
Interactive Task Planning with Language Models

Boyi Li∗ Philipp Wu∗ Pieter Abbeel Jitendra Malik
*Equal contribution University of California, Berkeley

Abstract— An interactive robot framework accomplishes
long-horizon task planning and can easily generalize to new
goals or distinct tasks, even during execution. However, most
traditional methods require predefined module design, which
makes it hard to generalize to different goals. Recent large
language model based approaches can allow for more open-
ended planning but often require heavy prompt engineering or
domain specific pretrained models. To tackle this, we propose
a simple framework that achieves interactive task planning
with language models. Our system incorporates both high-level
planning and low-level function execution via language. We
verify the robustness of our system in generating novel high-
level instructions for unseen objectives and its ease of adaptation
to different tasks by merely substituting the task guidelines,
without the need for additional complex prompt engineering.
Furthermore, when the user sends a new request, our system
is able to replan accordingly with precision based on the new
request, task guidelines and previously executed steps. Please
check more details on our Project Page and Demo Video.

I. INTRODUCTION

The rise of Large Language Models (LLMs) and prolifera-
tion of chatbots highlight the importance of human interaction
in an AI system. Beyond merely executing user commands,
an autonomous agent should fluidly receive and incorporate
feedback at any step during the execution process. Consider

the seemingly straightforward human task of preparing a
flavorful milk tea, which we study in this work. Such a task,
while simple to humans, requires a robot to decompose it into
numerous intermediate steps. Not only does the robot need to
generate and precisely execute the steps, but the robot should
also remain receptive to real-time modifications or feedback
to the initial request. For example, the user might request
some boba to be added to their drink. A robot should be able
to seamlessly incorporate such interaction during operation.

In light of these challenges, we propose a simple framework
for Interactive Task Planning with language models, denoted
as ITP. Our framework leverages LLMs to plan, execute, and
adapt to user inputs throughout the task lifecycle. Figure 1
illustrates an exemplary interaction with our system. Our
primary objective is to offer a blueprint for deploying real-
world robotic systems that harness pretrain language models
to coordinate the execution of lower-level skills of a robot
in a simple manner. For our project, we utilize GPT-4 [1] as
the language model backbone. ITP consists of two primary
modules; (1) a high level planner which takes a input a prompt
to specify the task and a user request and outputs a step by
step plan and (2) a low level executor which tries to achieve
a given step by converting robots skills into a functional API,

High-level Plan
Step 1: get an empty cup and put it on the table
Step 2: add taro into the empty cup
Step 3: pour the milk into the cup
Step 4: put the cup in the finished location
        

       
High-level Plan
Step 2: add matcha powder into the working cup
Step 3: add boba into the empty cup
Step 4: pour the milk into the cup
Step 5: put the cup in the finished location
Completed! ✅

Execution Code 
def grasp_cup():
…
def scoop_boba():
…
def pour():
…
…

Low-level Plan

Task guidelines only include how to make pure milk, 
strawberry milk and boba milk. Our system is able to 
generate a high-level plan, even if taro milk is not 
provided in existing guidelines. 

      

       User Request:
May I have a cup of milk with taro? 

Plan 
Replan

      

       User New Request:
Sorry, I want matcha milk with boba 
instead. 

Then the user wants to order another type of drink 
(boba milk) during the execution. At this moment, 
even though our system already completed step 1, 
our system is able to accurately replan based on 
the new request, memorized completed steps 
and task guidelines. 

Memorized 
completed 
steps

Fig. 1: An example of ITP. Our system will generate high-level plans and execute the low level robot skills through LLMs. It stores
each step once complete, which we refer to as ‘memorized completed steps’. We only give minimal guidelines for high-level plans on
making pure milk, strawberry milk and boba milk. In the example shown, the user first requests ‘May I have a cup of milk with taro?’
which is proccessed by ITP. As shown, although the recipe for taro milk is not provided in the guidelines, our system is able to generate
an accurate executable high-level plan. After the robot has finished step 1, the user wants to revise the order to matcha milk with boba,
which is also not provided in the guidelines. Our system is able to replan and make a new set of high-level steps based on the new
request, memorized completed steps and task guidelines, which can then be completed by the lower level execution module to successfully
complete the request.

https://wuphilipp.github.io/itp_site
https://youtu.be/TrKLuyv26_g


which enables GPT-4s function calling capabilities to directly
interact with the robot, abstracting code level details from the
system. ITP does not require the training of additional value
functions such as SayCan [2], [3], and does not require code
level prompts such as Code as Policies[4] or ProgPrompt
[5]. Furthermore, ITP dynamically generates novel plans
and re-adjusts its plan based on user input. We hope our
framework will be useful for accomplishing a wide range of
interactive robot tasks and will release our codebase to foster
advancements in this field. We outline the key features of
ITP below:

1) ITP is a novel training-free robotic system for interactive
task planning with language models. We showcase ITP
in the context of a real world boba drink-making robot
which integrates planning, vision and skill execution.

2) ITP is robust and can generate executable plans from a
limited set of existing recipes, showing its adaptability.

3) Our system converts the robot skills into a functional
language based API that can be leveraged by GPT-4.
This enables a user to prompt the system through natural
language rather than code, removing the need for code
level prompt engineering.

4) Our system exhibits robustness in adapting to user
request during execution, allowing it to consider the
updated goals, previously completed steps, and task
guidelines in order to replan new steps.

II. RELATED WORK

A. Task planning

Task planning, the problem of developing a plan to
achieve a desired goal, is an integral component of our work.
Traditionally, task planning in robotics commonly leverages
symbolic planners which reduce the planning problem into a
search problem [6], [7]. Practitioners define the problem in a
declarative language, which can be restrictive as it requires
meticulous definitions of the problem parameters, such as
actions, their preconditions and their effects [8], [9], [10],
[11]. Task and motion planning (TAMP), takes task planning
a step further and also jointly considers the lower level
execution during higher level planning [12], [13]. TAMP
methods also consider symbolic representations and leverage
search algorithms to extract the final sequence of lower-level
primitives and has seen success in robotic manipulation [14],
[15], [16]. As the search space can often be prohibitively
large, some methods leverage hierarchy and/or sampling [17],
[18], [19], [20]. Our approach replaces traditional planning
pipelines with LLMs, offering common-sense reasoning,
enhanced interaction capabilities, and the ability to define the
problem’s scope using natural language.

B. Language Models as Planners in Robotics

Due to the popularity of LLMs, there has been a rising
interest in leveraging LLMs as a policy in robot systems.

Request

Human-in-the loop feedback: The user sends new requests to provide 
feedback, which could happen after any step during execution.

Perception feedback: 
Our system localize the 
objects accurately by 
using a detection 
system to provide 
perception feedback.

Based on very 
limited task 
guidelines and 
user request, our 
system makes 
high-level plans.

Execution feedback: 
Our system provides 
status updates as 
feedback to help control 
or replan the following 
steps during execution

Skill Execution

High-level

Low-level

Task Guidelines

Low-level policy execution

grasp_cup()
place_cup()
scoop()
...

GPT-4

Scene Description

Low-level Skills

PlanReplan

New 
Request

GPT-4

Plan 
Replan

Fig. 2: Overview of ITP. In this paper, we design our system with Grounded-DINO to locate the object and GPT-4 to process the language.
Our system generate high-level plans based on the user request and task guidelines. When the system is interrupted with new request, the
system will replan on the basis of human-in-the loop feedback (new request), execution feedback (memorized completed steps) and task
guidelines. Each generated high-level plan will go through GPT-4 to acquire the corresponding execution of low-level skills.



One work in this direction leverages LLMs as zero shot
planners in simulated embodied settings [21] by converting
the scene and task definitions into language, then letting the
LLM directly predict actions. [2], [22], [3] follow in this line
of work, coordinating many large pretrained models with a
robot to solve various tasks. In contrast to approaches like
SayCan [2], which necessitate a pretrained value function to
ground actions, we rely on prompting the language model
with task guidelines and robot skills. This implicitly encodes
preconditions and effects reminiscent of traditional declarative
task planning approaches but can be done so with natural
language, which is more expressive and easier for the average
user to tune. Tidy bot [23] shows that LLMs can help a robot
follow a user’s preferences based on a few examples. We also
prompt the model with a small set of examples but explore
generalization to new goals. Reflect [24] uses large models to
make an agent recount their experiences and correct failures.
LLMs have also been used to allow robots to seek help when
uncertain [25].

A related approach, used in Code as Policies [5] and
ProgPrompt [4] leverages the code writing capabilities of
LLMs to generate code that a robot agent can execute directly.
This often requires heavy prompt engineering of example
code to show the model how to properly use the provided
functions to accomplish a directive. Language-guided Robot
Skill Learning [26], like us, takes a hierarchical approach to
LLM planning, but assumes access to the simulator which
provides ground truth state information. Voyager [27] uses
LLMs to build a life long learning agent for Minecraft by
having the agent explore and solve new tasks through writing
code that interacts with the API.

Our work falls into this general category of leveraging
LLMs to plan, and then execute actions in the environment.
In contrast to prior work, we allow the LLM to generate
a high-level plan based on contextual information. These
low-level plans are then executed directly by an LLM with
access to the functional API of the robot using a pre-trained
VLM to ground the visual scene into primitives. Our work
focuses on how to instantiate such a system in the real world.

III. METHOD

ITP offers a blend of high-level planning and low-level
execution, powered by LLMs. In contrast to prior work [5],
[4], our approach enables the LLM to create a high-level
plan informed by contextual information in the form of a list
of steps. Each step of this plan is subsequently realized by
another LLM with access to the functional API of the robot.
A pre-trained VLM grounds the visual scene into language.
Our work focuses on how to instantiate such a system in the
real world. Our framework, shown in Fig. 2, consists of three
primary building blocks:

Visual Scene Grounding: ITP converts visual inputs into
language using a Vision-Language Model (VLM).

LLMs for Planning and Execution: ITP generates high
level plans and executes lower level robot skills.

Robot Skill Grounding: ITP translates robot skills into a
functional API, enabling LLMs to dictate robot actions.

Visual Scene Grounding. The VLM’s role is to process
the visual scene into a concise language description, which
can further be processed for planning and task execution
downstream. In our drink-making system, the visual ground-
ing system accepts a list of menu items and generates
corresponding bounding boxes. Using a simple mapping
algorithm, we then approximate the x and y locations of
each item in the robot frame. We employ the pretrained
VLM: Grounded-DINO [28], a variant of the original DINO
model [29] fine-tuned for extracting 2D bounding boxes given
language descriptions. The vision system gives a holistic
‘understanding’ of the scene, despite the location assignments
being imprecise.

LLMs for Planning and Execution. We utilize GPT-
4 [1] as our language model, one of the most capable LLMs
available at the time of this writing. Our approach employs
two language agents. The high level planner takes as input a
given prompt, task guidelines, and a user request, and outputs
a step-by-step plan to execute the request. It also retains past
user interactions for any necessary replanning. The second
LLM, provided with information about the scene and robot
skills, takes each generated step and attempts to execute it.
Task guidelines, described using natural language, outline
the scope of the robot’s tasks and are provided to the high
level planner. In our milk tea system, the task guidelines
consist of a select set of menu items, their corresponding
preparation steps, and a list of relevant ingredients. This
includes the procedures for a few drinks like ‘pure milk’ and
‘boba milk’. Our system utilizes these guidelines to determine
the feasibility of making a new drink based on available
materials. Leveraging LLMs’ fewshot learning capabilities,
[30], ITP can generalize from the baseline guidelines to make
detailed steps for other drinks such as ‘boba strawberry milk’
or ‘taro milk’.

Robot Skill Grounding. The language model interfaces
with a predefined skill set in Python that controls the robot.
These skills are translated into a functional API by parsing
of function definitions and related doc strings. This can
be directly used with GPT’s function-calling layer [1]. In
contrast to methods like ProgPrompt or Code as Policies, our
system does not require examples or function details when
prompting the LLM. Instead, more detailed prompting of the
language model can be specified via natural language in the
documentation of the functions.

Beyond the three aforementioned components, ITP consid-
ers new requests from the user as human-in-the-loop feedback.
The system will consider completed steps, task guidelines,
the new request, and the chat history to generate a new plan.
We explain the details of an example in Figure 3. We also
showcase ITP’s adeptness in planning and adaptive replanning
of the same example in Figure 4.

IV. EXPERIMENTS
A. Robot Experiments

In our experiments, we focus on a drink-making system.
Within the given scene, the robot is supplied with a set of
ingredients which it must combine to produce a specific drink.



Our setup also has an overhead camera which feeds images
to Grounded-DINO model for scene understanding.

For the robot, we provide a predefined set of skills,
which include actions like “grasp cup”, “pour”, and
“scoop boba to location”. The “grasp cup” skill is imple-
mented with a feedback policy that centers the gripper on
the cup, given the approximate location from the scene
description, enabling the robot to grasp it reliably. The “pour”
skill is designed to accept a location and a descriptive cue
of the ingredient being poured. This level of specification
enables milk to be poured more than specific flavors. For
example, when making a matcha latte, the pour function will
be provided “matcha” or “milk” as inputs. When the input
is “matcha”, the controllable tilt angle will be small, while
when the input is “milk”, the controllable tilt angle will be
much larger. This ensures that the robot can pour more milk
and a bit of matcha liquid.

B. Comparison on Task Planning

We consider Code as Policies as a baseline. Code as
Policies provides a formulation for language model-generated
programs executed on real systems by prompting a text
completion model with code examples. For a fair comparison,
not only do we provide Code as Policies with the same
information as given in ITP in the form of comments, but we
also provide an additional 40 lines of code prompts providing
example usage, as is done in Code as Policies. For both

ITP and Code as Policies, we provide user requests and task
guidelines as inputs. The task guidelines include 3 instances,
along with their associated high-level planning steps, current
available material and other task-specific conditions. We show
the detailed task guidelines below:
Options:
Pure milk, Strawberry milk, Boba milk
Instructions:
Pure milk
Material: milk
Steps:
0) get an empty cup and bring it to the working area
1) pour the milk into the working cup
2) put the working cup in the finished location
Strawberry milk
Material: strawberry jam, milk
Steps:
0) get an empty cup and bring it to the working area
1) add strawberry jam to the working cup
2) pour the milk into the working cup
3) put the working cup in the finished location
Boba milk
Material: boba, milk
Steps:
0) get an empty cup and bring it to the working area
1) add boba to the working cup
2) pour the milk into the working cup
3) put the working cup in the finished location
Available material we have now:
boba, strawberry jam, mango jam, matcha powder, taro,
milk,blueberry

Task Guidelines 1: making a drink

We evaluate the methods on two criteria: the number of
high-level steps correctly generated and whether the real

Step 1: get an empty cup and put it on the table
Step 2: add taro into the empty cup
Step 3: pour the milk into the cup
Step 4: put the cup in the finished location

High-level Plan

Step 2: add boba into the empty cup
Step 3: pour the milk into the cup
Step 4: put the cup in the finished location

High-level Plan (after replanning)

The user has requested:
---
{user_prompt}
---
The the guidelines are:
---
{task_guidelines}
---
Set A = all the materials we have now.
Set B = all the materials we need.
Print Set A in the first line.
Print Set B in the second line.
Print Set C in the third line where Set C are the items in Set B that 
are not in Set A.
If Set C is not empty, provide unique element and respond with "Set 
C is not empty"; else, respond with a numbered list of steps, where 
each step is in a new line (the steps should closely match one of the 
guidelines).

Prompt

May I have a cup of 
milk with taro? 

So far the robot has completed these 
steps: 
{completed_steps}. 
The next step is to 
{step}.
The current scene looks like this: 
{scene_description}
Can you use the robot functions to 
complete: {step}?
After completion, respond with a summary 
of the execution. Make sure to put things 
back after using them.

Prompt

grasp_empty_cup_from_stack()

Low-level Actions

Scene Description
scene = {
"cup with milk": (0.667, -0.266),
"bowl with boba": (0.535, -0.47),
"cup with taro": (0.23, -0.46),
"cup with strawberry": (0.37, -0.865),
"cup stack": (0.4, 0.0),
"finished location": (0.15, 0.5),
"trash_location": (0.6, -0.4),}

Completed Steps

Step 1: get an empty cup 
and put it on the table

So far the robot has completed these steps: 
{completed_steps}.
The user has requested some feedback now:
---
{new_request}
---
If the user wants to add something, directly add one step and keep 
the original steps unchanged.
For other requests, can you first print a summary of the current 
users request after their feedback? Then like before
Set A = all the materials we have now.
Set B = all the materials we need.
Print Set A in the first line.
Print Set B in the second line.
Print Set C in the third line where Set C are the items in Set B that 
are not in Set A.
If Set C is not empty, provide unique element and respond with "Set 
C is not empty";
else, respond with a new numbered list of steps, where each step is 
in a new line (the steps should closely match one of the guidelines).
steps already completed should be excluded from the new list. If 
you need to start from scratch, then put the existing cup in the trash 
location and get a new empty cup.

Prompt

May I change to a taro 
boba milk?

 Plan

Replan

+

Completed Steps

Low-level Code

Execute next steps……

def grasp_empty_cup_from_stack(self, x: float, y: float) -> Tuple[bool, str]:
     """Grab an empty cup at the given x, y coordinates from the stack. 
     Should only be used on a cup stack.
     Args:
        x (float): The x coordinate of the object.
        y (float): The y coordinate of the object.
    Returns:Tuple[bool, str]: Whether the grasp was successful and a message."""
    # approach the cup
    x_app, y_app = get_x_y_offset(x, y, offset=OFFSET)
    self._robot.command_ee_pos(x_app, y_app, Z_STACK)
    # grab the cup
    try:
         description = "cup"
         self._feedback_policy.grasp(
         self._robot, “cup”, x, y, Z_STACK, rotz=True)
     except Exception as e:
         print(e)
         return False, f"Grasp failed: {e}"
    # backup
    self._robot.command_ee_pos(Z_STACK + DELTA_Z) # lift
    self._robot.command_ee_pos(x_app, y_app, Z_STACK + DELTA_Z)
    return True, "Grasp successful"

Fig. 3: Detailed diagram of ITP. ITP incorporates user requests, task guidelines, and memorized completed steps for planning or replanning.
During “Plan”: we feed user requests and task guidelines to complete the prompt and input it into GPT-4 to obtain a high-level plan. We
input the completed steps and next step to complete the prompt and input the prompt into the lower level executor GPT-4 to call the
corresponding low-level actions. Once the lower level executor completes a step, we will maintain the history by storing it into Completed
Steps. GPT-4 directly makes function calls to a predefined robot skill library (which could be learned or handcrafted). During “Replan”:
we feed the completed steps and new request to create a new prompt, we append this new prompt to the previous conversation context and
input the whole message into GPT-4 to obtain a new high-level plan. We refer this procedure as replanning, which previous language-based
task planning methods have not considered. The low level executor then completes the next steps based on the new high-level plan.



robot successfully finished the task. We send user requests
of varying complexity levels, including ‘existed’, ‘zero-shot
easy,’ ‘zero-shot moderate’, ‘zero-shot hard’ and ‘unavailable
material’. ‘Zero-shot’ means the instruction for making the
corresponding drink is not provided in the task guidelines.
‘Unavailable’ indicates that we don’t have the material for
the requested beverage. We show the results in Table I. We
could notice that ITP is robust in high-level plan generation
and can easily be generalized to novel instructions of unseen
drinks or unavailable drinks. For example, the user sends the
request ‘I would like a cup of passion fruit milk.’ However,
passion fruit jam is not available, so the system will provide
the response ‘Passion fruit jam is not available’ and stop the
program. In comparison, Code as Policies failed to achieve
this objective. To understand the failure case of Code as
Policies, we provide some observations: 1) when making a
cup of milk with boba, the system attempted to scoop boba
from the working up, improperly adhering to the correct
usage of the lower level skill. 2) When the prompt is more
complex (9th row), the system adds milk first and then adds
the boba, resulting in an incorrect execution order. 3) When

the material is not available, it cannot justify that passion
fruit doesn’t exist. Additionally, since ITP is built based on
task guidelines alone, it demands significantly less prompt
engineering than Code as Policies, which makes our system
very easy to use for various task planning purposes.

C. Replan with Human-in-the-loop Feedback

Our system is robust to diverse new requests during
execution. To verify this point, we assess the task replanning
performance on real robots in response to a user’s new request,
referred to as human-in-the-loop feedback. We display the
results in Table II. We notice that ITP demonstrates its
capacity to effectively handle a range of new requests, even
after progressing through various steps of the task. The last
example is of particular note, where ITP adds one step more
(‘Stir the mixture until the matcha powder is well mixed‘)
before putting the working cup in the finished location. Here
the language model assumes the need to stir the matcha due to
the ambiguity of the correct procedure. Such superfluous steps
can be reduced by adding restrictions in the task guidelines,
which can easily be done by a general user of the system.
This contrasts with methods like Code as Policies which

We adopt Grounded-DINO for capturing 
the general location of each object

Initialization Stage High-level step1: grasp the empty cup 
Low-level action: 
grasp_empty_cup_from_stack() 

High-level step1: grasp the empty cup 
(then, we replan for the new request)
Low-level action: place_cup()

High-level step2: add boba into the cup
Low-level action: 
scoop_boba_to_location()

High-level step2: 
add boba into the cup
Low-level action: 
scoop_boba_to_location() 
(during execution)

High-level step 3: add taro into the cup
Low-level action: grasp_cup(), pour(), 
place_cup()

High-level step 3: add milk into the cup
Low-level action: grasp_cup(), pour(), 
place_cup()

High-level step 4: place the cup in the 
final workspace of the table
Low-level action: grasp_cup(), 
place_cup()

User request: Can I have a taro milk?

Fig. 4: An example of ITP to make a cup of taro milk with boba. Our system first makes a high-level plan based on the user request
using GPT-4: step 1) grasp the empty cup, step 2) add taro into the cup, step 3) add milk into the cup, step 4) place the cup in the final
workspace. For each step in the high-level plan, we feed step into another instance of GPT-4 and obtain the corresponding low-level
actions which is directly executed on the robot. As for the perception component, ITP uses Grounded-DINO to capture the general location
of each object and locate the object accurately when taking the actions. However, after grasping the empty cup, the user sends a new
request ‘May I change to a taro boba milk?’. Considering the memorized completed steps as execution feedback, the system replans and
generates the following high-level steps and low-level executions. The following plan has been changed to: step 2) add boba into the cup,
step 3) add taro into the cup, step 4) add milk into the cup, step 5) place the cup in the final workspace.



User Request Difficulty Level Code as Policies ITP

High-level Planning Success High-level Planning Success
I would like to order a cup of milk. Existed 3/3 ✓ 3/3 ✓

I want to order a boba milk. Existed 2/4 ✗ 4/4 ✓
Can I have a cup of strawberry milk? Existed 4/4 ✓ 4/4 ✓

I want a matcha latte. Zero-shot easy 4/4 ✓ 4/4 ✓
May I have a cup of milk with taro? Zero-shot easy 3/3 ✓ 3/3 ✓

I want taro milk with boba. Zero-shot moderate 3/5 ✗ 5/5 ✓
Can I get a strawberry boba milk? Zero-shot moderate 3/5 ✗ 5/5 ✓

I want to order a strawberry matcha milk. Zero-shot moderate 5/5 ✓ 5/5 ✓

I’d order a strawberry matcha milk with boba. Zero-shot hard 3/6 ✗ 6/6 ✓

I would like a cup of passion fruit milk. Unavailable material - ✗ - ✓

Total - 80% 5/10 100% 10/10

TABLE I: Quantitative results with real robots for high-level planning rate and success rate with various user requests. For high-level
planning, we extract planning accuracy by dividing the number of successful steps by the total number of steps, shown as ‘Successful
Steps / Total Steps’. We determine success by whether the robot successfully accomplishes the task. To calculate the overall high-level
planning score, we average the performance across all user requests.

User Request New Request Step When New Request is Made
1st 2nd 3rd

Can I have a cup of strawberry milk? I want to add boba into the drink. 4/4 3/3 5/5

I want a matcha latte. Sorry, I want boba bilk without matcha instead. 3/3 5/5 5/5

May I have a cup of milk with taro? Can I replace the taro with strawberry? 3/3 5/5 5/5

Can I get a strawberry boba milk . Sorry, can I reorder a strawberry milk? 3/3 5/5 5/5

A strawberry matcha milk with boba. Can I just get matcha boba milk and no strawberry? 4/4 5/4 7/6

TABLE II: Replanning performance with real robots given human-in-the-loop feedback. After the user sends a request, we interrupt the
procedure before different steps (1st, 2nd, and 3rd). Note that our replanning system is robust in handling these new requests. Interestingly,
for the last example, after the 2nd and 3rd step, ITP adds one step more (‘Stir the mixture until the matcha powder is well mixed’) before
putting the working cup in the finished location, leading to 5 and 7 steps instead of 4 and 6 steps respectively. We assume this is because
GPT-4 assumes matcha powder is hard to mix, while we select water-soluble matcha powder. Including the instruction ‘matcha powder is
water-soluble’ in the task guidelines could address this issue.

require tuning prompts at the code level.

Options:
Wash one plate with rose flavor,
Wash all the plates and there are two plates,
Wash one plate and one fork
Instructions:
Wash one plate with rose flavor
Material: rose detergent
Steps:
0) grasp the dirty plate
1) remove large particle from the plate
2) open the dishwasher
3) pull out the rack
4) put one plate on the third rack
5) add rose detergent into the detergent dispenser
6) close the dishwaster
7) select the cycle and start dishwasher
8) after the dishwasher cycle is complete and the
dishwasher has stopped, wait a few minutes for the dishes
to cool down
9) make sure the plate is clean and dry, otherwise
go into step 8)
10) return the clean plate to the finished location
Wash all the plates and there are two plates
Material: original detergent
0) grasp the first dirty plate
1) remove large particle from the plate
2) open the dishwasher
3) pull out the rack
4) put the plate on the third rack
5) grasp the second dirty plate
6) remove large particle from the plate
7) put the plate on the third rack
8) add original detergent into the detergent dispenser

9) close the dishwaster
10) select the cycle and start dishwasher
11) after the dishwasher cycle is complete and the
dishwasher has stopped, wait a few minutes for the dishes
to cool down
12) make sure the plate is clean and dry, otherwise
go into step 8)
13) return all clean utensils to the finished location
Wash one plate and one fork
Material: original detergent
0) grasp the dirty plate
1) remove large particle from the plate
2) open the dishwasher
3) pull out the rack
4) put the plate on the third rack
5) grasp the fork
6) remove large particle from the fork
7) put the fork on the first rack
8) add original detergent into the detergent dispenser
9) close the dishwaster
10) select the cycle and start dishwasher
11) after the dishwasher cycle is complete and the
dishwasher has stopped, wait a few minutes for the dishes
to cool down
12) make sure the plate and fork are clean and dry,
otherwise go into step 8)
13) return all clean utensils to the finished location
Available location we have now:

* first rack for forks and small kitchen utensils

* second rack for bowl/cup

* third rack for plate/big kitchen utensils
Available material we have now:
rose detergent, original detergent

Task Guidelines 2: dishwashing



User Request Task Type High-level Planning
Wash one dirty plate with rose flavor. Existed 11/11

Please wash 1 dirty bowl with rose flavor. Zero-shot easy 11/11
Please clean the 2 dirty cups. Zero-shot easy 14/14

Wash all forks, there are 3. Zero-shot easy 17/17
Can you wash 2 plates? (New request: Can you wash another?) Zero-shot easy 17/17

Please wash 2 forks and one bowl. Zero-shot moderate 17/17
May you wash 2 cups and 2 plates? Zero-shot moderate 20/20

Please wash 2 fork, 2 plate and 2 bowl. Zero-shot hard 27/27
Wash 2 plates,1 bowl, 1 fork and 1 knife with rose flavor. Zero-shot hard 23/23

Wash one dirty plate with lemon flavor Unavailable material -

Total - 100%

TABLE III: Generalization to dishwashing task. We only need to change the text guidelines to make an accurate high-level plan. Since
using the dishwasher to clean the dishes doesn’t contain misleading material or content, the high-level planning rate is 100%. Please note
that different utensils should be placed in different locations in the dishwasher, while ITP remains resilient in generating precise plans for
each step, ensuring the correct order and appropriate location for different utensils. We envision the versatility of ITP’s capabilities being
applicable to a wide range of tasks.

D. Generalization on Other Tasks

ITP is simple to adapt to new tasks. The system is prin-
cipally reliant on task guidelines during high-level planning
and predefined function during low-level execution. This
structure negates the need for intricate code implementation
examples, subsequently making the system easier to adapt to
new tasks. This structure negates the need for intricate code
implementation examples, subsequently making the system’s
generalization to other tasks remarkably straightforward. Refer
to Figure 3 for the necessary components that need to be
adapted. For adapting to a new task, only the Task Guidelines
for task specification and documentation for the provided Low-
level Skills need to be modified. Optionally, the Prompts for
the high and low level planner can also be tuned.

We adapt our system to study the high level task planning
capabilities of a completely distinct task: dishwashing. We
simply replace the task guidelines for ‘making a drink’
with ‘dishwashing’ and add function definitions that are
needed for low-level execution. We show the dishwashing
task guidelines below: We evaluate the generalization ability
on two criteria: how many high-level steps are generated
correctly and whether all the steps align with the ground
truth (referred to as Completed Status). We show our results
in Table III. We find out that ITP performs very well on
the novel dishwashing task. It has the capability not only to
produce precise and novel instructions for new objectives but
also to exhibit resilience when faced with entirely different
tasks.

V. DISCUSSION

Conclusion. In this paper, we propose a simple yet
effective system, ITP, which melds the capabilities of Large
Language Models in an interactive system that constructs
plans, and performs tasks centered around the users needs.
Encouragingly, it precisely interprets user requests, generates
pertinent step-by-step plans, and achieves the desired outcome
— a testament to the potential of such systems for real-world

applications. We embody our system in a robot designed
to make various drinks according to user preferences and
adeptly demonstrate its ability to respond to feedback during
execution. Our system is capable in the context of interactive
task planning and replanning for robotics.

Limitations and Future Work. While ITP provides a
working proof of concept of an interactive robot system,
there is room for enhancing its capabilities with more
powerful robot skills to tackle more intricate tasks. Similarly,
the integration of more precise visual information that
leverages 3D information would significantly elevate the
robot’s proficiency in understanding, planning, and interacting
with its surroundings. We hope that our open-source system
could stimulate further exploration of how established and
emerging models can be harnessed to advance the realm of
real-world robotics.
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