
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

SAMPLE-EFFICIENT REINFORCEMENT LEARNING BY WARM-
STARTING WITH LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the usage of Large Language Models (LLMs) in collecting high-quality data to warm-
start Reinforcement Learning (RL) algorithms for learning in Markov Decision Processes (MDPs).
Specifically, we leverage the in-context decision-making capability of LLMs, to generate an "offline"
dataset that sufficiently covers state-actions visited by some good policy, then use an off-the-shelf RL
algorithm to further explore the environment and fine-tune its policy, in a black-box manner. Our
algorithm, LORO1, can both converge to an optimal policy and have a high sample efficiency thanks
to the good data coverage collected by the LLM. On multiple OpenAI Gym environments, such as
CartPole and Pendulum, given the same environment interaction budget, we empirically demonstrate
that LORO outperforms baseline algorithms such as pure LLM-based policies, pure RL, and a naive
combination of the two.

1 INTRODUCTION

The standard protocol in online RL has many applications, from playing games Silver et al. (2017) to robotic control
Kober et al. (2013). While having impressive empirical performance and enjoying the theoretical guarantee on returning
the optimal policy under some assumptions (Ramaswamy & Hüllermeier, 2021; Agarwal et al., 2019; Bertsekas, 2007),
a key problem of this approach is its sample inefficiency, which limits its applications in practice Yu (2018). Thus, most
impressive successes in online RL have been restricted to settings where many samples can be obtained by interacting
with the environment (such as games or environments with high-quality simulations).

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

Qwen 7B vs LORO

Qwen 7B Start Qwen 7B End LORO Start LORO End

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

Online RL vs Final Policy

Online RL Start Online RL End Final Policy Start Final Policy End

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

CliffWalking

LORO
Online RL

Figure 1: The CliffWalking “offline” dataset (red) collected from a LLM covers the optimal policy much more than the
ones collected from a vanilla Online RL or Uniformly Random policy, making the cumulative reward (-9213) three
times larger than the Online RL baseline (-37151).

To address this, (Lange et al., 2012; Ernst et al., 2005; Riedmiller, 2005; Levine et al., 2020) proposed the offline
RL setting, where the algorithm does not directly interact with the environment as in online RL, but is trained on

1The code of our experiments can be viewed at https://anonymous.4open.science/r/LlamaGym-551D

1

https://anonymous.4open.science/r/LlamaGym-551D

052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

a large dataset of experience collected from some other sources (e.g., by expert demonstration). While the sample
efficiency problem is mitigated due to the large training dataset, these offline RL methods suffer from the distribution
shift problem, where the state distribution from the offline data differs significantly from the one induced by online
interactions Wang et al. (2021).

A popular approach to address the distribution shift problem is by aggregating both the offline and online data (Xie
et al., 2021; Song et al., 2022; Zhang & Zanette, 2023). This offline-to-online approach greatly reduces the sample
requirement of RL by reducing unnecessary exploration with the offline dataset while also mitigating the distribution
shift problem through online interactions. Under some assumptions, Song et al. (2022) provides a cumulative regret and
sample complexity guarantee for the offline-to-online setting. They show that, if the offline data distribution covers
some high-quality policies’ trajectories, their offline-to-online algorithm is both sample-efficient and competitive with
the high-quality policies covered by the offline data.

Even then, our goal is to further improve the sample efficiency, perhaps by leveraging extra information from the
problem description and world knowledge (e.g., avoid obstacles, find the key to open the door, etc.). Recently, LLM
has shown a remarkable ability for memorizing world knowledge and reasoning, even in hard sequential decision
problems such as robot manipulation (Ahn et al., 2022; Huang et al., 2022; Liang et al., 2023). Even though LLM
needs knowledge about the environments for prompt design, this requirement can still be satisfied for many real-world
applications, especially when the problem descriptions and documentations are available publicly on the internet. Thus,
we raise the question:

Can LLM produce a good coverage dataset to boost the data efficiency in RL via warm-starting?

In this paper, we answer this question positively. Under Assumption 1, where the policy suggested by the LLM
has sufficient coverage of an optimal policy, our algorithm, LLM Offline, RL Online (LORO), enjoys both small
Cumulative regret suboptimality and Sample complexity. We verify this coverage assumption in Figure 1 and Section
5.2. To the best of our knowledge, we are the first to suggest warm-starting RL with LLM’s collected data and connect
LLM with offline-to-online RL, drawing the similarity between the distribution shift problem in Offline RL versus
the useful-but-suboptimal policy extracted from LLM, and suggest that the offline-to-online RL approaches can be
applied here. We verified this suggestion by showing that our LORO algorithm achieves the best overall performance
in six environments in Table 1. We also demonstrate the flexibility of our LORO algorithm by showing a similar
performance boost when we use a different RL algorithm, such as AWAC Nair et al. (2020) (Section 5.5). Empirically,
we demonstrate the effectiveness of our algorithm in four out of six OpenAI Gym environments Towers et al. (2024),
improving the cumulative reward up to four times other baselines such as pure RL, pure LLM-based policies, and a
naive combination of the two.

2 RELATED WORK

Offline-to-online RL. Nair et al. (2020) showed that a naive combination of offline pre-training and online fine-tuning
does not usually help and often worsens the performance, a large part due to excess conservatism when utilizing the
offline data (Fujimoto et al., 2019; Kumar et al., 2019). In addition, in the simple Bandits setting, Sentenac et al. (2025)
suggests that the degree of conservativeness, or the amount of exploration, should be different conditioned on the
amount of offline versus online data. Different than many previous offline-to-online works, our paper does not focus on
efficient use of an offline dataset or addressing the distribution shift problem. We propose that, when there is no offline
data available, we can use an LLM to collect a small offline dataset, which can be useful for warm-start learning. We
also pointed out the sub-optimality problem with the LLM policy and suggested that prior approaches to address the
distribution shift problems listed above can be applied to our approach as well.

Coverage in offline-to-online RL. Under some assumptions, Song et al. (2022) provides the cumulative regret
suboptimality and sample complexity guarantees conditioned on the Transfer Coefficient that describes the coverage
of the offline dataset with an optimal policy. Foster et al. (2025)’s analysis also shows that the data efficiency of any
algorithm that run in polynomial time and returns an ε-optimal policy with high probability is lower bounded by a
coverage notion that is closely related to Song et al. (2022)’s definition.

Warm-starting RL. Schmitt et al. (2018) propose to kick-start Deep RL with a teacher policy by adding an extra
objective to encourage the learner to behave similarly to the teacher, with a diminishing weight to allow the student to

2

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

eventually surpass the teacher. One limitation is that Schmitt et al. (2018) assumes the teacher policy is high-performing
enough to be distilled, meaning its application is limited when learning a new task from scratch. In contrast, we
only require the initial policy to sufficiently cover the state-action pairs often visited by an optimal policy. This is a
much milder assumption and is reflected in our Experiment section, where a very weak initial LLM policy can still be
useful. We are also focusing more on leveraging the LLM in-context decision-making capability to zero-shot boost the
performance in RL tasks, which is critical in problems with high environment interaction cost or those with safety as a
main concern.

Theoretical analysis on LLMs’ exploration in MDPs. Recently, LLMs have shown very impressive capability
Brown et al. (2020). Many works investigate how LLMs perform in in-context decision making compared to traditional
methods, such as UCB, in MDP problems. For example, Arumugam & Griffiths (2025) introduces a more explicit
method for exploration using Posterior Sampling. Chen et al. (2024) uses LLMs to construct multiple policies
and combine with a model selection algorithm to solve Contextual Bandit. Lin et al. (2023) provides a theoretical
framework to analyze supervised learning for in-context reinforcement learning. (Nie et al., 2024; Krishnamurthy et al.,
2024) investigate how LLMs explore in the Bandit problem and show that the base LLM policies are non-trivial, but
sub-optimal. This assessment aligns with our experiment results.

Many other works focus on Embodied LLM and environment interactions and Using LLM to provide extra
information for RL, which we review in the extended related work Section A. Even with these successes, there are still
many challenges in deploying LLM to solve sequential decision problems in practice, such as the lack of a guarantee of
finding the optimal solution.

3 PRELIMINARIES

Consider a Markov Decision Process M = (S,A, R, P, d0), where S is the state space, A is the action space, the
reward function is R(s, a) ∈ ∆([0, 1]) and the transition dynamic P (s, a) ∈ ∆(S) at (s, a), and d0(S) ∈ ∆(S) is the
initial distribution. In this setting, the learner faces the MDP M with T episodes of horizon H . At each step h of
episode t, the learner chooses from its policy π an action ath ∼ π(sth) and receives the reward from the reward function:
rth = R(sth, a

t
h), and transitions to the next state sth+1 ∼ P (sth, a

t
h) . The optimal policy π∗ is defined as a policy that

has a maximum expected cumulative reward: π∗ = argmaxπ E
[∑T

t=1

∑H
h=1 r

t
h | π

]
.

We also have access to an initial policy πLLM, with a limited query budget of τ , the number of episodes we can query
the LLM, that satisfies the coverage Assumption 1. Our goal is to maximize the cumulative reward by making use of
πLLM to improve the sample efficiency.
Assumption 1. We define the coverage upper bound to characterize the coverage property (↓ is better):

Dπ = sup
h,s,a

dπh(s, a)

νh(s, a)
,

where dπh(·) is the state-action visitation distribution at step h by following policy π and νh(·) is the state-action
visitation distribution of the offline dataset. Then, following πLLM can produce trajectories with state-action pairs that
sufficiently covers an optimal policy of the MDP.

Assumption 1 states that an LLM can zero-shot suggest non-trivial base policies even when they are not optimal. We
see an analogous phenomenon with the distribution shift problem in offline RL that results in a suboptimal policy in the
online phase. Thus, we hypothesize that aggregating trajectories collected with LLM, which avoids trivial state-action
data (such as unnecessary repetitions, visiting absorbing states, etc), and refining the learned policy later with online
interaction, as the offline-to-online protocol, can be useful. This motivates our Assumption 1, which is known to allow
offline-to-online RL to learn a high-performing policy (Song et al., 2022).

We provide empirical evidence on the CliffWalking and FrozenLake environments in Section 5.2, showing that the
LLM collected data has much better state-action coverage, to justify Assumption 1.

4 THE LLM OFFLINE, RL ONLINE (LORO) ALGORITHM

Under Assumption 1, the policy πLLM collects high-quality data from the region that an optimal policy often visits.
By only focusing on this and not exploring the low-quality data regions that are avoided by all optimal policies (e.g.,

3

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Algorithm 1 LLM Offline, RL Online (LORO)

1: Input: # of episodes T , # of LLM data collection episode τ , episode length H , off-policy RL algorithm Alg(·)
2: Initialize: LLM "offline" dataset: D = {∅}
3: for t = 1, · · · , τ do ▷ LLM data collection
4: for h = 1, · · · , H do
5: Observe state sth, take action ath ← πLLM(sth), and receive reward rth
6: Aggregate data D ← (sth, a

t
h, r

t
h)

7: end for
8: end for
9: Pre-train the policy πprev ← Alg(D)

10: for t = τ + 1, · · · , T do ▷ Online learning
11: for h = 1, · · · , H do
12: Get policy πt

h ← Alg(D, πprev) ▷ Online updating the policy with the new data
13: Observe state sth, take action ath ← πt

h(s
t
h), receive reward rth

14: Aggregate data D ← D ∪ {(sth, ath, rth)}
15: Update πprev = πt

h
16: end for
17: end for

hitting the wall, absorbing states, etc.), we can significantly improve the sample efficiency. In light of this, our LORO
algorithm uses πLLM to collect a small amount of "offline" data to pretrain a policy π with it, and then use a classical
online learning algorithm to fine-tune π to be optimal with a much smaller number of observations.

We present the details of LORO in Figure 2 and Algorithm 1. Initially, we use the LLM policy πLLM to collect data for
the first τ episodes (line 3 - 8). Then, we pre-train a policy using an off-the-shelf off-policy RL algorithm on the data
collected by LLM (line 9). Finally, we online fine-tune the pre-trained policy (line 10 - 17).

𝑠, 𝑟	

a	

𝑠, 𝑟	

a	
LLM rollout(s)

𝝅
𝑠, 𝑟	

a	
Online rollout(s)

𝑠!, 𝑎!, 𝑠!", 𝑟! 	

Learning
𝝅

Buffer
𝑫𝝅𝑳𝑳𝑴

𝑠, 𝑟	

a	
LLM rollout(s)

Figure 2: The LLM Offline, RL Online (LORO) algorithm. Image inspired by Levine et al. (2020).

5 EXPERIMENTS

We empirically evaluate our algorithm on a host of RL environments: Cart Pole, Pendulum, Frozen Lake, Cliff Walking,
Represented Pong, and Mountain Car. We defer the environments’ descriptions and RL implementation details to
Appendix B, and the LLM setup to Appendix G.

Here, we compare our algorithm with the following baselines:

• Online RL: an off-the-shelf RL method that collects the data and refines its policy in an online manner. In
particular, we use Double-DQN van Hasselt et al. (2015) for discrete action environments and SAC Haarnoja
et al. (2019) for continuous action environments.

• LLMs as Policies (Qwen-7B-Instruct, Qwen-32B-Instruct): the base policies from the 7B and 32B of the
Qwen 2.5 series with Instruction tuning Yang et al. (2024). For each episode t and step h, the LLM has access
to the environment and observation descriptions sth, and the action ath is taken using Chain-of-Thought Wei
et al. (2022). The LLM setup details are in Appendix G. The prompt setup and examples are in Appendix H.

4

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Note that we only show the average episode reward collected in the first τ episodes, ravg = 1
Hτ

∑τ
t=1

∑H
h=1 r

t
h,

in the figures below.

• Random: a policy πrandom that take action ath uniformly at random. Similarly, we only show the average
episode reward collected in the first τ episodes.

In the experiments below, we choose τ = 10 and the number of pre-training steps is 1000. The task length T is 150 for
CartPole, FrozenLake, 200 for CliffWalking, Pendulum, RepresentedPong, and 300 for MountainCar. LORO is trained
using the data collected by Qwen-7B. To thoroughly evaluate the effectiveness of LORO and understand the underlying
factors influencing its performance, we organize our experiments into several parts: we begin by demonstrating the main
results (§5.1) across diverse RL environments, verify Assumption 1(§5.2), then conduct a series of ablation studies to
assess the impact of pre-training (§5.3), the quality of LLM-collected data (§5.4), and the LLM’s reasoning capabilities
(§5.6). We also verify LORO’s agnosticity to base RL learner choice in §5.5. In addition, we explore the effects of
LLM model size, and the number of pre-training steps, and varying the amount of LLM data τ , with results provided in
Appendix E.2, E.3, and E.4. The wall-clock time for running the experiments is provided in Appendix F.

5.1 SAMPLE EFFICIENCY

The main results of our algorithm are shown in Figure 3. In all learning curves, the first τ = 10 episodes in LORO
show the average episode reward using the pure LLM-based policies. Afterwards, LORO significantly outperforms the
LLM-based policies and the Online RL baselines in four environments. Notice that the base LLM policies are often not
optimal, but they can still generate high-quality trajectories to improve the sample efficiency of LORO, which justifies
Assumption 1.

We also highlight that the drop in LORO’s performance at episode 10 in the RepresentedPong environment is due to an
improper choice of τ (the number of episodes running with an LLM policy). Similarly, at episode 10, we can see a step
in LORO’s performance in the other environments. Ideally, we want to keep using LLM until the RL policy achieves at
least a similar performance to the LLM policy.

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

CliffWalking

LORO
Online RL
Qwen-7B
Qwen-32B
Random

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

0

Ep
iso

de
 re

wa
rd

Pendulum

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

CartPole

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

FrozenLake

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

MountainCar

0 25 50 75 100 125 150 175 200
of episodes

12

10

8

6

4

Ep
iso

de
 re

wa
rd

RepresentedPong

Figure 3: Our algorithm, LORO, outperforms the LLM policies (Qwen 7B, Qwen 32B) and the Online RL baselines in
four environments and competitive in the other two. LORO learns the optimal policy in the first four environments,
while the Online RL only does so for three. Even when not converged to the optimal solution, LORO outperforms other
baselines in the last two more difficult environments. LLM’s base policies can perform very well in the RepresentedPong
experiment, maybe because of the extra information that we provide for this setting, described in Appendix B. All
results are shown with one standard error over five random seeds. In the CliffWalking experiment, some baselines
are not shown in the figure since their episode rewards are too small (-509 for Qwen-7B and -7729 for Qwen-32B).
Similarly, Qwen-7b and random overlap at -200 on the MountainCar experiment.

5

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

Task LORO Online RL Qwen-7B Qwen-32B Random
CliffWalking 1 2 3 5 4

Pendulum 2 1 5 4 3
CartPole 1 2 4 3 5

FrozenLake 2 1 4 3 5
MountainCar 1 3 4 2 4

RepresentedPong 4 5 3 1 2
Avg. Rank 1.83 2.33 3.83 3.00 3.83

Table 1: Final cumulative rewards ranking (↓ is better). Best per task in bold. The full results is in Table 4.

"Offline" dataset
(30 episodes)

missing good
state-action ↓

Surrogate transfer coef
upperbound C̃π′ (Eq. (1)) ↓

Qwen 7B 0.00± 0.00 69.10± 0.00
Qwen 32B 0.00± 0.00 1279.17± 2524.68

Online collected 0.00± 0.00 25.65± 34.73
Random collected 0.80± 0.45 ∞

Table 2: The Surrogate Transfer Coef upperbound, in Eq. (1), approximates the Transfer Coefficient upperbound from
Song et al. (2022), which measures the coverage between the CliffWalking’s offline dataset and an optimal policy (↓ is
better). Data collected by LLM has a very low missing state-action. Even though the Online and Random collected data
can seemingly have good coverage sometimes, as demonstrated in Figure 1 and 4, this was due to the fact that the final
policy is not optimal. The full table for both CliffWalking and FrozenLake environments is shown in Table 3.

5.2 JUSTIFYING THE COVERAGE ASSUMPTION 1

In this section, we verify Assumption 1 on whether LLM’s collected data covers more state-action spans by an optimal
policy compared to data collected by a vanilla Online RL or Uniform Random policy. Song et al. (2022) provides
an upper bound of the Transfer Coefficient of a policy: Cπ ≤ Dπ. Here, since there can be more than one optimal
policy, we assume one can be found after the online learning process and evaluate π, the policy after online training,
as an approximation of the optimal policy. Because the offline dataset is too small in our setting, replacing the terms
in the density ratio with sample-based estimates of dπh(s, a) and νh(s, a) would make the ratio infinite. Hence, we
define dπ(s, a) as the state-action visitation distribution by following policy π (not limited to a specific step h as the
original formulation). Similarly, ν(·) is the state-action visitation distribution of the offline dataset. Thus, we define the
surrogate transfer coefficient upper bound:

C̃π := sup
s,a

d̃π(s, a)

ν̃(s, a)
, (1)

where dπh(·) and νh(·) are the state-action visitation distributions of policy π and of the offline dataset. We estimate C̃π

using data; specifically, we replace dπ
′
(s, a) and ν(s, a) with their sample-based counterparts.

In Table 2, "# missing state-action" is the number of state-action pairs that appear in the final policy, which approximate
an optimal policy, but do not appear in the "offline" dataset. It is a good indicator of the finiteness of the surrogate
transfer coefficient upper bound C̃π′ in Eq. (1). Since the data collected by LLM have very small values, this justifies
our assumption. We further demonstrate the policy’s state-action visitation traces in Figures 1 and 4, where the data
collected by an LLM overlaps with the optimal policy much more than the other baselines, to show that the transfer
coefficient maps correctly to the optimal policy coverage, unlike Online and Random data collection.

In Figure 1 and 4, the "offline" dataset (red) is collected from the first ten episodes. Similarly, the final policy’s
trajectories, after finishing learning, are collected for ten episodes and shown in the figures. The details of this section,
including the results for both the FrozenLake and CliffWalking environments, are provided in Section C.

When Assumption 1 is violated, our experiments show that warm-starting with LLM-collected data remains robust,
typically outperforming alternative baselines across diverse environments. By contrast, even when the assumption fails
for the Online RL and Random data regimes, sufficient exploration during the subsequent online phase can sometimes
compensate, yielding competitive performance in some settings—albeit usually with higher sample complexity.

6

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

0 1 2 3
0

1

2

3

Qwen 7B vs LORO

Qwen 7B Start Qwen 7B End LORO Start LORO End

0 1 2 3
0

1

2

3

Qwen 32B vs LORO

Qwen 32B Start Qwen 32B End LORO Start LORO End

0 1 2 3
0

1

2

3

Online RL vs Final Policy

Online RL Start Online RL End Final Policy Start Final Policy End

0 1 2 3
0

1

2

3

Random Policy vs Final Policy

Random policy Start Random policy End Final Policy Start Final Policy End

Figure 4: Traces in the FrozenLake environment. Similar to the CliffWalking environment in Figure 8, the LLM
collected data covers much better the state spaces compared to Online and Random collected data.

5.3 EFFECT OF PRE-TRAINING

In this section, we aim to verify the importance of pre-training (Algorithm 1 line 9) is for LORO’s performance through
an ablation study, since Song et al. (2022)’s algorithm only mixes the offline and online data without pre-training to
avoid being too conservative toward the pre-training data, which may hurt the performance.

In Figure 5, we show that mixing offline and online data alone (which is equivalent to Song et al. (2022)) is insufficient.
Our conjecture is that the LORO’s pretraining step trains a good policy using only the high-quality data without the data
from regions less visited by the optimal policy. As shown in Figure 3, pre-training significantly boosts the performance
of LORO compared to just mixing the LLM’s collected data with the online RL collected data after τ episodes.

Even though pre-training can be useful initially, to behave optimally, the agent still needs to explore other state-action
pairs in case the initial data comes from a sub-optimal policy, as shown in the CartPole environment in Figure 3.

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

CliffWalking

LORO
Mix data w/o pretrain

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

0

Ep
iso

de
 re

wa
rd

Pendulum

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

CartPole

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

FrozenLake

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

MountainCar

0 25 50 75 100 125 150 175 200
of episodes

12

10

8

6

4

Ep
iso

de
 re

wa
rd

RepresentedPong

Figure 5: Comparing pre-training (then removing the collected data) versus mixing the LLM’s collected data with
online RL data without pre-training. It’s clear that pre-training is necessary for LORO to achieve superior performance
compared to naively mixing the data.

At first sight, there seems to be a contradiction between our findings and Song et al. (2022). They assume access to a
large offline dataset and, along with Nair et al. (2020), want to keep the policy less conservative toward the offline data
by treating the online versus offline data equally. In contrast, we don’t have access to offline data. We instead use LLM
to collect a small number of high-quality data, thus, unlike Song et al. (2022), LORO has a higher updates-to-data ratio
for these observations. Our experiment shows that being conservative by “overfitting” to the LLM dataset can help
learning more efficiently.

7

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0
Ep

iso
de

 re
wa

rd
CliffWalking

LORO
Pretrain w/ Online RL data
Pretrain w/ random policy data

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

0

Ep
iso

de
 re

wa
rd

Pendulum

0 20 40 60 80 100 120 140
of episodes

0

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

CartPole

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

FrozenLake

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

MountainCar
LORO
Pretrain w/ Online RL data
Pretrain w/ random policy data

0 25 50 75 100 125 150 175 200
of episodes

12

10

8

6

4

Ep
iso

de
 re

wa
rd

RepresentedPong

Figure 6: Comparing pre-training with LLM’s data versus random and online RL data. The main finding here is that
pre-training is only useful with LLMs’ data.

In addition, we may question whether pretraining accumulates primacy bias Nikishin et al. (2022) since we are
"overfitting" in earlier observations and hurt the performance. Since pretraining is helpful in our experiment in Figure 5,
even in difficult environments such as MountainCar and RepresentedPong, the effect of primacy bias is insignificant
in our experiments. Furthermore, when applying the same pretraining steps for different collected datasets, possibly
exposing them all to primacy bias, LORO still outperforms all other baselines as shown in Figure 6. This suggests that
the quality of the collected dataset is the primary reason for LORO’s performance.

Combining LORO with the resetting trick in Nikishin et al. (2022) to address the primacy bias is a simple task. Similarly,
we can easily combine the high-quality data of LORO to many algorithms to make good use of the LLM-collected
offline dataset, as shown in the Related Work section. Since this is out of scope for this paper, we evaluate the simplest
approach of directly pretraining with the pseudo-offline dataset to highlight the effectiveness of the LLM policy for
warm-start learning. Further evaluating the usefulness of LLM-collected data in different offline-to-online algorithms is
an interesting open question that we left for future work.

5.4 EFFECT OF LLM’S DATA

In the previous section, Figure 5 shows the importance of pre-training using data collected by LLM. In this section, we
perform an ablation study that demonstrates that the quality of such data is crucial. In Figure 6, we show that using
LLM’s collected data is significantly better than using data collected with an Online RL algorithm from scratch or a
policy that takes actions uniformly at random. Thus, we conclude that pre-training is only beneficial when coupled with
high-quality data, which supports our conjecture above.

0 25 50 75 100 125 150 175 200
of episodes

1800

1600

1400

1200

1000

800

600

Ep
is

od
e

re
w

ar
d

Pendulum

LORO
Online RL
Qwen-7B
Qwen-32B
Random

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

Ep
is

od
e

re
w

ar
d

Pendulum

LORO
Mix data w/o pretrain

0 25 50 75 100 125 150 175 200
of episodes

1750

1500

1250

1000

750

500

250

0

Ep
is

od
e

re
w

ar
d

Pendulum

LORO
Pretrain w/ Online RL data
Pretrain w/ random policy data

Figure 7: Comparing the effect of LLM collected data versus Online or Random collected data using AWAC Nair et al.
(2020) as the base algorithm. The first figure shows the general sample efficiency comparison, the second compares
with the mix data baseline, and the third compares with different pre-training datasets. LORO uses Qwen-32B for the
offline phase in this experiment.

8

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

5.5 VERIFYING LORO’S AGNOSTICITY TO BASE RL LEARNER CHOICES

In this section, we aim to verify whether the performance boost from using LLM is truly algorithm-agnostic. Here,
we show the results from using AWAC Nair et al. (2020) as the main algorithm and comparing its performance when
using LLM collected data versus Online or Random collected data. The results are shown in Figure 7. We can see that
LORO still outperforms most baselines, with the exception of the Pretrain with Online or Random baselines. Further
experiment results using AWAC are shown in Section E.1. Understanding why pretraining is useful when combined
with a small amount of high-quality data collected by an LLM is an interesting question left for future research.

5.6 EFFECTS OF THE LLM’S CAPABILITY

Given that the performance of many reasoning tasks increases with the improvement of the LLM’s capability through:
increasing the model’s size, using Supervised Fine-Tuning (SFT) Ouyang et al. (2022), Long Chain-of-Thought (CoT)
Chen et al. (2025), or some Test-time-scaling methods such as Majority Voting Wang et al. (2022), and Best-of-N
Cobbe et al. (2021). In this section, we want to investigate whether this increase in LLM’s reasoning capability also
translates to decision making in MDP problems.

From our experiments in Appendix E.2, we see no clear link between an LLM’s model size and its performance. On the
other hand, we notice that the LLM’s base policies are only useful using CoT instead of just asking the LLM to make
decisions. We also observe that the 0.5B model is not useful, as well as using Majority Voting or Best-of-N without CoT.
Hence, in Appendix E.5, we investigate if increasing the LLM’s capability using SFT or using an LLM with Long CoT
can help. We show that there is no significant difference in using standard CoT compared to using SFT or Long CoT.
Understandably, SFT wouldn’t be useful, or may even be counter-productive, since the amount of data collected for
fine-tuning is too small to make a difference (around 500-3000 prompt-response pairs in our experiments). Hence, we
conclude that improvements over LLM’s capability do not directly translate to improvement in warm-starting RL tasks.

5.7 OTHER FINDINGS

Interestingly, we find that a small model size (7B) is more sensitive in a few environments , such as MountainCar (with
3000 pre-training steps in Figure 15) and FrozenLake (with bad history summarization in Figure 32). We also find that
the amount of pre-training data in general does not affect the learned policy’s cumulative return, which is shown in
Appendix E.4.

Besides what we reported above, we find no clear relationship between the task’s performance and the number of
pre-training steps or the model size. These are shown in Appendix E.3, E.2. We also found no clear difference between
environments with Discrete Action versus Continuous Action (e.g., Pendulum), despite the intuition that the Discrete
Action environments should be easier for the LLM Singh et al. (2025).

6 CONCLUSION AND FUTURE WORK

In this paper, we investigate how to leverage an LLM to warm-start traditional RL methods. Empirically, we have
shown that the high-quality data collected by the LLM can significantly increase the sample efficiency of online RL.
Our definition of data quality follows from previous work Song et al. (2022). Our algorithm further utilizes pretraining
to take full advantage of LLM-collected data.

Our work provides a framework for significantly reducing the sample complexity in RL problems. This is especially
important for practical applications where the data collection cost or safety is a major concern. A limitation of our work
is that Assumption 1 may not hold for some RL tasks, but we believe that the increasing capability of LLM would
increase the range of problems where Assumption 1 is applicable. In the future, we would like to extend this work to
more sophisticated RL problems, with a large State and Action space. We would also like to investigate how to scale
the sample efficiency with the LLM’s capability and how to choose the LLM query budget τ in a principled manner.

9

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

REFERENCES

Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella Frank, Ellie Pavlick, and Anders Søgaard. Can language
models encode perceptual structure without grounding? a case study in color. arXiv preprint arXiv:2109.06129,
2021.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan
Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon Hjelm. Unsupervised
state representation learning in atari. arXiv preprint arXiv:1906.08226, 2019.

Dilip Arumugam and Thomas L. Griffiths. Toward efficient exploration by large language model agents, 2025. URL
https://arxiv.org/abs/2504.20997.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning with offline data,
2023. URL https://arxiv.org/abs/2302.02948.

Dimitri P Bertsekas. Neuro-dynamic programming: An overview and recent results. In Operations Research
Proceedings 2006: Selected Papers of the Annual International Conference of the German Operations Research
Society (GOR), Jointly Organized with the Austrian Society of Operations Research (ÖGOR) and the Swiss Society
of Operations Research (SVOR) Karlsruhe, September 6–8, 2006, pp. 71–72. Springer, 2007.

Siddhant Bhambri, Amrita Bhattacharjee, Durgesh Kalwar, Lin Guan, Huan Liu, and Subbarao Kambhampati. Extracting
heuristics from large language models for reward shaping in reinforcement learning. arXiv preprint arXiv:2405.15194,
2024.

Vineet Bhat, Ali Umut Kaypak, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Grounding llms for
robot task planning using closed-loop state feedback. arXiv preprint arXiv:2402.08546, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer. Grounding
large language models in interactive environments with online reinforcement learning. In International Conference
on Machine Learning, pp. 3676–3713. PMLR, 2023.

Dingyang Chen, Qi Zhang, and Yinglun Zhu. Efficient sequential decision making with large language models. arXiv
preprint arXiv:2406.12125, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao,
and Wanxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large language models.
arXiv preprint arXiv:2503.09567, 2025.

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Stefano Ermon. Lmpriors: Pre-trained language models as task-
specific priors. arXiv preprint arXiv:2210.12530, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-learn: Language model guided
rl for solving long horizon robotics tasks. arXiv preprint arXiv:2405.01534, 2024.

10

https://arxiv.org/abs/2504.20997
https://arxiv.org/abs/2302.02948

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek Gupta, and Jacob
Andreas. Guiding pretraining in reinforcement learning with large language models. In International Conference on
Machine Learning, pp. 8657–8677. PMLR, 2023.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. Journal of Machine
Learning Research, 6, 2005.

Dylan J Foster, Zakaria Mhammedi, and Dhruv Rohatgi. Is a good foundation necessary for efficient reinforcement
learning? the computational role of the base model in exploration. arXiv preprint arXiv:2503.07453, 2025.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In
International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In
International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry
Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms and applications, 2019. URL
https://arxiv.org/abs/1812.05905.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot planning with
llm-based formalized programming. arXiv preprint arXiv:2410.12112, 2024.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan. 3d-llm: Injecting
the 3d world into large language models. Advances in Neural Information Processing Systems, 36:20482–20494,
2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021. URL https://arxiv.org/abs/2106.09685.

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot navigation. In 2023
IEEE International Conference on Robotics and Automation (ICRA), pp. 10608–10615. IEEE, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor
Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through planning with language models.
arXiv preprint arXiv:2207.05608, 2022.

Hyeongyo Jeong, Haechan Lee, Changwon Kim, and Sungtae Shin. A survey of robot intelligence with large
language models. Applied Sciences, 14(19), 2024. ISSN 2076-3417. doi: 10.3390/app14198868. URL https:
//www.mdpi.com/2076-3417/14/19/8868.

Jarvis K. Bench llm deciders with gym translators. GitHub, 2024. URL https://github.com/mail-ecnu/
Text-Gym-Agents.

Yash Kant, Arun Ramachandran, Sriram Yenamandra, Igor Gilitschenski, Dhruv Batra, Andrew Szot, and Harsh
Agrawal. Housekeep: Tidying virtual households using commonsense reasoning. In European Conference on
Computer Vision, pp. 355–373. Springer, 2022.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The International Journal
of Robotics Research, 32(11):1238–1274, 2013.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can large language
models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. Advances in neural information processing systems, 32, 2019.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learning:
State-of-the-art, pp. 45–73. Springer, 2012.

11

https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/2106.09685
https://www.mdpi.com/2076-3417/14/19/8868
https://www.mdpi.com/2076-3417/14/19/8868
https://github.com/mail-ecnu/Text-Gym-Agents
https://github.com/mail-ecnu/Text-Gym-Agents

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma Brunskill. Supervised
pretraining can learn in-context reinforcement learning. Advances in Neural Information Processing Systems, 36:
43057–43083, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. Code as
policies: Language model programs for embodied control. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforcement learning via
supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-grounded image-to-
video generation. In European Conference on Computer Vision, pp. 360–378. Springer, 2024.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstette, Shimon
Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by natural language. arXiv preprint
arXiv:1906.03926, 2019.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv preprint
arXiv:2310.12931, 2023.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve: Evaluating and
optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy bias in deep
reinforcement learning. In International conference on machine learning, pp. 16828–16847. PMLR, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730–27744, 2022.

Rohan Pandey. Llamagym: Fine-tune llm agents with online reinforcement learning. GitHub, 2024. URL https:
//github.com/KhoomeiK/LlamaGym.

Roma Patel and Ellie Pavlick. Mapping language models to grounded conceptual spaces. In International conference
on learning representations, 2022.

Arunselvan Ramaswamy and Eyke Hüllermeier. Deep q-learning: Theoretical insights from an asymptotic analysis,
2021. URL https://arxiv.org/abs/2008.10870.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement learning method.
In Machine learning: ECML 2005: 16th European conference on machine learning, Porto, Portugal, October 3-7,
2005. proceedings 16, pp. 317–328. Springer, 2005.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M Czarnecki, Joel Z
Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting deep reinforcement learning. arXiv
preprint arXiv:1803.03835, 2018.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of Machine Learning
Research, 23(315):1–20, 2022. URL http://jmlr.org/papers/v23/22-0017.html.

Flore Sentenac, Ilbin Lee, and Csaba Szepesvari. Balancing optimism and pessimism in offline-to-online learning.
arXiv preprint arXiv:2502.08259, 2025.

12

https://github.com/KhoomeiK/LlamaGym
https://github.com/KhoomeiK/LlamaGym
https://arxiv.org/abs/2008.10870
http://jmlr.org/papers/v23/22-0017.html

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. nature, 550
(7676):354–359, 2017.

Shrutika Singh, Anton Alyakin, Daniel Alexander Alber, Jaden Stryker, Ai Phuong S Tong, Karl Sangwon, Nicolas
Goff, Mathew de la Paz, Miguel Hernandez-Rovira, Ki Yun Park, Eric Claude Leuthardt, and Eric Karl Oermann.
It is too many options: Pitfalls of multiple-choice questions in generative ai and medical education, 2025. URL
https://arxiv.org/abs/2503.13508.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid rl: Using
both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718, 2022.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge comes from
practice: Aligning llms with embodied environments via reinforcement learning. arXiv preprint arXiv:2401.14151,
2024.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulão,
Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for reinforcement learning
environments. arXiv preprint arXiv:2407.17032, 2024.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning, 2015. URL
https://arxiv.org/abs/1509.06461.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham Kakade. Instabilities of offline rl with pre-trained neural
representation. In International Conference on Machine Learning, pp. 10948–10960. PMLR, 2021.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171,
2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging sample-efficient offline
and online reinforcement learning. Advances in neural information processing systems, 34:27395–27407, 2021.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao
Yu. Text2reward: Automated dense reward function generation for reinforcement learning. arXiv preprint
arXiv:2309.11489, 2023.

Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and Jun Wang. Efficient
reinforcement learning with large language model priors. arXiv preprint arXiv:2410.07927, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pp. 5739–5743, 2018.

Ruiqi Zhang and Andrea Zanette. Policy finetuning in reinforcement learning via design of experiments using offline
data. Advances in Neural Information Processing Systems, 36:59953–59995, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 27042–27059. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/zheng22c.html.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent tree search
unifies reasoning acting and planning in language models. arXiv preprint arXiv:2310.04406, 2023.

13

https://arxiv.org/abs/2503.13508
https://arxiv.org/abs/1509.06461
https://proceedings.mlr.press/v162/zheng22c.html

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

A EXTENED RELATED WORK

Offline-to-online RL: Many more sophisticated approaches have been studied empirically. However, none of these
works studied the utility of LLMs in warm-starting online RL. Ball et al. (2023), in particular, proposes that distribution
shift exacerbate the problem of bootstrap error propagation in off-policy methods, especially with a function approx-
imation like a Neural Network. Hence, they suggest multiple practical tricks such as: balance sampling the offline
and online data, using LayerNorm Ba et al. (2016) and Clipped Double Q-Learning Fujimoto et al. (2018) to reduce
instability while avoid excess conservatism.

Embodied LLM and environment interactions: Recently, LLM has showed very impressive capability Brown et al.
(2020), including understanding about physics Patel & Pavlick (2022) Liu et al. (2024), color Abdou et al. (2021), and
affordances between bodies and object Ahn et al. (2022). This implicit knowledge could be the reason why LLM can be
used to directly manipulate robots Ahn et al. (2022), Huang et al. (2022), Liang et al. (2023). However, Carta et al.
(2023) claims that LLMs lack grounding due to 1) the training objective of next word prediction not aligned with other
goals, and 2) no interactions with the environment.

Many works seemingly agree with Carta et al. (2023) and incorporate environment interactions, thus showing significant
improvement. A popular approach is letting the LLM interact directly with the environment and collect the feedback
for the subsequent prompt Carta et al. (2023), Yao et al. (2022), Zhou et al. (2023), Luketina et al. (2019). Another
direction is a two level system, where the LLM take high level, abstract actions (such as creating sub-goals Bhat et al.
(2024) Dalal et al. (2024) or choosing the skills to use Liang et al. (2023), Ahn et al. (2022)), and the low level classical
system implementing the LLM’s “plan” in practice. A related work from Hao et al. (2024) uses LLM to extract and
formulate the problem’s objectives, constraints, and may include sub-goals creation, for the low-level optimization
solver.

Using LLM to provide extra information for RL: Carta et al. (2023) and Tan et al. (2024) use LLM directly to
generate the policy and fine-tune it with RL (using Policy Gradient with PPO or an Actor-Critic framework). Lee et al.
(2023) and Lin et al. (2023) propose pretraining an LLM with an offline dataset and show that it can both explore
online and act conservatively offline. Unlike them, instead of an end-to-end approach that mixes the RL objective (of
maximizing the cumulative reward) with the LLM objective (for next token prediction), we have a separate, smaller RL
learner trained exclusively on the classical RL objective that enjoys the typical asymptotic optimality Since one of our
motivations is computational efficiency, hence, training a large neural network that requires a lot of data would defeat
the point of using LLM to help reduce the sample complexity. Yan et al. (2024) uses LLM to provide the action prior,
then train a policy to do posterior sampling using it. Zheng et al. (2022) pre-trains a transformer-based neural network
on the offline dataset and develops a way to efficiently fine-tune it with online interaction. This differs from our proposal
since we don’t have an offline dataset, but the data collected by the LLM’s policy can be regarded as a small offline
dataset. Furthermore, our work is algorithm agnostic. We propose that the data collected by LLM is of high-quality and
can later be used to train a policy using other algorithms. Another closely related work is Du et al. (2023), where the
LLM guides the algorithm’s exploration by generating (sub) goals and rewards the RL algorithm when achieving these
goals. Similarly, Bhambri et al. (2024) uses heuristics from LLM to combine with RL in the Potential Based Reward
Shaping framework. While these works and ours leverage LLM to reduce unnecessary exploration for RL, they focus
more on sub-goal generation and providing intrinsic reward in sparse feedback problems, while we are focusing on
dense reward settings where RL online interactions can refine the warm-started but sub-optimal policy given by the
LLM. Finally, Choi et al. (2022) and Kant et al. (2022) use LLM to provide a prior for the policy to help the learner
explore more efficiently, which is similar to our motivation on a high level.

Other ways LLM can help solving MDPs: Besides low-level control and high-level planning, Jeong et al. (2024) also
investigates how LLM can help robot intelligence systems by reward design (to combine with RL) Ma et al. (2023), Xie
et al. (2023), and scene understanding Huang et al. (2023), Hong et al. (2023). Even with these successes, there are still
many challenges in deploying LLM to solve sequential decision problems in practice, such as the lack of a guarantee of
finding the optimal solution.

B THE ENVIRONMENTS AND IMPLEMENTATION DETAILS

B.1 THE ENVIRONMENTS

We empirically verify our algorithm on some classic RL environments:

14

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

• Cart Pole: The agent aims to balance a pole on top of a cart by moving left and right. It observes the Cart
Position, Cart Velocity, Pole Angle, and Pole Angular Velocity. The reward is one for every step taken before
the episode ends, either by having the pole fall over, moving the cart to the edge of the display, or reaching the
maximum episode length.

• Pendulum: The agent aims to swing up an inverted pendulum by applying torque on its free end. It observes
the (x, y) location of the pendulum’s free end and its angular velocity. From the location, we calculate the
pendulum’s angle and the rotating direction to help the LLM, but do not use them in the online phase. The
reward is calculated based on the pendulum angle, where the upright location has the highest reward. The
episode ends when it reaches the maximum episode length. Note that the action set here is continuous, which
can be more challenging for the LLM’s policy.

• Frozen Lake: The agent aims to move from the top-left to the bottom-right location in a four-by-four grid
world. The agent can move up, down, left, and right. It only observes its own location. The reward is zero
everywhere except at the goal, where the reward is one. The episode ends either when the agent moves to one
of the four "holes" in the grid, reaches the goal, or reaches maximum episode length. We further implement an
external environment history to store the rewards received at each visited location, which is necessary for the
LLM to solve this task. The environment’s history is not used in the online learning phase.

• Cliff Walking: The agent aims to move from the bottom-left to the bottom-right location in a four-by-twelve
grid world. The agent can move up, down, left, and right. It only observes its own location. The reward is
negative one everywhere except negative one hundred at the cliff locations on the bottom of the grid. The
episode ends either when the agent reaches the goal or reaches maximum episode length. We also use the
environment history for this environment.

• Represented Pong: This is the Atari game Pong, but instead of the traditional image observation, we use
Anand et al. (2019) to extract the game state information from the RAM state. The agent then observes its
own coordination, the ball’s, the opponent’s, and the score. We also calculate the ball velocity and add it to
the observation, since it seems necessary to ensure Markov’s property (able to take optimal action with only
the current state information). The agent controls the right paddle up and down and competes against the left
paddle controlled by the computer by trying to deflect the ball away from your goal and into the opponent’s
goal. The agent receives a point whenever it scores a goal and loses when the opponent does. The game ends
when a player’s score reaches twenty-one or the agent reaches the maximum episode length.

• Mountain Car: The agent’s goal is to move from the bottom of a sinusoidal valley to the top of the right hill
as quickly as possible. The agent can strategically accelerate left or right. It only observes its location and
velocity. The reward is negative one everywhere except the goal. The episode ends either when the agent
reaches the goal or reaches maximum episode length.

B.2 IMPLEMENTATION DETAILS

We build our code from Pandey (2024), which provides a framework for LLM interacting with OpenAI’s gym games
with a built-in text description wrapper to turn RL games into something LLM can play. The game descriptions, which
are listed in Appendix H, are heavily referenced from K (2024). The RL training process is using d3rlpy Seno & Imai
(2022), with the default hyperparameter choice, with batch-size 256, buffer size 100,000, ε : 0.1, γ : 0.99, target update
interval 1,000, and learning rate 5e− 5. We use DDQN van Hasselt et al. (2015) for all tasks with Discrete Action and
SAC Haarnoja et al. (2019) for Continuous Action. The LLM was run on two H100 GPUs.

For the LORO algorithm, we collected data to pre-train a policy and then only used online data in the online learning
process. Even though we recommend following the Algorithm 1 and aggregate both the pretrain and online collected
data, in our experiment, we remove the data collected in the "offline" phase after pretraining to have a clear ablation
study on whether the improvement of LORO is coming from the mixing the offline versus online or does pretraining is
also important, as shown in Figure 5 and Figure 6.

C JUSTIFYING THE COVERAGE ASSUMPTION 1

Below, we show the full Surrogate Transfer Coefficient Table in Table 3. We also show the full traces of different
algorithms and baselines in the CliffWalking environment in Figure 8.

15

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

Environment "Offline" dataset
(30 episodes)

missing good
state-action ↓

Surrogate Transfer Coef
upperbound C̃π′ (Eq. (1)) ↓

CliffWalking

Qwen 7B 0.00± 0.00 69.10± 0.00
Qwen 32B 0.00± 0.00 1279.17± 2524.68

Online collected 0.00± 0.00 25.65± 34.73
Random collected 0.80± 0.45 ∞

FrozenLake

Qwen 7B 7.60± 0.55 ∞
Qwen 32B 8.60± 1.14 ∞

Online collected 6.20± 5.89 ∞
Random collected 10.80± 8.47 ∞

Table 3: The Surrogate Transfer Coef upperbound, in Eq. (1), approximates the Transfer Coefficient upperbound from
Song et al. (2022), which measure the coverage between the offline dataset and an optimal policy (lower is better). "#
missing state-action" is the number of state-action appears in the final policy, which approximate an optimal policy, but
not appears in the "offline" dataset. Data collected by LLM has very low missing state-action. Even though the Online
and Random collected data can seemingly have good coverage sometime, as demonstrated in Figure 8 and 4, this was
due to the final policy is not optimal.

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

Qwen 7B vs LORO

Qwen 7B Start Qwen 7B End LORO Start LORO End

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

Qwen 32B vs LORO

Qwen 32B Start Qwen 32B End LORO Start LORO End

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

Online RL vs Final Policy

Online RL Start Online RL End Final Policy Start Final Policy End

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

Random Policy vs Final Policy

Random policy Start Random policy End Final Policy Start Final Policy End

Figure 8: Traces in the CliffWalking environment. The red traces are trajectories collected in the first 10 episodes. The
green traces, represent the traces of the optimal policy, collected by the evaluating the final policy after fine-tuning for
190 episodes. It’s clear that the "offline" dataset (red) collected from a LLM covers the optimal policy much more than
the ones collected from a vanilla Online RL or Uniformly Random policy.

16

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

Task LORO Online RL Qwen-7B Qwen-32B Random Mix Pretrain
Online RL Random

CliffWalking -9213 -37151 -101933 -1545806 -404919 -17449 -49504 -55840
Pendulum -71703 -58707 -321416 -278678 -239960 -91592 -100974 -82163
CartPole 26035 24640 4299 7675 3104 26599 1396 1398

FrozenLake 99 100 4 14 0 93 10 14
MountainCar -51611 -57616 -60000 -52859 -60000 -57238 -59988 -59984

RepresentedPong -1784 -2088 -1000 -740 -920 -1772 -2191 -2199
Avg. Rank 1.7 1.7 5.8 4.3 6.3 2.7 6.3 5.7

Table 4: Final cumulative rewards (↑ is better). Best per task in bold.

D CUMULATIVE REWARDS TABLE

In this section, we show the cumulative rewards of all algorithms and baselines in the main paper in Table 4.

E ABLATION STUDY

E.1 ALGORITHM AGNOSTIC VERIFICATION

In this section, we show further effects of model size and the amount of the offline data to the final performance of
LORO using AWAC Nair et al. (2020) in Figure 9 and Figure 10. Compared to the SAC performance in the Experiment
section, AWAC gives worse performance overall and more sensitive to the LLM model size, since the Qwen-7B data
performs much worse than Qwen-32B. Still, LORO using AWAC still outperforms the baselines.

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 7B

LORO 10 pretrain eps. Cum. reward=-229988
LORO 20 pretrain eps. Cum. reward=-229979
LORO 30 pretrain eps. Cum. reward=-252372
Online RL. Cum. reward=-242287

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 7B

0 25 50 75 100 125 150 175 200
of episodes

1400

1200

1000

800

600

400

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 32B

0 25 50 75 100 125 150 175 200
of episodes

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 32B

Figure 9: Comparing the effect of different LLMs’ model sizes for the Pendulum environment with LORO using AWAC
Nair et al. (2020).

17

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 1000 steps

LORO 7B. Cum. reward=-229988
LORO 32B. Cum. reward=-151557
Online RL. Cum. reward=-242287

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 3000 steps

Figure 10: Comparing the effect of different LLMs’ model sizes for the Pendulum environment with LORO using
AWAC Nair et al. (2020).

E.2 EFFECTS OF LLM’S MODEL SIZE

In this section, we evaluate the effect of the LLM’s model size on the cumulative reward of the policy. We evaluate this
with different pre-training data and pre-training steps on six OpenAI Gym environments and show the result in Figure
11, 12, 13, 14, 15, 16. Overall, we observe no clear advantage of using a larger model to improve the decision-making
quality of the LORO policy.

18

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 1000 steps

LORO 7B. Cum. reward=-9213
LORO 32B. Cum. reward=-83767
Online RL. Cum. reward=-37151

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 3000 steps

Figure 11: Comparing the effect of different LLMs’ model sizes for the CliffWalking environment.

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 1000 steps

LORO 7B. Cum. reward=99
LORO 32B. Cum. reward=94
Online RL. Cum. reward=100

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 1000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 1000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 3000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 3000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 3000 steps

Figure 12: Comparing the effect of different LLMs’ model sizes for the FrozenLake environment.

19

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

225

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 1000 steps

LORO 7B. Cum. reward=26032
LORO 32B. Cum. reward=26035
Online RL. Cum. reward=24640

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

225

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 1000 steps

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 1000 steps

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 3000 steps

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200
Ep

iso
de

 re
wa

rd

Smoothed pretrain 20 eps, 3000 steps

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 3000 steps

Figure 13: Comparing the effect of different LLMs’ model sizes for the CartPole environment.

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 1000 steps

LORO 7B. Cum. reward=-71703
LORO 32B. Cum. reward=-69493
Online RL. Cum. reward=-58707

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 3000 steps

Figure 14: Comparing the effect of different LLMs’ model sizes for the Pendulum environment.

20

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 1000 steps
LORO 7B. Cum. reward=-51611
LORO 32B. Cum. reward=-46792
Online RL. Cum. reward=-57616

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 1000 steps

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 1000 steps

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 3000 steps

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60
Ep

iso
de

 re
wa

rd

Smoothed pretrain 20 eps, 3000 steps

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 3000 steps

Figure 15: Comparing the effect of different LLMs’ model sizes for the MountainCar environment.

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 1000 steps

LORO 7B. Cum. reward=-1784
LORO 32B. Cum. reward=-1701
Online RL. Cum. reward=-2088

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

12

10

8

6

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 3000 steps

Figure 16: Comparing the effect of different LLMs’ model sizes for the Pong environment.

21

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

E.3 EFFECTS OF THE NUMBER OF PRE-TRAINING STEPS

In this section, we evaluate the effect of the number of pre-training steps on the cumulative reward of the policy. We
evaluate this with different model sizes and pre-training data on six OpenAI Gym environments and show the result in
Figure 17, 18, 19, 20, 21, 22. Overall, we observe no clear advantage of using a higher or lower number of pre-training
steps to improve the decision-making quality of the LORO policy.

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B

LORO 1k pretrain steps. Cum. reward=-9213
LORO 3k pretrain steps. Cum. reward=-10303
Online RL. Cum. reward=-37151

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 32B

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 32B

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 32B

Figure 17: Comparing the effect of different pre-training steps for the CliffWalking environment.

22

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B

LORO 1k pretrain steps. Cum. reward=99
LORO 3k pretrain steps. Cum. reward=100
Online RL. Cum. reward=100

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B

0 20 40 60 80 100 120 140
of episodes

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 32B

0 20 40 60 80 100 120 140
of episodes

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

 re
wa

rd

Smoothed pretrain 20 eps, 32B

0 20 40 60 80 100 120 140
of episodes

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 32B

Figure 18: Comparing the effect of different pre-training steps for the FrozenLake environment.

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

225

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B

LORO 1k pretrain steps. Cum. reward=26032
LORO 3k pretrain steps. Cum. reward=24980
Online RL. Cum. reward=24640

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

225

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B

0 20 40 60 80 100 120 140
of episodes

60

80

100

120

140

160

180

200

220

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 32B

0 20 40 60 80 100 120 140
of episodes

60

80

100

120

140

160

180

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 32B

0 20 40 60 80 100 120 140
of episodes

60

80

100

120

140

160

180

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 32B

Figure 19: Comparing the effect of different pre-training steps for the CartPole environment.

23

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B

LORO 1k pretrain steps. Cum. reward=-71703
LORO 3k pretrain steps. Cum. reward=-71703
Online RL. Cum. reward=-58707

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B

0 25 50 75 100 125 150 175 200
of episodes

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 32B

0 25 50 75 100 125 150 175 200
of episodes

1400

1200

1000

800

600

400

200
Ep

iso
de

 re
wa

rd

Smoothed pretrain 20 eps, 32B

0 25 50 75 100 125 150 175 200
of episodes

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 32B

Figure 20: Comparing the effect of different pre-training steps for the Pendulum environment.

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B
LORO 1k pretrain steps. Cum. reward=-51611
LORO 3k pretrain steps. Cum. reward=-45453
Online RL. Cum. reward=-57616

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 32B

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 32B

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 32B

Figure 21: Comparing the effect of different pre-training steps for the MountainCar environment.

24

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5
Ep

iso
de

 re
wa

rd
Smoothed pretrain 10 eps, 7B

LORO 1k pretrain steps. Cum. reward=-1784
LORO 3k pretrain steps. Cum. reward=-1765
Online RL. Cum. reward=-2088

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 32B

0 25 50 75 100 125 150 175 200
of episodes

12

10

8

6

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 32B

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 32B

Figure 22: Comparing the effect of different pre-training steps for the Pong environment.

E.4 EFFECTS OF THE AMOUNT OF LLM DATA

In this section, we evaluate the effect of the number of pre-training data on the cumulative reward of the policy. We
evaluate this with different model sizes and pre-training steps on six OpenAI Gym environments and show the result in
Figure 23, 24, 25, 26, 27, 28. Although there exist some differences in the cumulative reward, all baselines converge to
a policy with similar performance in a relatively short amount of time. Hence, we observe no clear advantage of using a
higher or lower amount of pre-training data to improve the decision-making quality of the LORO policy.

25

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 7B

LORO 10 pretrain eps. Cum. reward=-9213
LORO 20 pretrain eps. Cum. reward=-22411
LORO 30 pretrain eps. Cum. reward=-23697
Online RL. Cum. reward=-37151

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 7B

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 32B

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 32B

Figure 23: Comparing the effect of different amounts of pre-training data for the CliffWalking environment.

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 7B

LORO 10 pretrain eps. Cum. reward=99
LORO 20 pretrain eps. Cum. reward=95
LORO 30 pretrain eps. Cum. reward=83
Online RL. Cum. reward=100

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 7B

0 20 40 60 80 100 120 140
of episodes

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 32B

0 20 40 60 80 100 120 140
of episodes

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 32B

Figure 24: Comparing the effect of different amounts of pre-training data for the FrozenLake environment.

26

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

225

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 7B

LORO 10 pretrain eps. Cum. reward=26032
LORO 20 pretrain eps. Cum. reward=24838
LORO 30 pretrain eps. Cum. reward=22166
Online RL. Cum. reward=24640

0 20 40 60 80 100 120 140
of episodes

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 7B

0 20 40 60 80 100 120 140
of episodes

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 32B

0 20 40 60 80 100 120 140
of episodes

60

80

100

120

140

160

180

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 32B

Figure 25: Comparing the effect of different amounts of pre-training data for the CartPole environment.

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 7B

LORO 10 pretrain eps. Cum. reward=-71703
LORO 20 pretrain eps. Cum. reward=-86454
LORO 30 pretrain eps. Cum. reward=-99689
Online RL. Cum. reward=-58707

0 25 50 75 100 125 150 175 200
of episodes

1600

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 7B

0 25 50 75 100 125 150 175 200
of episodes

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 32B

0 25 50 75 100 125 150 175 200
of episodes

1400

1200

1000

800

600

400

200

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 32B

Figure 26: Comparing the effect of different amounts of pre-training data for the Pendulum environment.

27

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 7B
LORO 10 pretrain eps. Cum. reward=-51611
LORO 20 pretrain eps. Cum. reward=-57212
LORO 30 pretrain eps. Cum. reward=-57451
Online RL. Cum. reward=-57616

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 7B

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 32B

0 50 100 150 200 250 300
of episodes

200

180

160

140

120

100

80

60

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 32B

Figure 27: Comparing the effect of different amounts of pre-training data for the MountainCar environment.

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 7B

LORO 10 pretrain eps. Cum. reward=-1784
LORO 20 pretrain eps. Cum. reward=-1748
LORO 30 pretrain eps. Cum. reward=-1624
Online RL. Cum. reward=-2088

0 25 50 75 100 125 150 175 200
of episodes

12

11

10

9

8

7

6

5

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 7B

0 25 50 75 100 125 150 175 200
of episodes

12

10

8

6

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 1000 steps, 32B

0 25 50 75 100 125 150 175 200
of episodes

12

10

8

6

4

Ep
iso

de
 re

wa
rd

Smoothed pretrain 3000 steps, 32B

Figure 28: Comparing the effect of different amounts of pre-training data for the Pong environment.

28

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

E.5 EFFECTS OF SFT AND LONG COT

In this section, we evaluate the effect of SFT and Long CoT on the cumulative reward of the policy. We evaluate
this with different pre-training data and pre-training steps on three OpenAI Gym environments and show the result in
Figure 29, 30, 31. Overall, we observe no clear advantage of using SFT and Long CoT over vanilla CoT to improve the
decision-making quality of the LORO policy.

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B, 1000 steps

LORO. Cum. reward=99
Online RL. Cum. reward=100
SFT. Cum. reward=28

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B, 1000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B, 1000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B, 3000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B, 3000 steps

0 20 40 60 80 100 120 140
of episodes

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B, 3000 steps

Figure 29: Comparing the effect of Long Chain-of-Thought and Supervised-Fine-Tuning for the FrozenLake environ-
ment.

29

1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B, 1000 steps

LORO. Cum. reward=-9213
Online RL. Cum. reward=-37151
SFT. Cum. reward=-16540

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

500

400

300

200

100

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B, 3000 steps

Figure 30: The effect of Supervised-Fine-Tuning for the CliffWalking environment.

0 25 50 75 100 125 150 175 200
of episodes

2000

1500

1000

500

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B, 1000 steps

LORO. Cum. reward=-71703
Online RL. Cum. reward=-58707
SFT. Cum. reward=-210954

0 25 50 75 100 125 150 175 200
of episodes

2000

1500

1000

500

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

2000

1500

1000

500

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B, 1000 steps

0 25 50 75 100 125 150 175 200
of episodes

2000

1500

1000

500

0

Ep
iso

de
 re

wa
rd

Smoothed pretrain 10 eps, 7B, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

2000

1500

1000

500

Ep
iso

de
 re

wa
rd

Smoothed pretrain 20 eps, 7B, 3000 steps

0 25 50 75 100 125 150 175 200
of episodes

2000

1500

1000

500

Ep
iso

de
 re

wa
rd

Smoothed pretrain 30 eps, 7B, 3000 steps

Figure 31: The effect of Supervised Fine-Tuning for the Pendulum environment.

30

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

E.6 EFFECTS OF THE HISTORY SUMMARY

For the experiments above, we use an efficient environment history such as “The holes are in locations: X, Y, Z. You
receive zero reward at locations: A, B, C, D”.

For the experiment in Figure 32, we concatenate the observations of each state to the LLM’s prompt, with a limited
history length: "You visit location X and receive zero reward. You visit location Y and receive one reward. You visit ...".

Figure 32: FrozenLake with ineffective environment history.

31

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663

F WALL CLOCK TIME

Below, we show the wall-clock time for the LLM data collection phase in Table 5 and the fine-tune with RL phase in
Table 6.

Environment Model Time (h) GPU

CliffWalking Qwen-32b 54.03

H100

Qwen-7b 19.96

CartPole Qwen-32b 15.66
Qwen-7b 8.27

FrozenLake Qwen-32b 2.63
Qwen-7b 0.82

MountainCar Qwen-32b 33.63
Qwen-7b 25.94

Pendulum Qwen-32b 59.68
Qwen-7b 28.5

RepresentedPong Qwen-32b 69.43
Qwen-7b 28.48

FrozenLake-LongCoT DeepSeek-14b 16.99 A6000DeepSeek-7b 8.99
CliffWalking-SFT Qwen-7b 41 H100
FrozenLake-SFT Qwen-7b 0.73 A6000Pendulum-SFT Qwen-7b 57.72

Table 5: Wall-clock time for LLM data collection phase in different environments with different GPUs.

Environment Offline data Offline data size (episode)
10 20 30

CliffWalking

Qwen-7b 4.319 3.044 1.448
Qwen-32b 2.149 1.249 0.788
Random 4.661 2.138 1.922

Collected online 5.131 2.392 2.045

CartPole

Qwen-7b 1.912 1.826 1.758
Qwen-32b 1.432 1.354 1.275
Random 2.707 2.705 2.718

Collected online 2.992 2.993 3.005

FrozenLake

Qwen-7b 1.896 1.797 1.74
Qwen-32b 1.397 1.318 1.254
Random 2.746 2.741 2.757

Collected online 3.069 3.068 3.059

MountainCar

Qwen-7b 2.177 2.009 1.112
Qwen-32b 1.608 1.446 0.8
Random 3.155 3.11 4.808

Collected online 3.513 3.253 3.21

Pendulum

Qwen-7b 3.803 3.647 2.534
Qwen-32b 2.806 2.658 1.818
Random 5.552 5.227 3.979

Collected online 6.159 4.552 4.358

RepresentedPong

Qwen-7b 3.639 3.26 2.69
Qwen-32b 2.386 2.406 1.99
Random 4.295 3.253 2.319

Collected online 4.63 3.444 2.434

Table 6: Wall-clock time for the fine-tune with RL phase with an H100 GPU. The only exception is the MountainCar
with Offline data size of 30, which was timed using an A6000 GPU.

32

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

G LLM SETUP

We designed the prompt to choose an action from a list of integers starting from one, since we observed that LLM is
more biased toward action zero. After the LLM chooses an action, we extract it by getting the last number returned
by the LLM. This design was inherited from Pandey (2024), which can be improved since we observe a number of
extraction failures from our experiments.

We observe that the vanilla design of LLM, where we ask it only to return the chosen action, performs poorly. Similarly,
we implemented and tested the Majority Voting and Best-of-N test-time-scaling methods, but they both perform poorly
without CoT.

For all experiments, we limit the generating token to be less than 2000 , top-p 0.6, top-k 0, temperature 0.9. In the SFT
experiment, the LLM was trained with LoRA Hu et al. (2021) with rank 8, alpha 16, dropout 0.05, batch size 1, and
using 8-bit quantization.

H PROMPTS

This section provides a collection of Chain-of-Thought (CoT) prompting examples used across multiple decision-
making environments. Each task is presented with a detailed system prompt describing the environment dynamics
and action space, followed by a user query that reflects a specific game state. The responses are generated by
Qwen2.5-7B-Instruct, illustrating its step-by-step reasoning capabilities.

H.1 CHAIN-OF-THOUGH PROMPTS

H.1.1 TASK 1: CLIFF WALKING

A Sample of Cliff Walking

▶ System:
You are an expert-level game player. Cliff walking is a task in which you control a player navigating a ’4x12’
grid world. The (’x’, ’y’) coordinate indicates the position at row ’x’ and column ’y’. The player needs to find a
goal location while avoiding cliffs . The player can choose from 4 actions: move up, move right, move down, or
move left. If the player takes an action at (’x’, ’y’), he tries to move to (’a’, ’b’). Rules:

• 1. If (’a’, ’b’) is a cliff, the player incurs a large penalty of -100, and is reset to the starting position.
• 2. If (’a’, ’b’) is safe or towards the grid boundary, results in a small penalty of -1. If (’a’, ’b’) is

outside the grid’s boundaries, it does not change position but still receive the -1 penalty.
• 3. The game ends when the (’a’, ’b’) is the goal or 200 actions are performed. The goal is to navigate

from the starting point to an target , while avoiding the cliff, in as few steps as possible.
Type a number to indicate the action. For current position (’x’, ’y’), the action means the player try to step into
the next position. Type ’1’ to move up, which means trying to step into (’x-1’, ’y’), ’2’ to move right, which
means (’x’, ’y+1’), ’3’ to move down, which means (’x+1’, ’y’), or ’4’ to move left, which means (’x’, ’y-1’).
Ensure you only provide the action number from the valid action list, i.e., [1, 2, 3, 4]. Environment history:
Cliff: Reward -100 at locations: (3, 0). Reward -1 at locations: (2, 0), (3, 0), (1, 0). Previous location: (1,
0), previous action: 1, previous reward: -1. Return the action at the end of your answer without the target’s
location.

▶ User:
You are at location (2, 0) in the grid world.
Think step by step.

▶ Qwen2.5-7B-Instruct:
1

33

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767

H.1.2 TASK 2: CARTPOLE

A Sample of CartPole

▶ System:
You are an expert-level game player. In the CartPole game, you control a cart that moves along a horizontal
track. There is a pole standing upright on the cart. The goal of the game is to keep the pole balanced upright by
moving the cart left or right. The game ends if the pole tilts too far from the vertical position or if the cart moves
too far from the center of the track. The longer you can keep the pole balanced, the higher your score.Note that
when the Cart Position is out of the (-2.4, 2.4) zone or the Pole Angle is out of the zone (-.2095, .2095), the
round ends and the game is lost. The goal is to keep the pole balanced upright for as long as possible.
Type ’1’ to push the cart to the left or ’2’ to push the cart to the right. Ensure you only provide the action
number from the valid action list, i.e., [1, 2].

▶ User:
The cart is positioned at 0.006, with a velocity of 0.04 towards the right. The pole is tilted at 0.02 radians,
rotating at 0.02 radians per second towards the right.
Think step by step.

▶ Qwen2.5-7B-Instruct:
Given the current state of the CartPole game:

• Cart Position: 0.006 (slightly to the right of the center)
• Cart Velocity: 0.04 (moving slightly to the right)
• Pole Angle: 0.02 radians (slightly tilted to the right)
• Pole Angular Velocity: 0.02 radians/second (tilting to the right)

Let’s analyze the situation step by step:
1. Cart Position: The cart is very close to the center, at 0.006. This is within the safe range, so we don’t

need to move it significantly.
2. Cart Velocity: The cart is moving slightly to the right, which is good because it helps counteract the

tilt of the pole.
3. Pole Angle: The pole is tilted 0.02 radians to the right. This is a small tilt, but it indicates that the pole

is starting to lean. We need to act quickly to prevent it from falling over.
4. Pole Angular Velocity: The pole is rotating at 0.02 radians/second to the right, which means it is

accelerating its tilt. This suggests that the cart’s movement is not sufficient to stabilize the pole.
Given these observations, we should try to slow down the pole’s tilt by moving the cart to the left. This will
help counteract the rightward tilt of the pole.

Action: 1 (Push the cart to the left)

This action will help to stabilize the pole by moving the center of mass back towards the center, which should
reduce the angular velocity of the pole.

H.1.3 TASK 3: MOUNTAIN CAR

A Sample of Mauntain Car

▶ System:
You are an expert-level game player. In the Mountain Car game, you control a car placed stochastically at the
bottom of a sinusoidal valley. The only possible actions are the accelerations that can be applied to the car in
either direction. The goal of the game is to strategically accelerate the car to reach the goal state on top of the
right hill as quickly as possible. The episode ends if either the car reaches the goal position on top of the right
hill or the length of the episode is 200. The goal is to reach the flag placed on top of the right hill as quickly as
possible.
Type ’1’ to accelerate to the left, ’2’ to not accelerate, or ’3’ to accelerate to the right.Ensure you only provide
the action number from the valid action list, i.e., [1, 2, 3].

34

1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

▶ User:
The car is positioned at -0.541, with a velocity of 0.000 towards the left.
Think step by step.

▶ Qwen2.5-7B-Instruct:
Given the car’s position at -0.541 and a velocity of 0.000 towards the left, the car is slightly to the left of the
center of the valley. Since the car is not moving yet and is close to the middle, accelerating to the right (action
3) might help gain some speed towards the right hill without overshooting too much.

Action: 3

H.1.4 TASK 4: FROZENLAKE

A Sample of FrozenLake (CoT)

▶ System:
You are an expert-level game player. In the FrozenLake game, the player starts at the start position of the grid
and tries to reach the goal position . There are holes which the player must avoid. The frozen lake is slippery,
meaning that the player might not always move in the intended direction. The game ends when the player
reaches the goal or falls into a hole. The goal is to navigate across the frozen lake and reach the goal position
without falling into any holes. For current position (’x’, ’y’), the action means the player try to step into the
next position. The possible actions are:

• 1: Move left, which means (’x’, ’y-1’),
• 2: Move down, which means (’x+1’, ’y’),
• 3: Move right, which means (’x’, ’y+1’),
• 4: Move up, which means trying to step into (’x-1’, ’y’).

Ensure you only provide the action number from the valid action list, i.e., [1, 2, 3, 4]. Do not return the target’s
coordination. Environment history: Reward 0.0 at locations: (0, 0). Previous location: (0, 0), previous action: 1,
previous reward: 0.0. Return the action at the end of your answer without the target’s location.

▶ User:
You are at row 0, column 0.
Think step by step.

▶ Qwen2.5-7B-Instruct:
Since the current position is (0, 0) and the previous action was moving left (which is not possible as it would
take you out of bounds), the only feasible action to consider is moving down to (0, 1). Therefore, the action is:
2.

A Sample of FrozenLake (Long CoT)

▶ System:
You are an expert-level game player. In the FrozenLake game, the player starts at the start position of the grid
and tries to reach the goal position . There are holes which the player must avoid. The frozen lake is slippery,
meaning that the player might not always move in the intended direction. The game ends when the player
reaches the goal or falls into a hole. The goal is to navigate across the frozen lake and reach the goal position
without falling into any holes. For current position (’x’, ’y’), the action means the player try to step into the
next position. The possible actions are:

• 1: Move left, which means (’x’, ’y-1’),
• 2: Move down, which means (’x+1’, ’y’),
• 3: Move right, which means (’x’, ’y+1’),
• 4: Move up, which means trying to step into (’x-1’, ’y’).

Ensure you only provide the action number from the valid action list, i.e., [1, 2, 3, 4]. Do not return the target’s
coordination. Environment history: Reward 0.0 at locations: (0, 0). Previous location: (0, 0), previous action: 1,
previous reward: 0.0. Return the action at the end of your answer without the target’s location.

35

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

▶ User:
The current position of the You are at row 0, column 0.
Think step by step.

▶ DeepSeek-R1-Distill-Qwen-7B:

Okay, so I’m trying to figure out where to move in this FrozenLake game. I’m at position (0,0), which is the
top-left corner of the grid. The goal is to reach the goal position, which I think is at the bottom-right corner,
maybe (4,4) since it’s a 5x5 grid. But I’m not entirely sure, so I’ll assume that’s the case.
First, I need to consider the possible actions. The actions are numbered 1 to 4, corresponding to moving left,
down, right, and up respectively. Each action has a direction, but because the ice is slippery, I might not end up
where I intended. So, I have to plan carefully to avoid falling into holes.

Let me think about each action:
• Action 1: Move left. But wait, I’m already at column 0, which is the leftmost column. So moving left

from here would take me off the grid, which is probably a hole. So I shouldn’t choose action 1.
• Action 2: Move down. That would take me to (1,0). I need to check if that’s a hole. From the grid, I

remember that some cells are safe and some are holes. Let me visualize the grid:
– Row 0: S F F F F
– Row 1: F F H F F
– Row 2: F H F F F
– Row 3: F F F H F
– Row 4: F F F F G

Wait, I’m not sure if that’s accurate, but I think row 1, column 2 is a hole (H), and row 2, column 1 is
another hole. So moving down to (1,0) is safe because row 1, column 0 is F (safe). So action 2 seems
safe.

• Action 3: Move right. That would take me to (0,1). I think that’s safe too because row 0, column 1 is F.
• Action 4: Move up. But I’m at row 0, so moving up would take me off the grid, which is a hole. So

action 4 is out.
So, from (0,0), the valid actions are 2 and 3. I need to choose between them. Let’s think about the long-term
implications.
If I go down to (1,0), then from there, possible actions are:

• Move left: off grid (hole)
• Move down: (2,0) which is safe
• Move right: (1,1) which is safe
• Move up: back to (0,0)

If I go right to (0,1), then from there:
• Move left: back to (0,0)
• Move down: (1,1) which is safe
• Move right: (0,2) which is safe
• Move up: off grid (hole)

Hmm, both paths seem viable. Maybe I should go right to (0,1) because moving down from there might lead
me closer to the goal without getting stuck. Alternatively, going down might allow me to move right or left
without immediate issues.

Wait, but if I go down to (1,0), then moving right to (1,1) is safe, and from there, moving down again to (2,1) is
a hole because row 2, column 1 is H. Oh no, that’s a problem. So from (1,0), if I move right to (1,1), then down
to (2,1) is a hole. So that’s bad.
Alternatively, from (1,0), if I move down to (2,0), which is safe, then from there, moving right to (2,1) is a hole.
So again, that’s a problem.

36

1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923

Wait, maybe I’m misremembering the grid. Let me try to recall the layout. I think row 1, column 2 is H, and
row 2, column 1 is H. So, from (1,0), moving right goes to (1,1), which is safe, but then moving down from
there would go to (2,1), which is H. So that’s a problem.
Alternatively, from (1,0), moving down to (2,0) is safe, but then moving right to (2,1) is H. So either way,
moving down first might lead to a hole in the next step.
So maybe going right to (0,1) is better. From (0,1), moving down to (1,1) is safe, and then from there, moving
right to (1,2) is H, which is bad. Or moving right to (0,2), which is safe, then from there, moving down to (1,2)
is H. So again, same issue.

Wait, maybe I’m overcomplicating this. Perhaps I should try to find a path that avoids the holes. Let’s think
about possible paths.
From (0,0), go right to (0,1). From there, go down to (1,1). From (1,1), go right to (1,2), but that’s H. So that’s
bad. Alternatively, from (1,1), go right to (1,2) is H, so maybe go down to (2,1), which is H. So that’s no good.
Alternatively, from (0,1), go down to (1,1), then from there, go right to (1,2) is H, or left to (1,0), which is back
where I came from. Hmm.

Wait, maybe from (0,1), go right to (0,2). From (0,2), go down to (1,2) is H. So that’s bad.
Alternatively, from (0,1), go down to (1,1), then from there, go right to (1,2) is H, or left to (1,0), which is safe.
So from (1,1), moving left to (1,0) is safe, but then from (1,0), moving down to (2,0) is safe, and from there,
moving right to (2,1) is H. So that’s a problem.
This is getting complicated. Maybe I should try a different approach. Let’s think about the possible paths step
by step.
From (0,0), options are 2 (down) and 3 (right).
If I go down to (1,0):

• From (1,0), possible actions: down to (2,0), right to (1,1)
• If I go down to (2,0):

– From (2,0), possible actions: right to (2,1) is H, so that’s bad. So maybe go right to (2,1) is H, so
can’t go there. So from (2,0), the only safe move is right to (2,1) is H, so maybe move up to (1,0),
but that’s where I came from. Or move right to (2,1) is H, so that’s not allowed. So from (2,0),
the only safe move is to go right to (2,1), but that’s H, so that’s bad. Alternatively, move left to
(2,-1), which is off grid, so that’s a hole. So from (2,0), I can’t move anywhere without falling
into a hole. So that’s a dead end.

So going down to (1,0) leads to a dead end because from (2,0), I can’t move anywhere safely.

So, maybe I should go right to (0,1) instead.
From (0,1):

• Possible actions: down to (1,1), right to (0,2)
• If I go down to (1,1):

– From (1,1), possible actions: down to (2,1) is H, right to (1,2) is H, left to (1,0), up to (0,1)
– So, from (1,1), the only safe move is left to (1,0) or up to (0,1). If I go left to (1,0), then from

there, I can go down to (2,0), but from (2,0), as before, it’s a dead end. Alternatively, from (1,1),
go up to (0,1), which is where I came from, so that’s not helpful.

• If I go right to (0,2):
– From (0,2), possible actions: down to (1,2) is H, right to (0,3), left to (0,1)
– So, from (0,2), the safe moves are right to (0,3) or left to (0,1). If I go right to (0,3), then from

there, I can go down to (1,3), which is safe, and so on.
So, from (0,1), going right to (0,2) seems better because it allows me to move further right without hitting a
hole immediately.

So, let’s try that path:
Action: 1

37

1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

H.1.5 TASK 5: PONG

A Sample of Pong

▶ System:
You are an expert-level game player. In the Pong game, you play the ball with your opponent, each player rallys
the ball by moving the paddles on the playfield. Paddles move only vertically on the playfield. A player scores
one point when the opponent hits the ball out of bounds or misses a hit. The first player to score 21 points wins
the game. The number of frameskip is set to 4. The goal is to knock out your opponent. Type 1 for NOOP (no
operation), 3 to move up, 4 to move down. Ensure you only provide the action number from the valid action list,
i.e., [1, 3, 4].

▶ User:
The origin (0,0) is in the top left corner. You are at position (188, 78), your opponent is at position (64, 8), the
ball is at (0, 0), the ball velocity is (0, -60). Your opponent’s score is 0, your score is 0.
Think step by step.

▶ Qwen2.5-7B-Instruct:
Given the current state of the game:

• Your paddle is at position (188, 78).
• Your opponent’s paddle is at position (64, 8).
• The ball is at position (0, 0) and is moving upwards with a velocity of (0, -60).

Step-by-step reasoning:
• The ball is at the top of the playfield and is moving downwards. It will be near the middle of the

playfield soon.
• With a frameskip of 4, the opponent will not react until the ball has moved significantly downward.
• Since the ball is about to come towards you, you should prepare to move your paddle to intercept the

ball.
Action Plan:

• Move your paddle up to intercept the ball as it comes towards you. This ensures that you can return
the ball effectively.

Action: 3 (move up)
By moving up, you position yourself to intercept the ball as it comes towards the center of the playfield.

H.1.6 TASK 6: PENDULUM

A Sample of Pendulum

▶ System:
You are an expert-level game player. In the Pendulum game, you control a pendulum attached to a fixed pivot
point. The goal is to apply torques to swing the pendulum upright and keep it balanced. The game ends if the
pendulum cannot be stabilized within the given time limit. The closer the pendulum is to the upright position,
the higher your score. The goal is to swing the pendulum upright and keep it balanced. Provide a torque value
(e.g., a float between -2.0 and 2.0) to control the pendulum’s movement. Return the torque value enclosed in <
and >, e.g., <1.5>.

▶ User:
The pendulum is at an angle of -2.690 radians from the vertical (zero when upright), rotating at 0.34 radians per
second in the clockwise direction.
Think step by step.

▶ Qwen2.5-7B-Instruct:
To determine the appropriate torque to apply, we need to consider the current state of the pendulum: its angle
and angular velocity.

• Angle Analysis: The pendulum is currently at an angle of -2.690 radians from the vertical. This means
it is hanging to the left of the vertical position. To bring it back towards the vertical, we need to apply a

38

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027

positive torque (since positive torque will tend to rotate the pendulum clockwise, which is the direction
needed to move it towards the vertical).

• Angular Velocity Analysis: The pendulum is rotating at 0.34 radians per second in the clockwise
direction. Since the pendulum is already moving in the direction we want (towards the vertical), we
should continue to apply a positive torque to help it swing more quickly towards the vertical position.

Given that the pendulum is already moving in the correct direction but not fast enough, applying a moderate
positive torque should help it swing faster and reach the vertical position more efficiently.
A good starting torque value could be around 1.0, as this provides a reasonable amount of force without being
too aggressive and risking overshooting the vertical position.
Therefore, the torque value I suggest is: <1.0>

39

	Introduction
	Related work
	Preliminaries
	The LLM Offline, RL Online (LORO) Algorithm
	Experiments
	Sample Efficiency
	Justifying the Coverage Assumption 1
	Effect of pre-training
	Effect of LLM's data
	Verifying LORO's agnosticity to base RL learner choices
	Effects of the LLM's capability
	Other findings

	Conclusion and Future work
	Extened related work
	The environments and implementation details
	The environments
	Implementation details

	Justifying the Coverage Assumption 1
	Cumulative rewards table
	Ablation study
	Algorithm agnostic verification
	Effects of LLM's model size
	Effects of the number of pre-training steps
	Effects of the amount of LLM data
	Effects of SFT and Long CoT
	Effects of the history summary

	Wall clock time
	LLM setup
	Prompts
	Chain-of-Though Prompts
	Task 1: Cliff Walking
	Task 2: CartPole
	Task 3: Mountain Car
	Task 4: FrozenLake
	Task 5: Pong
	Task 6: Pendulum

