SAMPLE-EFFICIENT REINFORCEMENT LEARNING BY WARM-
STARTING WITH LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the usage of Large Language Models (LLMs) in collecting high-quality data to warm-
start Reinforcement Learning (RL) algorithms for learning in Markov Decision Processes (MDPs).
Specifically, we leverage the in-context decision-making capability of LLMs, to generate an "offline"
dataset that sufficiently covers state-actions visited by some good policy, then use an off-the-shelf RL
algorithm to further explore the environment and fine-tune its policy, in a black-box manner. Our
algorithm, LORqZI, can both converge to an optimal policy and have a high sample efficiency thanks
to the good data coverage collected by the LLM. On multiple OpenAI Gym environments, such as
CartPole and Pendulum, given the same environment interaction budget, we empirically demonstrate
that LORO outperforms baseline algorithms such as pure LLM-based policies, pure RL, and a naive
combination of the two.

1 INTRODUCTION

The standard protocol in online RL has many applications, from playing games Silver et al.|(2017) to robotic control
Kober et al.|(2013). While having impressive empirical performance and enjoying the theoretical guarantee on returning
the optimal policy under some assumptions (Ramaswamy & Hiillermeier, 2021; |Agarwal et al., 2019; Bertsekas| 2007),
a key problem of this approach is its sample inefficiency, which limits its applications in practice |Yu|(2018)). Thus, most
impressive successes in online RL have been restricted to settings where many samples can be obtained by interacting
with the environment (such as games or environments with high-quality simulations).

Qwen 7B vs LORO

3
- 1 o Cliffwalking
2
! ! 4_ ~100
0 B
0 1 2 3 4 5 6 7 8 9 10 11 ©
= -200
@ Qwen 7B Start -+ Qwen 7B End @ LORO Start -+ LORO End E
Online RL vs Final Policy _g—soo
5 B
3{ 0 -400
—— LORO
2 ? + Online RL
-500
0 25 50 75 100 125 150 175 200
B! # of episodes
o
] 1 2 3 4 5 6 7 8 9 10 11
@ Online RL Start -+ Online RL End @ Final Policy Start -} Final Policy End

Figure 1: The CliffWalking “offline” dataset (red) collected from a LLM covers the optimal policy much more than the
ones collected from a vanilla Online RL or Uniformly Random policy, making the cumulative reward (-9213) three
times larger than the Online RL baseline (-37151).

To address this, (Lange et al., [2012; [Ernst et al., 2005; Riedmiller], 2005} [Levine et al., 2020) proposed the offline
RL setting, where the algorithm does not directly interact with the environment as in online RL, but is trained on

The code of our experiments can be viewed at https://anonymous.4open.science/r/LlamaGym-551D

https://anonymous.4open.science/r/LlamaGym-551D

a large dataset of experience collected from some other sources (e.g., by expert demonstration). While the sample
efficiency problem is mitigated due to the large training dataset, these offline RL methods suffer from the distribution
shift problem, where the state distribution from the offline data differs significantly from the one induced by online
interactions |Wang et al.| (2021).

A popular approach to address the distribution shift problem is by aggregating both the offline and online data (Xie
et al.,[2021} [Song et al., [2022} [Zhang & Zanette| [2023)). This offline-to-online approach greatly reduces the sample
requirement of RL by reducing unnecessary exploration with the offline dataset while also mitigating the distribution
shift problem through online interactions. Under some assumptions, [Song et al.| (2022) provides a cumulative regret and
sample complexity guarantee for the offline-to-online setting. They show that, if the offline data distribution covers
some high-quality policies’ trajectories, their offline-to-online algorithm is both sample-efficient and competitive with
the high-quality policies covered by the offline data.

Even then, our goal is to further improve the sample efficiency, perhaps by leveraging extra information from the
problem description and world knowledge (e.g., avoid obstacles, find the key to open the door, etc.). Recently, LLM
has shown a remarkable ability for memorizing world knowledge and reasoning, even in hard sequential decision
problems such as robot manipulation (Ahn et al.l 2022; [Huang et al., [2022} |Liang et al.| 2023). Even though LLM
needs knowledge about the environments for prompt design, this requirement can still be satisfied for many real-world
applications, especially when the problem descriptions and documentations are available publicly on the internet. Thus,
we raise the question:

Can LLM produce a good coverage dataset to boost the data efficiency in RL via warm-starting?

In this paper, we answer this question positively. Under Assumption [T where the policy suggested by the LLM
has sufficient coverage of an optimal policy, our algorithm, LLM Offline, RL Online (LORO), enjoys both small
Cumulative regret suboptimality and Sample complexity. We verify this coverage assumption in Figure|l|and Section
[5.2] To the best of our knowledge, we are the first to suggest warm-starting RL with LLM’s collected data and connect
LLM with offline-to-online RL, drawing the similarity between the distribution shift problem in Offline RL versus
the useful-but-suboptimal policy extracted from LLM, and suggest that the offline-to-online RL approaches can be
applied here. We verified this suggestion by showing that our LORO algorithm achieves the best overall performance
in six environments in Table[I] We also demonstrate the flexibility of our LORO algorithm by showing a similar
performance boost when we use a different RL algorithm, such as AWAC |Nair et al.|(2020) (Section @ Empirically,
we demonstrate the effectiveness of our algorithm in four out of six OpenAl Gym environments [Towers et al.| (2024),
improving the cumulative reward up to four times other baselines such as pure RL, pure LLM-based policies, and a
naive combination of the two.

2 RELATED WORK

Offline-to-online RL. |Nair et al.|(2020) showed that a naive combination of offline pre-training and online fine-tuning
does not usually help and often worsens the performance, a large part due to excess conservatism when utilizing the
offline data (Fujimoto et al., 2019} Kumar et al.,|2019)). In addition, in the simple Bandits setting, |Sentenac et al.| (2025)
suggests that the degree of conservativeness, or the amount of exploration, should be different conditioned on the
amount of offline versus online data. Different than many previous offline-to-online works, our paper does not focus on
efficient use of an offline dataset or addressing the distribution shift problem. We propose that, when there is no offline
data available, we can use an LLM to collect a small offline dataset, which can be useful for warm-start learning. We
also pointed out the sub-optimality problem with the LLM policy and suggested that prior approaches to address the
distribution shift problems listed above can be applied to our approach as well.

Coverage in offline-to-online RL. Under some assumptions, Song et al| (2022) provides the cumulative regret
suboptimality and sample complexity guarantees conditioned on the Transfer Coefficient that describes the coverage
of the offline dataset with an optimal policy. [Foster et al.|(2025))’s analysis also shows that the data efficiency of any
algorithm that run in polynomial time and returns an e-optimal policy with high probability is lower bounded by a
coverage notion that is closely related to [Song et al.|(2022)’s definition.

Warm-starting RL. [Schmitt et al.| (2018]) propose to kick-start Deep RL with a teacher policy by adding an extra
objective to encourage the learner to behave similarly to the teacher, with a diminishing weight to allow the student to

eventually surpass the teacher. One limitation is that[Schmitt et al.|(2018]) assumes the teacher policy is high-performing
enough to be distilled, meaning its application is limited when learning a new task from scratch. In contrast, we
only require the initial policy to sufficiently cover the state-action pairs often visited by an optimal policy. This is a
much milder assumption and is reflected in our Experiment section, where a very weak initial LLM policy can still be
useful. We are also focusing more on leveraging the LLM in-context decision-making capability to zero-shot boost the
performance in RL tasks, which is critical in problems with high environment interaction cost or those with safety as a
main concern.

Theoretical analysis on LLMs’ exploration in MDPs. Recently, LLMs have shown very impressive capability
Brown et al.|(2020). Many works investigate how LLMs perform in in-context decision making compared to traditional
methods, such as UCB, in MDP problems. For example, Arumugam & Griffiths| (2025)) introduces a more explicit
method for exploration using Posterior Sampling. |Chen et al| (2024) uses LLMs to construct multiple policies
and combine with a model selection algorithm to solve Contextual Bandit. [Lin et al.| (2023) provides a theoretical
framework to analyze supervised learning for in-context reinforcement learning. (Nie et al., 2024; Krishnamurthy et al.}
2024) investigate how LLMs explore in the Bandit problem and show that the base LLM policies are non-trivial, but
sub-optimal. This assessment aligns with our experiment results.

Many other works focus on Embodied LLM and environment interactions and Using LLM to provide extra
information for RL, which we review in the extended related work Section|Al Even with these successes, there are still
many challenges in deploying LLM to solve sequential decision problems in practice, such as the lack of a guarantee of
finding the optimal solution.

3 PRELIMINARIES

Consider a Markov Decision Process M = (S, A, R, P,dy), where S is the state space, A is the action space, the
reward function is R(s,a) € A([0,1]) and the transition dynamic P(s,a) € A(S) at (s, a), and do(S) € A(S) is the
initial distribution. In this setting, the learner faces the MDP M with T episodes of horizon H. At each step h of
episode ¢, the learner chooses from its policy 7 an action a, ~ 7(s!,) and receives the reward from the reward function:

7}, = R(s},, a}), and transitions to the next state s}, ; ~ P(s},,a},) . The optimal policy 7* is defined as a policy that

. . T H
has a maximum expected cumulative reward: 7* = arg max, E [thl Yone1Th | ’7T] .

We also have access to an initial policy 7,1, with a limited query budget of 7, the number of episodes we can query
the LLM, that satisfies the coverage Assumption[I] Our goal is to maximize the cumulative reward by making use of
M to improve the sample efficiency.

Assumption 1. We define the coverage upper bound to characterize the coverage property (| is better):
dy (s,a
D, = sup - (5,),
h,s,a I/h(87 a)
where dJ (-) is the state-action visitation distribution at step h by following policy and vy, (-) is the state-action

visitation distribution of the offline dataset. Then, following m11,m can produce trajectories with state-action pairs that
sufficiently covers an optimal policy of the MDP.

Assumption [I]states that an LLM can zero-shot suggest non-trivial base policies even when they are not optimal. We
see an analogous phenomenon with the distribution shift problem in offline RL that results in a suboptimal policy in the
online phase. Thus, we hypothesize that aggregating trajectories collected with LLM, which avoids trivial state-action
data (such as unnecessary repetitions, visiting absorbing states, etc), and refining the learned policy later with online
interaction, as the offline-to-online protocol, can be useful. This motivates our AssumptionE], which is known to allow
offline-to-online RL to learn a high-performing policy (Song et al.,[2022).

We provide empirical evidence on the CliffWalking and FrozenLake environments in Section[5.2} showing that the
LLM collected data has much better state-action coverage, to justify Assumption]

4 THE LLM OFFLINE, RL ONLINE (LORO) ALGORITHM

Under Assumption|[I] the policy m,r,m collects high-quality data from the region that an optimal policy often visits.
By only focusing on this and not exploring the low-quality data regions that are avoided by all optimal policies (e.g.,

Algorithm 1 LLM Offline, RL Online (LORO)

Input: # of episodes 7', # of LLM data collection episode 7, episode length H, off-policy RL algorithm Alg(-)

1:

2: Initialize: LLM "offline" dataset: D = {(}}

3: fort=1,---,7do > LLM data collection
4: forh=1,--- ,Hdo

5: Observe state s}, take action a% + mLm(sh), and receive reward 7},

6: Aggregate data D « (s}, al,r})

7: end for

8: end for

9: Pre-train the policy mpye, +— Alg(D)
10: fort=7+1,--- ,T do > Online learning
11: forh=1,--- , Hdo
12: Get policy 7}, + Alg(D, Tprew) > Online updating the policy with the new data
13: Observe state s, take action af, < 7}, (s}), receive reward !,
14: Aggregate data D < D U {(s},a},)}
15: Update e = 77}2
16: end for
17: end for

hitting the wall, absorbing states, etc.), we can significantly improve the sample efficiency. In light of this, our LORO
algorithm uses 71,1\ to collect a small amount of "offline" data to pretrain a policy 7 with it, and then use a classical
online learning algorithm to fine-tune 7 to be optimal with a much smaller number of observations.

We present the details of LORO in Figure 2]and Algorithm|[T] Initially, we use the LLM policy p,1,m to collect data for
the first 7 episodes (line[3]-[8). Then, we pre-train a policy using an off-the-shelf off-policy RL algorithm on the data
collected by LLM (line[9). Finally, we online fine-tune the pre-trained policy (line[I0]-[I7).

{(spay,si,1)}

S, T

T im

[a |

LLM rollout(s)

Figure 2: The LLM Offline, RL Online (LORO) algorithm. Image inspired by Levine et al.| (2020).

5 EXPERIMENTS

We empirically evaluate our algorithm on a host of RL environments: Cart Pole, Pendulum, Frozen Lake, Cliff Walking,
Represented Pong, and Mountain Car. We defer the environments’ descriptions and RL implementation details to
Appendix [B] and the LLM setup to Appendix [G]

Here, we compare our algorithm with the following baselines:

* Online RL: an off-the-shelf RL method that collects the data and refines its policy in an online manner. In
particular, we use Double-DQN |van Hasselt et al.| (2015)) for discrete action environments and SAC Haarnoja
et al. (2019) for continuous action environments.

* LLMs as Policies (Qwen-7B-Instruct, Qwen-32B-Instruct): the base policies from the 7B and 32B of the
Qwen 2.5 series with Instruction tuning |Yang et al.|(2024)). For each episode ¢ and step h, the LLM has access
to the environment and observation descriptions s}, and the action a}, is taken using Chain-of-Thought Wei
et al(2022). The LLM setup details are in Appendix [G] The prompt setup and examples are in Appendix [H|

Note that we only show the average episode reward collected in the first 7 episodes, Tavg = 7= > y_; Zthl .
in the figures below.

» Random: a policy Tyandom that take action a}, uniformly at random. Similarly, we only show the average
episode reward collected in the first 7 episodes.

In the experiments below, we choose 7 = 10 and the number of pre-training steps is 1000. The task length 7" is 150 for
CartPole, FrozenLake, 200 for CliffWalking, Pendulum, RepresentedPong, and 300 for MountainCar. LORO is trained
using the data collected by Qwen-7B. To thoroughly evaluate the effectiveness of LORO and understand the underlying
factors influencing its performance, we organize our experiments into several parts: we begin by demonstrating the main
results (§5.1)) across diverse RL environments, verify Assumption[T(§5.2), then conduct a series of ablation studies to
assess the impact of pre-training (§5.3), the quality of LLM-collected data (, and the LLM’s reasoning capabilities
(§5.6). We also verify LORO’s agnosticity to base RL learner choice in In addition, we explore the effects of
LLM model size, and the number of pre-training steps, and varying the amount of LLM data 7, with results provided in
Appendix[E2][E3] and[E4] The wall-clock time for running the experiments is provided in Appendix [F}

5.1 SAMPLE EFFICIENCY

The main results of our algorithm are shown in Figure[3] In all learning curves, the first 7 = 10 episodes in LORO
show the average episode reward using the pure LLM-based policies. Afterwards, LORO significantly outperforms the
LLM-based policies and the Online RL baselines in four environments. Notice that the base LLM policies are often not
optimal, but they can still generate high-quality trajectories to improve the sample efficiency of LORO, which justifies
Assumption [T}

We also highlight that the drop in LORO’s performance at episode 10 in the RepresentedPong environment is due to an
improper choice of 7 (the number of episodes running with an LLM policy). Similarly, at episode 10, we can see a step
in LORO’s performance in the other environments. Ideally, we want to keep using LLM until the RL policy achieves at
least a similar performance to the LLM policy.

Cliffwalking Pendulum CartPole

V 0 " 200 " /\/\/\/\«/\\AN’_VV
- AR Uk / |
o ﬂ«WAV«VVL,HVWM\J WL L W
{ -600 [‘

-800

de reward

— LORO 2 -1000 ‘ 2 ‘
Online RL
Qwen-78 s

Qwen-328 ~1400
\ Random el |

0 25 50 75 100 135 150 175 200 0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
of episodes # of episodes # of episodes

-1200

Epi
E
N
3

FrozenLake MountainCar RepresentedPong

7
\ V g TR R T WMWMWMMNW\“MWW\

0 20 40 60 80 100 120 140 5 0 25 50 75 100 135 150 175 200
of episodes # of episodes # of episodes

|
®

—————
——d
ard
i
= I} i
5 & o
8 83
| 1
L

Episode reward

o
N
|
5

Episode reward
s o o &
5 o =» o
e
é\‘
—
=
—
—

|
5

o
o

Figure 3: Our algorithm, LORO, outperforms the LLM policies (Qwen 7B, Qwen 32B) and the Online RL baselines in
four environments and competitive in the other two. LORO learns the optimal policy in the first four environments,
while the Online RL only does so for three. Even when not converged to the optimal solution, LORO outperforms other
baselines in the last two more difficult environments. LLM’s base policies can perform very well in the RepresentedPong
experiment, maybe because of the extra information that we provide for this setting, described in Appendix [B] All
results are shown with one standard error over five random seeds. In the CliffWalking experiment, some baselines
are not shown in the figure since their episode rewards are too small (-509 for Qwen-7B and -7729 for Qwen-32B).
Similarly, Qwen-7b and random overlap at -200 on the MountainCar experiment.

Task LORO | Online RL | Qwen-7B | Qwen-32B | Random
CliffWalking 1 2 3 5 4
Pendulum 2 1 5 4 3
CartPole 1 2 4 3 5
FrozenLake 2 1 4 3 5
MountainCar 1 3 4 2 4

RepresentedPong 4 5 3 1 2
Avg. Rank 1.83 2.33 3.83 3.00 3.83

Table 1: Final cumulative rewards ranking ({ is better). Best per task in bold. The full results is in Table E}

"Offline" dataset | # missing good Surrogate transfer coef
(30 episodes) state-action | | upperbound C, (Eq.) 1
Qwen 7B 0.00 £ 0.00 69.10 £ 0.00
Qwen 32B 0.00 + 0.00 1279.17 + 2524.68
Online collected 0.00 £0.00 25.65 + 34.73
Random collected 0.80 £0.45 00

Table 2: The Surrogate Transfer Coef upperbound, in Eq. , approximates the Transfer Coefficient upperbound from
Song et al.| (2022)), which measures the coverage between the CliffWalking’s offline dataset and an optimal policy ({ is
better). Data collected by LLM has a very low missing state-action. Even though the Online and Random collected data
can seemingly have good coverage sometimes, as demonstrated in Figure [[|and[4] this was due to the fact that the final
policy is not optimal. The full table for both CliffWalking and FrozenLake environments is shown in Table E}

5.2 JUSTIFYING THE COVERAGE ASSUMPTIONII]

In this section, we verify Assumption [I]on whether LLM’s collected data covers more state-action spans by an optimal
policy compared to data collected by a vanilla Online RL or Uniform Random policy. |Song et al.| (2022} provides
an upper bound of the Transfer Coefficient of a policy: Cr < D.. Here, since there can be more than one optimal
policy, we assume one can be found after the online learning process and evaluate 7, the policy after online training,
as an approximation of the optimal policy. Because the offline dataset is too small in our setting, replacing the terms
in the density ratio with sample-based estimates of d7 (s,) and v (s, a) would make the ratio infinite. Hence, we
define d™ (s, a) as the state-action visitation distribution by following policy 7 (not limited to a specific step h as the
original formulation). Similarly, v(-) is the state-action visitation distribution of the offline dataset. Thus, we define the
surrogate transfer coefficient upper bound:
T
Cr = sup M,
sa V(s a)

ey

where d7 (-) and vy, (-) are the state-action visitation distributions of policy 7 and of the offline dataset. We estimate C'y
using data; specifically, we replace d™ (s, a) and v(s, a) with their sample-based counterparts.

In Table 2] "# missing state-action" is the number of state-action pairs that appear in the final policy, which approximate
an optimal policy, but do not appear in the "offline" dataset. It is a good indicator of the finiteness of the surrogate
transfer coefficient upper bound C, in Eq. . Since the data collected by LLM have very small values, this justifies
our assumption. We further demonstrate the policy’s state-action visitation traces in Figures[I|and[4] where the data
collected by an LLM overlaps with the optimal policy much more than the other baselines, to show that the transfer
coefficient maps correctly to the optimal policy coverage, unlike Online and Random data collection.

In Figure [I| and [} the "offline" dataset (red) is collected from the first ten episodes. Similarly, the final policy’s
trajectories, after finishing learning, are collected for ten episodes and shown in the figures. The details of this section,
including the results for both the FrozenLake and CliffWalking environments, are provided in Section [C}

When Assumption|[I]is violated, our experiments show that warm-starting with LLM-collected data remains robust,
typically outperforming alternative baselines across diverse environments. By contrast, even when the assumption fails
for the Online RL and Random data regimes, sufficient exploration during the subsequent online phase can sometimes
compensate, yielding competitive performance in some settings—albeit usually with higher sample complexity.

Qwen 7B vs LORO Qwen 32B vs LORO Online RL vs Final Policy Random Policy vs Final Policy

& » e ——— ——
W i i a1 | |

| S— n #

LN | ST —. i - '

@Quen7BStart -+ Quen 78 End @LOROStart | LOROEnd @ Quen32BStart -+ Quen 328 End @LOROStart | LOROEnd @ OnlineRLStart | Oniine AL End (@ Final PolicyStart | FinalPolcy End @ Random polcy Start | Random policy End @ Final Poicy Start | FinalPolcy End

Figure 4: Traces in the FrozenLake environment. Similar to the CliffWalking environment in Figure |8} the LLM
collected data covers much better the state spaces compared to Online and Random collected data.

5.3 EFFECT OF PRE-TRAINING

In this section, we aim to verify the importance of pre-training (Algorithm [T]line[9) is for LORO’s performance through
an ablation study, since Song et al.|(2022)’s algorithm only mixes the offline and online data without pre-training to
avoid being too conservative toward the pre-training data, which may hurt the performance.

In Figure@ we show that mixing offline and online data alone (which is equivalent to|Song et al.|(2022))) is insufficient.
Our conjecture is that the LORO’s pretraining step trains a good policy using only the high-quality data without the data
from regions less visited by the optimal policy. As shown in Figure 3] pre-training significantly boosts the performance
of LORO compared to just mixing the LLM’s collected data with the online RL collected data after 7 episodes.

Even though pre-training can be useful initially, to behave optimally, the agent still needs to explore other state-action
pairs in case the initial data comes from a sub-optimal policy, as shown in the CartPole environment in Figure 3]

CartPole

Cliffwalking

| | |
w N =
s S 3
3 3 3

Episode reward

!
IS
S
3

=

Mix data w/o pretrain

‘ — LORO

75 125 150 175

100
of episodes

FrozenLake

200

Episode reward

-200
-400

[
@ o
38 3
3 3

-1000
-1200
-1400
-1600

Pendulum

W\W\J»WW(W/\MMW \M.W

@
a
‘ o

25 50 75 125 150 175 200

100
of episodes

MountainCar

40 60 80

of episodes

100 120 140

RepresentedPong

e

60
of episodes

|
N
3

°
=
Episode reward
|
&

Episode reward

Episode reward
°
>
e —
——

WWWWWWMMWWWWW

100

40 100 120 140 200 250 300 0 25 75 125

150 100
of episodes # of episodes

Figure 5: Comparing pre-training (then removing the collected data) versus mixing the LLM’s collected data with
online RL data without pre-training. It’s clear that pre-training is necessary for LORO to achieve superior performance
compared to naively mixing the data.

At first sight, there seems to be a contradiction between our findings and |Song et al.| (2022). They assume access to a
large offline dataset and, along with Nair et al.| (2020)), want to keep the policy less conservative toward the offline data
by treating the online versus offline data equally. In contrast, we don’t have access to offline data. We instead use LLM
to collect a small number of high-quality data, thus, unlike |Song et al.|(2022)), LORO has a higher updates-to-data ratio
for these observations. Our experiment shows that being conservative by “overfitting” to the LLM dataset can help
learning more efficiently.

Cliffwalking Pendulum CartPole

T 0
-200 175
—400 - 150

-600

|
i
3
3

|
N
S
3
w;
-
5
5

° 4
§ K g
& g 4
s 3 800 3100
8 -300 & —1000 2 75
2 a s
& & | o
-1200
400 — LORO 50
Pretrain w/ Online RL data ~1400 [2 _
—— Pretrain w/ random policy data _1600] I
- o
0 25 so 75 100 125 150 175 200 [25 s0 75 100 125 150 175 200 0 20 40 60 g0 100 120 140
of episodes # of episodes # of episodes
FrozenLake MountainCar RepresentedPong
1.0
-60 —— LORO -4
Pretrain w/ Online RL data
0.8 -80
—— Pretrain w/ random policy data 6

o
o

|
-
N
s

°
S
Episode reward

Episode reward
Episode reward

o
N

e T

0 20 40 60 80 100 120 140 0 50 100 150 200 250 300 0 25 50 75 100
of episodes # of episodes # of episodes

o
°

125 150 175 200

Figure 6: Comparing pre-training with LLM’s data versus random and online RL data. The main finding here is that
pre-training is only useful with LLMs’ data.

In addition, we may question whether pretraining accumulates primacy bias [Nikishin et al.| (2022) since we are
"overfitting" in earlier observations and hurt the performance. Since pretraining is helpful in our experiment in Figure 5]
even in difficult environments such as MountainCar and RepresentedPong, the effect of primacy bias is insignificant
in our experiments. Furthermore, when applying the same pretraining steps for different collected datasets, possibly
exposing them all to primacy bias, LORO still outperforms all other baselines as shown in Figure 6] This suggests that
the quality of the collected dataset is the primary reason for LORO’s performance.

Combining LORO with the resetting trick in[Nikishin et al.| (2022)) to address the primacy bias is a simple task. Similarly,
we can easily combine the high-quality data of LORO to many algorithms to make good use of the LLM-collected
offline dataset, as shown in the Related Work section. Since this is out of scope for this paper, we evaluate the simplest
approach of directly pretraining with the pseudo-offline dataset to highlight the effectiveness of the LLM policy for
warm-start learning. Further evaluating the usefulness of LLM-collected data in different offline-to-online algorithms is
an interesting open question that we left for future work.

5.4 EFFECT OF LLM’S DATA

In the previous section, Figure[5]shows the importance of pre-training using data collected by LLM. In this section, we
perform an ablation study that demonstrates that the quality of such data is crucial. In Figure[6] we show that using
LLM’s collected data is significantly better than using data collected with an Online RL algorithm from scratch or a
policy that takes actions uniformly at random. Thus, we conclude that pre-training is only beneficial when coupled with
high-quality data, which supports our conjecture above.

Pendulum Pendulum Pendulum
-600 -600 0
800 800 ﬁ ' N ‘ a 250
‘ M ey -500
T- i il I |
§ 1000 | | m r & -1000 | I []
: | AN [H I v 3 750
<1200 Wl | iy I } 2 [U :
I -1200
8 1400 ! i | 3 { §-1000 N\ MM M
2~ | | | a a
w J [I Online RL w_1400 | W _150 l
1600 Qwen-78 — LORO
Qwen-32B ~1600 } — LORO -1500 Pretrain w/ Online RL data
-1800 Random Mix data w/o pretrain —— Pretrain w/ random policy data
-1750
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes

Figure 7: Comparing the effect of LLM collected data versus Online or Random collected data using AWAC
(2020) as the base algorithm. The first figure shows the general sample efficiency comparison, the second compares
with the mix data baseline, and the third compares with different pre-training datasets. LORO uses Qwen-32B for the
offline phase in this experiment.

5.5 VERIFYING LORO’S AGNOSTICITY TO BASE RL LEARNER CHOICES

In this section, we aim to verify whether the performance boost from using LLM is truly algorithm-agnostic. Here,
we show the results from using AWAC Nair et al.|(2020) as the main algorithm and comparing its performance when
using LLM collected data versus Online or Random collected data. The results are shown in Figure[7} We can see that
LORO still outperforms most baselines, with the exception of the Pretrain with Online or Random baselines. Further
experiment results using AWAC are shown in Section [E.I] Understanding why pretraining is useful when combined
with a small amount of high-quality data collected by an LLM is an interesting question left for future research.

5.6 EFFECTS OF THE LLM’S CAPABILITY

Given that the performance of many reasoning tasks increases with the improvement of the LLM’s capability through:
increasing the model’s size, using Supervised Fine-Tuning (SFT)|Ouyang et al.| (2022), Long Chain-of-Thought (CoT)
Chen et al.| (2025), or some Test-time-scaling methods such as Majority Voting [Wang et al.| (2022), and Best-of-N
Cobbe et al.|(2021)). In this section, we want to investigate whether this increase in LLM’s reasoning capability also
translates to decision making in MDP problems.

From our experiments in Appendix [E.2} we see no clear link between an LLM’s model size and its performance. On the
other hand, we notice that the LLM’s base policies are only useful using CoT instead of just asking the LLM to make
decisions. We also observe that the 0.5B model is not useful, as well as using Majority Voting or Best-of-N without CoT.
Hence, in Appendix [E.5] we investigate if increasing the LLM’s capability using SFT or using an LLM with Long CoT
can help. We show that there is no significant difference in using standard CoT compared to using SFT or Long CoT.
Understandably, SFT wouldn’t be useful, or may even be counter-productive, since the amount of data collected for
fine-tuning is too small to make a difference (around 500-3000 prompt-response pairs in our experiments). Hence, we
conclude that improvements over LLM’s capability do not directly translate to improvement in warm-starting RL tasks.

5.7 OTHER FINDINGS

Interestingly, we find that a small model size (7B) is more sensitive in a few environments , such as MountainCar (with
3000 pre-training steps in Figure[T5)) and FrozenLake (with bad history summarization in Figure [32). We also find that
the amount of pre-training data in general does not affect the learned policy’s cumulative return, which is shown in

Appendix [E.4]

Besides what we reported above, we find no clear relationship between the task’s performance and the number of
pre-training steps or the model size. These are shown in Appendix [E.3] [E.2] We also found no clear difference between
environments with Discrete Action versus Continuous Action (e.g., Pendulum), despite the intuition that the Discrete
Action environments should be easier for the LLM |Singh et al.| (2025)).

6 CONCLUSION AND FUTURE WORK

In this paper, we investigate how to leverage an LLM to warm-start traditional RL methods. Empirically, we have
shown that the high-quality data collected by the LLM can significantly increase the sample efficiency of online RL.
Our definition of data quality follows from previous work |Song et al.|(2022). Our algorithm further utilizes pretraining
to take full advantage of LLM-collected data.

Our work provides a framework for significantly reducing the sample complexity in RL problems. This is especially
important for practical applications where the data collection cost or safety is a major concern. A limitation of our work
is that Assumption |[l| may not hold for some RL tasks, but we believe that the increasing capability of LLM would
increase the range of problems where Assumption|[I]is applicable. In the future, we would like to extend this work to
more sophisticated RL problems, with a large State and Action space. We would also like to investigate how to scale
the sample efficiency with the LLM’s capability and how to choose the LLM query budget 7 in a principled manner.

REFERENCES

Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella Frank, Ellie Pavlick, and Anders Sggaard. Can language
models encode perceptual structure without grounding? a case study in color. arXiv preprint arXiv:2109.06129,
2021.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan
Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Co6té, and R Devon Hjelm. Unsupervised
state representation learning in atari. arXiv preprint arXiv:1906.08226, 2019.

Dilip Arumugam and Thomas L. Griffiths. Toward efficient exploration by large language model agents, 2025. URL
https://arxiv.org/abs/2504.20997.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning with offline data,
2023. URL https://arxiv.org/abs/2302.02948.

Dimitri P Bertsekas. Neuro-dynamic programming: An overview and recent results. In Operations Research
Proceedings 2006: Selected Papers of the Annual International Conference of the German Operations Research
Society (GOR), Jointly Organized with the Austrian Society of Operations Research (OGOR) and the Swiss Society
of Operations Research (SVOR) Karlsruhe, September 68, 2006, pp. 71-72. Springer, 2007.

Siddhant Bhambri, Amrita Bhattacharjee, Durgesh Kalwar, Lin Guan, Huan Liu, and Subbarao Kambhampati. Extracting
heuristics from large language models for reward shaping in reinforcement learning. arXiv preprint arXiv:2405.15194,
2024.

Vineet Bhat, Ali Umut Kaypak, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Grounding llms for
robot task planning using closed-loop state feedback. arXiv preprint arXiv:2402.08546, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer. Grounding
large language models in interactive environments with online reinforcement learning. In International Conference
on Machine Learning, pp. 3676-3713. PMLR, 2023.

Dingyang Chen, Qi Zhang, and Yinglun Zhu. Efficient sequential decision making with large language models. arXiv
preprint arXiv:2406.12125, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao,
and Wanxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large language models.
arXiv preprint arXiv:2503.09567, 2025.

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Stefano Ermon. Lmpriors: Pre-trained language models as task-
specific priors. arXiv preprint arXiv:2210.12530, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-learn: Language model guided
rl for solving long horizon robotics tasks. arXiv preprint arXiv:2405.01534, 2024.

10

https://arxiv.org/abs/2504.20997
https://arxiv.org/abs/2302.02948

Yuging Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek Gupta, and Jacob
Andreas. Guiding pretraining in reinforcement learning with large language models. In International Conference on
Machine Learning, pp. 8657-8677. PMLR, 2023.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. Journal of Machine
Learning Research, 6, 2005.

Dylan J Foster, Zakaria Mhammedi, and Dhruv Rohatgi. Is a good foundation necessary for efficient reinforcement
learning? the computational role of the base model in exploration. arXiv preprint arXiv:2503.07453, 2025.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In
International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In
International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry
Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms and applications, 2019. URL
https://arxiv.org/abs/1812.05905.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot planning with
llm-based formalized programming. arXiv preprint arXiv:2410.12112, 2024.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan. 3d-1lm: Injecting
the 3d world into large language models. Advances in Neural Information Processing Systems, 36:20482-20494,
2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021. URL https://arxiv.org/abs/2106.09685.

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot navigation. In 2023
IEEE International Conference on Robotics and Automation (ICRA), pp. 10608-10615. IEEE, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor
Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through planning with language models.
arXiv preprint arXiv:2207.05608, 2022.

Hyeongyo Jeong, Haechan Lee, Changwon Kim, and Sungtae Shin. A survey of robot intelligence with large
language models. Applied Sciences, 14(19), 2024. ISSN 2076-3417. doi: 10.3390/app14198868. URL https:
//www.mdpi.com/2076-3417/14/19/8868.

Jarvis K. Bench llm deciders with gym translators. GitHub, 2024. URL https://github.com/mail-ecnu/
Text-Gym—Agents.

Yash Kant, Arun Ramachandran, Sriram Yenamandra, Igor Gilitschenski, Dhruv Batra, Andrew Szot, and Harsh
Agrawal. Housekeep: Tidying virtual households using commonsense reasoning. In European Conference on
Computer Vision, pp. 355-373. Springer, 2022.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The International Journal
of Robotics Research, 32(11):1238-1274, 2013.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can large language
models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy g-learning via
bootstrapping error reduction. Advances in neural information processing systems, 32, 2019.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learning:

State-of-the-art, pp. 45—73. Springer, 2012.

11

https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/2106.09685
https://www.mdpi.com/2076-3417/14/19/8868
https://www.mdpi.com/2076-3417/14/19/8868
https://github.com/mail-ecnu/Text-Gym-Agents
https://github.com/mail-ecnu/Text-Gym-Agents

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma Brunskill. Supervised
pretraining can learn in-context reinforcement learning. Advances in Neural Information Processing Systems, 36:
43057-43083, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. Code as
policies: Language model programs for embodied control. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9493-9500. IEEE, 2023.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforcement learning via
supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-grounded image-to-
video generation. In European Conference on Computer Vision, pp. 360-378. Springer, 2024.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstette, Shimon
Whiteson, and Tim Rocktischel. A survey of reinforcement learning informed by natural language. arXiv preprint
arXiv:1906.03926, 2019.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv preprint
arXiv:2310.12931, 2023.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve: Evaluating and
optimizing 1lms for exploration. arXiv preprint arXiv:2410.06238, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy bias in deep
reinforcement learning. In International conference on machine learning, pp. 16828—-16847. PMLR, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730-27744, 2022.

Rohan Pandey. Llamagym: Fine-tune llm agents with online reinforcement learning. GitHub, 2024. URL https:
//github.com/KhoomeiK/LlamaGym.

Roma Patel and Ellie Pavlick. Mapping language models to grounded conceptual spaces. In International conference
on learning representations, 2022.

Arunselvan Ramaswamy and Eyke Hiillermeier. Deep g-learning: Theoretical insights from an asymptotic analysis,
2021. URL https://arxiv.org/abs/2008.10870.

Martin Riedmiller. Neural fitted q iteration—first experiences with a data efficient neural reinforcement learning method.
In Machine learning: ECML 2005: 16th European conference on machine learning, Porto, Portugal, October 3-7,
2005. proceedings 16, pp. 317-328. Springer, 2005.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M Czarnecki, Joel Z
Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting deep reinforcement learning. arXiv
preprint arXiv:1803.03835, 2018.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of Machine Learning
Research, 23(315):1-20, 2022. URL http://Jjmlr.org/papers/v23/22-0017.htmll

Flore Sentenac, Ilbin Lee, and Csaba Szepesvari. Balancing optimism and pessimism in offline-to-online learning.
arXiv preprint arXiv:2502.08259, 2025.

12

https://github.com/KhoomeiK/LlamaGym
https://github.com/KhoomeiK/LlamaGym
https://arxiv.org/abs/2008.10870
http://jmlr.org/papers/v23/22-0017.html

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. nature, 550
(7676):354-359, 2017.

Shrutika Singh, Anton Alyakin, Daniel Alexander Alber, Jaden Stryker, Ai Phuong S Tong, Karl Sangwon, Nicolas
Goff, Mathew de la Paz, Miguel Hernandez-Rovira, Ki Yun Park, Eric Claude Leuthardt, and Eric Karl Oermann.
It is too many options: Pitfalls of multiple-choice questions in generative ai and medical education, 2025. URL
https://arxiv.org/abs/2503.13508.

Yuda Song, Yifei Zhou, Ayush Sekhari,] Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid rl: Using
both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718, 2022.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge comes from
practice: Aligning llms with embodied environments via reinforcement learning. arXiv preprint arXiv:2401.14151,
2024.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulao,
Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for reinforcement learning
environments. arXiv preprint arXiv:2407.17032, 2024.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-learning, 2015. URL
https://arxiv.orqg/abs/1509.06461.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham Kakade. Instabilities of offline rl with pre-trained neural
representation. In International Conference on Machine Learning, pp. 10948-10960. PMLR, 2021.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171,
2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824-24837, 2022.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging sample-efficient offline
and online reinforcement learning. Advances in neural information processing systems, 34:27395-27407, 2021.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao
Yu. Text2reward: Automated dense reward function generation for reinforcement learning. arXiv preprint
arXiv:2309.11489, 2023.

Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and Jun Wang. Efficient
reinforcement learning with large language model priors. arXiv preprint arXiv:2410.07927, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. Qwen?2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI pp. 5739-5743, 2018.

Ruiqi Zhang and Andrea Zanette. Policy finetuning in reinforcement learning via design of experiments using offline
data. Advances in Neural Information Processing Systems, 36:59953-59995, 2023.

Qinging Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 27042-27059. PMLR, 17-23
Jul 2022. URL https://proceedings.mlr.press/v162/zheng22c.html.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent tree search
unifies reasoning acting and planning in language models. arXiv preprint arXiv:2310.04406, 2023.

13

https://arxiv.org/abs/2503.13508
https://arxiv.org/abs/1509.06461
https://proceedings.mlr.press/v162/zheng22c.html

A EXTENED RELATED WORK

Offline-to-online RL: Many more sophisticated approaches have been studied empirically. However, none of these
works studied the utility of LLMs in warm-starting online RL. |Ball et al.| (2023)), in particular, proposes that distribution
shift exacerbate the problem of bootstrap error propagation in off-policy methods, especially with a function approx-
imation like a Neural Network. Hence, they suggest multiple practical tricks such as: balance sampling the offline
and online data, using LayerNorm Ba et al.| (2016)) and Clipped Double Q-Learning [Fujimoto et al.|(2018)) to reduce
instability while avoid excess conservatism.

Embodied LLM and environment interactions: Recently, LLM has showed very impressive capability Brown et al.
(2020), including understanding about physics |Patel & Pavlickl (2022) |Liu et al.| (2024), color /Abdou et al.|(2021)), and
affordances between bodies and object|Ahn et al.|(2022). This implicit knowledge could be the reason why LLM can be
used to directly manipulate robots |Ahn et al. (2022)), Huang et al.| (2022}, Liang et al.|(2023). However, |Carta et al.
(2023)) claims that LLMs lack grounding due to 1) the training objective of next word prediction not aligned with other
goals, and 2) no interactions with the environment.

Many works seemingly agree with|Carta et al.|(2023)) and incorporate environment interactions, thus showing significant
improvement. A popular approach is letting the LLM interact directly with the environment and collect the feedback
for the subsequent prompt|Carta et al.| (2023)), [Yao et al.|(2022)), Zhou et al.| (2023), [Luketina et al.|(2019). Another
direction is a two level system, where the LLM take high level, abstract actions (such as creating sub-goals Bhat et al.
(2024)) Dalal et al.|(2024) or choosing the skills to use Liang et al.|(2023)),|Ahn et al.| (2022)), and the low level classical
system implementing the LLM’s “plan” in practice. A related work from [Hao et al.[(2024)) uses LLM to extract and
formulate the problem’s objectives, constraints, and may include sub-goals creation, for the low-level optimization
solver.

Using LLM to provide extra information for RL: |Carta et al.| (2023)) and [Tan et al.| (2024} use LLLM directly to
generate the policy and fine-tune it with RL (using Policy Gradient with PPO or an Actor-Critic framework). [Lee et al.
(2023)) and [Lin et al.| (2023) propose pretraining an LLM with an offline dataset and show that it can both explore
online and act conservatively offline. Unlike them, instead of an end-to-end approach that mixes the RL objective (of
maximizing the cumulative reward) with the LLM objective (for next token prediction), we have a separate, smaller RL
learner trained exclusively on the classical RL objective that enjoys the typical asymptotic optimality Since one of our
motivations is computational efficiency, hence, training a large neural network that requires a lot of data would defeat
the point of using LLM to help reduce the sample complexity. |Yan et al.|(2024)) uses LLM to provide the action prior,
then train a policy to do posterior sampling using it. Zheng et al.|(2022) pre-trains a transformer-based neural network
on the offline dataset and develops a way to efficiently fine-tune it with online interaction. This differs from our proposal
since we don’t have an offline dataset, but the data collected by the LLM’s policy can be regarded as a small offline
dataset. Furthermore, our work is algorithm agnostic. We propose that the data collected by LLM is of high-quality and
can later be used to train a policy using other algorithms. Another closely related work is|Du et al.[(2023), where the
LLM guides the algorithm’s exploration by generating (sub) goals and rewards the RL algorithm when achieving these
goals. Similarly, Bhambri et al.| (2024) uses heuristics from LLM to combine with RL in the Potential Based Reward
Shaping framework. While these works and ours leverage LLM to reduce unnecessary exploration for RL, they focus
more on sub-goal generation and providing intrinsic reward in sparse feedback problems, while we are focusing on
dense reward settings where RL online interactions can refine the warm-started but sub-optimal policy given by the
LLM. Finally,|Choi et al.|(2022) and Kant et al.[(2022) use LLM to provide a prior for the policy to help the learner
explore more efficiently, which is similar to our motivation on a high level.

Other ways LLM can help solving MDPs: Besides low-level control and high-level planning, Jeong et al.| (2024])) also
investigates how LLM can help robot intelligence systems by reward design (to combine with RL) Ma et al.{(2023)), Xie
et al.| (2023)), and scene understanding [Huang et al.|(2023)),[Hong et al.|(2023). Even with these successes, there are still
many challenges in deploying LLM to solve sequential decision problems in practice, such as the lack of a guarantee of
finding the optimal solution.

B THE ENVIRONMENTS AND IMPLEMENTATION DETAILS

B.1 THE ENVIRONMENTS

We empirically verify our algorithm on some classic RL environments:

14

* Cart Pole: The agent aims to balance a pole on top of a cart by moving left and right. It observes the Cart
Position, Cart Velocity, Pole Angle, and Pole Angular Velocity. The reward is one for every step taken before
the episode ends, either by having the pole fall over, moving the cart to the edge of the display, or reaching the
maximum episode length.

* Pendulum: The agent aims to swing up an inverted pendulum by applying torque on its free end. It observes
the (z,y) location of the pendulum’s free end and its angular velocity. From the location, we calculate the
pendulum’s angle and the rotating direction to help the LLM, but do not use them in the online phase. The
reward is calculated based on the pendulum angle, where the upright location has the highest reward. The
episode ends when it reaches the maximum episode length. Note that the action set here is continuous, which
can be more challenging for the LLM’s policy.

* Frozen Lake: The agent aims to move from the top-left to the bottom-right location in a four-by-four grid
world. The agent can move up, down, left, and right. It only observes its own location. The reward is zero
everywhere except at the goal, where the reward is one. The episode ends either when the agent moves to one
of the four "holes" in the grid, reaches the goal, or reaches maximum episode length. We further implement an
external environment history to store the rewards received at each visited location, which is necessary for the
LLM to solve this task. The environment’s history is not used in the online learning phase.

* CIliff Walking: The agent aims to move from the bottom-left to the bottom-right location in a four-by-twelve
grid world. The agent can move up, down, left, and right. It only observes its own location. The reward is
negative one everywhere except negative one hundred at the cliff locations on the bottom of the grid. The
episode ends either when the agent reaches the goal or reaches maximum episode length. We also use the
environment history for this environment.

* Represented Pong: This is the Atari game Pong, but instead of the traditional image observation, we use
Anand et al.|(2019)) to extract the game state information from the RAM state. The agent then observes its
own coordination, the ball’s, the opponent’s, and the score. We also calculate the ball velocity and add it to
the observation, since it seems necessary to ensure Markov’s property (able to take optimal action with only
the current state information). The agent controls the right paddle up and down and competes against the left
paddle controlled by the computer by trying to deflect the ball away from your goal and into the opponent’s
goal. The agent receives a point whenever it scores a goal and loses when the opponent does. The game ends
when a player’s score reaches twenty-one or the agent reaches the maximum episode length.

* Mountain Car: The agent’s goal is to move from the bottom of a sinusoidal valley to the top of the right hill
as quickly as possible. The agent can strategically accelerate left or right. It only observes its location and
velocity. The reward is negative one everywhere except the goal. The episode ends either when the agent
reaches the goal or reaches maximum episode length.

B.2 IMPLEMENTATION DETAILS

We build our code from |Pandey| (2024)), which provides a framework for LLM interacting with OpenAI’s gym games
with a built-in text description wrapper to turn RL games into something LLM can play. The game descriptions, which
are listed in Appendix [H] are heavily referenced from K| (2024)). The RL training process is using d3rlpy|Seno & Imai
(2022)), with the default hyperparameter choice, with batch-size 256, buffer size 100,000, € : 0.1, v : 0.99, target update
interval 1,000, and learning rate 5e — 5. We use DDQN |[van Hasselt et al.| (2015) for all tasks with Discrete Action and
SAC Haarnoja et al.|(2019) for Continuous Action. The LLM was run on two H100 GPUs.

For the LORO algorithm, we collected data to pre-train a policy and then only used online data in the online learning
process. Even though we recommend following the Algorithm [T]and aggregate both the pretrain and online collected
data, in our experiment, we remove the data collected in the "offline" phase after pretraining to have a clear ablation
study on whether the improvement of LORO is coming from the mixing the offline versus online or does pretraining is
also important, as shown in Figure [5|and Figure [6]

C JUSTIFYING THE COVERAGE ASSUMPTION 1]

Below, we show the full Surrogate Transfer Coefficient Table in Table E} We also show the full traces of different
algorithms and baselines in the CliffWalking environment in Figure 8]

15

Environment "Offline'" dataset | # missing good | Surrogate Transfer Coef
(30 episodes) state-action | | upperbound C,/ (Eq.) N
Qwen 7B 0.00 4 0.00 69.10 £ 0.00
. . Qwen 32B 0.00 + 0.00 1279.17 £ 2524.68

CliffWalking | —¢ 0 Tlected | 0.00 £ 0.00 95.65 T 34.73
Random collected 0.80 £0.45 00
Qwen 7B 7.60 = 0.55 o0
FrozenLake Qwen 32B 8.60 £1.14 o0
Online collected 6.20 £ 5.89 00
Random collected 10.80 £ 8.47 00

Table 3: The Surrogate Transfer Coef upperbound, in Eq. , approximates the Transfer Coefficient upperbound from
(2022), which measure the coverage between the offline dataset and an optimal policy (lower is better). "#
missing state-action” is the number of state-action appears in the final policy, which approximate an optimal policy, but
not appears in the "offline" dataset. Data collected by LLM has very low missing state-action. Even though the Online
and Random collected data can seemingly have good coverage sometime, as demonstrated in Figure[8|and] this was
due to the final policy is not optimal.

Qwen 7B vs LORO Qwen 32B vs LORO

s 1 3 5 & 5 & 7 & s 10 1 s 1 3 5 & 5 & 7 & s 10 1
@ Qwen 7B Start + Qwen 7B End @ LORO Start +LOROEnd @ Qwen 32B Start + Qwen 32B End @ LORO Start + LORO End
Online RL vs Final Policy Random Policy vs Final Policy
341 34
|

24 24
1 14
0 T T T T T T T T T g ™ 0 T T T T T T T T T ™ ™

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11
@ Online RL Start 4 Online RL End @ Final Policy Start - Final Policy End @ Random policy Start -+ Random policy End @ Final Policy Start - Final Policy End

Figure 8: Traces in the CliffWalking environment. The red traces are trajectories collected in the first 10 episodes. The
green traces, represent the traces of the optimal policy, collected by the evaluating the final policy after fine-tuning for
190 episodes. It’s clear that the "offline" dataset (red) collected from a LLM covers the optimal policy much more than
the ones collected from a vanilla Online RL or Uniformly Random policy.

16

Task LORO | Online RL | Qwen-7B | Qwen-32B | Random Mix Pretrain
Online RL | Random
CliffWalking -9213 -37151| -101933 | -1545806 | -404919 | -17449 -49504 | -55840
Pendulum -71703 -58707 | -321416 -278678 | -239960 | -91592 -100974 | -82163
CartPole 26035 24640 4299 7675 3104 | 26599 1396 1398
FrozenLake 99 100 4 14 0 93 10 14
MountainCar | -51611 -57616 -60000 -52859 | -60000 | -57238 -59988 | -59984
RepresentedPong | -1784 -2088 -1000 -740 -920| -1772 -2191 -2199
Avg. Rank 1.7 1.7 5.8 4.3 6.3 2.7 6.3 5.7

Table 4: Final cumulative rewards (1 is better). Best per task in bold.

D CUMULATIVE REWARDS TABLE

In this section, we show the cumulative rewards of all algorithms and baselines in the main paper in Table[d]

E ABLATION STUDY

E.1

ALGORITHM AGNOSTIC VERIFICATION

In this section, we show further effects of model size and the amount of the offline data to the final performance of
LORO using AWAC in Figure O] and Figure [T0] Compared to the SAC performance in the Experiment
section, AWAC gives worse performance overall and more sensitive to the LLM model size, since the Qwen-7B data
performs much worse than Qwen-32B. Still, LORO using AWAC still outperforms the baselines.

—8001

—1000 -

Episode reward

—14004

—1600 -

~400 {

—6001

Episode reward

—1200

—1400 -

Smoothed pretrain 1000 steps, 7B

—1200

—— LORO 10 pretrain eps. Cum. reward=-229988
—— LORO 20 pretrain eps. Cum. reward=-229979
—— LORO 30 pretrain eps. Cum. reward=-252372
—— Online RL. Cum. reward=-242287

0 25 50 75 100 125 150 175 200

of episodes
Smoothed pretrain 1000 steps, 32B

—8001

—1000 -

0 25 50 75 100 125 150 175 200

of episodes

Smoothed pretrain 3000 steps, 7B

—8001

—10001

—12001

Episode reward

—1400

—16001

25 50 75 100 125 150 175 200

of episodes
Smoothed pretrain 3000 steps, 32B

-200

—4001

—6001

—8001

Episode reward

—1000

—12001

—14001

25 50 75 100 125 150 175 200
of episodes

Figure 9: Comparing the effect of different LLMs’ model sizes for the Pendulum environment with LORO using AWAC

Nair etal} 2020,

17

Smoothed pretrain 10 eps, 1000 steps Smoothed pretrain 20 eps, 1000 steps Smoothed pretrain 30 eps, 1000 steps

-600
—4001 —400+
—6001 ~6001 -800
e ° | e
g -800 g -800 € -1000
o e o
2 -1000+ | ~10001 °
ki 5 & —12007
& -1200 & -1200- &
~1400
—1400 —— LORO 7B. Cum. reward=-229988 —14001
—— LORO 32B. Cum. reward=-151557
—1600 —— Online RL. Cum. reward=-242287 —1600 —1600
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 3000 steps Smoothed pretrain 20 eps, 3000 steps Smoothed pretrain 30 eps, 3000 steps
-200 ~600]
—400 —800
-800+
-600
o 5 —10001 o
g 800 g £ -1000
o e o
[[[
5 —1000 5 —12001 o
? 8 g —1200
a S a
w1200 w w
—1400 _14004
—1400
—1600 -1600 —1600
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes

Figure 10: Comparing the effect of different LLMs’ model sizes for the Pendulum environment with LORO using

AWAC Nair et al) (2020).

E.2 EFFECTS OF LLM’S MODEL SIZE

In this section, we evaluate the effect of the LLM’s model size on the cumulative reward of the policy. We evaluate this
with different pre-training data and pre-training steps on six OpenAl Gym environments and show the result in Figure
[TT}[T2] [13] [T4] [T3] [T6] Overall, we observe no clear advantage of using a larger model to improve the decision-making
quality of the LORO policy.

18

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 10 eps, 1000 steps

Smoothed pretrain 20 eps, 1000 steps

Smoothed pretrain 30 eps, 1000 steps

—100 -100 i —1001
® °
200 2 200 £ -200
o o
o ()
3 3
—300 2 -300 2 -3004
o o
w w
—4004 —— LORO 7B. Cum. reward=-9213 —400 —4001
~——— LORO 32B. Cum. reward=-83767
—— Online RL. Cum. reward=-37151
—-500 -500 -500
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
o Smoothed pretrain 10 eps, 3000 steps o Smoothed pretrain 20 eps, 3000 steps o Smoothed pretrain 30 eps, 3000 steps
—100 -100 —1001
T T
200 2 200 £ -200
o o
L) ()
3 K]
—300 2 —-300 2 —3004
o o
w w
—400 -400 —400
—-500 -500 -500

0 25 50 75 100 125 150 175 200
of episodes

0 25 50 75 100 125 150 175 200
of episodes

50 75 100 125 150 175 200
of episodes

Figure 11: Comparing the effect of different LLMs’ model sizes for the CliffWalking environment.

Smoothed pretrain 10 eps, 1000 steps

Smoothed pretrain 20 eps, 1000 steps

Smoothed pretrain 30 eps, 1000 steps

1.0
0.8
e e
© ©
= 2
[2 0.6
L) Q
° o
2 2
2 2 0.4
w w
0.2 —— LORO 7B. Cum. reward=99 0.2
~——— LORO 32B. Cum. reward=94
—— Online RL. Cum. reward=100
0.0 - . - . , - . 0.0+ , ; v 0.0 " v
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 100 120 140
of episodes # of episodes i
Smoothed pretrain 10 eps, 3000 steps Smoothed pretrain 20 eps, 3000 steps Smoothed pretraln 30 eps, 3000 steps
1.0 1.0
0.8+ 0.8
e e
: g
2 0.6 206
Q @
o o
o o
2 a
3 0.44 2 0.4
w w
0.2 0.2
0.0 +— 0.0+ 0.0

20 40 60 80 100
of episodes

120 140

20 40 60 80 100
of episodes

o

120 140

40 60 80 100 140

of episodes

120

Figure 12: Comparing the effect of different LLMs’ model sizes for the FrozenLake environment.

19

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 10 eps, 1000 steps

Smoothed pretrain 20 eps, 1000 steps

Smoothed pretrain 30 eps, 1000 steps

of episodes

of episodes

225 225 200
200
200 1754
175]
175
- 5 1501
150 S 1504 s
3 % 1251
125 © 1251 o
H 100
100 3 1001 2
& 8
75 751 75
—— LORO 7B. Cum. reward=26032
50 ——— LORO 32B. Cum. reward=26035 50 50
—— Online RL. Cum. reward=24640
251 - . - - T - : 51 - . - . . - T 51 - . - . . - :
0 20 40 60 80 100 120 140 0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 3000 steps Smoothed pretrain 20 eps, 3000 steps Smoothed pretrain 30 eps, 3000 steps
200 2004
200
] 175
175 1754
150 © 150 5 1501 i
125 9 1254 @ 125
[Q
he=] °
1001 $ 1004 g 1009
o o
w w
751 75 751
50 50 50
251 251 251
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
of episodes # of episodes # of episodes
. . . . R . .
Figure 13: Comparing the effect of different LLMs’ model sizes for the CartPole environment.
Smoothed pretrain 10 eps, 1000 steps Smoothed pretrain 20 eps, 1000 steps Smoothed pretrain 30 eps, 1000 steps
~2004 200+ —-200+
—4004 —4001 —4001
-600 1 © —600 T -600
5 s
H H
-8004 2 —800 @ -8004
() (]
5= o
10001 2 —1000 3 —1000+
k) ko
1200 -1200 ~1200
14001 —— LORO 7B. Cum. reward=-71703 _14004 —14001
—— LORO 32B. Cum. reward=-69493
~1600 —— Online RL. Cum. reward=-58707 —-1600 —1600
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 3000 steps Smoothed pretrain 20 eps, 3000 steps Smoothed pretrain 30 eps, 3000 steps
~2001 200+ —200+
—4004 —4001 —4001
-600 1 ° —600 T -600
5 s
= H
-800 2 —800 2 -8004
() (]
5= o
—1000 3 —1000 2 —10001
k) ko
1200 -1200 ~1200
~1400 1 —1400 —1400
~1600 —1600 ~1600
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

of episodes

Figure 14: Comparing the effect of different LLMs’ model sizes for the Pendulum environment.

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 10 eps, 1000 steps Smoothed pretrain 20 eps, 1000 steps Smoothed pretrain 30 eps, 1000 steps

—601 —— LORO 7B. Cum. reward=-51611 -60 —601
—— LORO 32B. Cum. reward=-46792
—80+ —— Online RL. Cum. reward=-57616 -80 —80+
-1004 o —100 —1001
s 5
~120+ 3 -120 3 -1201
(] Q
140 8 -140 8 -140+
2 2
o o
1601 W & _160 T 1601
— VS AR AN AT A
-180+ -180 -180+
200 —200 /’c : -200{ <~ - ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 3000 steps Smoothed pretrain 20 eps, 3000 steps Smoothed pretrain 30 eps, 3000 steps
—60 -60 —60
—80 -80 —80
-100+ o ~100 5 —100+
© ©
-120 § -120 £ -1204
(] Q
140 8 -140 8 -1404
E Ey
a 3
~160 * -160 * 160
e e W 1801 ,W
-200+ —200 —-200+
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
of episodes # of episodes # of episodes
Figure 15: Comparing the effect of different LLMs’ model sizes for the MountainCar environment.
Smoothed pretrain 10 eps, 1000 steps Smoothed pretrain 20 eps, 1000 steps Smoothed pretrain 30 eps, 1000 steps
—41 -4 -4
—51 —51 -5
61 _61 -
e 6 e 6
=71 g 74 g 7
S e
-8 3 -8 $ -8
a 2
=91 a -91 & -9
-10 b WA /\/' _104 _10
—— LORO 7B. Cum. reward=-1784
-111 — " 0RO 328. Cum. reward=-1701 -1 -1
—— Online RL. Cum. reward=-2088
=127 -124 -12
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 3000 steps Smoothed pretrain 20 eps, 3000 steps Smoothed pretrain 30 eps, 3000 steps
-4 —4 -4
—5 1 -5
61 —6 -
° e e 6
-79 g s 7
¢] 2
-8 g - g e
o o
n i
_9 2 a -9
~101
—101 =10
~-11 -11
121
-12 1 -12
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes

Figure 16: Comparing the effect of different LLMs’ model sizes for the Pong environment.

21

E.3 EFFECTS OF THE NUMBER OF PRE-TRAINING STEPS

In this section, we evaluate the effect of the number of pre-training steps on the cumulative reward of the policy. We
evaluate this with different model sizes and pre-training data on six OpenAl Gym environments and show the result in
Figure[T7] [T8] [I9] [20} 21} 22} Overall, we observe no clear advantage of using a higher or lower number of pre-training
steps to improve the decision-making quality of the LORO policy.

Smoothed pretrain 10 eps, 7B Smoothed pretrain 20 eps, 7B Smoothed pretrain 30 eps, 7B
0 —— e 0 N 0 ——
_/~/ B g
—1001 -100 —1001 [
e T °
2 —200 £ 200 £ -200
o o o
Q Q Q
3 2 3
9 —300 2 =300 9 —300
o o o
fm fm o
—400- —— LORO 1k pretrain steps. Cum. reward=-9213 —400 —4004
LORO 3k pretrain steps. Cum. reward=-10303
—— Online RL. Cum. reward=-37151
-500+—+ T T T T T T T T —500 +— " T T T T T T T —-500+— T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
o Smoothed pretrain 10 eps, 32B o Smoothed pretrain 20 eps, 32B o Smoothed pretrain 30 eps, 32B
-100+ -100 4R m -100 |
e T °
2 —200 g —200 2 —200
2 o o
[} (] Q
K 3 3
2 —3001 2 -300 2 —3001
o o o
w w ‘ w
—4001 —400 ‘ —4001
—-500 T T T T T T T T —500 +— v T T T T T T T —-500+— T T r T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes

Figure 17: Comparing the effect of different pre-training steps for the CliffWalking environment.

22

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 10 eps, 7B

Smoothed pretrain 20 eps, 7B

Smoothed pretrain 30 eps, 7B

1.0
1.0
o8] - 0.8
%06 206
L) Q
=] T
o o
2 2
2041 504
0.24 T LOROIkpretrain steps. Cum. reward=99 0.24 0.2
~—— LORO 3k pretrain steps. Cum. reward=100
_ — Online RL. Cum. reward=100
0.0+ - . - v - - . 0.01 - - v - - - . 001 - . v - - - .
0O 20 40 60 80 100 120 140 0O 20 40 60 80 100 120 140 0O 20 40 60 80 100 120 140
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 32B Smoothed pretrain 20 eps, 32B Smoothed pretrain 30 eps, 32B
1.0 1.0 1.0
0.8 0.8 0.8
T e
© ©
2 3
0.6 5 067 5 0.6
o o
2 2
0.4 & 0.4 & 0.4
0.2 0.2 0.2
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
of episodes # of episodes # of episodes
Figure 18: Comparing the effect of different pre-training steps for the FrozenLake environment.
Smoothed pretrain 10 eps, 7B Smoothed pretrain 20 eps, 7B Smoothed pretrain 30 eps, 7B
225]
225 200
2001 200 1751
175 1754
B o 1507
150 S 1504 5
2 3 125
125 1251 g
3 S 1004
100 3 1001 2
w w
75 754 75
—— LORO 1k pretrain steps. Cum. reward=26032
501 —— LORO 3k pretrain steps. Cum. reward=24980 501 504
—— Online RL. Cum. reward=24640
s | % .
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 32B Smoothed pretrain 20 eps, 32B Smoothed pretrain 30 eps, 32B
220 200
200
200 | 180
180 | 1801 MAMe
160 160
kel 1 el
160 5 s
H = 1404
1401 © 1404 e
() () B
120 | § 1201 3 120
1001 &1004 £ 100
80 | 801 801
60 60 601
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

of episodes

of episodes

of episodes

Figure 19: Comparing the effect of different pre-training steps for the CartPole environment.

23

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 10 eps, 7B Smoothed pretrain 20 eps, 7B Smoothed pretrain 30 eps, 7B

~2001 200+ -2004
—400 - —400 —400 1
-600 T —600 T -600-
s b
2 H
-800 2 -800 2 -800
S S
10001 2 —1000 9 —1000
3 &
—1200 —1200 ~1200
_1400{ LORO 1k pretrain steps. Cum. reward=-71703 _14001 14001
—— LORO 3k pretrain steps. Cum. reward=-71703
—1600{ —— Online RL. Cum. reward=-58707 —1600 1 —1600 1
0 25 50 75 100 125 150 175 200 0 25 50 7‘5 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of ep isodes # of SpISO es
Smoothed pretraln 10 eps, 32B Smoothed pretram 20 eps, 32B Smoothed pretrain 30 eps, 32B
-2001 2004 -2004
—400- —4004 —400-
° e
6004 & —6001 5 —600
600 g -600 g -600
e IS
—800 5 —8001 £ -800-
o o
.0 0
~1000 & ~1000 & -10001
—1200 ~1200 ~1200
~1400 —1400 —1400
50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
Figure 20: Comparing the effect of different pre-training steps for the Pendulum environment.
Smoothed pretrain 10 eps, 7B Smoothed pretrain 20 eps, 7B Smoothed pretrain 30 eps, 7B
—60 1 —— LORO 1k pretrain steps. Cum. reward=-51611 -60 —60
—— LORO 3k pretrain steps. Cum. reward=-45453
—801 —— oOnline RL. Cum. reward=-57616 -80 =801
-100+ o ~100 5 —100+
s s
-1201 § -120 £ -1204
(] [}
-140 ® -140 g —1401
2 2
-160 “ —160 * 160
-1804 -180 -1804
—-200+ —200 L y —200{ 4 -
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 32B Smoothed pretrain 20 eps, 32B Smoothed pretrain 30 eps, 32B
—60 -60 —60
—80 -80 —80
-1004 5 —100 5 —100+
s 5
-1201 3 -120 £ -1201
(] [
~1401 8 -140 8 1404
2 2
2 2
-1601 “ -160 * -160
-1804 -180 -1804
-2004 -200 -2004
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
of episodes # of episodes # of episodes

Figure 21: Comparing the effect of different pre-training steps for the MountainCar environment.

24

Smoothed pretrain 10 eps, 7B Smoothed pretrain 20 eps, 7B Smoothed pretrain 30 eps, 7B

\ -1 A

W/ Al | ;- WAL
v - W maaitd | 1 L
-101 PN /m pal /\/\/' -10 V\,J\/ \/ \/ -10

Episode reward
|
(=<}
3
Episode reward

Episode reward

—— LORO 1k pretrain steps. Cum. reward=-1784

—111 LORO 3k pretrain steps. Cum. reward=-1765 -11+1 -1
—— Online RL. Cum. reward=-2088
—127 T T T T T T T T T —121 T T T T T T T T T -12 T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 32B Smoothed pretrain 20 eps, 32B Smoothed pretrain 30 eps, 32B
-44 7\ -4 -4 \
\ \
=51 | -5 \“
—64 —64 |

-7 |

Episode reward
|
e
Episode reward
|
oo
Episode reward
|
o

Ty '
2 WRIEE L. VROR 1 Wt

-11

—124

—124

-12
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes

Figure 22: Comparing the effect of different pre-training steps for the Pong environment.

E.4 EFFECTS OF THE AMOUNT OF LLM DATA

In this section, we evaluate the effect of the number of pre-training data on the cumulative reward of the policy. We
evaluate this with different model sizes and pre-training steps on six OpenAl Gym environments and show the result in
Figure 23] 24] [23] 26| 27 28] Although there exist some differences in the cumulative reward, all baselines converge to
a policy with similar performance in a relatively short amount of time. Hence, we observe no clear advantage of using a
higher or lower amount of pre-training data to improve the decision-making quality of the LORO policy.

25

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

Smoothed pretrain 1000 steps, 7B

—100

Episode reward

=400 -

|
N
o
<)

i

|
w
=1
=]

-500

—100 -

Episode reward

—400

|
N
o
ts3

L

|
w
o
o

-500

Smoothed pretrain 3000 steps, 7B

25 50 75
of episodes
Smoothed pretrain 3000 steps, 32B

100 125 150 175 200

25 50 75 100

of episodes

125 175 200

Figure 23: Comparing the effect of different amounts of pre-training data for the CliffWalking environment.

0
—100
e
2 —200
2
[
3
2 —3004
o
fim
—— LORO 10 pretrain eps. Cum. reward=-9213
—4004 —— LORO 20 pretrain eps. Cum. reward=-22411
—— LORO 30 pretrain eps. Cum. reward=-23697
—— Online RL. Cum. reward=-37151
-500
0 25 50 75 100 125 150 175 200
of episodes
o Smoothed pretrain 1000 steps, 32B
—100
e
£ -200
2
@
K]
2 —3004
o
w
400
-500
0 25 50 75 100 125 150 175 200
of episodes
Smoothed pretrain 1000 steps, 7B
1.04
° 0.84
©
g
206
()
°
o
o
80.41
—— LORO 10 pretrain eps. Cum. reward=99
0.24 —— LORO 20 pretrain eps. Cum. reward=95
—— LORO 30 pretrain eps. Cum. reward=83
—— Online RL. Cum. reward=100
0.0+ - . y . : - .
0 20 40 60 80 100 120 140
of episodes
Smoothed pretrain 1000 steps, 32B
1.01
0.8
B
©
g
; 0.6
o
o
2
Q.
w 0.4
0.2

0 20 40 60 80 100 120 140

of episodes

Episode reward

Episode reward

Smoothed pretrain 3000 steps, 7B

1.04

0.8

0.6

0.24

0.0

20 40 60 80 100 120 140

of episodes
Smoothed pretrain 3000 steps, 32B

1.0

0.84

0.6

0.2

20 40 60 80 100 120 140

of episodes

Figure 24: Comparing the effect of different amounts of pre-training data for the FrozenLake environment.

26

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 1000 steps, 7B

2251
2001
175
150
1254
100

751

50

251

LORO 10 pretrain eps. Cum. reward=26032
LORO 20 pretrain eps. Cum. reward=24838
LORO 30 pretrain eps. Cum. reward=22166
Online RL. Cum. reward=24640

0 20 40 60 80 100 120 140
of episodes
Smoothed pretrain 1000 steps, 32B

2004

1754

1501

125

1001

751

501

Figure 25: Comparing the effect of different amounts of pre-training data for the CartPole environment.

0 20 40 60 80 100 120 140
of episodes

Smoothed pretrain 1000 steps, 7B

=200

—4001

—6001

—8001

—1000 -

—1200 -

—1400 -

—1600 -

—— LORO 10 pretrain eps. Cum. reward=-71703
—— LORO 20 pretrain eps. Cum. reward=-86454
—— LORO 30 pretrain eps. Cum. reward=-99689
—— Online RL. Cum. reward=-58707

0 25 50 75 100 125 150 175 200
of episodes
Smoothed pretrain 1000 steps, 32B

—2001

~400

—600 1

—800 1

—1000 -

—1200

—1400

Figure 26:

0 25 50 75 100 125 150 175 200
of episodes

27

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 3000 steps, 7B

0 20 40 60 80 100
of episodes
Smoothed pretrain 3000 steps, 32B

120

140

0 20 40 60 80 100
of episodes

Smoothed pretrain 3000 steps, 7B

120

140

=200

—4001

—6001

—8001

—10001

—12001

—14001

—1600

0 25 50 75 100 125 150
of episodes
Smoothed pretrain 3000 steps, 32B

175

200

—2001

—4001

—6001

—8001

—10001

—12001

—14001

0 25 50 75 100 125 150
of episodes

175

200

Comparing the effect of different amounts of pre-training data for the Pendulum environment.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 1000 steps, 7B

-60 —— LORO 10 pretrain eps. Cum. reward=-51611
—— LORO 20 pretrain eps. Cum. reward=-57212
-80 —— LORO 30 pretrain eps. Cum. reward=-57451
—— Online RL. Cum. reward=-57616
~100
—-120
140
—160 1
—180
—200
0 50 100 150 200 250 300
of episodes
Smoothed pretrain 1000 steps, 32B
-60
—80
~1001
-1204
—~140
—160
—180+
—200 -
0 50 100 150 200 250 300
of episodes
Figure 27:
Smoothed pretrain 1000 steps, 7B
51
—64
—7
—_g4
—94
-10 —— LORO 10 pretrain eps. Cum. reward=-1784
—— LORO 20 pretrain eps. Cum. reward=-1748
-1 —— LORO 30 pretrain eps. Cum. reward=-1624
1 —— Online RL. Cum. reward=-2088
0 25 50 75 100 125 150 175 200
of episodes
Smoothed pretrain 1000 steps, 32B
—ad
—64
—_g4
~104
=12

100 125 175

of episodes

0 25 50 75

Smoothed pretrain 3000 steps, 7B

|
=)
(=]

|
@
o

Episode reward
| | |
[~
B N o
o o o

—160

—180 -

—200 -

W

0 50 100 150 200 250 300

of episodes
Smoothed pretrain 3000 steps, 32B

—80-

—100 -

—120

—140

Episode reward

—160

—180 -

—200 -

ik Rt SR ARG

150 200 250 300

of episodes

0 50 100

Comparing the effect of different amounts of pre-training data for the MountainCar environment.

Smoothed pretrain 3000 steps, 7B

Episode reward

—104

—~114

—12

0 25 50 75 100 125

—44

Episode reward
|
©

~10

—124

100 125 175

of episodes

0 25 50 75

Figure 28: Comparing the effect of different amounts of pre-training data for the Pong environment.

28

E.5 EFFECTS OF SFT AND LONG COT

In this section, we evaluate the effect of SFT and Long CoT on the cumulative reward of the policy. We evaluate
this with different pre-training data and pre-training steps on three OpenAl Gym environments and show the result in
Figure[29] [30} [31} Overall, we observe no clear advantage of using SFT and Long CoT over vanilla CoT to improve the
decision-making quality of the LORO policy.

Smoothed pretrain 10 eps, 7B, 1000 steps Smoothed pretrain 20 eps, 7B, 1000 steps Smoothed pretrain 30 eps, 7B, 1000 steps
] 1.0
10 1.0
0.8 { /\ 081 /\/\/ 0.8 /\ WG
- AAAV Y | /\/\/'*\\/ o YA W/ i
g AN g AN o6 N4y MY
@ 0.6 vV 9 0.6 /\/\/ v g
b g 3
3 0.4 Sl 504
& g% &
0.24 ATV 0.2
—— LORO. Cum. reward=99 0.24
Online RL. Cum. reward=100
] 0.0
0.0 —— SFT. Cum. reward=28 0.0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
of episodes # of episodes # of episodes
Smoothed pretrain 10 eps, 7B, 3000 steps Smoothed pretrain 20 eps, 7B, 3000 steps Smoothed pretrain 30 eps, 7B, 3000 steps
1.0 1.0 1.0
0.8 (X 0.8 [0.8
ill ’) J
T P MY M | s e cad IR AN
506 \// 5061 /\/\.,\/ 506 OV
Q (] @
§ 041 $ 0. S o4
2 & &
0.2 /-\/_A/\f\/\/\,\’\/\/\/j\ 0.2 0.2
0.04 0.0 0.0

0 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
of episodes # of episodes # of episodes

o
o

Figure 29: Comparing the effect of Long Chain-of-Thought and Supervised-Fine-Tuning for the FrozenLake environ-
ment.

29

Episode reward

Episode reward

Episode reward

Episode reward

Smoothed pretrain 10 eps, 7B, 1000 steps

Smoothed pretrain 20 eps, 7B, 1000 steps

Smoothed pretrain 30 eps, 7B, 1000 steps

-1004 -100 -1004
e e
-2001 2 200 2 -200
< e
(] [}
2 3
-3001 2 -300 2 -3001
& &
—4001 —— LORO. Cum. reward=-9213 —400 —4004
—— Online RL. Cum. reward=-37151
—— SFT. Cum. reward=-16540
—500 v y T T T T T T -500 T —-500 " - - : - - - -
0 25 50 75 100 125 150 175 200 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
episodes f episodes episodes
Smoothed pretram 10 eps, 7B, 3000 steps Smoothed pretraln 20 eps, 7B, 3000 steps Smoothed pretraln 30 eps, 7B, 3000 steps
-1004 -100 -1004
e e
—200 2 -200 2 200
< e
(] [
B K
-3004 2 -300 2 -3004
(=% Q.
iy &
—4004 —400 —400+
—500 T y T T T T T T -500 y —-500 v - - - - - - -
0 25 50 75 100 125 150 175 200 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episodes # of episodes # of episodes
Figure 30: The effect of Supervised-Fine-Tuning for the CliffWalking environment.
Smoothed pretrain 10 eps, 7B, 1000 steps Smoothed pretrain 20 eps, 7B, 1000 steps Smoothed pretrain 30 eps, 7B, 1000 steps
~5004 5001 —500
° °
~1000 £ 1000 2 1000
e e
[[
o °
2 2
~1500 2 ~15001 2 -1500
& fir
20001 —— LORO. Cum. reward=-71703 ~20004 20001
—— Online RL. Cum. reward=-58707
—— SFT. Cum. reward=-210954
0 25 50 7‘5 100 1é5 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
of episode # of episodes of episodes
Smoothed pretrain 10 eps 7B, 3000 steps Smoothed pretrain 20 eps, 7B, 3000 steps Smoothed pretraln 30 eps, 7B, 3000 steps
~5004 5001 —500
° °
~1000 £ 1000 2 —1000
e e
[[
° °
2 2
~1500 2 ~15001 2 -1500
& fin
—2000 —2000 —2000
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

of episodes

of episodes

of episodes

Figure 31: The effect of Supervised Fine-Tuning for the Pendulum environment.

1560
1561
1562 For the experiments above, we use an efficient environment history such as “The holes are in locations: X, Y, Z. You
1563 receive zero reward at locations: A, B, C, D”.

1564
1565
1566

1567 Pretrain 7b 1000 steps with different splits Pretrain 7b 3000 steps with different splits

E.6 EFFECTS OF THE HISTORY SUMMARY

For the experiment in Figure[32] we concatenate the observations of each state to the LLM’s prompt, with a limited
history length: "You visit location X and receive zero reward. You visit location Y and receive one reward. You visit ...".

1568 104 —— 10 Pretrain Episodes 104 —— 10 Pretrain Episodes
—— 20 Pretrain Episodes —— 20 Pretrain Episodes
1 569 —— 30 Pretrain Episodes —— 30 Pretrain Episodes

1570

0.8 q 0.8

1571 ‘ NG) fib :‘Li‘ T |
- 4’1‘..'* A | ;\.»mw MY
1274 *"

1575 0.49 04|
1576 \

1577 wl 0z “

1578
1579
lll 56 160 15‘0 260 25‘0 3(;0 l; 5'0 160 15‘0 260 25‘0 360

Reward
Reward

0.01

1580 *
1581 Episodes Episodes

1582 10 Pretrain 32b 1000 steps with different splits . Pretrain 32b 3000 steps with different splits
1583 '
1584

1585

1586

1587 0569
1588
1589
1590
1591
1592 021 02

1 593 —— 10 Pretrain Episodes —— 10 Pretrain Episodes
1 594 —— 20 Pretrain Episodes —— 20 Pretrain Episodes
0.0 —— 30 Pretrain Episodes 0.0 4 —— 30 Pretrain Episodes

0.8 1

®

I'l’u*} ol l|"ﬁ i M‘i') ,M,

0.6

Reward
Reward

0.4 0.4

1595 0 50 100 150 200 250 300 0 50 100 150 200 250 300
1 596 Episodes Episodes

1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

Figure 32: FrozenLake with ineffective environment history.

31

F WALL CLOCK TIME

Below, we show the wall-clock time for the LLM data collection phase in Table[5]and the fine-tune with RL phase in
Table

Environment Model Time (h) | GPU
. . Qwen-32b 54.03
CliffWalking Qwen-7b 1996
Qwen-32b 15.66
CartPole Qwen-7b 827
Qwen-32b 2.63
FrozenLake Qwen-7b 0’2
H100
MountainCar Qwen-32b 33.63
Qwen-7b 25.94
Qwen-32b 59.68
Pendulum Qwen-Tb 285
Qwen-32b 69.43
RepresentedPong Qwen-7b 7348
DeepSeek-14b 16.99
FrozenLake-LongCoT DeepSeek-7b 300 A6000
CliffWalking-SFT Qwen-7b 41 H100
FrozenLake-SFT Qwen-7b 0.73 A6000
Pendulum-SFT Qwen-7b 57.72

Table 5: Wall-clock time for LLM data collection phase in different environments with different GPUs.

. . Offline data size (episode)
Environment Offline data 10 20 30

Qwen-7b 4.319 | 3.044 1.448

. . Qwen-32b 2.149 | 1.249 0.788
CliffWalking Random | 4.661 [2.138 | 1.922
Collected online | 5.131 | 2.392 2.045

Qwen-7b 1.912 | 1.826 1.758

Qwen-32b 1.432 | 1.354 1.275

CartPole Random 2707 | 2705 | 2.718
Collected online | 2.992 | 2.993 3.005

Qwen-7b 1.896 | 1.797 1.74

Qwen-32b 1.397 | 1.318 1.254

FrozenLake Random 2746 [2741 | 2757
Collected online | 3.069 | 3.068 3.059
Qwen-7b 2.177 | 2.009 1.112

. Qwen-32b 1.608 | 1.446 0.8
MountainCar Random 3155 [311 | 4.808
Collected online | 3.513 | 3.253 3.21
Qwen-7b 3.803 | 3.647 2.534

Pendulum Qwen-32b 2.806 | 2.658 1.818
Random 5.552 | 5.227 3.979

Collected online | 6.159 | 4.552 4.358

Qwen-7b 3.639 | 3.26 2.69

Qwen-32b 2.386 | 2.406 1.99
RepresentedPong Random 47295 | 3253 | 2319
Collected online | 4.63 | 3.444 2.434

Table 6: Wall-clock time for the fine-tune with RL phase with an HI00 GPU. The only exception is the MountainCar
with Offline data size of 30, which was timed using an A6000 GPU.

32

G LLM SETUP

We designed the prompt to choose an action from a list of integers starting from one, since we observed that LLM is
more biased toward action zero. After the LLM chooses an action, we extract it by getting the last number returned
by the LLM. This design was inherited from [Pandey|(2024)), which can be improved since we observe a number of
extraction failures from our experiments.

We observe that the vanilla design of LLM, where we ask it only to return the chosen action, performs poorly. Similarly,
we implemented and tested the Majority Voting and Best-of-N test-time-scaling methods, but they both perform poorly
without CoT.

For all experiments, we limit the generating token to be less than 2000 , top-p 0.6, top-k 0, temperature 0.9. In the SFT
experiment, the LLM was trained with LoRA [Hu et al.| (2021)) with rank 8, alpha 16, dropout 0.05, batch size 1, and
using 8-bit quantization.

H PROMPTS

This section provides a collection of Chain-of-Thought (CoT) prompting examples used across multiple decision-
making environments. Each task is presented with a detailed system prompt describing the environment dynamics
and action space, followed by a user query that reflects a specific game state. The responses are generated by
Qwen?2.5-7B-Instruct, illustrating its step-by-step reasoning capabilities.

H.1 CHAIN-OF-THOUGH PROMPTS

H.1.1 TAsK 1: CLIFF WALKING

» System:

You are an expert-level game player. Cliff walking is a task in which you control a player navigating a *4x12’
grid world. The (’x’, ’y’) coordinate indicates the position at row ’x’ and column ’y’. The player needs to find a
goal location while avoiding cliffs . The player can choose from 4 actions: move up, move right, move down, or
move left. If the player takes an action at (’x’, ’y’), he tries to move to (’a’, ’b’). Rules:

* 1. If Ca’, ’b’) is a cliff, the player incurs a large penalty of -100, and is reset to the starting position.

* 2. If Ca’, ’b’) is safe or towards the grid boundary, results in a small penalty of -1. If ("a’, °’b’) is
outside the grid’s boundaries, it does not change position but still receive the -1 penalty.

* 3. The game ends when the (’a’, ’b’) is the goal or 200 actions are performed. The goal is to navigate
from the starting point to an target , while avoiding the cliff, in as few steps as possible.

9% 9,

Type a number to indicate the action. For current position ("x’, ’y’), the action means the player try to step into
the next position. Type 1’ to move up, which means trying to step into ("x-1’, ’y’), ’2’ to move right, which
means ('x’, ’y+1’), ’3’ to move down, which means ("x+1’, ’y’), or ’4’ to move left, which means (’x’, ’y-1’).
Ensure you only provide the action number from the valid action list, i.e., [1, 2, 3, 4]. Environment history:
Cliff: Reward -100 at locations: (3, 0). Reward -1 at locations: (2, 0), (3, 0), (1, 0). Previous location: (1,
0), previous action: 1, previous reward: -1. Return the action at the end of your answer without the target’s
location.

» User:
You are at location (2, 0) in the grid world.
Think step by step.

1> Qwen2.5-7B-Instruct:

33

H.1.2 TASK 2: CARTPOLE

» System:

You are an expert-level game player. In the CartPole game, you control a cart that moves along a horizontal
track. There is a pole standing upright on the cart. The goal of the game is to keep the pole balanced upright by
moving the cart left or right. The game ends if the pole tilts too far from the vertical position or if the cart moves
too far from the center of the track. The longer you can keep the pole balanced, the higher your score.Note that
when the Cart Position is out of the (-2.4, 2.4) zone or the Pole Angle is out of the zone (-.2095, .2095), the
round ends and the game is lost. The goal is to keep the pole balanced upright for as long as possible.

Type ’1’ to push the cart to the left or ’2’ to push the cart to the right. Ensure you only provide the action
number from the valid action list, i.e., [1, 2].

» User:
The cart is positioned at 0.006, with a velocity of 0.04 towards the right. The pole is tilted at 0.02 radians,

rotating at 0.02 radians per second towards the right.
Think step by step.

» Qwen2.5-7B-Instruct:
Given the current state of the CartPole game:

e Cart Position: 0.006 (slightly to the right of the center)

* Cart Velocity: 0.04 (moving slightly to the right)

* Pole Angle: 0.02 radians (slightly tilted to the right)

* Pole Angular Velocity: 0.02 radians/second (tilting to the right)
Let’s analyze the situation step by step:

1. Cart Position: The cart is very close to the center, at 0.006. This is within the safe range, so we don’t
need to move it significantly.

2. Cart Velocity: The cart is moving slightly to the right, which is good because it helps counteract the
tilt of the pole.

3. Pole Angle: The pole is tilted 0.02 radians to the right. This is a small tilt, but it indicates that the pole
is starting to lean. We need to act quickly to prevent it from falling over.

4. Pole Angular Velocity: The pole is rotating at 0.02 radians/second to the right, which means it is
accelerating its tilt. This suggests that the cart’s movement is not sufficient to stabilize the pole.

Given these observations, we should try to slow down the pole’s tilt by moving the cart to the left. This will
help counteract the rightward tilt of the pole.

Action: 1 (Push the cart to the left)

This action will help to stabilize the pole by moving the center of mass back towards the center, which should
reduce the angular velocity of the pole.

H.1.3 TASK 3: MOUNTAIN CAR

» System:

You are an expert-level game player. In the Mountain Car game, you control a car placed stochastically at the
bottom of a sinusoidal valley. The only possible actions are the accelerations that can be applied to the car in
either direction. The goal of the game is to strategically accelerate the car to reach the goal state on top of the
right hill as quickly as possible. The episode ends if either the car reaches the goal position on top of the right
hill or the length of the episode is 200. The goal is to reach the flag placed on top of the right hill as quickly as
possible.

Type ’1’ to accelerate to the left, 2’ to not accelerate, or ’3’ to accelerate to the right.Ensure you only provide
the action number from the valid action list, i.e., [1, 2, 3].

34

» User:
The car is positioned at -0.541, with a velocity of 0.000 towards the left.
Think step by step.

» Qwen2.5-7B-Instruct:

Given the car’s position at -0.541 and a velocity of 0.000 towards the left, the car is slightly to the left of the
center of the valley. Since the car is not moving yet and is close to the middle, accelerating to the right (action
3) might help gain some speed towards the right hill without overshooting too much.

Action: 3

H.1.4 TASK 4: FROZENLAKE

» System:

You are an expert-level game player. In the FrozenLake game, the player starts at the start position of the grid
and tries to reach the goal position . There are holes which the player must avoid. The frozen lake is slippery,
meaning that the player might not always move in the intended direction. The game ends when the player
reaches the goal or falls into a hole. The goal is to navigate across the frozen lake and reach the goal position
without falling into any holes. For current position ("x’, ’y’), the action means the player try to step into the
next position. The possible actions are:

* 1: Move left, which means (’x’, y-1’),
* 2: Move down, which means ('x+1’,’y’),
* 3: Move right, which means (’x’, "y+1°),
* 4: Move up, which means trying to step into (x-1’,’y’).
Ensure you only provide the action number from the valid action list, i.e., [1, 2, 3, 4]. Do not return the target’s

coordination. Environment history: Reward 0.0 at locations: (0, 0). Previous location: (0, 0), previous action: 1,
previous reward: 0.0. Return the action at the end of your answer without the target’s location.

» User:
You are at row 0, column 0.
Think step by step.

» Qwen2.5-7B-Instruct:

Since the current position is (0, 0) and the previous action was moving left (which is not possible as it would
take you out of bounds), the only feasible action to consider is moving down to (0, 1). Therefore, the action is:
2.

» System:

You are an expert-level game player. In the FrozenLake game, the player starts at the start position of the grid
and tries to reach the goal position . There are holes which the player must avoid. The frozen lake is slippery,
meaning that the player might not always move in the intended direction. The game ends when the player
reaches the goal or falls into a hole. The goal is to navigate across the frozen lake and reach the goal position
without falling into any holes. For current position (’x’, ’y’), the action means the player try to step into the
next position. The possible actions are:

* 1: Move left, which means (’x’, y-1’),

e 2: Move down, which means ("x+1’,’y’),

* 3: Move right, which means ('x’, "y+1°),

* 4: Move up, which means trying to step into (’x-1’, ’y’).

Ensure you only provide the action number from the valid action list, i.e., [1, 2, 3, 4]. Do not return the target’s
coordination. Environment history: Reward 0.0 at locations: (0, 0). Previous location: (0, 0), previous action: 1,
previous reward: 0.0. Return the action at the end of your answer without the target’s location.

35

» User: »
The current position of the You are at row 0, column 0.

Think step by step.
» DeepSeek-R1-Distill-Qwen-7B:

Okay, so I’'m trying to figure out where to move in this FrozenLake game. I’m at position (0,0), which is the
top-left corner of the grid. The goal is to reach the goal position, which I think is at the bottom-right corner,
maybe (4,4) since it’s a 5x5 grid. But I’m not entirely sure, so I'll assume that’s the case.

First, I need to consider the possible actions. The actions are numbered 1 to 4, corresponding to moving left,
down, right, and up respectively. Each action has a direction, but because the ice is slippery, I might not end up
where I intended. So, I have to plan carefully to avoid falling into holes.

Let me think about each action:
* Action 1: Move left. But wait, I’'m already at column 0, which is the leftmost column. So moving left
from here would take me off the grid, which is probably a hole. So I shouldn’t choose action 1.
* Action 2: Move down. That would take me to (1,0). I need to check if that’s a hole. From the grid, I
remember that some cells are safe and some are holes. Let me visualize the grid:

— Row0: SFFFF
— Row1l: FFHFF
— Row2: FHFFF
— Row3: FFFHF
- Row4: FFFFG

Wait, I’'m not sure if that’s accurate, but I think row 1, column 2 is a hole (H), and row 2, column 1 is
another hole. So moving down to (1,0) is safe because row 1, column O is F (safe). So action 2 seems
safe.

* Action 3: Move right. That would take me to (0,1). I think that’s safe too because row 0, column 1 is F.

* Action 4: Move up. But I’'m at row 0, so moving up would take me off the grid, which is a hole. So
action 4 is out.

So, from (0,0), the valid actions are 2 and 3. I need to choose between them. Let’s think about the long-term
implications.
If I go down to (1,0), then from there, possible actions are:
* Move left: off grid (hole)
¢ Move down: (2,0) which is safe
* Move right: (1,1) which is safe
* Move up: back to (0,0)
If I go right to (0,1), then from there:
¢ Move left: back to (0,0)
¢ Move down: (1,1) which is safe
* Move right: (0,2) which is safe
* Move up: off grid (hole)

Hmm, both paths seem viable. Maybe I should go right to (0,1) because moving down from there might lead
me closer to the goal without getting stuck. Alternatively, going down might allow me to move right or left
without immediate issues.

Wait, but if I go down to (1,0), then moving right to (1,1) is safe, and from there, moving down again to (2,1) is
a hole because row 2, column 1 is H. Oh no, that’s a problem. So from (1,0), if I move right to (1,1), then down

to (2,1) is a hole. So that’s bad.
Alternatively, from (1,0), if I move down to (2,0), which is safe, then from there, moving right to (2,1) is a hole.

So again, that’s a problem.

36

Wait, maybe I’m misremembering the grid. Let me try to recall the layout. I think row 1, column 2 is H, and
row 2, column 1 is H. So, from (1,0), moving right goes to (1,1), which is safe, but then moving down from
there would go to (2,1), which is H. So that’s a problem.

Alternatively, from (1,0), moving down to (2,0) is safe, but then moving right to (2,1) is H. So either way,
moving down first might lead to a hole in the next step.

So maybe going right to (0,1) is better. From (0,1), moving down to (1,1) is safe, and then from there, moving
right to (1,2) is H, which is bad. Or moving right to (0,2), which is safe, then from there, moving down to (1,2)
is H. So again, same issue.

Wait, maybe I'm overcomplicating this. Perhaps I should try to find a path that avoids the holes. Let’s think
about possible paths.

From (0,0), go right to (0,1). From there, go down to (1,1). From (1,1), go right to (1,2), but that’s H. So that’s
bad. Alternatively, from (1,1), go right to (1,2) is H, so maybe go down to (2,1), which is H. So that’s no good.
Alternatively, from (0,1), go down to (1,1), then from there, go right to (1,2) is H, or left to (1,0), which is back
where I came from. Hmm.

Wait, maybe from (0,1), go right to (0,2). From (0,2), go down to (1,2) is H. So that’s bad.
Alternatively, from (0,1), go down to (1,1), then from there, go right to (1,2) is H, or left to (1,0), which is safe.
So from (1,1), moving left to (1,0) is safe, but then from (1,0), moving down to (2,0) is safe, and from there,
moving right to (2,1) is H. So that’s a problem.
This is getting complicated. Maybe I should try a different approach. Let’s think about the possible paths step
by step.
From (0,0), options are 2 (down) and 3 (right).
If I go down to (1,0):
* From (1,0), possible actions: down to (2,0), right to (1,1)
e If I go down to (2,0):
— From (2,0), possible actions: right to (2,1) is H, so that’s bad. So maybe go right to (2,1) is H, so
can’t go there. So from (2,0), the only safe move is right to (2,1) is H, so maybe move up to (1,0),
but that’s where I came from. Or move right to (2,1) is H, so that’s not allowed. So from (2,0),
the only safe move is to go right to (2,1), but that’s H, so that’s bad. Alternatively, move left to
(2,-1), which is off grid, so that’s a hole. So from (2,0), I can’t move anywhere without falling
into a hole. So that’s a dead end.

So going down to (1,0) leads to a dead end because from (2,0), I can’t move anywhere safely.
So, maybe I should go right to (0,1) instead.
From (0,1):
* Possible actions: down to (1,1), right to (0,2)
e If I go down to (1,1):
— From (1,1), possible actions: down to (2,1) is H, right to (1,2) is H, left to (1,0), up to (0,1)
— So, from (1,1), the only safe move is left to (1,0) or up to (0,1). If I go left to (1,0), then from

there, I can go down to (2,0), but from (2,0), as before, it’s a dead end. Alternatively, from (1,1),
go up to (0,1), which is where I came from, so that’s not helpful.

 If I go right to (0,2):
— From (0,2), possible actions: down to (1,2) is H, right to (0,3), left to (0,1)

— So, from (0,2), the safe moves are right to (0,3) or left to (0,1). If I go right to (0,3), then from
there, I can go down to (1,3), which is safe, and so on.

So, from (0,1), going right to (0,2) seems better because it allows me to move further right without hitting a
hole immediately.

So, let’s try that path:
Action: 1

37

H.1.5 TASK 5: PONG

» System:

You are an expert-level game player. In the Pong game, you play the ball with your opponent, each player rallys
the ball by moving the paddles on the playfield. Paddles move only vertically on the playfield. A player scores
one point when the opponent hits the ball out of bounds or misses a hit. The first player to score 21 points wins
the game. The number of frameskip is set to 4. The goal is to knock out your opponent. Type 1 for NOOP (no
operation), 3 to move up, 4 to move down. Ensure you only provide the action number from the valid action list,
ie., [1,3,4].

» User:

The origin (0,0) is in the top left corner. You are at position (188, 78), your opponent is at position (64, 8), the
ball is at (0, 0), the ball velocity is (0, -60). Your opponent’s score is 0, your score is 0.

Think step by step.

» Qwen2.5-7B-Instruct:
Given the current state of the game:

* Your paddle is at position (188, 78).
* Your opponent’s paddle is at position (64, 8).
* The ball is at position (0, 0) and is moving upwards with a velocity of (0, -60).
Step-by-step reasoning:
* The ball is at the top of the playfield and is moving downwards. It will be near the middle of the
playfield soon.
» With a frameskip of 4, the opponent will not react until the ball has moved significantly downward.

* Since the ball is about to come towards you, you should prepare to move your paddle to intercept the
ball.

Action Plan:

* Move your paddle up to intercept the ball as it comes towards you. This ensures that you can return
the ball effectively.

Action: 3 (move up)
By moving up, you position yourself to intercept the ball as it comes towards the center of the playfield.

H.1.6 TASK 6: PENDULUM

» System:

You are an expert-level game player. In the Pendulum game, you control a pendulum attached to a fixed pivot
point. The goal is to apply torques to swing the pendulum upright and keep it balanced. The game ends if the
pendulum cannot be stabilized within the given time limit. The closer the pendulum is to the upright position,
the higher your score. The goal is to swing the pendulum upright and keep it balanced. Provide a torque value
(e.g., a float between -2.0 and 2.0) to control the pendulum’s movement. Return the torque value enclosed in <
and >, e.g., <1.5>.

» User:

The pendulum is at an angle of -2.690 radians from the vertical (zero when upright), rotating at 0.34 radians per
second in the clockwise direction.

Think step by step.

» Qwen2.5-7B-Instruct:
To determine the appropriate torque to apply, we need to consider the current state of the pendulum: its angle

and angular velocity.

* Angle Analysis: The pendulum is currently at an angle of -2.690 radians from the vertical. This means
it is hanging to the left of the vertical position. To bring it back towards the vertical, we need to apply a

38

positive torque (since positive torque will tend to rotate the pendulum clockwise, which is the direction
needed to move it towards the vertical).

* Angular Velocity Analysis: The pendulum is rotating at 0.34 radians per second in the clockwise
direction. Since the pendulum is already moving in the direction we want (towards the vertical), we
should continue to apply a positive torque to help it swing more quickly towards the vertical position.

Given that the pendulum is already moving in the correct direction but not fast enough, applying a moderate
positive torque should help it swing faster and reach the vertical position more efficiently.

A good starting torque value could be around 1.0, as this provides a reasonable amount of force without being
too aggressive and risking overshooting the vertical position.

Therefore, the torque value I suggest is: <1.0>

39

	Introduction
	Related work
	Preliminaries
	The LLM Offline, RL Online (LORO) Algorithm
	Experiments
	Sample Efficiency
	Justifying the Coverage Assumption 1
	Effect of pre-training
	Effect of LLM's data
	Verifying LORO's agnosticity to base RL learner choices
	Effects of the LLM's capability
	Other findings

	Conclusion and Future work
	Extened related work
	The environments and implementation details
	The environments
	Implementation details

	Justifying the Coverage Assumption 1
	Cumulative rewards table
	Ablation study
	Algorithm agnostic verification
	Effects of LLM's model size
	Effects of the number of pre-training steps
	Effects of the amount of LLM data
	Effects of SFT and Long CoT
	Effects of the history summary

	Wall clock time
	LLM setup
	Prompts
	Chain-of-Though Prompts
	Task 1: Cliff Walking
	Task 2: CartPole
	Task 3: Mountain Car
	Task 4: FrozenLake
	Task 5: Pong
	Task 6: Pendulum

