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Abstract
Post-training quantization (PTQ) for vision trans-
formers (ViTs) has garnered significant attention
due to its efficiency in compressing models. How-
ever, existing methods typically overlook the intri-
cate interdependence between quantized weight
and activation, leading to considerable quantiza-
tion error. In this paper, we propose ERQ, a
two-step PTQ approach meticulously crafted to
sequentially reduce the quantization error arising
from activation and weight quantization. ERQ
first introduces Activation quantization error re-
duction (Aqer) that strategically formulates the
minimization of activation quantization error as
a Ridge Regression problem, tackling it by up-
dating weights with full-precision. Subsequently,
ERQ introduces Weight quantization error reduc-
tion (Wqer) that adopts an iterative approach to
mitigate the quantization error induced by weight
quantization. In each iteration, an empirically
derived, efficient proxy is employed to refine the
rounding directions of quantized weights, coupled
with a Ridge Regression solver to curtail weight
quantization error. Experimental results attest to
the effectiveness of our approach. Notably, ERQ
surpasses the state-of-the-art GPTQ by 22.36% in
accuracy for W3A4 ViT-S.

1. Introduction
Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have
significantly challenged the convolutional neural networks
(CNNs), emerging as a new paradigm in the field of
computer vision. ViTs leverage multi-head self-attention
(MHSA) mechanics to capture long-range relationships
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Figure 1. Illustration of the proposed ERQ.

among image patches, demonstrating impressive progress in
a variety of vision tasks (Touvron et al., 2021; Carion et al.,
2020; Zhu et al., 2020; Arnab et al., 2021).

However, great power comes with considerable complex-
ity. The inherent architectural intricacies of ViTs result in
high computational demands and substantial memory re-
quirements, posing challenges for deployments in resource-
constrained environments (Tang et al., 2022; Hou & Kung,
2022; Zheng et al., 2023). To mitigate this dilemma, model
quantization has garnered sustained attention from both in-
dustry and academia (Krishnamoorthi, 2018). Quantization
reduces model complexity by enabling low-bit representa-
tion of weight and activation, offering a promising pathway
for efficient deployments. Recently, researchers have been
gravitating towards post-training quantization (PTQ) for
ViTs, which seeks to quantize models with a tiny calibration
dataset and minor costs (Li et al., 2022b; Lin et al., 2022;
Liu et al., 2023b; Frumkin et al., 2023).

Various PTQ methods have been explored to accommodate
the ViTs’ unique structure. For example, for handling long-
tail post-Softmax activation, the log2/log

√
2 quantizer (Li

et al., 2023; Lin et al., 2022) and the twin uniform quan-
tizer (Yuan et al., 2022) are introduced. To manage high
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variant activation, reparameterization technique (Li et al.,
2023) and power-of-two factor are employed. Additionally,
evolutionary search methods (Frumkin et al., 2023) are uti-
lized for determining unstable scale factors. Nevertheless,
existing methods typically overlook the intricate interdepen-
dence between weight and activation quantization, leading
to considerable quantization error when it comes to weight-
activation quantization.

In this paper, we introduce ERQ, a two-step post-training
quantization method tailored for ViTs, that sequentially mit-
igates quantization error induced by quantized activations
and weights. As shown in Fig. 1, ERQ consists of two
steps, i.e., Activation quantization error reduction (Aqer)
followed by Weight quantization error reduction (Wqer).
Aqer formulates a Ridge Regression problem to mitigate
the quantization error induced by activation quantization,
which can be solved with a closed-form solution via weight
updating. Subsequently, Wqer is introduced to mitigate the
quantization error caused by weight quantization in an iter-
ative quantization-and-correction manner. In particular, at
each iteration, we quantize the first half of the full-precision
weight and mitigate the resulting quantization error by first
performing Rounding Refinement and then again solving a
Ridge Regression problem. The former derives an efficient
proxy for output error, which is used to refine the rounding
directions of quantized weight to lower the quantization
error. The latter further mitigates the quantization error by
updating the remaining full-precision weight. Such a pro-
cess continuously performs until all weights are accurately
quantized.

The proposed ERQ’s effectiveness is demonstrated in exten-
sive experiments on various ViTs variants (ViT, DeiT, and
Swin) and tasks (image classification, object detection, and
instance segmentation). Notably, on the image classification
task, ERQ outperforms GPTQ by 22.36% for W3A4 ViT-S.

2. Related Work
2.1. Vision Transformers (ViTs)

Inspired by the success of transformers in the natural lan-
guage processing field, ViTs, by treating images as patch
tokens, have emerged as a groundbreaking development
in computer vision (Dosovitskiy et al., 2021). Addressing
the dependency of ViTs on large datasets, DeiT (Touvron
et al., 2021) showcases an efficient teacher-student train-
ing approach. Then, Swin Transformers (Liu et al., 2021a)
employs a hierarchical structure that integrates a shifted
window-based self-attention mechanism, marking further
improvements. The applications of ViTs has broadened con-
siderably, including areas such as object detection (Carion
et al., 2020; Zhu et al., 2020), image segmentation (Zheng
et al., 2021), low-level image processing (Liang et al., 2021),

video classification (Arnab et al., 2021), and medical imag-
ing (Shamshad et al., 2023), etc. However, ViTs are ac-
companied by substantial computational overhead and in-
creased memory requirements, posing challenges for their
deployment in resource-constrained environments (Mehta
& Rastegari, 2022; Zhang et al., 2022).

2.2. Post-training Quantization for ViTs

Model quantization reduces the numerical precision of
weight and activation to mitigate computational and stor-
age costs of neural networks (Krishnamoorthi, 2018). In
contrast to quantization-aware training (QAT) (Li et al.,
2022a; Li & Gu, 2023; Xijie Huang & Cheng, 2023) that
involves complete training data and compute-heavy retrain-
ing, post-training quantization (PTQ) operates on a tiny
dataset with a reduced time overhead, harvesting extensive
attention (Banner et al., 2019). The unique architecture
of ViTs, such as LayerNorm and attention mechanisms,
makes distinct PTQ methods compared to those used for
convolutional neural networks (CNNs) (Li et al., 2021; Wei
et al., 2022). Liu et al. (Liu et al., 2021b) introduce the
first PTQ method for ViTs. To maintain the order of soft-
max scores and adapt various quantization sensitivities of
different layers, they respectively introduce a ranking loss
and a nuclear norm-based mixed-precision scheme. FQ-
ViT (Lin et al., 2022) introduces a fully-quantized method,
which respectively designs Powers-of-Two Scale and Log-
Int-Softmax for post-LayerNorm and post-Softmax activa-
tion. In PTQ4ViT (Yuan et al., 2022), a twin uniform quan-
tizer is introduced to handle the long-tail post-Softmax acti-
vation and uneven post-GELU activation. APQ-ViT (Ding
et al., 2022) establishes a block-wise error reconstruction
and a Matthew-effect preserving quantizer for post-Softmax
activation. In Evol-Q (Frumkin et al., 2023), an evolutionary
search method is employed to search extremely sensitive
quantization parameters. RepQ-ViT (Li et al., 2023) intro-
duces a reparameterization technique to handle high-variant
post-LayerNorm activation, where the channel-wise quantiz-
ers are simplified to layer-wise quantizers. Also, a Log

√
2

quantizer is adopted to accommodate post-Softmax activa-
tion. GPTQ (Frantar et al., 2022) employs OBS (Frantar
& Alistarh, 2022) to progressively compensate for weight
quantization error by utilizing Hessian information. Despite
sharing a certain similarity with GPTQ, our ERQ introduces
Aqer for mitigating the error of quantized activation, while
GPTQ does not quantize activations. Moreover, ERQ uses
a derived proxy for output error to refine weight rounding,
which has not been proposed before.

3. Preliminaries
Quantizers. For a fair comparison, our quantization set-
tings are aligned with the earlier work (Li et al., 2023).
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Specifically, we quantize the weight and activation of all
matrix multiplications in ViTs. The channel-wise quantizer
and layer-wise quantizer are adopted for weight and acti-
vation, respectively. For weights and the activation except
for the post-Softmax activation, we adopt the uniform quan-
tizer. Given full-precision values x and the bit-width b, the
uniform quantizer is defined as:

x̄ = Qun(x, b) = s · clip
(⌊x

s

⌉
+ z, 0, 2b − 1

)
, (1)

where ⌊·⌉ denotes the round function, clip function makes
the output between 0 and 2b − 1, the scale factor s is grid-
searched by minimizing the error before and after quantiza-
tion, and the zero-point z =

⌊
−min(x)

s

⌉
. For long-tail post-

Softmax activation, the log
√
2 quantizer (Li et al., 2023) is

adopted:

x̄ = Qlg
√
2(x, b) = s · 2⌊−

xq
2 ⌋(1(xq)(

√
2− 1) + 1), (2)

xq = clip
(⌊
−2log2

x

s

⌉
, 0, 2b − 1

)
, (3)

where 1(·) returns 0 for even numbers and 1 for odd num-
bers, s is grid-searched by minimizing the error before and
after quantization. All scale factors of the above-mentioned
quantizers are determined by the calibration datasets.

Objective. Denoting the full-precision activation as x ∼
P(x),x ∈ RDin , and the weight W ∈ RDout×Din . Here,
Din and Dout are the input and output dimensions, re-
spectively. The quantization error induced by activation
and weight quantization is denoted as δx = x̄ − x and
δW = W̄ −W, respectively. For each layer, we aim to
minimize the Mean Squared Error (MSE) before and after
weight-activation quantization:

LMSE = E
[
∥Wx− W̄x̄∥22

]
= E

[
∥Wx− (W + δW)(x+ δx)∥22

]
.

(4)

Eq. 4 indicates that output error is contributed both by acti-
vations and weight quantization error.

4. Method
The entangled δx and δW make it a challenge to find an
optimal solution for Eq. 4 (Li et al., 2021). To make it
tractable, we relax Eq. 4 to two sequential sub-problems
by respectively minimizing error from quantized activation
and weight. As shown in Fig. 1, we first perform Activa-
tion quantization error reduction (Aqer) followed by Weight
quantization error reduction (Wqer), which respectively de-
tailed in the following.

4.1. Activation Quantization Error Reduction

To mitigate error induced by activation quantization, we
introduce Activation quantization error reduction (Aqer),

which formulates the error mitigation as the Ridge Regres-
sion problem. Specifically, we retain the weight as full-
precision and solely consider the MSE caused by activation
quantization error δx as:

LMSE = E
[
∥Wx−W(x+ δx)∥22

]
. (5)

To minimize Eq. 5, we formulate the Ridge Regression prob-
lem, where the minimization is completed by adding W
with an adjustment δW∗:

E
[
∥Wx− (W + δW∗)(x+ δx)∥22

]
+ λ1∥δW∗∥22

= E
[
∥ − δW∗(x+ δx)−Wδx∥22

]
+ λ1∥δW∗∥22

= E
[
∥δW∗x̄+Wδx∥22

]
+ λ1∥δW∗∥22.

(6)

Here, δW∗ denotes adjustment that is computed by Ridge
Regression, x̄ = x+ δx is the quantized input, λ1∥δW∗∥22
acts as the regularization term, λ1 is a hyper-parameter that
control the intensity of the regularization. Eq. 6 constitutes
the Ridge Regression problem. To minimize it, we first
compute its gradient w.r.t. δW∗:

∂

∂δW∗E
[
∥δW∗x̄+Wδx∥22

]
+ λ1∥δW∗∥22

= E
[
2(δW∗x̄+Wδx)x̄T

]
+ 2λ1δW

∗.
(7)

Then, we solve for δW∗ by setting Equation 7 to zero:

E
[
2(δW∗x̄+Wδx)x̄T

]
+ 2λ1δW

∗ = 0

⇒ δW∗ = −WE
[
x̄δxT

]
(E

[
x̄x̄T

]
+ λ1I)

−1.
(8)

The regularization term λ1I ensures the inverse of
E
[
x̄x̄T

]
+ λ1I always exists, which is crucial for computa-

tional stability. In addition, it suppresses outliers, thereby
mitigating overfitting and enhancing the model’s generaliz-
ability. Suppressing outliers is also crucial for subsequent
weight quantization since it restricts the range of weight.
This restriction prevents the quantization points from being
distributed in the uncovered region, thus enhancing the ex-
pressive ability of quantization (Li et al., 2020). In practice,
given the calibration dataset, we estimate E

[
x̄δxT

]
and

E
[
x̄x̄T

]
using 1

N

∑N
n x̄nδx

T
n and 1

N

∑N
n x̄nx̄

T
n , respec-

tively. Here, N = B × T >> Ds
in, where B is the size

of the calibration dataset, and T is the number of tokens
of one image. Note that δx and x̄ are determined given
the input and the quantization parameters. After obtain-
ing δW∗, we incorporate it into the network’s weight by
W = W+δW∗. By doing so, the proposed Aqer explicitly
mitigates the quantization error from quantized activation
into the weight.

4.2. Weight Quantization Error Reduction

After Aqer, we perform weight quantization and propose
Weight quantization error reduction (Wqer) to mitigate the
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Algorithm 1 Weight Quantization Error Reduction
1: Input: W, W̄ = ∅, {x̄n}Nn=1, maximum iteration T
2: for i in range(Dout):
3: W̄i,: = ∅, {x̄n}Nn=1 = {x̄n}Nn=1

4: while |Wi,:| > 0
5: Partition Wi,: into

[
Ws

i,:,W
r
i,:

]
6: Partition {x̄n}Ni=1 into {

[
x̄s
n, x̄

r
n

]
}Ni=1

7: /* Rounding Refinement */
8: Obtain µ̂sµ̂sT + Σ̂s from cache or calculate it

with {x̄s
n}Nn=1, calculate δWs↓

i,: , δW
s↑
i,: with Ws

i,:

9: while 0 ≤ T--:
10: Calculate proxy Lold with δWs

i,: by Eq. 12
11: Calculate gradients GδWs

i,:
by Eq. 14

12: Obtain S by Eq. 15
13: Obtain adjusted δW

′

i,: by Eq. 13
14: Calculate proxy Lnow with δW

′

i,: by Eq. 12
15: if Lnow > Lold: break
16: δWs

i,: = δW
′

i,:

17: W̄i,: ← W̄i,: ∪ (Ws
i,: + δWs

i,:)
18: /* END Rounding Refinement */
19: /* Ridge Regression */
20: Calculate δWr∗

i,: by Eq. 17
21: Wi,: ←Wr

i,: + δWr∗
i,:

22: /* END Ridge Regression */
23: {x̄n}Nn=1 ← {x̄r

n}Nn=1

24: W̄← W̄ ∪ W̄i,:

25: Output: Quantized weight W̄

resulting quantization error. Here, the target is defined as:

LMSE = E
[
∥Wx̄− (W + δW)x̄∥22

]
=

Dout∑
i

LMSE
i

=

Dout∑
i

E
[
∥Wi,:x̄− (Wi,: + δWi,:)x̄∥22

]
.

(9)

Note that after Aqer, the activation is quantized. Eq. 9 indi-
cates that the minimization across output channels operates
independently. Consequently, we analyze the minimization
of each LMSE

i individually. Simultaneously quantizing the
entire full-precision weight yields unrecoverable quantiza-
tion error (Frantar et al., 2022). Thus, we adopt an iterative
quantization-and-correction manner to gradually minimize
quantization error caused by weight quantization (Zhou
et al., 2017). In each iteration, the first half of unquantized
weights is quantized, followed by a mitigation of the re-
sulting quantization error. Specifically, we begin with the
current full-precision weight Wi,: and the corresponding
x̄. We then partition W into two segments: the first half,
Ws

i,: ∈ R1×Ds
in , is designated for quantization, while the re-

maining part, Wr
i,: ∈ R1×Dr

in , is retained at full-precision.
Correspondingly, we derive x̄s ∈ RDs

in and x̄r ∈ RDr
in

Table 1. Results of W4A4 DeiT-S with different methods for min-
imizing E

[
∥δWs

i,:x̄
s∥22

]
. “baseline” indicates only performing

calibration and no error reduction is involved.

Method Time costs Acc. (%)

Baseline ∼ 1 minute 68.41
+ MIPQ w/o Proxy ∼130 hours 69.67
+ MIPQ w/ Proxy ∼10 hours 69.55

+ Rounding Refinement ∼4 minutes 69.24

from x̄, where x̄s and x̄r respectively contains the rows of
x̄ corresponding to Ws

i,: and Wr
i,:. The quantization error

of the quantized Ws
i,: is denoted as δWs

i,: = W̄s
i,: −Ws

i,:,
and the resulting MSE is:

LMSE
i = E

[
∥[Ws

i,:,W
r
i,:][x̄

s, x̄r]

− [Ws
i,: + δWs

i,:,W
r
i,:][x̄

s, x̄r]∥22
]

= E
[
∥δWs

i,:x̄
s∥22

]
.

(10)

Here, Wi,: = [Ws
i,:,W

r
i,:], x̄ = [x̄s, x̄r]. To mitigate

Eq. 10, we first introduce Rounding Refinement, in which
the rounding direction of the quantized weight is refined, i.e.,
adjusting δWs

i,:, to reduce E
[
∥δWs

i,:x̄
s∥22

]
itself. Then,

given E
[
∥δWs

i,:x̄
s∥22

]
after Rounding Refinement, we for-

mulate a Ridge Regression problem to further mitigate it by
adjusting Wr

i,:.

4.2.1. ROUNDING REFINEMENT

At first, we aim to adjust the rounding direction of quan-
tized weights to minimize E

[
∥δWs

i,:x̄
s∥22

]
. Specifically,

for the j-th value in Ws
i,:, denoted as Ws

i,j , the quantiza-
tion involves rounding it either to the floor or ceil (Nagel
et al., 2020a). Thereby the quantization error for Ws

i,:, de-
noted as δWs

i,j , can be represented as either δWs↓i, j or
δWs↑i, j. Here, δWs↓

i,j = Ws
i,j − Qun↓(W

s
i,j , b) > 0

denotes error from rounding-to-floor strategy, δWs↑
i,j =

Ws
i,j − Qun↑(W

s
i,j , b) < 0 denotes error from rounding-

to-ceil strategy, where ↓ / ↑ denote replacing ⌊·⌉ in Eq. 1
with ⌊·⌋/⌈·⌉. The selection of δWs

i,: is an NP-hard prob-
lem, whose solution can be searched by the mixed-integer
quadratic program (MIPQ) (Pia et al., 2017; Kuzmin et al.,
2023). However, the high computational complexity of
E
[
∥δWs

i,:x̄
s∥22

]
makes it a challenge to find the solu-

tion with reasonable time costs. As shown in Tab. 1, us-
ing E

[
∥δWs

i,:x̄
s∥22

]
as the target of MIPQ consumes pro-

hibitive ∼130 hours.

Efficient Proxy. Therefore, we aim to find an efficient proxy
for E

[
∥δWs

i,:x̄
s∥22

]
. First, we re-write E

[
∥δWs

i,:x̄
s∥22

]
as:

E
[
∥δWs

i,:x̄
s∥22

] ∆
= (E

[
δWs

i,:x̄
s
]
)2 + Var

[
δWs

i,:x̄
s
]
.
(11)
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Figure 2. Distribution of activation on different channels. Results
are extracted from DeiT-S with 32 images.

Here, ∆ indicates utilizing E
[
Z2

]
= (E [Z])2 + Var [Z].

As proved by (Klambauer et al., 2017), according to the
central limit theorem, the numerous multiplication and addi-
tion operations within neural networks make the activation
generally follow a Gaussian distribution, which is also a ba-
sic assumption in many previous works in the quantization
field (Ding et al., 2019; Sun et al., 2022; Lin et al., 2022;
Chmiel et al., 2020). Meanwhile, Fig. 2 illustrates the chan-
nel distribution of the full-precision and quantized activation.
It can be seen that quantized activation continues to exhibit
an approximated Gaussian distribution (Krishnamoorthi,
2018). Thus, we consider channel distribution of x̄s still can
be captured by the Gaussian distribution, and model x̄s with
a Ds

in-dimensional Gaussian distributionN (µs,Σs), where
Ds

in is the dimension of x̄s, µs ∈ RDs
in ,Σs ∈ RDs

in×Ds
in .

Then, the Eq. 11 becomes:

E
[
δWs

i,:x̄
s
]2

+ Var
[
δWs

i,:x̄
s
]

= δWs
i,:µ

sµsT (δWs
i,:)

T + δWi,:Σ
s(δWs

i,:)
T

= δWs
i,:(µ

sµsT +Σs)(δWs
i,:)

T .

(12)

Here, Eq. 12 is the obtained proxy for E
[
∥δWs

i,:x̄
s∥22

]
. In

practice, we estimate the empirical µ̂s and Σ̂s with the
given calibration dataset. Note that for all output channels,
µ̂s and Σ̂s are shared and require only a single computa-
tion. Fig. 3 presents the relationship between the proxy and
E
[
∥δWs

i,:x̄
s∥22

]
. It can be seen that the proposed proxy is

proportional to the real value, demonstrating its fidelity.

The computational complexity of using our proxy is
O((Ds

in)
2), while the complexity of E

[
∥δWs

i,:x̄
s∥22

]
is

O(NDs
in), where N >> Ds

in. Thus, the proxy can serve as
a low-cost objective for solving δWs

i,:. As shown in Tab. 1,
using Eq. 12 as the target of MIPQ reduces the time costs

𝔼𝔼

𝔼𝔼

Figure 3. E denotes E
[
∥δWs

i,:x̄
s∥22

]
. The proxy values are posi-

tively correlated with the real values.

from ∼130 hours to ∼10 hours. However, this still incurs
moderate costs since current open-source implementations
of MIPQ only support CPU and cannot fully exploit the
capacity of GPU. In the next, we introduce Rounding Re-
finement, a GPU-support method that uses the gradient of
the proxy to adjust δWs

i,: faster.

Rounding Refinement. At first, we initialize δWs
i,j with

the rounding-to-nearest strategy. Now, δWs
i,j is either equal

to δWs↓
i,j or δWs↑

i,j . Then, we aim to determine an index set
S that contains the index set of the elements necessitating
modifications, whose rounding direction is overturned:

δWs
i,j =

{
δWs↓

i,j if δWs
i,j = δWs↑

i,j

δWs↑
i,j otherwise.

, j ∈ S. (13)

To determine S, we first take the derivative of the proxy
(Eq. 12) w.r.t the δWs

i,:

GδWs
i,:

=
∂

∂δWs
i,:

δWs
i,:(µ

sµsT +Σs)(δWs
i,:)

T

= 2δWs
i,:(µ

sµsT +Σs).

(14)

We only select the elements whose gradients are the same
sign, since this is the only way to allow overturn. For ex-
ample, given δWs

i,j = δW
s↓
i,j , replacing it by δW

s↑
i,j is

feasible only if GδWs
i,j

has the same sign as δWs
i,j . Thus,

the index set S is defined as:

S = topk index(M),

M = |GδWs
i,:
⊙ 1(GδWs

i,:
⊙ δWs

i,:)| ∈ RDs
in .

(15)

Here, topk index return the index of the top k elements,
1(·) returns 1 for non-negative input and 0 for negative input,
|·| returns the absolute value of the input. After obtaining S ,
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Table 2. Results on ImageNet dataset. The top-1 accuracy (%) is reported as the metric. “W/A” indicates that the bit-width of the weight
and activation are W and A bits, respectively. “*” indicates the results are re-produced by using the official code. More results are provided
in the appendix.

Method W/A ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-S Swin-B

Full-Precision 32/32 81.39 84.54 72.21 79.85 81.80 83.23 85.27

FQ-ViT* (Lin et al., 2022) 3/4 0.10 0.10 0.10 0.10 0.10 0.10 0.10
PTQ4ViT* (Yuan et al., 2022) 3/4 0.10 0.10 0.20 0.15 0.59 0.64 0.53
GPTQ* (Frantar et al., 2022) 3/4 23.32 44.63 42.25 48.95 61.75 66.71 71.43
RepQ-ViT* (Li et al., 2023) 3/4 15.65 26.98 29.34 45.82 58.92 59.83 44.17

AdaRound* (Nagel et al., 2020b) 3/4 11.04 4.72 36.05 33.56 62.50 68.12 53.92
BRECQ* (Li et al., 2021) 3/4 4.97 1.25 29.23 18.58 40.49 66.93 53.38
QDrop* (Wei et al., 2022) 3/4 9.77 11.87 17.85 30.27 61.12 73.47 74.33

PD-Quant* (Liu et al., 2023a) 3/4 4.56 21.81 41.87 41.65 53.63 70.07 56.48
ERQ (Ours) 3/4 45.68 53.88 44.09 57.63 70.33 75.08 75.78

FQ-ViT (Lin et al., 2022) 4/4 0.10 0.10 0.10 0.10 0.10 0.10 0.10
PTQ4ViT (Yuan et al., 2022) 4/4 42.57 30.69 36.96 34.08 64.39 76.09 74.02
APQ-ViT (Ding et al., 2022) 4/4 47.95 41.41 47.94 43.55 67.48 77.15 76.48
GPTQ* (Frantar et al., 2022) 4/4 67.59 75.12 58.96 70.85 76.10 80.17 81.08
RepQ-ViT (Li et al., 2023) 4/4 65.05 68.48 57.43 69.03 75.61 79.45 78.32

AdaRound* (Nagel et al., 2020b) 4/4 63.09 70.51 55.65 69.24 75.20 76.05 78.12
BRECQ* (Li et al., 2021) 4/4 11.31 3.03 38.41 32.89 59.10 68.40 56.51
QDrop* (Wei et al., 2022) 4/4 17.77 21.72 31.65 35.79 65.47 78.92 80.49

PD-Quant* (Liu et al., 2023a) 4/4 32.64 34.86 58.50 64.85 60.06 77.04 75.84
ERQ (Ours) 4/4 68.91 76.63 60.29 72.56 78.23 80.74 82.44

FQ-ViT* (Lin et al., 2022) 5/5 0.10 0.10 0.10 0.10 0.10 0.10 0.10
PTQ4ViT* (Yuan et al., 2022) 5/5 72.74 72.32 65.00 70.26 72.65 80.90 81.87
GPTQ* (Frantar et al., 2022) 5/5 78.63 82.06 69.05 77.12 80.17 82.19 83.00
RepQ-ViT* (Li et al., 2023) 5/5 78.43 82.03 69.00 77.04 80.08 82.08 83.22

AdaRound* (Nagel et al., 2020b) 5/5 77.53 82.00 68.87 76.22 80.18 82.12 84.09
BRECQ* (Li et al., 2021) 5/5 47.35 43.51 62.12 63.15 75.61 80.66 82.31
QDrop* (Wei et al., 2022) 5/5 56.32 57.92 62.36 70.07 78.41 81.73 83.61

PD-Quant* (Liu et al., 2023a) 5/5 65.06 58.40 68.02 74.94 74.61 81.27 82.12
ERQ (Ours) 5/5 78.83 82.81 69.42 77.58 80.65 82.44 84.50

the overturn is performed with Eq. 13. The above process
iterates until the adjusted δWs

i,: incurs a larger proxy value
or reaches maximum iterations. After obtaining δWs

i,:, the
quantization can be completed by W̄s

i,: = Ws
i,: + δWs

i,:.
W̄s

i,: is then added into the set of quantized weight. The
overall process of Rounding Refinement is presented in
Lines 7 - Lines 18 of Alg. 1. As shown in Tab. 1, Round-
ing Refinement significantly reduces the time costs from
10 hours to 4 minutes by 150× at the cost of affordable
accuracy loss.

4.2.2. RIDGE REGRESSION

After Rounding Refinement, we suggest adjusting Wr
i,: with

δWr∗
i,: to further counteract E

[
∥δWs

i,:x̄
s∥22

]
, which yields

the following target:

E
[
∥δWs

i,:x̄
s + δWr∗

i,: x̄
r∥22

]
+ λ2∥δWr∗

i,:∥22, (16)

where λ2 is a hyper-parameter to control intensity of the reg-
ularization term λ2∥δWr∗

i,:∥22. The minimization of Eq. 16
formulates the Ridge Regression problem and the solution
is defined as:

δWr∗
i,: = −δWs

i,:E
[
x̄sx̄rT

]
(E

[
x̄rx̄rT

]
+ λ2I)

−1. (17)

In practice, we estimate E
[
x̄rx̄sT

]
and E

[
x̄rx̄rT

]
by us-

ing 1
N

∑N
n x̄r

nx̄
sT
n and 1

N

∑N
n x̄r

nx̄
rT
n . Afterward, Wr

i,: =
Wr

i,:+ δWr∗
i,: to mitigate the error. Currently, Wr

i,: remains
as full-precision and will be processed in the next iteration.
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Such a process continuously runs until all weights are accu-
rately quantized. The proposed Rounding Refinement and
Ridge Regression collectively form Wqer, whose overall
process is presented in Alg. 1. In practice, we perform the
Wqer for multiple output channels in parallel.

5. Experiments
5.1. Implementation details

Models and datasets. We conduct extensive experiments
on image classification, object detection, and instance seg-
mentation. For the image classification task, we evaluate the
ERQ on the ImageNet dataset (Russakovsky et al., 2015),
with different ViT variants including ViT (Dosovitskiy et al.,
2021), DeiT (Touvron et al., 2021), and Swin (Liu et al.,
2021a). As for object detection and instance segmenta-
tion tasks, we evaluate ERQ on the COCO dataset (Lin
et al., 2014) with Mask R-CNN (He et al., 2017) and Cas-
cade Mask R-CNN (Cai & Vasconcelos, 2018), both using
Swin (Liu et al., 2021a) as their backbone.

Implementation details. Consistent with previous study (Li
et al., 2023), we randomly select 32 images each from the
ImageNet and 1 image from the COCO dataset. The quan-
tization parameters are determined by forwarding the cal-
ibration datasets, and the reparameterization technique is
used to initialize the activation quantizer as in (Li et al.,
2023). In our experiments, the k and maximum iteration of
Rounding Refinement are set to 1 and 100, respectively. We
use the pulp (a CPU-only LP modeler written in Python)
to solve the MIPQ. For the image classification task, we
set λ1 = λ2 = 1e4 for ViT, λ1 = λ2 = 1e3 for DeiT-T,
λ1 = λ2 = 1e4 for DeiT-S and DeiT-B, and λ1 = λ2 = 1e4
for Swin. For detection and segmentation tasks, we set
λ1 = λ2 = 1e5 for all models. All experiments are imple-
mented using PyTorch framework (Paszke et al., 2019) with
a single NVIDIA 3090 GPU and an Intel Xeon 4214R CPU.

Compared methods. We re-implement BRECQ (Li et al.,
2021), QDrop (Wei et al., 2022), PD-Quant (Liu et al.,
2023a), GPTQ (Frantar et al., 2022) with their official code
with 32 images as the calibration dataset as the same ours.
The initial implementation of GPTQ did not involve activa-
tion quantization. Thus, we employed the same quantizer as
our own to quantize the activation for them, including the
reparameterization technique and the log

√
2 quantizer. For

other PTQ of ViT methods including PSAQ-ViT (Li et al.,
2022b), Ranking (Liu et al., 2021b), EasyQuant (Wu et al.,
2020), PTQ4ViT (Yuan et al., 2022), APQ-ViT (Ding et al.,
2022), NoisyQuant (Liu et al., 2023b), RepQ-ViT (Li et al.,
2023), we use the result reported in their paper if it exists,
otherwise, we re-implement based on their official code.
The ablation study of image numbers and comparisons of
time costs are presented in the appendix.

5.2. Results on ImageNet Dataset

The comparison between ERQ and other PTQ of ViTs meth-
ods is presented in Tab. 2. It can be seen that the proposed
ERQ showcases advantages over the compared methods in
all bit-width settings, especially in the low-bit cases. Specif-
ically, due to the small amount of the calibration dataset,
many methods typically suffer from the overfitting prob-
lem and exhibit unstable performance. For instance, for
the W3A4 case, QDrop and PD-Quant obtain 9.77% and
4.56% on ViT-S, respectively. In contrast, the proposed
ERQ shows stable improvements across all variants. No-
tably, ERQ demonstrates 22.36% and 9.25% performance
gains on ViT-S and ViT-B, 1.84%, 8.68% and 8.58% gains
on DeiT-T, DeiT-S, and DeiT-B, 1.61% and 1.45% gains on
Swin-S and Swin-B. When it comes to the W4A4 case, ERQ
respectively obtains 1.32% and 1.51% performance gains
on ViT-S and ViT-B, 1.33%, 1.71% and 2.13% performance
gains on DeiT-T, DeiT-S, and DeiT-B, 0.57% and 1.36%
performance gains on Swin-S and Swin-B. For the W5A5
case, ERQ also presents the best performance. For example,
ERQ improves the accuracy by 1.28% on Swin-B.

5.3. Results on COCO Dataset

The results of object detection and instance segmentation
are reported in Tab. 3. It can be seen that ERQ improves
performance in most cases. For instance, ERQ augments
the box AP and mask AP by 0.5 and 0.3 for W4A4 Mask
R-CNN with Swin-T as its backbone, respectively. Also,
ERQ augments the box AP and mask AP by 0.8 and 0.6 for
W4A4 Cascade Mask R-CNN with Swin-T as its backbone.
The above results further demonstrate the effectiveness and
generalization ability of the proposed ERQ.
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Figure 4. Ablation studies of λ1 and λ2.

5.4. Ablation Study

All ablation studies are conducted on the W4A4 DeiT-S.
Tab. 4 reports the results of various components within the
ERQ. Note that the Wqer consists of Rounding Refinement
and Ridge Regression. It can be observed that, compared
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Table 3. Results on COCO dataset. “APbox” denotes the box average precision for object detection, and “APmask” denotes the mask average
precision for instance segmentation. “*” and “†” indicate the results are re-produced by using the official code.

Method W/A
Mask R-CNN Cascade Mask R-CNN

w. Swin-T w. Swin-S w. Swin-T w. Swin-S
APbox APmask APbox APmask APbox APmask APbox APmask

Full-Precision 32/32 46.0 41.6 48.5 43.3 50.4 43.7 51.9 45.0

PTQ4ViT (Yuan et al., 2022) 4/4 6.9 7.0 26.7 26.6 14.7 13.5 0.5 0.5
APQ-ViT (Ding et al., 2022) 4/4 23.7 22.6 44.7 40.1 27.2 24.4 47.7 41.1
GPTQ* (Frantar et al., 2022) 4/4 36.3 36.3 42.9 40.2 47.1 41.5 49.2 43.2
RepQ-ViT (Li et al., 2023) 4/4 36.1 36.0 44.242.7† 40.240.1† 47.0 41.4 49.3 43.1

AdaRound* (Nagel et al., 2020a) 4/4 16.3 19.8 22.3 22.5 34.6 33.4 35.8 34.5
BRECQ* (Li et al., 2021) 4/4 25.2 27.3 32.4 32.9 40.4 35.9 41.5 37.2
QDrop* (Wei et al., 2022) 4/4 10.4 11.3 39.7 37.8 17.9 16.2 20.1 17.4

PD-Quant* (Liu et al., 2023a) 4/4 15.7 16.1 30.2 28.4 34.5 30.1 38.6 34.1
ERQ (Ours) 4/4 36.8 36.6 43.4 40.7 47.9 42.1 50.0 43.6

Table 4. Ablations on different components of ERQ. “baseline”
indicates only performing calibration and no error reduction is
involved. “Aqer” and “Wqer” represent Activation quantization
error reduction and Weight quantization error reduction, respec-
tively. “Rounding” and “Ridge” represent Rounding Refinement
and Ridge Regression used in Wqer, respectively. Results are re-
ported with W4A4 DeiT-S on ImageNet.

Aqer Wqer Top-1 Acc. (%)Rounding Ridge

Baseline 68.41

✓ 71.45 (+3.04)
✓ 69.24 (+0.83)

✓ 70.06 (+1.65)
✓ ✓ 70.49 (+2.08)

✓ ✓ 71.83 (+3.42)
✓ ✓ 72.01 (+3.60)
✓ ✓ ✓ 72.56 (+4.15)

to the baseline, Aqer enhances accuracy by 3.04%. Further-
more, Rounding Refinement and Ridge Regression results
in accuracy improvements of 0.83% and 1.65%, respectively.
When these two approaches are both employed, i.e., using
Wqer, the performance is improved by 2.08%. Ultimately,
the combination of Aqer with Wqer showcases the optimal
performance, with an accuracy increment of 4.15% points
to 72.56% over the baseline. These results confirm the ef-
fectiveness of the components in ERQ. Then, we provide
the ablation study of λ1 of Eq. 6 and λ2 of Eq. 16. For
simplicity, we set λ1 = λ2 and search for the best value.
Despite this may not be the best choice, it yields desirable
performance. Fig. 4 presents the results of different val-
ues. It can be seen that the best performance is exhibited

Table 5. Ablation studies of different k in Rounding Refinement.

Model k Top-1 Acc. (%)

DeiT-S (W4/A4)

0 72.01
1 72.56
2 72.38
3 71.79

when λ1 = λ2 = 1e4 for W4A4 Deit-S. Tab. 5 presents
the ablation study of different k in Eq. 15 of Rounding Re-
finement. It can be observed that when k = 1, the best
accuracy is achieved. Note that when k = 0, the Rounding
Refinement is invalid. Finally, in Sec. D of the appendix, we
demonstrate that each component of ERQ including Aqer,
Rounding Refinement of Wqer, and Ridge Regression of
Wqer effectively reduces the quantization error.

6. Discussion
We further discuss several unexplored limitations of the
proposed ERQ, which will be our future focus. First, de-
spite achieving considerable performance gains, ERQ cur-
rently focuses on layers with weight. A further improvement
would be feasible if the error of quantized self-attention can
be taken into consideration. Meanwhile, the Rounding Re-
finement remains further exploration. There is substantial
potential for exploring other refinement techniques such as
offering more flexibility in rounding targets. Finally, limited
by the computational resources, we are currently unable to
apply ERQ to Large Language Models (LLMs). Extending
ERQ to LLMs is an imperative task for our future studies.
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7. Conclusion
In this paper, we present ERQ, consisting of Activation
quantization error reduction (Aqer) and Weight quantization
error reduction (Wqer) to respectively mitigate the quanti-
zation error induced by activation and weight quantization.
In Aqer, the mitigation of activation quantization error is
formulated as a Ridge Regression problem, presenting a
closed-form solution to tackle the error by updating weights
with full-precision. In Wqer, the weight quantization error
is progressively mitigated in a quantization-and-correction
manner. At each iteration, the first half of weights are quan-
tized and the resulting error is first mitigated by Rounding
Refinement and then again by solving a Ridge Regression
problem. The former first mitigates the quantization error by
leveraging an empirically derived efficient proxy of output
error to refine the rounding directions of quantized weights.
The latter further mitigates the quantization error into the
remaining full-precision weight with a closed-form solution.
The effectiveness of ERQ is demonstrated by extensive ex-
periments on a variety of ViTs across diverse tasks.
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A. More Results on ImageNet Dataset
Tab. 6 presents the comparisons between the proposed ERQ and other PTQ methods. It can be observed that for the W6A6
case, ERQ also exhibits the best results by further improving the performance. For example, ERQ only incurs 0.39% and
0.25% drops compared to the full-precision model for DeiT-s and Swin-B, respectively.

Table 6. More results on ImageNet dataset. The top-1 accuracy (%) is reported as the metric. “W/A” indicates that the bit-width of the
weight and activation are W and A bits, respectively. †/‡ respectively indicates applying NoisyQuant to linear quantization/PTQ4ViT. “*”
indicates the results are re-produced by using the official code.

Method W/A ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-S Swin-B

Full-Precision 32/32 81.39 84.54 72.21 79.85 81.80 83.23 85.27

FQ-ViT (Lin et al., 2022) 6/6 4.26 0.10 58.66 45.51 64.63 66.50 52.09
PSAQ-ViT (Li et al., 2022b) 6/6 37.19 41.52 57.58 63.61 67.95 72.86 76.44
Ranking (Liu et al., 2021b) 6/6 - 75.26 - 74.58 77.02 - -

PTQ4ViT (Yuan et al., 2022) 6/6 78.63 81.65 69.68 76.28 80.25 82.38 84.01
APQ-ViT (Ding et al., 2022) 6/6 79.10 82.21 70.49 77.76 80.42 82.67 84.18

NoisyQuant† (Liu et al., 2023b) 6/6 76.86 81.90 - 76.37 79.77 82.78 84.57
NoisyQuant‡ (Liu et al., 2023b) 6/6 78.65 82.32 - 77.43 80.70 82.86 84.68

GPTQ* (Frantar et al., 2022) 6/6 80.44 83.72 71.05 78.95 81.37 82.82 84.89
RepQ-ViT (Li et al., 2023) 6/6 80.43 83.62 70.76 78.90 81.27 82.79 84.57

EasyQuant (Wu et al., 2020) 6/6 75.13 81.42 - 75.27 79.47 82.45 84.30
Bit-shrinking (Lin et al., 2023) 6/6 80.44 83.16 - 78.51 80.47 82.44 -

BRECQ* (Li et al., 2021) 6/6 61.18 71.29 69.62 70.93 79.46 81.85 84.08
QDrop* (Wei et al., 2022) 6/6 68.57 74.38 69.98 76.57 80.66 82.53 84.31

PD-Quant* (Liu et al., 2023a) 6/6 71.38 63.14 70.74 77.63 79.32 82.33 84.38
ERQ (Ours) 6/6 80.48 83.89 71.14 79.03 81.41 82.86 85.02

B. Ablation Study of Image Numbers
Tab. 7 presents the ablation study using different image numbers. It can be observed that as the image number increases, the
performance increases correspondingly. For example, the accuracy is 71.58% and 72.56% for 4 and 32 images, respectively.
After 256 images, the performance reaches the plateau. Despite using more images can improve the performance, in our
main paper, we adopt 32 images to align with the previous study (Li et al., 2023) for a fair comparison.

Table 7. Ablation studies of different image numbers.

Model Image Numbers Top-1 Acc. (%)

DeiT-S (W4/A4)

4 71.58
8 71.87
16 72.54
32 72.56
64 72.94

128 73.19
256 73.51
512 73.68

1024 73.69
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Table 8. Time costs of different methods. “*” indicates the results are re-produced by using the official code. Experiments are conducted
with W4A4 DeiT-S.

Method Runtime Top-1 Acc. (%)

BRECQ* (Li et al., 2021) ∼48 minutes 32.89
QDrop* (Wei et al., 2022) ∼80 minutes 35.79

PD-Quant* (Liu et al., 2023a) ∼110 minutes 64.85
GPTQ* (Frantar et al., 2022) ∼3 minutes 70.85
RepQ-ViT (Li et al., 2023) ∼1 minute 69.03

ERQ (Ours) ∼4 minutes 72.56

C. Comparisons of Time Costs
Tab. 8 presents comparisons of time costs between the proposed ERQ and other PTQ methods. It can be seen that the
BRECQ, QDrop, and PD-Quant require longer time overhead. In contrast, GPTQ, RepQ-ViT, and the proposed ERQ
demonstrated significantly reduced time costs. Notably, our ERQ achieved the best Top-1 Accuracy of 72.56% with a
runtime of only 4 minutes.

D. Validation of Error Reduction
In the main paper, we demonstrate that the proposed ERQ improves performance. In this section, we validate that each
component of ERQ successfully reduces the quantization error, making the output of quantized computation closer to the
full-precision output.

D.1. Activation quantization error reduction (Aqer)
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Figure 5. Illustration of the error reduction ratio brought by Aqer. We plot the error reduction ratio for each layer.

Fig. 5 presents the error reduction ratio brought by Aqer. The ratio is computed using the value of Eq. 4 before and after
applying Aqer. As can be observed, Aqer generally yields a 13%-17% average error reduction. Therefore, applying Aqer
improves the performance as shown in the result in Tab. 4 of the main paper.

D.2. Weight quantization error reduction (Wqer)

The proposed Wqer consists of Rounding Refinement and Ridge Regression. In the next, we respectively plot the error
reduction ratio of applying Rounding Refinement, applying Ridge Regression, and applying both Rounding Refinement and
Ridge Regression, i.e., applying Wqer.

D.2.1. ROUNDING REFINEMENT

Fig. 6 presents the error reduction ratio brought by Rounding Refinement. The ratio is computed using the value of Eq. 4
before and after applying Rounding Refinement. As can be observed, Rounding Refinement generally yields a 7%-11%
average error reduction. Such results support that applying Rounding Refinement improves the performance as shown in the
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Figure 6. Illustration of the error reduction ratio brought by Rounding Refinement. We plot the error reduction ratio for each layer.

result in Tab. 4 of the main paper.

D.2.2. RIDGE REGRESSION
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Figure 7. Illustration of the error reduction ratio brought by Ridge Regression. We plot the error reduction ratio for each layer.

Fig. 7 presents the error reduction ratio brought by the Ridge Regression of Wqer. The ratio is computed using the value of
Eq. 4 before and after applying Ridge Regression. As can be observed, Rounding Refinement generally yields a 20%-27%
average error reduction. Thus, applying Ridge Regression improves the performance as shown in the result in Tab. 4 of the
main paper.

D.2.3. WQER (ROUNDING REFINEMENT + RIDGE REGRESSION
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Figure 8. Illustration of the error reduction ratio brought by Wqer. We plot the error reduction ratio for each layer.

When both Rounding Refinement and Ridge Regression are applied, it is equal to applying Wqer. Fig. 8 presents the error
reduction ratio brought by Wqer. The ratio is computed using the value of Eq. 4 before and after Wqer. As can be observed,
Wqer generally yields a 21%-28% average error reduction. Note that compared to the ratio of applying Ridge Regression, the
reduction ratio further increases. Specifically, the reduction ratio increases by 0.40%, 0.71%, 1.52%, and 1.19% for W4A4
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DeiT-S, DeiT-B, ViT-S, and ViT-B, respectively. Such results demonstrate that the combination of Rounding Refinement
and Ridge Regression brings further error reduction, thereby resulting in a better performance, which is also supported by
the result in Tab. 4 of the main paper.

D.3. ERQ (Aqer + Wqer)
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Figure 9. Illustration of the error reduction ratio brought by ERQ (Aqer + Wqer). We plot the error reduction ratio for each layer.

In this subsection, we provide the error reduction ratio when both Aqer and Wqer are applied, i.e., our ERQ. Fig. 9 presents
the error reduction ratio brought by Wqer. The reduction ratio is computed using the value of Eq. 4. It can be observed that
combining ERQ yields a 32%-47% average error reduction. Meanwhile, the results prove that combining Aqer and Wqer
presents a higher error reduction ratio, supporting the performance results as shown in Tab. 4 of the main paper.

In conclusion, the aforementioned results prove the effectiveness of the proposed ERQ in reducing quantization error, which
narrows the difference between the output of the quantized layer and that of the full-precision layer. These findings also
justify the two-step approach of ERQ, which addresses activation and weight quantization errors sequentially.

E. Comparisons of Time Costs

Table 9. Model latency and throughput of W8A8 ViTs.

Model Latency (ms) Throughput (img/s)

ViT-S 184 5.43
104 (1.77x) 9.62 (1.77x)

ViT-B 746 1.34
443 (1.68x) 2.26 (1.68x)

DeiT-T 54 18.51
31 (1.74x) 32.26 (1.74x)

DeiT-S 163 6.13
106 (1.54x) 9.43 (1.54x)

DeiT-B 745 1.34
376 (1.98x) 2.66 (1.98x)

Swin-S 337 2.97
217 (1.55x) 4.61 (1.55x)

Swin-B 683 1.46
461 (1.48x) 2.17 (1.48x)

Tab. 9 presents the latency and throughput of W8A8 ViT-S, DeiT-S, and Swin-S. The experiments are conducted with onnx
framework on Intel i5-10210U CPU. The thread number is set to 1 and the results are evaluated by forwarding a single
224*224 image. We repeat the process 5 times and report the average outcomes. It can be seen that the quantized model
typically achieves 1.5x to 2x speedups, demonstrating the effectiveness of quantization. Reducing the bit-width further has
the potential to yield greater speedup. For example, the W4A4 case could achieve 3x to 6x speedups (Dong et al., 2024).
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However, the implementation of bit-widths below 8-bit typically requires specialized hardware (Dong et al., 2024; Li et al.,
2021), and is not supported by the public software framework. At this point, we lack the necessary toolset to reproduce this.
Nonetheless, we will study this as long as the toolset is available in the future.

It is worth noting that the results in W8A8 prove the effectiveness of our ERQ in facilitating acceleration. Thus, it can be
expected that our ERQ is also able to achieve similar acceleration in the lower bit-width cases if supported by the necessary
hardware and software framework.

Table 10. CSize and FLOPs for different bit-width configurations.

Model Method W/A Size (MB) FLOPs (G)

DeiT-S

Baseline FP 88 4.6
ERQ 3/4 8.3 0.054
ERQ 4/4 11 0.072
ERQ 5/5 13.8 0.11

F. Analysis on model size and computational costs
For the quantized model, ERQ has the same model size and computational costs as the other PTQ methods since the
quantized models have the same bit-width. In Tab. 10, we present the model size and the FLOPs of DeiT-S as the example.
Here, the FLOPs are converted from Bit Operations (BOPs) (Van Baalen et al., 2020).

Table 11. Performance comparison of W4A4 and W4A8 ViTs on ImageNet Dataset.

Method W/A ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-S Swin-B

Full-Precision 32/32 81.39 84.54 72.21 79.85 81.80 83.23 85.27
ERQ 4/4 68.91 76.63 60.29 72.56 78.23 80.74 82.44
ERQ 4/8 77.84 81.98 68.31 77.53 80.22 82.24 84.23

G. Analysis on activation bit-width

Table 12. Performance comparison of W4A4 and W4A8 ViTs on COCO Dataset.

Model Method W/A AP(box) AP(mask)

Mask R-CNN (Swin-T)
Full-Precision 32/32 46.0 41.6

ERQ 4/4 36.8 36.6
ERQ 4/8 41.0 39.2

Mask R-CNN (Swin-S)
Full-Precision 32/32 48.5 43.3

ERQ 4/4 43.4 40.7
ERQ 4/8 46.1 42.2

Cascade R-CNN (Swin-T)
Full-Precision 32/32 50.4 43.7

ERQ 4/4 47.9 42.2
ERQ 4/8 49.5 43.3

Cascade R-CNN (Swin-S)
Full-Precision 32/32 51.9 45.0

ERQ 4/4 50.0 43.6
ERQ 4/8 51.3 44.5

Tab. 11 presents the performance comparison of W4A4 and W4A8 ViTs on ImageNet Dataset. It can be seen that using 8-bit
activation leads to considerable gains for ViT variants. Specifically, the gains are respectively 8.93% and 5.35% on ViT-S
and ViT-B, 8.02%, 4.97%, and 1.99% on DeiT-T, DeiT-S, and DeiT-B, 1.50% and 1.79% on Swin-S and Swin-B. Tab. 12
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presents the performance comparison of W4A4 and W4A8 ViTs on the detection task. For the detection task, using 8-bit
activation also yields significant improvements. For example, the AP(box) and AP(mask) are respectively improved by 4.2
and 2.6 for Mask R-CNN (Swin-T).
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