
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL ODE WITH DIFFERENTIABLE HIDDEN STATE
FOR IRREGULAR TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Capturing the continuous underlying dynamics of irregular time series is essential
for accurately reflecting the ongoing evolution and intricate correlations within
the data. The discrete nature of current models, including RNN-based models
and transformer variants, poses challenges when it comes to generalizing to the
continuous-time data paradigms, which is necessary for capturing ongoing dy-
namics of irregular time series. Neural Ordinary Differential Equations (NODEs)
assume a continuous latent dynamic and provide an elegant framework for irregular
time series analysis. However, integrating new information while maintaining the
continuity of latent dynamics remains challenging. To tackle this problem, we intro-
duce Differentiable Hidden State (DHS) enhanced neural ODE, a data-dependent
framework that is capable of effectively capturing temporal dependencies and
ensuring the continuity of the hidden process. We leverage the theory of general-
ized inverses to innovatively compute attention mechanism in reverse and obtain a
continuous representation. To capture more accurate temporal relationships, we in-
troduce Hoyer metric and maximize the sparsity of it. Experimental results on both
synthetic and real-world datasets demonstrate the effectiveness of our model. The
code is provided on anonymous link https://anonymous.4open.science/status/DHS-
5F24.

1 INTRODUCTION

Irregular time series data are ubiquitous across a variety of real-world applications, including disease
prevention, financial decision-making, and earthquake prediction Bauer et al. (2016); Jia & Benson
(2019); Zuo et al. (2020). Irregular time series data are characterized by non-uniform sampling,
with observations occurring at variable time intervals Chen et al. (2024); Che et al. (2018). This
irregularity, coupled with frequent missing data due to technical issues or data quality concerns, poses
challenges for existing time series analysis methods, including RNN-based models Rangapuram et al.
(2018); Salinas et al. (2020); Chung et al. (2014) and Transformer variants Zhou et al. (2021); Child
et al. (2019); Li et al. (2019); Wu et al. (2021); Zhou et al. (2022).

Neural Ordinary Differential Equations (NODEs) have become a favored and promising approach
for irregular time series modeling, due to their sequential processing capabilities and ability to
manage irregularly sampled data Chen et al. (2018). By employing appropriate Ordinary Differential
Equations (ODEs) to model the dynamics of irregular time series, it becomes feasible to reconstruct a
continuous and complete time series from the irregularly sampled data through the application of
integration techniques to the ODEs.

NODE-based methods Rubanova et al. (2019); Lechner & Hasani (2020); Chien & Chen (2022);
De Brouwer et al. (2019); Herrera et al. (2020); Poli et al. (2019); Oskarsson et al. (2023); De Brouwer
& Krishnan (2023) face a fundamental challenge on irregular time series modeling. They integrate
from an initial value to derive all subsequent values, without considering observed data points
later than the initial point. They integrate latent state at each time points with observations, i.e.,
having different initial value at different time intervals. Though such mechanism can achieve a
certain accuracy, it considers only one observation at each time point, and the correlations among
observations are ignored. Meanwhile, such mechanism results in a fragmented latent process that
may not accurately reflect the true dynamics, as shown in Fig. 1 (a). Tackling the issue of fragmented
latent state of NODEs, NCDE approaches Kidger et al. (2020); Chen et al. (2024); Li et al. (2024)
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involves interpolating the observed values to estimate the latent process, for example, the natural
cubic spline interpolation used in Kidger et al. (2020). This estimated process then guides the
integration path, allowing the model to incorporate subsequent observations. Despite its simplicity,
this method fails to leverage the full informational content of the data. As shown in Fig. 1 (b), such
methods take only two nearest observations at a given time point. And using interpolation algorithm
can not well model the temporal correlations in time series.
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Figure 1: The sketch of Neural ODE, Neural CDE and our method. For a given time point, NODE
integrate from the last observation and has a fragmented latent process. NCDE employs interpolation
algorithm to calculate a continues path, but fails to fully utilize informational content of the data.
Our method introduces an attention-based differential hidden state, which adeptly captures temporal
dynamics while ensuring the seamless continuity of the latent process

In response to the limitations inherent in existing solutions, this paper presents the Differentiable
Hidden State (DHS) enhanced neural ODE framework, a data-driven approach designed to adeptly
capture temporal dynamics while ensuring the seamless continuity of the latent process. An attention-
based differential hidden state is introduced, which considers irregular sampled observations as
a projection matrix mapping time series into hidden state space. Since the projection is linear,
the hidden states preserve the continuity of original time series. Our methodology harnesses the
power of generalized inverses to innovatively reverse-engineer the attention mechanism, yielding
ODEs describing the dynamics of hidden states. To enhance the precision of temporal relationships,
we integrate the Hoyer metric Hurley & Rickard (2009), an advanced tool of sparsity metric. By
strategically maximizing Hoyer metric, our framework refines the model’s ability to discern subtle
yet significant temporal shifts, thereby improving the accuracy and reliability of predictions.

Our contribution is summarized as follows,

• We propose an attention-based differential hidden state to maintain the continuity of time
series and applies generalized inverses to innovatively derive ODEs describing the dynamics
of the hidden states of irregular time series.

• A deep model is constructed based on the derived ODEs, and Hoyer metric is integrated to
enhance the precision of temporal correlation modeling.

• Extensive experiments are conducted on both synthetic and real-world datasets, and the
result demonstrates the effectiveness of the proposed model.

2 RELATED WORK

Deep models for time series modeling have been extensively studied. Time series modeling, with its
significant practical applications, has been a focal point of research for many years Box & Jenkins
(1968). The recent surge in deep learning has led to the introduction of numerous deep learning-based
models Salinas et al. (2020); Qin et al. (2017); Sen et al. (2019); Tuncel & Baydogan (2018); Kalpakis
et al. (2001), many of which employ recurrent neural networks (RNNs) Bai et al. (2020) and temporal
convolutional networks (CNNs) Yu et al. (2018) for series modeling. However, RNNs are known
for their limited parallelization capabilities, and both RNN- and CNN-based models struggle to
effectively capture long-term temporal dependencies. The advent of the self-attention mechanism in
fields like natural language processing Vaswani et al. (2017) and computer vision Rao et al. (2021)
has inspired substantial efforts to adapt and apply transformers to time series forecasting Zeng et al.
(2022); Wu et al. (2021); Zhou et al. (2022; 2021). Nevertheless, all the above methods are designed
for regular time series data and fail to be extended to the problem of irregular time series analysis.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Owing to their exceptional ability to capture temporal dynamics, Neural Ordinary Differential
Equations (NODEs) have recently gained popularity in the analysis of irregular time series. Existing
works of NODE family can be divided into two kinds. In the first kind of methods, NCDE Kidger et al.
(2020) is a pioneering work that introduces controlled differential equations into NODE, obtaining
a rough estimate of the latent process using simple numerical differentiation. Subsequent work
builds on this foundation, with NRDE Morrill et al. (2021) further utilizing rough path theory to
model long-term sequence dependencies. ContiFormer Chen et al. (2024) constructs a continuous
extension of the Transformer, where the query is obtained by interpolation. Neural Lad Li et al.
(2024) models periodicity, trend information, local information, and multidimensional structural
information, with the modeling of local information based on the differential of the interpolated
sequence. However, such kind of methods generate the whole complete time series with only a
given initial value, and fail to fully leverage the contextual information of the data. In the second
kind of methods, ODE-RNN Rubanova et al. (2019) and ODE-LSTM Lechner & Hasani (2020)
both use gating mechanisms in the update step to encode new information. CADN Chien & Chen
(2022) is based on the ODE-RNN framework and incorporates an attention mechanism to strengthen
modeling. GRU-ODE-Bayes De Brouwer et al. (2019) and Neural Jump ODE Jia & Benson (2019)
use Bayesian estimation methods in the update step. GNODE Poli et al. (2019) models potential state
changes using the extension of ODE on graphs, GDE, in the integral step, while TGNN4I Oskarsson
et al. (2023) assumes that ODE changes are linear; both use a GNN+GRU approach for updates.
ANDE De Brouwer & Krishnan (2023) introduces the HIPPO matrix in the integral step, working in
conjunction with NODE to strengthen the modeling of historical information, and updates directly by
assignment in the update step. Nevertheless, the process of these methods results in fragmented latent
representations, which can not accurately represent the true dynamics of continuous time series.
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Figure 2: Solution overview. Irregular sampled observations are fed into a neural network to generate
Z, which serves as key and value of the attention layer to generate differentiable hidden state. A
Hippo-based output network is employed to generate output of the whole framework.

3 METHOD

3.1 MODELING TIME SERIES WITH ODE

We denote the irregular time series of interest as Xob = {(xt, t)|xt ∈ X̃, t ∈ Tob}, where observa-
tions X̃ = {xτ1 , xτ2 , · · · , xτn} are sampled irregularly at time points Tob = {t1, t2, · · · , tn}, n is
the number of observations. Notably, considering irregular time series is sampled from continuous
time series, we may have continuous time series as Xco = {xt|xt, t ∈ R}.

We model the continuous dynamics of hidden state of irregular time series with ordinary differential
equation.

dSt

dt
= Fs(St, Xob, t) (1)
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where St denotes the hidden state of the time series at time t and Fs(·) specifies the dynamics of the
hidden state. Given any time t, the hidden state St could be attained by the integration of Eq.1 over
time as,

St = Sτ1 +

∫ t

τ1

Fs(Sτ , Xob, τ)dτ (2)

where Sτ1 is the initial value of the hidden state. And a readout function can be applied to generate
the output of time series at time t.

yt = fout(St) (3)

3.2 ATTENTIVE DIFFERENTIABLE HIDDEN STATE BASED ON DISCRETE OBSERVATIONS

In this paper, we propose Differentiable Hidden State (DHS) St as the continuous dynamics of time
series in Eq.1. The proposed DHS is generated from the latent representations of time series, which
encodes values of time series and their corresponding time points. Specifically, given any time point
t and corresponding data xt, the latent representation zt is obtained by a neural network,

ψ : (xt, t, E(xt)) → zt (4)

where E(xt) refers to the external features corresponding to xt. In practice, we find introducing
historical observations of xt when obtaining zt leads to better performance, i.e., we have E(xt)
as {xi|i < t}. Therefore, latent representations on all observation time points can be denoted as
Z = [zτ1 , zτ2 , · · · , zτn ]T ∈ Rn×d.

Attention mechanism is applied to generate the differentiable hidden state. Let zt being Query, and Z
being Key and Value. Then we define DHS as

at =
ztZ

T

√
d

pt = softmax(at)

St = ptZ

(5)

where at, pt ∈ Rn, St ∈ Rd and we always have n > d. at is attention score and indicates the
correlations between data at time t and other time, and pt is the normalization of it. DHS is defined
on all observations according to correlations with them.

The above definition of DHS suggests that one can obtain a continuous state space of a time series as
in Figure 2, where the hidden state St at any time t is correlated to the latent representation zt of time
series at t and the latent representations Z of all irregularly sampled observations Xob. Based on the
definition of DHS, the derivative of DHS can be calculated and the differential equation describing
the dynamics of DHS can be achieved.

3.3 DERIVATIVE OF DHS

In this section, we aim at achieving the differential equation of DHS as in Eq.1, while giving the
detailed form of Fs. According to Eq.5, the derivative of DHS St to time t can be calculated using
chain rule as,

dSt

dt
=

dzt
dt

ZT (Pdiag − pTt pt)Z√
d

(6)

where Pdiag = Diag(pt), pt = [pt,1, pt,2, · · · , pt,n] corresponds to normalized attention score of zt
to all observations Z as in Eq.5. Refer to Appendix B.1 for detailed calculation process.

The first term in Eq.6 is intractable. Following NODE, we may apply another neural network ϕ to
model it,

dzt
dt

= ϕ(zt, t) (7)

Therefore, we have the derivative of St as,

dSt

dt
= ϕ(zt, t)

ZT (Pdiag − pTt pt)Z√
d

(8)
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To achieve a differential equation of St as in Eq.1, given observations Xob, the derivative of St

should be only dependent on St and t. However, in Eq.8, while Z is transformation of Xob, dSt

dt are
dependent on pt and zt. In the following, we further transform pt and zt into St by innovatively
computing attention mechanism backwards.

Note that in Eq.5, the dimension of pt is higher than that of St, thus the information is compressed in
this step. If we consider equation Eq.5 as a linear system and solve it directly, we will get infinite
solutions. To attain a proper St, we introduce the theory of generalized inverse. Generalized inverse
allows for a unified approach to obtaining solutions for linear system, no matter how many solutions
it may have. See detailed introduction in Appendix A.1. In our case, the solution for pt could be
expressed as

pTt = (ZT )†ST
t + (In − (ZT )†ZT )h (9)

where h is a random vector of dimension n, and (ZT )† is the Moore-Penrose inverse Moore (1920)
of ZT . In most cases, we have n≫ d holds, so we can assume that ZT has full row rank and thus
have (ZT )† = Z(ZTZ)−1.

According to the theory of generalized inverse, we could readily obtain the minimum-norm solution
pTt = (ZT )†ST

t . However, a more appropriate solution could be attained by considering the properties
of pt.

In attention mechanism, pt is always sparse so as to concentrate on certain important time points. We
introduce Hoyer Hurley & Rickard (2009) to measure the sparsity of pt.

Definition 1. Given a vector x ∈ RN , Hoyer could be defined as

Hoyer(x) =
1√
N − 1

(
√
N −

∑N
i=1 xi√∑N
i=1 x

2
i

) (10)

As a measure of sparsity, Hoyer has several excellent properties. The larger the Hoyer, the sparser the
vector. For specific details, see in Appendix A.2.

From Eq.8, a proper vector h is required to get a sparse pt. We construct an optimization problem
based on Hoyer. Noting that pt is the result of softmax normalization, so the elements are all positive
and the sum of them is 1. Let J1,n and Jn,1 denote all-one matrices of dimension 1× n and n× 1
respectively. The sparsity optimization problem is expressed as,

max
h

Hoyer(pt)

s.t. p ≥ 0

pJn,1 = 1

(11)

Theorem 1. Optimization problem in Eq.11 could be precisely solved using the KKT conditions. And
the time complexity is O(2n).

The detailed proof is given in Appendix B.2. Note in Eq.1, we have to compute pt at each integration
step t, leading to unacceptably high time consumption. In addition, Eq.11 could be approximately
solved using iterative methods such as gradient descent. However, the time complexity is still
intolerable. Therefore, we relax the conditions to allow for negative values.

Theorem 2. By introducing negative probability, the optimization problem turns into Eq.12, and
could be precisely solved by Lagrange multipliers. The time complexity could be reduced from O(2n)
to O(n).

By relaxing the conditions to allow for negative values, the sparsity optimization problem turns to,

max
h

Hoyer(pt)

s.t. pJn,1 = 1
(12)

The new problem can be solved precisely using Lagrange multipliers. Detailed proof and calculating
process can be found in Appendix B.3. The final result of the above optimization problem is,

pTt = bp −
(J1,nbp − 1)ApJn,1

J1,nApJn,1
(13)
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where bp = (ZT )†ST
t and Ap = In − (ZT )†ZT .

Next, we describe how to express zt as a function of St. As softmax is too complex to be directly
given an algebraic expression, we perform a first-order Taylor expansion for it,

pt =
a+ J1,n

(a+ J1,n)Jn,1
(14)

Combining Eq.5, Eq.13 and Eq.14, we have

zt =
√
d · ah(ZT )†

ah = hT2 (In−(Jn,1p− In)(Jn,1p− In)
†)− J1,n

(15)

h2 is a random vector and could be trained together with the neural network.

Finally, we apply Eq.13 and Eq.15 to Eq.8, then obtain the differential equation of DHS St.

3.4 OUTPUT

DHS provides a continuous hidden embedding, which could be conveniently used for downstream
tasks. Following the conventions of NODE-based methods, one straightforward approach is to
directly map DHS through a simple neural network, that is

y = fout(S) (16)

In the classification tasks, y refers to the label of the time series and S refers to DHS at all integration
time points. In the interpolation and extrapolation tasks, yt at any given time is obtained from the
corresponding St at the same time point.

DHS can also be easily combined with other methods. Hippo Gu et al. (2020) is an effective
representation for time series and able to update through integration. However, Hippo requires a
continuous sequence as input, which is exactly what DHS offers. We construct the following system
of equations:

drt
dt

= fr(St||ct||rt)

dct
dt

= Act +B(Wrrt)

dSt

dt
= Fs(St, Xob, t)

(17)

where ct is Hippo representation. The information is concentrated on rt and then output through a
simple neural network just like Eq.16.

4 EXPERIMENT

In this section, we evaluate our model on synthetic and real-world datasets for classification, interpo-
lation and extrapolation tasks. We compare the performance of DHS to state-of-the-art methods and
validate the effectiveness of DHS for irregular time series.

4.1 DATASETS

We implement our approach on four datasets, namely synthetic periodic dataset, dynamical systems,
USHCN and Physionet.

Synthetic periodic dataset is generated by the algebraic equation x(t) = sin(t+ ϕ) ∗ cos(3 ∗ (t+ ϕ))
with time t ∈ (0, 10) and phase ϕ ∼ N(0, 2π). We simulate 1000 time series and create a binary
label y = I(x(5) > 0.5). To make the time series irregular, we sample from them according a Poisson
process with rate 70%. The dataset is divided into training, testing and validation sets with ratio of
50% : 25% : 25%.

Dynamical systems are a widely studied type of time series that require models to learn the underlying
dynamics of the processes. We consider one of the representation of the most complex dynamical

6
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Model Synthetic Lorenz63 Lorenz96

attention-based

mTAN 0.757± 0.030 0.718± 0.066 0.713± 0.072
ContiFormer 0.992± 0.006 0.989± 0.004 0.987± 0.004

SSM-based

HiPPO-obs 0.758± 0.023 0.837± 0.034 0.949± 0.007
HiPPO-RNN 0.742± 0.008 0.804± 0.023 0.944± 0.008

S4 0.994± 0.003 0.911± 0.005 0.948± 0.016

RNN-based

GRU 0.848± 0.044 0.805± 0.017 0.834± 0.058
GRU-D 0.897± 0.028 0.859± 0.015 0.864± 0.048

ODE-based

ODE-RNN 0.870± 0.032 0.813± 0.013 0.954± 0.012
Latent-ODE 0.782± 0.014 0.713± 0.021 0.762± 0.024

GRU-ODE-Bayes 0.968± 0.004 0.825± 0.031 0.925± 0.004
NRDE 0.773± 0.111 0.604± 0.046 0.606± 0.112

PolyODE 0.994± 0.003 0.992± 0.000 0.984± 0.002

Ours

DHS 0.997± 0.001 0.993± 0.001 0.991± 0.003

Table 1: Classification performance on synthetic dataset and dynamical systems. Top-1 accuracy is
reported.

systems, chaotic attracters. Chaotic attracters are sensitive to initial conditions and small noises might
result in exponentially diverging trajectories. We construct Lorenz63 and Lorenz96 systems and
remove the last dimension to make it never fully observed. To make it more irregular, we further
sample from them using a Poisson process with rate 30%. Similarly, the dataset is divided into
training, testing and validation sets with ratio of 50% : 25% : 25%.

United States Historical Climatology Network (USHCN) Menne et al. (2009) contains over 150
years of daily climate data from the United States, including five different variables (precipitation,
snowfall, snow depth, minimum and maximum temperature) from 1218 weather stations. Following
the preprocessing procedure of GRU-ODE-Bayes, we select the data of 1168 stations over 4 years.
Due to equipment failure or the occasional collection of certain metrics (e.g. snow depth), the dataset
is very sparse. We further increase the irregularity by removing half of the time points and randomly
removing 20% of the observations. Divide the dataset into 60% for training, 20% for testing, and
20% for validation.

PhysioNet Challenge 2012 (Physionet) Citi & Barbieri (2012) includes the physical conditions of
8000 patients in the ICU during the first 48 hours, including 37 different indicators, such as serum
glucose, heart rate, platelets, etc. Following the preprocessing procedure in ODE-RNN Rubanova
et al. (2019), we round the observations to 6 minutes. Divide the dataset into 60% for training, 20%
for testing, and 20% for validation.

4.2 BASELINES

We compare the performance of DHS with a variety of baselines, including attention-based model
(mTAN Shukla & Marlin (2021), ContiFormer Chen et al. (2024)), SSM-based models (HIPPO-obs,
HIPPO-RNN Gu et al. (2020), S4 Gu et al. (2021)), RNN-based models (GRU Chung et al. (2014),
GRU-D Che et al. (2018)) and ODE-based models (Latent-ODE, ODE-RNN Rubanova et al. (2019),
GRU-ODE-Bayes De Brouwer et al. (2019), NRDE Morrill et al. (2021), PolyODE De Brouwer &
Krishnan (2023)).
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Model
USHCN Physionet

interpolation extrapolation interpolation extrapolation

attention-based

mTAN 1.766± 0.009 2.360± 0.038 0.208± 0.025 0.340± 0.020
ContiFormer 0.837± 0.057 1.634± 0.082 0.212± 0.023 0.376± 0.034

SSM-based

HiPPO-obs 1.268± 0.051 2.417± 0.068 0.323± 0.061 0.855± 0.024
HiPPO-RNN 1.172± 0.061 2.324± 0.031 0.293± 0.068 0.769± 0.053

S4 0.823± 0.016 1.504± 0.063 0.229± 0.023 0.535± 0.067

RNN-based

GRU 1.068± 0.073 2.071± 0.015 0.364± 0.088 0.880± 0.140
GRU-D 0.994± 0.011 1.718± 0.015 0.338± 0.027 0.873± 0.071

ODE-based

ODE-RNN 0.831± 0.008 1.955± 0.467 0.236± 0.009 0.467± 0.006
Latent-ODE 1.798± 0.009 2.034± 0.005 0.212± 0.027 0.725± 0.072

GRU-ODE-Bayes 0.841± 0.142 5.437± 1.020 0.521± 0.038 0.798± 0.071
NRDE 0.961± 0.051 1.923± 0.607 0.434± 0.077 0.819± 0.037

PolyODE 0.806± 0.017 1.842± 0.440 0.205± 0.041 0.598± 0.034

Ours

DHS 0.775± 0.023 0.869± 0.043 0.182± 0.074 0.328± 0.054

Table 2: Interpolation and extrapolation performance on USHCN and Physionet. Mean square error
is reported.

mTAN is a generative method based on variational auto-encoder and use attention mechanism to
produce a fixed-length representation for time series of arbitrary length. ContiFormer designs a
continuous extension of Transformer, based on multiple smooth curves starting from each observation.
HIPPO-obs model directly on observations with the dynamics of the HIPPO matrix, while HIPPO-
RNN combine a gated RNN with HIPPO matrix dynamics. S4 extends HIPPO to a higher dimension
and obtains an efficient training approach. GRU designs an effective gating mechanism and has
been widely applied. GRU-D extends GRU with an exponential decay between observations to
accommodate irregular time intervals. ODE-based models models underlying dynamics directly and
has been detailed in related works.

4.3 IRREGULARLY SAMPLED TIME SERIES CLASSIFICATION

Classification is an important application of irregular time series analysis. In our evaluation, we
subjected a variety of models to rigorous testing using both synthetic periodic dataset and dynamical
systems, employing cross-entropy loss for training purposes. The results, presented in Table 1,
reveal that our proposed model, DHS, surpasses a diverse array of existing methods, achieving
state-of-the-art performance across all tested datasets. Notably, the attention-based method mTAN,
along with the RNN-based methods GRU and GRU-D, were unable to surpass other approaches. This
underperformance is attributed to their discrete frameworks, underscoring the significant advantage
offered by our model’s continuous hidden state representation. While the recent PolyODE model
demonstrates a general capacity to extract temporal information from time series, it falls short
in accurately capturing the subtleties of the underlying dynamics when compared to the robust
capabilities of our proposed DHS.
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4.4 INTERPOLATION AND EXTRAPOLATION

We employ the USHCN and Physionet datasets to evaluate the performance of models on interpolation
and extrapolation tasks. For interpolation, our goal is to reconstruct the complete time series from a
subset of available observations. Conversely, in the extrapolation task, we divide the time series into
two equal parts: the first half is utilized for model training, while the full sequence is employed for
making predictions.

The results, detailed in Table 2, are presented in terms of mean squared error (MSE), scaled by
a factor of 10−2. Our proposed model, DHS, not only outperforms alternative methods but also
excels particularly in the extrapolation task. This superior performance suggests that DHS is adept at
capturing the intrinsic dynamics of the time series, a capability that significantly aids in the model’s
ability to forecast future trends accurately.

4.5 ANALYSIS OF TIME CONSUMPTION

Model Complexity Time (s/epoch)

ContiFormer O(d2n2L) 154
HiPPO-obs O(d2cL) 86

GRU-D O(d2n) 232
ODE-RNN O(d2L) 91
Latent-ODE O(d2L) 110

PolyODE O(d2cd
2L) 131

DHS O(d2cnL) 126

Table 3: Time consumption comparison.

We compare the time complexity of our method
with representative baselines, see in the follow-
ing table. Also, the time consumption of our
model and baselines in one training epoch on
USHCN dataset is listed in Table 3. In the table,
we have n denoted the number of time points
with observations, d denoted the dimension of
feature of observations, dc denoted the dimen-
sion of Hippo matrix and L denoted the integra-
tion steps. The scale of dc is typically similar
to that of d, and L is always less to n. SSM-
based models, e.g., HiPPO-obs, are efficient lin-
ear models and usually needs at least O(d2cL)
time. RNN-based models are simple but less
efficient, which usually need only O(d2n) time. ODE-based models needs at least O(d2L) time, and
extra time consumption related to the specific design of the model. Methods combining attention
mechanism with NODE usually needs O(d2n2L) time consumption. Our model designs reduce it to
O(d2nL), with the similar time complexity as normal attention-based models. We can find that, our
model achieves impressive performance gain by introducing continuous attention mechanism while
requiring acceptable additional time consumption.

maxHoyer minNorm adaH

0.001 0.002 0.003 0.004 0.005 0.006

Figure 3: Visualization of attention scores obtained by different methods. Fewer points of lighter
color means greater sparsity.

4.6 ANALYSIS OF HOYER METRIC

To assess the impact of maximizing the Hoyer metric (maxHoyer) on model performance, we
conducted a comparative analysis with two alternative approaches for determining pt: one that
employs pt with the minimum norm (minNorm), and another that treats h in Eq. 9 as an adaptable
parameter co-trained with the neural network (adaH). Figure 3 illustrates the gray-scale maps of pt as
derived from these various methods, while Table 4 presents the mean squared error (MSE), scaled by
10−2.
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The results indicate that pt obtained through the maximization of the Hoyer metric not only exhibits
greater sparsity but also delivers superior performance on the dataset. This finding emphasizes the
Hoyer metric’s efficacy in promoting sparsity, which in turn is beneficial for capturing the complex
interdependencies among highly correlated points within a time series.

Model
USHCN Physionet

interpolation extrapolation interpolation extrapolation

maxHoyer 0.775 ± 0.023 0.869 ± 0.043 0.182 ± 0.074 0.328 ± 0.054
minNorm 0.804 ± 0.020 0.922 ± 0.034 0.201 ± 0.076 0.346 ± 0.049

adaH 0.798 ± 0.038 0.913 ± 0.081 0.197 ± 0.094 0.351 ± 0.063

Table 4: DHS performance with pt obtained in different approaches on USHCN and Physionet.
maxH, minN, trainP respectively refers to pt calculated by maximization of Hoyer, minimization of
norm and training as a parameter.

Interestingly, the performance of pt derived from both the minimum norm approach (minNorm) and
the adaptive parameter training (adaH) is quite comparable. This similarity in performance might
stem from the necessity for h to be closely aligned with the data characteristics for each batch. If
h is not well-correlated with the data, its capacity to absorb meaningful information is constrained.
The pt resulting from the Hoyer metric maximization is inherently connected to St, aligning with the
requirement for data-sensitive h values and thus explaining its enhanced performance.

4.7 ABLATION STUDY

0.32

0.325

0.33

0.335

0.34

0.345

1 2 4 8 16

Figure 4: Extrapolation perfor-
mance on Physionet with dif-
ferent number of heads in at-
tention.

We come up with three more ablation studies on the input neural net-
work, the output mechanism, and multi-head attention in this section.
For the input neural network, we compare the performance of GRU
and MLP on dynamical systems. When using MLP, we actually
have E(xt) in expression 4 as ∅. For the output mechanism, we
compare the performance of using and not using Hippo mechanism.
The result is shown in Fig. 5. Synthetic, Lorenz96 and USHCN are
employed here. It is shown that using GRU as input layer could
better capture the information over time and Hippo is even more
important on generating prediction. For multi-head attention, we
compare the performance of model with different heads on Phys-
ionet dataset. The result is shown in Fig. 4, which illustrates that
the improvement from multi-head attention is limited, but it incurs
additional time consumption overhead.

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

Origin MLP w/o Hippo

(a) Synthetic

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

Origin MLP w/o Hippo

(b) Lorenz96

0.74
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0.78
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0.8
0.81
0.82
0.83
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Origin MLP w/o Hippo

(c) USHCN interpolation
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0.855

0.86
0.865

0.87
0.875

0.88
0.885

0.89
0.895

0.9
0.905

Origin MLP w/o Hippo

(d) USHCN extrapolation

Figure 5: Ablation study of input neural network and output mechanism. Synthetic, Lorenz96 and
USHCN are employed here.

5 CONCLUSION

This paper tackles a significant challenge faced by current neural ODE methods: their inability to
seamlessly integrate contextual information while preserving the continuity of the latent dynamics of
irregular time series. To overcome this, we introduce an attention-based differential hidden state space,
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leveraging irregularly sampled observations as Key and Value matrices to enrich the model’s context
awareness. Building upon this novel hidden state space, we employ the theory of generalized inverses
to formulate an ODE that encapsulates the dynamics of the hidden states over time. To enhance
the precision of temporal relationships, we incorporate the Hoyer metric, aiming to maximize the
sparsity of attention scores during the generation of hidden states. Our approach has been rigorously
compared with existing state-of-the-art methods on both synthetic and real-world datasets, with
experimental results consistently showcasing the superior effectiveness of our model in irregular time
series analysis.
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A BACKGROUND

A.1 GENERALIZED INVERSE

A.1.1 DEFINITION OF GENERALIZED INVERSE

The purpose of constructing a generalized inverse matrix is to obtain a matrix that can serve as an
inverse in some sense for a wider class of matrices than invertible matrices. Suppose A ∈ Cm×n

is any complex matrix, if there exists a complex matrix G ∈ Cn×m such that at least one of the
following conditions holds,

• AGA = A

• GAG = G

• (AG)H = AG

• (GA)H = GA

then G is called a generalized inverse matrix, and the four equations above are called Moore-
Penrose(M-P) equations. Furthermore, G is called the Moore-Penrose inverse of A if G satisfies all
of the four M-P equations, denoted as G ∈ A{1, 2, 3, 4}. In general, if G satisfies the i1-th, i2-th,
· · · , ik-th (1 ≤ k ≤ 4) one of the four M-P equations, then G is a weak inverse of A, denoted as
G ∈ A{i1, i2, · · · , ik}.

Usually there exists different notations for the commonly used generalized inverse.

• A{1} is called the minus sign inverse, denoted as A−

• A{1, 2} is called the reflecsive minus sign inverse, denoted as A−
r

• A{1, 3} is called the least square generalized inverse, denoted as A−
l

• A{1, 4} is called the least norm generalized inverse, denoted as A−
m

• A{1, 2, 3, 4} is called the Moore-Penrose inverse, denoted as A†
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A.1.2 APPLICATION IN LINEAR EQUATION SYSTEMS

Consider a non-homogeneous system of linear equations Ax = b, where A ∈ Cm×n, b ∈ Cm are
given, and x ∈ Cn is an unknown vector. If rank(A|b) = rank(A), then the system Ax = b has a
solution and we say the system is compatible. If rank(A|b) ̸= rank(A), then the system Ax = b
has no solution and the system is incompatible.

Given a system Ax = b, whether it is solvable or not, we can discuss the solution using the
Moore-Penrose inverse A†. We assume a random n × 1 vector h. When Ax = b is compatible,
x = A†b + (I − A†A)h is the general solution, and x = A†b is the least norm solution. When
Ax = b is incompatible, x = A†b+ (I −A†A)h is the least square solution.

A.1.3 COMPUTING MOORE-PENROSE INVERSE

A common approach to compute Moore-Penrose Inverse is through singular value decomposition. If
A is not a zero matrix, then A has a singular value decomposition A = V DUT . Let G = UD†V T ,
where D† is D but changing all the non-zero elements into their reciprocals. It’s easy to verify that G
is the Moore-Penrose inverse of A.

Another method to calculate the Moore-Penrose inverse is through full-rank decomposition. Suppose
rank(An×m)=r, then there exists two full rank matrices Bn×r and Cr×m such that A = BC. The
Moore-Penrose inverse of A can be expressed as

A† = CT (CCT )−1(BTB)−1BT

From the equation above, we may easily conclude that A is a full-rank square matrix if and only if
A† = A−1. An×m is a column full-rank matrix if and only if A†A = Im, then A† = (ATA)−1AT .
An×m is a row full-rank matrix if and only if AA† = Im, then A† = AT (AAT )−1.

A.2 HOYER SPARSITY METRIC

Given a vector x ∈ RN , Hoyer is a sparsity metric defined as

Hoyer(x) =
1√
N − 1

(
√
N −

∑N
i=1 xi√∑N
i=1 x

2
i

) (18)

It has been proved that Hoyer satisfies following sparse criteria Hurley & Rickard (2009),

(a) ∀α, xi, xj such that xi > xj , 0 < α <
xi−xj

2 , we have Hoyer([x1, · · · , xi − α, · · · , xj +
α, · · · ]) < Hoyer(x).

(b) ∀α ∈ R, α > 0, we have Hoyer(αx) = Hoyer(x).

(c) ∀i,∃β > 0, such that ∀α > 0, we have Hoyer([x1, · · · , xi+β+α, · · · ]) > Hoyer([x1, · · · , xi+
β, · · · ]).
(d) Hoyer(x||0) > Hoyer(x), where || denotes concatenation.

Criteria (a) implies that if the sum of the vector remains constant, then the more uniformly distributed,
the less sparse the vector will become. Criteria (b) suggests that sparsity is a relative property.
Multiplying all elements by the same factor does not alter the sparsity. Criteria (c) finds a main
element. When the main element is large enough, it is able to determine the sparsity of the vector.
Criteria (d) naturally follows from the definition of sparsity.
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B PROOF

B.1 DERIVATIVE OF DHS

St satisfies the following equations

at =
ztZ

T

√
d

pt = softmax(at)

St = ptZ

We want to compute dSt

dt . For convenience, let zτi = zi, then Z = (zT1 , z
T
2 , · · · , zTn )T . Noting that

∀i, zi is independent of t. The derivative of softmax is

∂pj
∂ai

=

{
pj(1− pj), i = j

−pipj , i ̸= j

Then
dSt

dt
=

n∑
j=1

(
dpj
dt
zj + pj

dzj
dt

)

=

n∑
j=1

dpj
dt
zj

where
dpj
dt

=

n∑
i=1

∂pj
∂ai

dai
dt

= pj(1− pj)
daj
dt

−
∑
i ̸=j

pipj
dai
dt

= pj
daj
dt

−
n∑

i=1

pipj
dai
dt

= pj
dzt
dt

zTj√
d
−

n∑
i=1

pipj
dzt
dt

zTi√
d

Then
dSt

dt
=
dzt
dt

(

n∑
i=1

pi
zTi zi√
d

−
n∑

i=1

n∑
j=1

pipj
zTi zj√
d
)

=
dzt
dt

1√
d
(ZT (Pdiag − pTt pt)Z)

where Pdiag =

p1 . . .
pn

.

B.2 PRECISE SOLUTION OF SPARSITY OPTIMIZATION PROBLEM

The sum of p is 1, so the optimization problem could be simplified as

max
h

ppT

s.t. p ≥ 0

J1,np = 1

where
pT = (ZT )†ST

t + (In − (ZT )†ZT )h
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For simplicity, let b = (ZT )†ST
t , A = In − (ZT )†ZT . The standard form of problem could be

written as
min
h

− bT b− hTAh

s.t. − b−Ah ≤ 0

J1,n(b+Ah) = 1

The Lagrange function is defined as

L(h, λ, µ) = −bT b− hTAh+ λ(1− J1,n(b+Ah)) + µ(−b−Ah)

Then the KKT conditions are
∇hL = −2Ah− λAJn,1 −Aµ = 0

1− J1,n(b+Ah) = 0

− b−Ah ≤ 0

µ ≥ 0

µdiag(−b−Ah) = 0

where µdiag =

µ1

. . .
µn

. Let b = (b1, · · · , bn), A =

A1

...
An

. We have

µi(bi +Aih) = 0, i = 1, · · · , n
Ai(2h+ µ+ λJn,1) = 0, i = 1, · · · , n
n∑

i=1

Aih+

n∑
i=1

bi − 1 = 0.

Suppose there are k non-zero elements in µ, indexes as N = {n1, n2, · · · , nk}. Let αi = sum(Ai),
α = sum(A). We have

2bni −Aniµ− λαni = 0λα = 2(

n∑
i=1

bi − 1− 1

2

k∑
i=1

µniαni)

Further simplify them into the form that only involves the non-zero terms

bN =
1

2
(ANNµN + λαN)λ =

2

α
(J1,nb− 1− 1

2
αT
NµN)

Substitute λ into bN
1

2
(ANN − 1

α
αNα

T
N)µN = bN − J1,nb− 1

α
αN

Then we can obtain µ, λ, h sequentially. Substitute the results into the inequality constraints of the
KTT conditions and verify. If the constraints are satisfied, we fortunately find the solution.

Noting that we have to decide some elements of µ to zero each time. In the worst case, we need to try
2n times.

B.3 SOLUTION OF RELAXED SPARSITY OPTIMIZATION PROBLEM

The optimization problem
min
h

− bT b− hTAh

s.t. J1,n(b+Ah) = 1

The Lagrange function is defined as

L(h, λ) = −bT b− hTAh+ λ(J1,n(b+Ah)− 1)

Let derivatives equal 0

∇hL = −2Ah+ λ(J1,nA)
T = 0∇λL = J1,n(b+Ah)− 1 = 0
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Noting that A = AT , we have
2Ah = λAJn,1

Substituting it into the second equation, we have

λ =
2− 2J1,nb

J1,nAJn,1

Then

Ah =
(1− J1,nb)AJn,1

J1,nAJn,1

Finally, we obtain p as

pT = b− (J1,nb− 1)AJn,1
J1,nAJn,1

The most time-consuming part is the matrix summation of A, which can be computed in O(n) time
on modern GPUs optimized for matrix operations.

C IMPLEMENTATION DETAILS

There are three small neural networks in DHS, namely the input map from observations, the output
map and the one in the derivative of DHS. We use a one-layer GRU to map the observations into
latent states. An MLP with one hidden layer is used for model the dynamics of DHS. For output, we
use an MLP with 1 hidden layer. For all datasets, the hidden size of MLPs is set to 32. Integration
method is implicit adams, an adaptive method with tiny numerical error. We use early stopping when
the validation loss has not increase in 20 epochs. Learning rate is set to 0.001 and weight decay is set
to 0.001.

For classification tasks, batch size is set to 128 and the dimension of DHS and information state rt is
set to 16. The integration step of ODE solution is set to 0.05. When we train the model, we have 250
max epochs. For interpolation and extrapolation tasks, batch size is set to 32. The dimension of DHS
and information state rt is set to 32. The integration step of ODE solution is set to 5. Max epochs is
set to 100.
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