have become a favored and promising approach
for irregular time series modeling, due to their sequential processing capabilities and ability to
manage irregularly sampled data Chen et al. (2018). By employing appropriate Ordinary Differential
Equations (ODEs) to model the dynamics of irregular time series, it becomes feasible to reconstruct a
continuous and complete time series from the irregularly sampled data through the application of
integration techniques to the ODEs.

NODE-based methods Rubanova et al. (2019); Lechner & Hasani (2020); Chien & Chen (2022);
De Brouwer et al. (2019); Herrera et al. (2020); Poli et al. (2019); Oskarsson et al. (2023); De Brouwer
& Krishnan (2023) face a fundamental challenge on irregular time series modeling. They integrate
from an initial value to derive all subsequent values, without considering observed data points
later than the initial point. They integrate latent state at each time points with observations, i.e.,
having different initial value at different time intervals. Though such mechanism can achieve a
certain accuracy, it considers only one observation at each time point, and the correlations among
observations are ignored. Meanwhile, such mechanism results in a fragmented latent process that
may not accurately reflect the true dynamics, as shown in Fig. 1 (a). Tackling the issue of fragmented
latent state of NODEs, NCDE approaches Kidger et al. (2020); Chen et al. (2024); Li et al. (2024)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

involves interpolating the observed values to estimate the latent process, for example, the natural
cubic spline interpolation used in Kidger et al. (2020). This estimated process then guides the
integration path, allowing the model to incorporate subsequent observations. Despite its simplicity,
this method fails to leverage the full informational content of the data. As shown in Fig. 1 (b), such
methods take only two nearest observations at a given time point. And using interpolation algorithm
can not well model the temporal correlations in time series.

𝒛𝝉𝟏
𝒛𝝉𝟐

𝒛𝝉𝟑

𝒛𝝉𝟒

𝒛𝝉𝟓
𝒛𝒕

𝒙𝝉𝟏 𝒙𝝉𝟐
𝒙𝝉𝟑

𝒙𝝉𝟒
𝒙𝝉𝟓

𝒙𝒕

(a) Neural ODE

𝒛𝝉𝟏 𝒛𝝉𝟐
𝒛𝝉𝟑

𝒛𝝉𝟒

𝒛𝝉𝟓
𝒛𝒕

𝒙𝝉𝟏 𝒙𝝉𝟐
𝒙𝝉𝟑

𝒙𝝉𝟒
𝒙𝝉𝟓

𝒙𝒕

(b) Neural CDE (c) Ours

𝒛𝝉𝟏 𝒛𝝉𝟐
𝒛𝝉𝟑

𝒛𝝉𝟒

𝒛𝝉𝟓
𝒛𝒕

𝒙𝝉𝟏 𝒙𝝉𝟐
𝒙𝝉𝟑

𝒙𝝉𝟒
𝒙𝝉𝟓

𝒙𝒕

Figure 1: The sketch of Neural ODE, Neural CDE and our method. For a given time point, NODE
integrate from the last observation and has a fragmented latent process. NCDE employs interpolation
algorithm to calculate a continues path, but fails to fully utilize informational content of the data.
Our method introduces an attention-based differential hidden state, which adeptly captures temporal
dynamics while ensuring the seamless continuity of the latent process

In response to the limitations inherent in existing solutions, this paper presents the Differentiable
Hidden State (DHS) enhanced neural ODE framework, a data-driven approach designed to adeptly
capture temporal dynamics while ensuring the seamless continuity of the latent process. An attention-
based differential hidden state is introduced, which considers irregular sampled observations as
a projection matrix mapping time series into hidden state space. Since the projection is linear,
the hidden states preserve the continuity of original time series. Our methodology harnesses the
power of generalized inverses to innovatively reverse-engineer the attention mechanism, yielding
ODEs describing the dynamics of hidden states. To enhance the precision of temporal relationships,
we integrate the Hoyer metric Hurley & Rickard (2009), an advanced tool of sparsity metric. By
strategically maximizing Hoyer metric, our framework refines the model’s ability to discern subtle
yet significant temporal shifts, thereby improving the accuracy and reliability of predictions.

Our contribution is summarized as follows,

• We propose an attention-based differential hidden state to maintain the continuity of time
series and applies generalized inverses to innovatively derive ODEs describing the dynamics
of the hidden states of irregular time series.

• A deep model is constructed based on the derived ODEs, and Hoyer metric is integrated to
enhance the precision of temporal correlation modeling.

• Extensive experiments are conducted on both synthetic and real-world datasets, and the
result demonstrates the effectiveness of the proposed model.

2 RELATED WORK

Deep models for time series modeling have been extensively studied. Time series modeling, with its
significant practical applications, has been a focal point of research for many years Box & Jenkins
(1968). The recent surge in deep learning has led to the introduction of numerous deep learning-based
models Salinas et al. (2020); Qin et al. (2017); Sen et al. (2019); Tuncel & Baydogan (2018); Kalpakis
et al. (2001), many of which employ recurrent neural networks (RNNs) Bai et al. (2020) and temporal
convolutional networks (CNNs) Yu et al. (2018) for series modeling. However, RNNs are known
for their limited parallelization capabilities, and both RNN- and CNN-based models struggle to
effectively capture long-term temporal dependencies. The advent of the self-attention mechanism in
fields like natural language processing Vaswani et al. (2017) and computer vision Rao et al. (2021)
has inspired substantial efforts to adapt and apply transformers to time series forecasting Zeng et al.
(2022); Wu et al. (2021); Zhou et al. (2022; 2021). Nevertheless, all the above methods are designed
for regular time series data and fail to be extended to the problem of irregular time series analysis.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Owing to their exceptional ability to capture temporal dynamics, Neural Ordinary Differential
Equations (NODEs) have recently gained popularity in the analysis of irregular time series. Existing
works of NODE family can be divided into two kinds. In the first kind of methods, NCDE Kidger et al.
(2020) is a pioneering work that introduces controlled differential equations into NODE, obtaining
a rough estimate of the latent process using simple numerical differentiation. Subsequent work
builds on this foundation, with NRDE Morrill et al. (2021) further utilizing rough path theory to
model long-term sequence dependencies. ContiFormer Chen et al. (2024) constructs a continuous
extension of the Transformer, where the query is obtained by interpolation. Neural Lad Li et al.
(2024) models periodicity, trend information, local information, and multidimensional structural
information, with the modeling of local information based on the differential of the interpolated
sequence. However, such kind of methods generate the whole complete time series with only a
given initial value, and fail to fully leverage the contextual information of the data. In the second
kind of methods, ODE-RNN Rubanova et al. (2019) and ODE-LSTM Lechner & Hasani (2020)
both use gating mechanisms in the update step to encode new information. CADN Chien & Chen
(2022) is based on the ODE-RNN framework and incorporates an attention mechanism to strengthen
modeling. GRU-ODE-Bayes De Brouwer et al. (2019) and Neural Jump ODE Jia & Benson (2019)
use Bayesian estimation methods in the update step. GNODE Poli et al. (2019) models potential state
changes using the extension of ODE on graphs, GDE, in the integral step, while TGNN4I Oskarsson
et al. (2023) assumes that ODE changes are linear; both use a GNN+GRU approach for updates.
ANDE De Brouwer & Krishnan (2023) introduces the HIPPO matrix in the integral step, working in
conjunction with NODE to strengthen the modeling of historical information, and updates directly by
assignment in the update step. Nevertheless, the process of these methods results in fragmented latent
representations, which can not accurately represent the true dynamics of continuous time series.

𝒙𝝉𝟏 𝒙𝝉𝟐 𝒙𝝉𝟑 𝒙𝝉𝟒 𝒙𝝉𝟓

𝒛𝝉𝟏 𝒛𝝉𝟐 𝒛𝝉𝟑 𝒛𝝉𝟒 𝒛𝝉𝟓

𝒙𝒕

𝒛𝒕

𝑺𝝉𝟏 𝑺𝝉𝟐
𝑺𝝉𝟑

𝑺𝝉𝟒
𝑺𝝉𝟓

𝑺𝒕

Attention layer with 𝒁 = {𝒛𝝉𝒊|𝒊 ∈ [𝟏, 𝟓]} as Key and Value

GRU
Cell

Hippo-Based Output Network

GRU
Cell

GRU
Cell

GRU
Cell

GRU
Cell

𝑺𝝉𝟏 +# 𝑭𝒔 𝑺𝝉, 𝑿𝒐𝒃, 𝒕 𝒅𝒕
𝒕

𝝉𝟏

Figure 2: Solution overview. Irregular sampled observations are fed into a neural network to generate
Z, which serves as key and value of the attention layer to generate differentiable hidden state. A
Hippo-based output network is employed to generate output of the whole framework.

3 METHOD

3.1 MODELING TIME SERIES WITH ODE

We denote the irregular time series of interest as Xob = {(xt, t)|xt ∈ X̃, t ∈ Tob}, where observa-
tions X̃ = {xτ1 , xτ2 , · · · , xτn} are sampled irregularly at time points Tob = {t1, t2, · · · , tn}, n is
the number of observations. Notably, considering irregular time series is sampled from continuous
time series, we may have continuous time series as Xco = {xt|xt, t ∈ R}.

We model the continuous dynamics of hidden state of irregular time series with ordinary differential
equation.

dSt

dt
= Fs(St, Xob, t) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where St denotes the hidden state of the time series at time t and Fs(·) specifies the dynamics of the
hidden state. Given any time t, the hidden state St could be attained by the integration of Eq.1 over
time as,

St = Sτ1 +

∫ t

τ1

Fs(Sτ , Xob, τ)dτ (2)

where Sτ1 is the initial value of the hidden state. And a readout function can be applied to generate
the output of time series at time t.

yt = fout(St) (3)

3.2 ATTENTIVE DIFFERENTIABLE HIDDEN STATE BASED ON DISCRETE OBSERVATIONS

In this paper, we propose Differentiable Hidden State (DHS) St as the continuous dynamics of time
series in Eq.1. The proposed DHS is generated from the latent representations of time series, which
encodes values of time series and their corresponding time points. Specifically, given any time point
t and corresponding data xt, the latent representation zt is obtained by a neural network,

ψ : (xt, t, E(xt)) → zt (4)

where E(xt) refers to the external features corresponding to xt. In practice, we find introducing
historical observations of xt when obtaining zt leads to better performance, i.e., we have E(xt)
as {xi|i < t}. Therefore, latent representations on all observation time points can be denoted as
Z = [zτ1 , zτ2 , · · · , zτn]T ∈ Rn×d.

Attention mechanism is applied to generate the differentiable hidden state. Let zt being Query, and Z
being Key and Value. Then we define DHS as

at =
ztZ

T

√
d

pt = softmax(at)

St = ptZ

(5)

where at, pt ∈ Rn, St ∈ Rd and we always have n > d. at is attention score and indicates the
correlations between data at time t and other time, and pt is the normalization of it. DHS is defined
on all observations according to correlations with them.

The above definition of DHS suggests that one can obtain a continuous state space of a time series as
in Figure 2, where the hidden state St at any time t is correlated to the latent representation zt of time
series at t and the latent representations Z of all irregularly sampled observations Xob. Based on the
definition of DHS, the derivative of DHS can be calculated and the differential equation describing
the dynamics of DHS can be achieved.

3.3 DERIVATIVE OF DHS

In this section, we aim at achieving the differential equation of DHS as in Eq.1, while giving the
detailed form of Fs. According to Eq.5, the derivative of DHS St to time t can be calculated using
chain rule as,

dSt

dt
=

dzt
dt

ZT (Pdiag − pTt pt)Z√
d

(6)

where Pdiag = Diag(pt), pt = [pt,1, pt,2, · · · , pt,n] corresponds to normalized attention score of zt
to all observations Z as in Eq.5. Refer to Appendix B.1 for detailed calculation process.

The first term in Eq.6 is intractable. Following NODE, we may apply another neural network ϕ to
model it,

dzt
dt

= ϕ(zt, t) (7)

Therefore, we have the derivative of St as,

dSt

dt
= ϕ(zt, t)

ZT (Pdiag − pTt pt)Z√
d

(8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To achieve a differential equation of St as in Eq.1, given observations Xob, the derivative of St

should be only dependent on St and t. However, in Eq.8, while Z is transformation of Xob, dSt

dt are
dependent on pt and zt. In the following, we further transform pt and zt into St by innovatively
computing attention mechanism backwards.

Note that in Eq.5, the dimension of pt is higher than that of St, thus the information is compressed in
this step. If we consider equation Eq.5 as a linear system and solve it directly, we will get infinite
solutions. To attain a proper St, we introduce the theory of generalized inverse. Generalized inverse
allows for a unified approach to obtaining solutions for linear system, no matter how many solutions
it may have. See detailed introduction in Appendix A.1. In our case, the solution for pt could be
expressed as

pTt = (ZT)†ST
t + (In − (ZT)†ZT)h (9)

where h is a random vector of dimension n, and (ZT)† is the Moore-Penrose inverse Moore (1920)
of ZT . In most cases, we have n≫ d holds, so we can assume that ZT has full row rank and thus
have (ZT)† = Z(ZTZ)−1.

According to the theory of generalized inverse, we could readily obtain the minimum-norm solution
pTt = (ZT)†ST

t . However, a more appropriate solution could be attained by considering the properties
of pt.

In attention mechanism, pt is always sparse so as to concentrate on certain important time points. We
introduce Hoyer Hurley & Rickard (2009) to measure the sparsity of pt.

Definition 1. Given a vector x ∈ RN , Hoyer could be defined as

Hoyer(x) =
1√
N − 1

(
√
N −

∑N
i=1 xi√∑N
i=1 x

2
i

) (10)

As a measure of sparsity, Hoyer has several excellent properties. The larger the Hoyer, the sparser the
vector. For specific details, see in Appendix A.2.

From Eq.8, a proper vector h is required to get a sparse pt. We construct an optimization problem
based on Hoyer. Noting that pt is the result of softmax normalization, so the elements are all positive
and the sum of them is 1. Let J1,n and Jn,1 denote all-one matrices of dimension 1× n and n× 1
respectively. The sparsity optimization problem is expressed as,

max
h

Hoyer(pt)

s.t. p ≥ 0

pJn,1 = 1

(11)

Theorem 1. Optimization problem in Eq.11 could be precisely solved using the KKT conditions. And
the time complexity is O(2n).

The detailed proof is given in Appendix B.2. Note in Eq.1, we have to compute pt at each integration
step t, leading to unacceptably high time consumption. In addition, Eq.11 could be approximately
solved using iterative methods such as gradient descent. However, the time complexity is still
intolerable. Therefore, we relax the conditions to allow for negative values.

Theorem 2. By introducing negative probability, the optimization problem turns into Eq.12, and
could be precisely solved by Lagrange multipliers. The time complexity could be reduced from O(2n)
to O(n).

By relaxing the conditions to allow for negative values, the sparsity optimization problem turns to,

max
h

Hoyer(pt)

s.t. pJn,1 = 1
(12)

The new problem can be solved precisely using Lagrange multipliers. Detailed proof and calculating
process can be found in Appendix B.3. The final result of the above optimization problem is,

pTt = bp −
(J1,nbp − 1)ApJn,1

J1,nApJn,1
(13)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where bp = (ZT)†ST
t and Ap = In − (ZT)†ZT .

Next, we describe how to express zt as a function of St. As softmax is too complex to be directly
given an algebraic expression, we perform a first-order Taylor expansion for it,

pt =
a+ J1,n

(a+ J1,n)Jn,1
(14)

Combining Eq.5, Eq.13 and Eq.14, we have

zt =
√
d · ah(ZT)†

ah = hT2 (In−(Jn,1p− In)(Jn,1p− In)
†)− J1,n

(15)

h2 is a random vector and could be trained together with the neural network.

Finally, we apply Eq.13 and Eq.15 to Eq.8, then obtain the differential equation of DHS St.

3.4 OUTPUT

DHS provides a continuous hidden embedding, which could be conveniently used for downstream
tasks. Following the conventions of NODE-based methods, one straightforward approach is to
directly map DHS through a simple neural network, that is

y = fout(S) (16)

In the classification tasks, y refers to the label of the time series and S refers to DHS at all integration
time points. In the interpolation and extrapolation tasks, yt at any given time is obtained from the
corresponding St at the same time point.

DHS can also be easily combined with other methods. Hippo Gu et al. (2020) is an effective
representation for time series and able to update through integration. However, Hippo requires a
continuous sequence as input, which is exactly what DHS offers. We construct the following system
of equations:

drt
dt

= fr(St||ct||rt)

dct
dt

= Act +B(Wrrt)

dSt

dt
= Fs(St, Xob, t)

(17)

where ct is Hippo representation. The information is concentrated on rt and then output through a
simple neural network just like Eq.16.

4 EXPERIMENT

In this section, we evaluate our model on synthetic and real-world datasets for classification, interpo-
lation and extrapolation tasks. We compare the performance of DHS to state-of-the-art methods and
validate the effectiveness of DHS for irregular time series.

4.1 DATASETS

We implement our approach on four datasets, namely synthetic periodic dataset, dynamical systems,
USHCN and Physionet.

Synthetic periodic dataset is generated by the algebraic equation x(t) = sin(t+ ϕ) ∗ cos(3 ∗ (t+ ϕ))
with time t ∈ (0, 10) and phase ϕ ∼ N(0, 2π). We simulate 1000 time series and create a binary
label y = I(x(5) > 0.5). To make the time series irregular, we sample from them according a Poisson
process with rate 70%. The dataset is divided into training, testing and validation sets with ratio of
50% : 25% : 25%.

Dynamical systems are a widely studied type of time series that require models to learn the underlying
dynamics of the processes. We consider one of the representation of the most complex dynamical

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Synthetic Lorenz63 Lorenz96

attention-based

mTAN 0.757± 0.030 0.718± 0.066 0.713± 0.072
ContiFormer 0.992± 0.006 0.989± 0.004 0.987± 0.004

SSM-based

HiPPO-obs 0.758± 0.023 0.837± 0.034 0.949± 0.007
HiPPO-RNN 0.742± 0.008 0.804± 0.023 0.944± 0.008

S4 0.994± 0.003 0.911± 0.005 0.948± 0.016

RNN-based

GRU 0.848± 0.044 0.805± 0.017 0.834± 0.058
GRU-D 0.897± 0.028 0.859± 0.015 0.864± 0.048

ODE-based

ODE-RNN 0.870± 0.032 0.813± 0.013 0.954± 0.012
Latent-ODE 0.782± 0.014 0.713± 0.021 0.762± 0.024

GRU-ODE-Bayes 0.968± 0.004 0.825± 0.031 0.925± 0.004
NRDE 0.773± 0.111 0.604± 0.046 0.606± 0.112

PolyODE 0.994± 0.003 0.992± 0.000 0.984± 0.002

Ours

DHS 0.997± 0.001 0.993± 0.001 0.991± 0.003

Table 1: Classification performance on synthetic dataset and dynamical systems. Top-1 accuracy is
reported.

systems, chaotic attracters. Chaotic attracters are sensitive to initial conditions and small noises might
result in exponentially diverging trajectories. We construct Lorenz63 and Lorenz96 systems and
remove the last dimension to make it never fully observed. To make it more irregular, we further
sample from them using a Poisson process with rate 30%. Similarly, the dataset is divided into
training, testing and validation sets with ratio of 50% : 25% : 25%.

United States Historical Climatology Network (USHCN) Menne et al. (2009) contains over 150
years of daily climate data from the United States, including five different variables (precipitation,
snowfall, snow depth, minimum and maximum temperature) from 1218 weather stations. Following
the preprocessing procedure of GRU-ODE-Bayes, we select the data of 1168 stations over 4 years.
Due to equipment failure or the occasional collection of certain metrics (e.g. snow depth), the dataset
is very sparse. We further increase the irregularity by removing half of the time points and randomly
removing 20% of the observations. Divide the dataset into 60% for training, 20% for testing, and
20% for validation.

PhysioNet Challenge 2012 (Physionet) Citi & Barbieri (2012) includes the physical conditions of
8000 patients in the ICU during the first 48 hours, including 37 different indicators, such as serum
glucose, heart rate, platelets, etc. Following the preprocessing procedure in ODE-RNN Rubanova
et al. (2019), we round the observations to 6 minutes. Divide the dataset into 60% for training, 20%
for testing, and 20% for validation.

4.2 BASELINES

We compare the performance of DHS with a variety of baselines, including attention-based model
(mTAN Shukla & Marlin (2021), ContiFormer Chen et al. (2024)), SSM-based models (HIPPO-obs,
HIPPO-RNN Gu et al. (2020), S4 Gu et al. (2021)), RNN-based models (GRU Chung et al. (2014),
GRU-D Che et al. (2018)) and ODE-based models (Latent-ODE, ODE-RNN Rubanova et al. (2019),
GRU-ODE-Bayes De Brouwer et al. (2019), NRDE Morrill et al. (2021), PolyODE De Brouwer &
Krishnan (2023)).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model
USHCN Physionet

interpolation extrapolation interpolation extrapolation

attention-based

mTAN 1.766± 0.009 2.360± 0.038 0.208± 0.025 0.340± 0.020
ContiFormer 0.837± 0.057 1.634± 0.082 0.212± 0.023 0.376± 0.034

SSM-based

HiPPO-obs 1.268± 0.051 2.417± 0.068 0.323± 0.061 0.855± 0.024
HiPPO-RNN 1.172± 0.061 2.324± 0.031 0.293± 0.068 0.769± 0.053

S4 0.823± 0.016 1.504± 0.063 0.229± 0.023 0.535± 0.067

RNN-based

GRU 1.068± 0.073 2.071± 0.015 0.364± 0.088 0.880± 0.140
GRU-D 0.994± 0.011 1.718± 0.015 0.338± 0.027 0.873± 0.071

ODE-based

ODE-RNN 0.831± 0.008 1.955± 0.467 0.236± 0.009 0.467± 0.006
Latent-ODE 1.798± 0.009 2.034± 0.005 0.212± 0.027 0.725± 0.072

GRU-ODE-Bayes 0.841± 0.142 5.437± 1.020 0.521± 0.038 0.798± 0.071
NRDE 0.961± 0.051 1.923± 0.607 0.434± 0.077 0.819± 0.037

PolyODE 0.806± 0.017 1.842± 0.440 0.205± 0.041 0.598± 0.034

Ours

DHS 0.775± 0.023 0.869± 0.043 0.182± 0.074 0.328± 0.054

Table 2: Interpolation and extrapolation performance on USHCN and Physionet. Mean square error
is reported.

mTAN is a generative method based on variational auto-encoder and use attention mechanism to
produce a fixed-length representation for time series of arbitrary length. ContiFormer designs a
continuous extension of Transformer, based on multiple smooth curves starting from each observation.
HIPPO-obs model directly on observations with the dynamics of the HIPPO matrix, while HIPPO-
RNN combine a gated RNN with HIPPO matrix dynamics. S4 extends HIPPO to a higher dimension
and obtains an efficient training approach. GRU designs an effective gating mechanism and has
been widely applied. GRU-D extends GRU with an exponential decay between observations to
accommodate irregular time intervals. ODE-based models models underlying dynamics directly and
has been detailed in related works.

4.3 IRREGULARLY SAMPLED TIME SERIES CLASSIFICATION

Classification is an important application of irregular time series analysis. In our evaluation, we
subjected a variety of models to rigorous testing using both synthetic periodic dataset and dynamical
systems, employing cross-entropy loss for training purposes. The results, presented in Table 1,
reveal that our proposed model, DHS, surpasses a diverse array of existing methods, achieving
state-of-the-art performance across all tested datasets. Notably, the attention-based method mTAN,
along with the RNN-based methods GRU and GRU-D, were unable to surpass other approaches. This
underperformance is attributed to their discrete frameworks, underscoring the significant advantage
offered by our model’s continuous hidden state representation. While the recent PolyODE model
demonstrates a general capacity to extract temporal information from time series, it falls short
in accurately capturing the subtleties of the underlying dynamics when compared to the robust
capabilities of our proposed DHS.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.4 INTERPOLATION AND EXTRAPOLATION

We employ the USHCN and Physionet datasets to evaluate the performance of models on interpolation
and extrapolation tasks. For interpolation, our goal is to reconstruct the complete time series from a
subset of available observations. Conversely, in the extrapolation task, we divide the time series into
two equal parts: the first half is utilized for model training, while the full sequence is employed for
making predictions.

The results, detailed in Table 2, are presented in terms of mean squared error (MSE), scaled by
a factor of 10−2. Our proposed model, DHS, not only outperforms alternative methods but also
excels particularly in the extrapolation task. This superior performance suggests that DHS is adept at
capturing the intrinsic dynamics of the time series, a capability that significantly aids in the model’s
ability to forecast future trends accurately.

4.5 ANALYSIS OF TIME CONSUMPTION

Model Complexity Time (s/epoch)

ContiFormer O(d2n2L) 154
HiPPO-obs O(d2cL) 86

GRU-D O(d2n) 232
ODE-RNN O(d2L) 91
Latent-ODE O(d2L) 110

PolyODE O(d2cd
2L) 131

DHS O(d2cnL) 126

Table 3: Time consumption comparison.

We compare the time complexity of our method
with representative baselines, see in the follow-
ing table. Also, the time consumption of our
model and baselines in one training epoch on
USHCN dataset is listed in Table 3. In the table,
we have n denoted the number of time points
with observations, d denoted the dimension of
feature of observations, dc denoted the dimen-
sion of Hippo matrix and L denoted the integra-
tion steps. The scale of dc is typically similar
to that of d, and L is always less to n. SSM-
based models, e.g., HiPPO-obs, are efficient lin-
ear models and usually needs at least O(d2cL)
time. RNN-based models are simple but less
efficient, which usually need only O(d2n) time. ODE-based models needs at least O(d2L) time, and
extra time consumption related to the specific design of the model. Methods combining attention
mechanism with NODE usually needs O(d2n2L) time consumption. Our model designs reduce it to
O(d2nL), with the similar time complexity as normal attention-based models. We can find that, our
model achieves impressive performance gain by introducing continuous attention mechanism while
requiring acceptable additional time consumption.

maxHoyer minNorm adaH

0.001 0.002 0.003 0.004 0.005 0.006

Figure 3: Visualization of attention scores obtained by different methods. Fewer points of lighter
color means greater sparsity.

4.6 ANALYSIS OF HOYER METRIC

To assess the impact of maximizing the Hoyer metric (maxHoyer) on model performance, we
conducted a comparative analysis with two alternative approaches for determining pt: one that
employs pt with the minimum norm (minNorm), and another that treats h in Eq. 9 as an adaptable
parameter co-trained with the neural network (adaH). Figure 3 illustrates the gray-scale maps of pt as
derived from these various methods, while Table 4 presents the mean squared error (MSE), scaled by
10−2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The results indicate that pt obtained through the maximization of the Hoyer metric not only exhibits
greater sparsity but also delivers superior performance on the dataset. This finding emphasizes the
Hoyer metric’s efficacy in promoting sparsity, which in turn is beneficial for capturing the complex
interdependencies among highly correlated points within a time series.

Model
USHCN Physionet

interpolation extrapolation interpolation extrapolation

maxHoyer 0.775 ± 0.023 0.869 ± 0.043 0.182 ± 0.074 0.328 ± 0.054
minNorm 0.804 ± 0.020 0.922 ± 0.034 0.201 ± 0.076 0.346 ± 0.049

adaH 0.798 ± 0.038 0.913 ± 0.081 0.197 ± 0.094 0.351 ± 0.063

Table 4: DHS performance with pt obtained in different approaches on USHCN and Physionet.
maxH, minN, trainP respectively refers to pt calculated by maximization of Hoyer, minimization of
norm and training as a parameter.

Interestingly, the performance of pt derived from both the minimum norm approach (minNorm) and
the adaptive parameter training (adaH) is quite comparable. This similarity in performance might
stem from the necessity for h to be closely aligned with the data characteristics for each batch. If
h is not well-correlated with the data, its capacity to absorb meaningful information is constrained.
The pt resulting from the Hoyer metric maximization is inherently connected to St, aligning with the
requirement for data-sensitive h values and thus explaining its enhanced performance.

4.7 ABLATION STUDY

0.32

0.325

0.33

0.335

0.34

0.345

1 2 4 8 16

Figure 4: Extrapolation perfor-
mance on Physionet with dif-
ferent number of heads in at-
tention.

We come up with three more ablation studies on the input neural net-
work, the output mechanism, and multi-head attention in this section.
For the input neural network, we compare the performance of GRU
and MLP on dynamical systems. When using MLP, we actually
have E(xt) in expression 4 as ∅. For the output mechanism, we
compare the performance of using and not using Hippo mechanism.
The result is shown in Fig. 5. Synthetic, Lorenz96 and USHCN are
employed here. It is shown that using GRU as input layer could
better capture the information over time and Hippo is even more
important on generating prediction. For multi-head attention, we
compare the performance of model with different heads on Phys-
ionet dataset. The result is shown in Fig. 4, which illustrates that
the improvement from multi-head attention is limited, but it incurs
additional time consumption overhead.

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

Origin MLP w/o Hippo

(a) Synthetic

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

Origin MLP w/o Hippo

(b) Lorenz96

0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84

Origin MLP w/o Hippo

(c) USHCN interpolation

0.85
0.855

0.86
0.865

0.87
0.875

0.88
0.885

0.89
0.895

0.9
0.905

Origin MLP w/o Hippo

(d) USHCN extrapolation

Figure 5: Ablation study of input neural network and output mechanism. Synthetic, Lorenz96 and
USHCN are employed here.

5 CONCLUSION

This paper tackles a significant challenge faced by current neural ODE methods: their inability to
seamlessly integrate contextual information while preserving the continuity of the latent dynamics of
irregular time series. To overcome this, we introduce an attention-based differential hidden state space,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

leveraging irregularly sampled observations as Key and Value matrices to enrich the model’s context
awareness. Building upon this novel hidden state space, we employ the theory of generalized inverses
to formulate an ODE that encapsulates the dynamics of the hidden states over time. To enhance
the precision of temporal relationships, we incorporate the Hoyer metric, aiming to maximize the
sparsity of attention scores during the generation of hidden states. Our approach has been rigorously
compared with existing state-of-the-art methods on both synthetic and real-world datasets, with
experimental results consistently showcasing the superior effectiveness of our model in irregular time
series analysis.

REFERENCES

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in neural information processing systems, 33:17804–
17815, 2020.

Stefan Bauer, Bernhard Schölkopf, and Jonas Peters. The arrow of time in multivariate time series.
In International Conference on Machine Learning, pp. 2043–2051. PMLR, 2016.

George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 17(2):91–109, 1968.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. Advances in Neural Information
Processing Systems, 36, 2024.

Jen-Tzung Chien and Yi-Hsiang Chen. Learning continuous-time dynamics with attention. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(2):1906–1918, 2022.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Luca Citi and Riccardo Barbieri. Physionet 2012 challenge: Predicting mortality of icu patients using
a cascaded svm-glm paradigm. In 2012 Computing in Cardiology, pp. 257–260. IEEE, 2012.

Edward De Brouwer and Rahul G Krishnan. Anamnesic neural differential equations with orthogonal
polynomial projections. arXiv preprint arXiv:2303.01841, 2023.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. Advances in neural information processing systems,
32, 2019.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Calypso Herrera, Florian Krach, and Josef Teichmann. Neural jump ordinary differential equations:
Consistent continuous-time prediction and filtering. arXiv preprint arXiv:2006.04727, 2020.

Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Transactions on Information
Theory, 55(10):4723–4741, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Konstantinos Kalpakis, Dhiral Gada, and Vasundhara Puttagunta. Distance measures for effective
clustering of arima time-series. In Proceedings 2001 IEEE international conference on data
mining, pp. 273–280. IEEE, 2001.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707,
2020.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time
series. arXiv preprint arXiv:2006.04418, 2020.

Jianguo Li, Zhanxing Zhu, et al. Neural lad: A neural latent dynamics framework for times series
modeling. Advances in Neural Information Processing Systems, 36, 2024.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Matthew J Menne, Claude N Williams Jr, and Russell S Vose. The us historical climatology network
monthly temperature data, version 2. Bulletin of the American Meteorological Society, 90(7):
993–1008, 2009.

Eliakim H Moore. On the reciprocal of the general algebraic matrix. Bulletin of the american
mathematical society, 26:294–295, 1920.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations
for long time series. In International Conference on Machine Learning, pp. 7829–7838. PMLR,
2021.

Joel Oskarsson, Per Sidén, and Fredrik Lindsten. Temporal graph neural networks for irregular data.
In International Conference on Artificial Intelligence and Statistics, pp. 4515–4531. PMLR, 2023.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint
arXiv:1704.02971, 2017.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. Advances in neural information processing systems, 34:980–993, 2021.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International journal of forecasting, 36(3):
1181–1191, 2020.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing
systems, 32, 2019.

Satya Narayan Shukla and Benjamin M Marlin. Multi-time attention networks for irregularly sampled
time series. arXiv preprint arXiv:2101.10318, 2021.

Kerem Sinan Tuncel and Mustafa Gokce Baydogan. Autoregressive forests for multivariate time
series modeling. Pattern recognition, 73:202–215, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419–22430, 2021.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-Temporal Graph Convolutional Networks: A Deep
Learning Framework for Traffic Forecasting. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, pp. 3634–3640, Stockholm, Sweden, July 2018. Inter-
national Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-2-7. doi:
10.24963/ijcai.2018/505. URL https://www.ijcai.org/proceedings/2018/505.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference on
machine learning, pp. 27268–27286. PMLR, 2022.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes process.
In International conference on machine learning, pp. 11692–11702. PMLR, 2020.

A BACKGROUND

A.1 GENERALIZED INVERSE

A.1.1 DEFINITION OF GENERALIZED INVERSE

The purpose of constructing a generalized inverse matrix is to obtain a matrix that can serve as an
inverse in some sense for a wider class of matrices than invertible matrices. Suppose A ∈ Cm×n

is any complex matrix, if there exists a complex matrix G ∈ Cn×m such that at least one of the
following conditions holds,

• AGA = A

• GAG = G

• (AG)H = AG

• (GA)H = GA

then G is called a generalized inverse matrix, and the four equations above are called Moore-
Penrose(M-P) equations. Furthermore, G is called the Moore-Penrose inverse of A if G satisfies all
of the four M-P equations, denoted as G ∈ A{1, 2, 3, 4}. In general, if G satisfies the i1-th, i2-th,
· · · , ik-th (1 ≤ k ≤ 4) one of the four M-P equations, then G is a weak inverse of A, denoted as
G ∈ A{i1, i2, · · · , ik}.

Usually there exists different notations for the commonly used generalized inverse.

• A{1} is called the minus sign inverse, denoted as A−

• A{1, 2} is called the reflecsive minus sign inverse, denoted as A−
r

• A{1, 3} is called the least square generalized inverse, denoted as A−
l

• A{1, 4} is called the least norm generalized inverse, denoted as A−
m

• A{1, 2, 3, 4} is called the Moore-Penrose inverse, denoted as A†

13

https://www.ijcai.org/proceedings/2018/505

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.1.2 APPLICATION IN LINEAR EQUATION SYSTEMS

Consider a non-homogeneous system of linear equations Ax = b, where A ∈ Cm×n, b ∈ Cm are
given, and x ∈ Cn is an unknown vector. If rank(A|b) = rank(A), then the system Ax = b has a
solution and we say the system is compatible. If rank(A|b) ̸= rank(A), then the system Ax = b
has no solution and the system is incompatible.

Given a system Ax = b, whether it is solvable or not, we can discuss the solution using the
Moore-Penrose inverse A†. We assume a random n × 1 vector h. When Ax = b is compatible,
x = A†b + (I − A†A)h is the general solution, and x = A†b is the least norm solution. When
Ax = b is incompatible, x = A†b+ (I −A†A)h is the least square solution.

A.1.3 COMPUTING MOORE-PENROSE INVERSE

A common approach to compute Moore-Penrose Inverse is through singular value decomposition. If
A is not a zero matrix, then A has a singular value decomposition A = V DUT . Let G = UD†V T ,
where D† is D but changing all the non-zero elements into their reciprocals. It’s easy to verify that G
is the Moore-Penrose inverse of A.

Another method to calculate the Moore-Penrose inverse is through full-rank decomposition. Suppose
rank(An×m)=r, then there exists two full rank matrices Bn×r and Cr×m such that A = BC. The
Moore-Penrose inverse of A can be expressed as

A† = CT (CCT)−1(BTB)−1BT

From the equation above, we may easily conclude that A is a full-rank square matrix if and only if
A† = A−1. An×m is a column full-rank matrix if and only if A†A = Im, then A† = (ATA)−1AT .
An×m is a row full-rank matrix if and only if AA† = Im, then A† = AT (AAT)−1.

A.2 HOYER SPARSITY METRIC

Given a vector x ∈ RN , Hoyer is a sparsity metric defined as

Hoyer(x) =
1√
N − 1

(
√
N −

∑N
i=1 xi√∑N
i=1 x

2
i

) (18)

It has been proved that Hoyer satisfies following sparse criteria Hurley & Rickard (2009),

(a) ∀α, xi, xj such that xi > xj , 0 < α <
xi−xj

2 , we have Hoyer([x1, · · · , xi − α, · · · , xj +
α, · · ·]) < Hoyer(x).

(b) ∀α ∈ R, α > 0, we have Hoyer(αx) = Hoyer(x).

(c) ∀i,∃β > 0, such that ∀α > 0, we have Hoyer([x1, · · · , xi+β+α, · · ·]) > Hoyer([x1, · · · , xi+
β, · · ·]).
(d) Hoyer(x||0) > Hoyer(x), where || denotes concatenation.

Criteria (a) implies that if the sum of the vector remains constant, then the more uniformly distributed,
the less sparse the vector will become. Criteria (b) suggests that sparsity is a relative property.
Multiplying all elements by the same factor does not alter the sparsity. Criteria (c) finds a main
element. When the main element is large enough, it is able to determine the sparsity of the vector.
Criteria (d) naturally follows from the definition of sparsity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOF

B.1 DERIVATIVE OF DHS

St satisfies the following equations

at =
ztZ

T

√
d

pt = softmax(at)

St = ptZ

We want to compute dSt

dt . For convenience, let zτi = zi, then Z = (zT1 , z
T
2 , · · · , zTn)T . Noting that

∀i, zi is independent of t. The derivative of softmax is

∂pj
∂ai

=

{
pj(1− pj), i = j

−pipj , i ̸= j

Then
dSt

dt
=

n∑
j=1

(
dpj
dt
zj + pj

dzj
dt

)

=

n∑
j=1

dpj
dt
zj

where
dpj
dt

=

n∑
i=1

∂pj
∂ai

dai
dt

= pj(1− pj)
daj
dt

−
∑
i ̸=j

pipj
dai
dt

= pj
daj
dt

−
n∑

i=1

pipj
dai
dt

= pj
dzt
dt

zTj√
d
−

n∑
i=1

pipj
dzt
dt

zTi√
d

Then
dSt

dt
=
dzt
dt

(

n∑
i=1

pi
zTi zi√
d

−
n∑

i=1

n∑
j=1

pipj
zTi zj√
d
)

=
dzt
dt

1√
d
(ZT (Pdiag − pTt pt)Z)

where Pdiag =

p1 . . .
pn

.

B.2 PRECISE SOLUTION OF SPARSITY OPTIMIZATION PROBLEM

The sum of p is 1, so the optimization problem could be simplified as

max
h

ppT

s.t. p ≥ 0

J1,np = 1

where
pT = (ZT)†ST

t + (In − (ZT)†ZT)h

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For simplicity, let b = (ZT)†ST
t , A = In − (ZT)†ZT . The standard form of problem could be

written as
min
h

− bT b− hTAh

s.t. − b−Ah ≤ 0

J1,n(b+Ah) = 1

The Lagrange function is defined as

L(h, λ, µ) = −bT b− hTAh+ λ(1− J1,n(b+Ah)) + µ(−b−Ah)

Then the KKT conditions are
∇hL = −2Ah− λAJn,1 −Aµ = 0

1− J1,n(b+Ah) = 0

− b−Ah ≤ 0

µ ≥ 0

µdiag(−b−Ah) = 0

where µdiag =

µ1

. . .
µn

. Let b = (b1, · · · , bn), A =

A1

...
An

. We have

µi(bi +Aih) = 0, i = 1, · · · , n
Ai(2h+ µ+ λJn,1) = 0, i = 1, · · · , n
n∑

i=1

Aih+

n∑
i=1

bi − 1 = 0.

Suppose there are k non-zero elements in µ, indexes as N = {n1, n2, · · · , nk}. Let αi = sum(Ai),
α = sum(A). We have

2bni −Aniµ− λαni = 0λα = 2(

n∑
i=1

bi − 1− 1

2

k∑
i=1

µniαni)

Further simplify them into the form that only involves the non-zero terms

bN =
1

2
(ANNµN + λαN)λ =

2

α
(J1,nb− 1− 1

2
αT
NµN)

Substitute λ into bN
1

2
(ANN − 1

α
αNα

T
N)µN = bN − J1,nb− 1

α
αN

Then we can obtain µ, λ, h sequentially. Substitute the results into the inequality constraints of the
KTT conditions and verify. If the constraints are satisfied, we fortunately find the solution.

Noting that we have to decide some elements of µ to zero each time. In the worst case, we need to try
2n times.

B.3 SOLUTION OF RELAXED SPARSITY OPTIMIZATION PROBLEM

The optimization problem
min
h

− bT b− hTAh

s.t. J1,n(b+Ah) = 1

The Lagrange function is defined as

L(h, λ) = −bT b− hTAh+ λ(J1,n(b+Ah)− 1)

Let derivatives equal 0

∇hL = −2Ah+ λ(J1,nA)
T = 0∇λL = J1,n(b+Ah)− 1 = 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Noting that A = AT , we have
2Ah = λAJn,1

Substituting it into the second equation, we have

λ =
2− 2J1,nb

J1,nAJn,1

Then

Ah =
(1− J1,nb)AJn,1

J1,nAJn,1

Finally, we obtain p as

pT = b− (J1,nb− 1)AJn,1
J1,nAJn,1

The most time-consuming part is the matrix summation of A, which can be computed in O(n) time
on modern GPUs optimized for matrix operations.

C IMPLEMENTATION DETAILS

There are three small neural networks in DHS, namely the input map from observations, the output
map and the one in the derivative of DHS. We use a one-layer GRU to map the observations into
latent states. An MLP with one hidden layer is used for model the dynamics of DHS. For output, we
use an MLP with 1 hidden layer. For all datasets, the hidden size of MLPs is set to 32. Integration
method is implicit adams, an adaptive method with tiny numerical error. We use early stopping when
the validation loss has not increase in 20 epochs. Learning rate is set to 0.001 and weight decay is set
to 0.001.

For classification tasks, batch size is set to 128 and the dimension of DHS and information state rt is
set to 16. The integration step of ODE solution is set to 0.05. When we train the model, we have 250
max epochs. For interpolation and extrapolation tasks, batch size is set to 32. The dimension of DHS
and information state rt is set to 32. The integration step of ODE solution is set to 5. Max epochs is
set to 100.

17

	Introduction
	Related Work
	Method
	Modeling Time Series with ODE
	Attentive Differentiable Hidden State Based on Discrete Observations
	Derivative of DHS
	Output

	Experiment
	Datasets
	Baselines
	Irregularly Sampled Time Series Classification
	Interpolation and Extrapolation
	Analysis of time consumption
	Analysis of Hoyer metric
	Ablation study

	Conclusion
	Background
	Generalized Inverse
	Definition of Generalized Inverse
	Application in Linear Equation Systems
	Computing Moore-Penrose Inverse

	Hoyer Sparsity Metric

	Proof
	Derivative of DHS
	Precise Solution of Sparsity Optimization Problem
	Solution of Relaxed Sparsity Optimization Problem

	Implementation Details

