
Published as a workshop paper at ICLR 2025 MLMP

HARD-CONSTRAINING NEUMANN BOUNDARY CON-
DITIONS IN PHYSICS-INFORMED NEURAL NETWORKS
VIA FOURIER FEATURE EMBEDDINGS

Christopher Straub, Philipp Brendel, Vlad Medvedev & Andreas Rosskopf
Department Modeling and Artificial Intelligence
Fraunhofer Institute for Integrated Systems and Device Technology IISB
Schottkystrasse 10, 91058 Erlangen, Germany
{christopher.straub,philipp.brendel,vlad.medvedev,
andreas.rosskopf}@iisb.fraunhofer.de

ABSTRACT

We present a novel approach to hard-constrain Neumann boundary conditions
in physics-informed neural networks (PINNs) using Fourier feature embeddings.
Neumann boundary conditions are used to described critical processes in vari-
ous application, yet they are more challenging to hard-constrain in PINNs than
Dirichlet conditions. Our method employs specific Fourier feature embeddings to
directly incorporate Neumann boundary conditions into the neural network’s ar-
chitecture instead of learning them. The embedding can be naturally extended by
high frequency modes to better capture high frequency phenomena. We demon-
strate the efficacy of our approach through experiments on a diffusion problem, for
which our method outperforms existing hard-constraining methods and classical
PINNs, particularly in multiscale and high frequency scenarios.

1 INTRODUCTION

Diffusion equations are essential in the study of multiscale processes such as semiconductor mod-
eling (Aleksandrov & Kozlovski, 2009), battery modeling (Doyle et al., 1993), biological sys-
tems (Mereghetti et al., 2011), and larger scale phenomena like atmospheric and oceanic transport
processes (Sharan & Gopalakrishnan, 2003; Holmes et al., 2021). These problems often contain
Neumann boundary conditions, specifying the gradient or flux at a boundary, to represent sym-
metries or essential physical processes like insulation, recharge rates, or surface charge densities.
Physics-informed neural networks (PINNs) offer a promising alternative to classical numerical
solvers to simulate such systems (Raissi et al., 2019). The main idea of PINNs is to represent the
unknown solution of a physical system as a neural network and train it using the governing physical
laws. Despite PINNs being successfully applied in a variety of different settings (Toscano et al.,
2025; Ghalambaz et al., 2024), they face some difficulties. As argued in Wang et al. (2021; 2022),
two major challenges faced by PINNs are balancing multiple learning objectives (learning one or
more differential equations and boundary conditions) and accurately approximating high frequency
or multiscale phenomena.

One way to address the former challenge is to incorporate certain requirements on the solution, e.g.,
boundary conditions, directly into the neural network’s structure instead of learning them. This
is known as hard-constraining and is typically achieved by adding carefully chosen, non-trainable
layers to the start or the end of a neural network to transform its input or output, respectively. Hard-
constraining techniques are commonly used for Dirichlet or periodic boundary conditions (Toscano
et al., 2025). Due to the simplification of the learning task, they typically improve the perfor-
mances of PINNs (Lu et al., 2021b; Sukumar & Srivastava, 2022; Zeinhofer et al., 2024). Neumann
boundary conditions are more challenging to hard-constrain and consequently less frequently hard-
constrained, see section 2.2 for a review of existing methods in this direction.

To allow neural networks to approximate high frequency or multiscale data, it has been proposed
in Tancik et al. (2020) to expand the input of the neural network into Fourier modes of different

1



Published as a workshop paper at ICLR 2025 MLMP

frequencies. In the seminal work on the application of PINNs to multiscale problems Wang et al.
(2021), it has been shown theoretically and experimentally that such Fourier feature embeddings
help PINNs to capture high frequency and multiscale phenomena.

In this paper, we present a new way of hard-constraining Neumann boundary conditions based on
carefully chosen Fourier feature mappings. Concretely, our contributions are:

• We present a new method to hard-constrain Neumann boundary conditions into PINNs by
suitably transforming their input using a single, scalar Fourier embedding. This embedding
can further be extended by higher frequencies to better capture high frequency phenomena.

• We demonstrate the efficacy of the new method for a forward diffusion problem with Neu-
mann boundary conditions. The new method yields more accurate results than existing
PINN methods, with the most significant improvements observed for high frequencies and
for differing frequencies on different scales.

Despite the fact that the numerical experiments conducted in the present workshop paper are limited
to a one-dimensional forward problem, it should be emphasized that the method is highly versatile
and can also be applied in various other contexts. A selection of these is outlined in appendix B,
including the case of a higher dimensional spatial domain.

2 THEORETICAL BACKGROUND

In this section we provide the necessary backgrounds on which the new method relies. As an explicit
example to introduce the methods, we consider the one-dimensional heat equation with spatial and
temporal domains both normalized to unity, i.e.,

∂tu = D∂2
xu, (x, t) ∈ [0, 1]2, (1)

where D > 0 is a diffusivity parameter. This equation is coupled with vanishing Neumann boundary
conditions

∂xu(0, t) = 0 = ∂xu(1, t), t ∈ [0, 1], (2)

and initial condition
u(x, 0) = g(x), x ∈ [0, 1], (3)

for prescribed g : [0, 1] → R. Theoretical background on this system is given in appendix A.

2.1 PHYSICS-INFORMED NEURAL NETWORKS

The strategy of PINNs is to represent the sought solution of a physical system as a neural net-
work and train it using the describing physical laws (Raissi et al., 2019). The neural network’s
architecture is typically a multilayer perceptron (MLP), although all of the below also applies
to different architectures, e.g., a Kolmogorov-Arnold network (Liu et al., 2025b; Shukla et al.,
2024). The parameters of the neural network are trained by minimizing the composite loss func-
tion L = λPDE LPDE + λIC LIC + λBC LBC. The individual loss terms LPDE, LBC, and LIC are
(usually) the mean squared error of the residual of the PDE, the initial condition, and the bound-
ary condition evaluated at randomly sampled collocation points (xPDE

j , tPDE
j )j=1,...,NPDE

⊂ [0, 1]2,
(xIC

j , 0)j=1,...,NIC
⊂ [0, 1] × {0}, and (xBC

j , tBC
j )j=1,...,NBC

⊂ {0, 1} × [0, 1], respectively. The
weights λPDE, λIC, λBC > 0 can be used to balance the individual loss contributions. Here, the
default choice λPDE = λIC = λBC = 1 is used. More background on PINNs can be found in Raissi
et al. (2019); Lagaris et al. (1998); Karniadakis et al. (2021); Wang et al. (2023).

2.2 EXISTING HARD-CONSTRAINING TECHNIQUES FOR NEUMANN BOUNDARY CONDITIONS

The main idea of hard-constraining is to incorporate certain conditions on the sought solution di-
rectly into the neural network’s structure. An approach to achieve this for Neumann boundary
conditions on general domains has been presented in Sukumar & Srivastava (2022). It is based
on distance functions, i.e., functions giving the signed distance to the boundary of the problem’s
domain. These distance functions are then used to hard-constrain different types of boundary con-
ditions into neural networks. The formulae to hard-constrain Neumann boundary conditions are

2



Published as a workshop paper at ICLR 2025 MLMP

given in Sukumar & Srivastava (2022, Sc. 5.1.2) and rely on a suitable transformation of the neural
network’s output to modify the value of its derivatives at the boundary. To explicitly demonstrate
this method in the case of the vanishing Neumann boundary conditions given by equation 2, let
uNN : [0, 1]2 → R be an arbitrary smooth representation model, e.g., a neural network. Inserting the
canonical distance function ϕ(x) = x(1− x) of [0, 1] into the formulae from Sukumar & Srivastava
(2022) yields the following transformation of uNN:

utrafo(x, t) = uNN(x, t)− x(1− x)2 ∂xu
NN(0, t)− x2(x− 1) ∂xu

NN(1, t). (4)

The original output uNN is replaced by this transformed version utrafo when evaluating the model
and when computing the loss L. The key idea of this transformation is to use the values of the
x-derivative of the original representation model ∂xuNN to ensure the desired behavior of the trans-
formation utrafo at the spatial boundary. Indeed, a straight-forward calculation shows that utrafo sat-
isfies the vanishing boundary conditions independently of uNN(x, t), and hence the loss term LBC

in L can be dropped when training the model. In Sukumar & Srivastava (2022), it is observed that
this remains true if the additional term x2(1− x)2vNN(x, t) is added to the right-hand side of equa-
tion 4, where vNN = vNN(x, t) is another trainable representation model. Note, however, that the
computational costs of evaluating or backpropagating the transformed model utrafo are significantly
increased by incorporating the additional derivatives ∂xuNN in equation 4, cf. section 4 for details.

The similar method in the case of an ordinary differential equation with a single Neumann condition
has also been proposed in Leake & Mortari (2020). Mathematically more advanced schemes in the
situation where Neumann boundary conditions are imposed together with Dirichlet conditions are
presented in McFall & Mahan (2009); Shekari Beidokhti & Malek (2009). The latter also rely on
output transformations containing suitable evaluations of the neural network at the boundary.

2.3 FOURIER FEATURE EMBEDDINGS

The main idea of Fourier feature embeddings is to expand the input variable(s) of a neural network
into multiple frequencies to help the model approximate phenomena with different frequencies, in
particular, high frequencies. This has first been proposed in Tancik et al. (2020) in the context
of computer vision problems. In Wang et al. (2021), it has then been demonstrated that adding
Fourier feature embeddings to PINNs allow them to learn multiscale processes while vanilla PINNs
struggle at this task. Concretely, for the diffusion problem given by equations 1–3, the Fourier
feature embedding of the spatial coordinate x ∈ [0, 1] proposed in Wang et al. (2021) is

x 7→ (cos(b1πx), sin(b1πx), . . . , cos(bmπx), sin(bmπx)),

for frequencies b1, . . . , bm ∈ R. Together with the time variable t, this spatial embedding is then
input into a trainable neural network. In Wang et al. (2021), it is further shown how to use multiple
spatial Fourier embeddings as well as additional temporal Fourier embeddings. In the present work,
we restrict the discussion to the use of one spatial Fourier embedding of a prescribed length 2m. The
frequencies used for the Fourier embedding are typically sampled from a Gaussian distribution with
zero mean and prescribed standard deviation σ – this is referred to as a random Fourier feature em-
bedding. Other approaches are to learn the frequencies (Dong & Ni, 2021) or to explicitly prescribe
them. Fourier feature embeddings can also be used to hard-constrain periodic boundary conditions
into PINNs (Dong & Ni, 2021; Lu et al., 2021b). This requires the frequency values b1, . . . , bm to
be chosen such that the Fourier mappings are periodic on the problem’s domain.

3 METHODOLOGY

We now present a new approach to hard-constrain Neumann boundary conditions in PINNs. To
introduce the method, we focus on the vanishing Neumann boundary conditions from equation 2
imposed on the spatial domain x ∈ [0, 1]. Nonetheless, the method is straight-forward to extend to
non-vanishing Neumann boundary conditions and to more general and higher dimensional spatial
domains, see appendix B for the formulae in these more general settings. The key mechanisms of
the new method are illustrated in Figure 1: A Fourier embedding of frequency 1 (red) is applied to
the spatial input x. The Fourier embedding can naturally be extended by higher frequency embed-
dings (green). The key idea is to only use specific Fourier mappings (only the Cosine with integer
frequencies) that are flat at the spatial boundary. Together with additional input coordinates (e.g., the

3



Published as a workshop paper at ICLR 2025 MLMP

time t), the whole Fourier embedding is input into a trainable neural network. Due to the chain rule,
the derivative w.r.t. the spatial variable x vanishes at the boundary of the spatial domain. To adjust
for non-vanishing Neumann boundary data, an explicit expression is added to the neural network’s
output to arrive at the model’s final output.

Figure 1: The proposed method to hard-constrain Neumann boundary conditions.

Let us now provide the mathematical formulae underpinning these main ideas. The single spatial
Cosine Fourier embedding of frequency 1 is given by the following transformation to the spatial
input variable x ∈ [0, 1]:

x 7→ γ1(x) = cos(πx). (5)

The key property of γ1 is that it is flat at the spatial boundary, i.e., γ′
1(x) = 0 for x = 0 and x = 1.

This is also true for the higher frequency embedding x 7→ cos(πbx) provided that b is an integer. To
better capture high frequency phenomena, these embeddings can be appended to γ1(x) to arrive at
the total embedding

x 7→ γ1,b2,...,bn(x) = (cos(πx), cos(πb2x), . . . , cos(πbnx)) , (6)

where the integer frequencies b2, . . . , bn ∈ Z are randomly sampled. The embedding of frequency 1
is always included in equation 6 to ensure that no information is lost in the transformation – note
that γ1 : [0, 1] → [−1, 1] is one-to-one and γ′

1(x) ̸= 0 for 0 < x < 1. The embedding given
by equation 5 or equation 6 is then inserted into an arbitrary smooth representation model uNN, e.g.,
a neural network. The resulting model is

ũ(x, t) = uNN(γ(x), t), (7)

where γ can be γ1 or γ1,b2,...,bn . Because the derivative of γ vanishes at the boundary, i.e.,
d
dxγ(x) = 0 for x = 0 and x = 1, the chain rule implies that ũ indeed satisfies the vanishing
Neumann boundary condition from equation 2. Similar to section 2.2, this property remains valid
if the additional term x2(1 − x)2vNN(x, t) is added to the right-hand side of equation 4, where
vNN = vNN(x, t) is another trainable representation model. Hard-constraining non-vanishing Neu-
mann boundary conditions, i.e., ∂xu(0, t) = A and ∂xu(1, t) = B for prescribed A,B ∈ R instead
of equation 2, is achieved by the transformation

u(x, t) = uNN
(
γ(x), t

)
+ x(1− x)2A+ x2(x− 1)B. (8)

Notice that this transformation is fundamentally simpler than the one presented in section 2.2:
In equation 4, derivatives of the neural network evaluated at the boundary are added in the transfor-
mation, while the functions added in equation 8 are explicit expressions of the spatial variable x.

4 EXPERIMENTS

In this section, the performance of the newly proposed method (cf. section 3) is compared with the
existing methods (cf. section 2) for the diffusion problem given by equations 1–3. The same prob-
lem has been considered in Wang et al. (2021), with the exception that Neumann instead of Dirichlet

4



Published as a workshop paper at ICLR 2025 MLMP

boundary conditions are used here. The reason for considering this problem is that it exhibits a mul-
titude of qualitatively different solutions for different initial data. The initial conditions used here
are given in Table 1. Low or high frequency initial data lead to the respective spatial frequencies
of the solution with an additional temporal dependency. In the multiscale case, the solution man-
ifests low frequency on a macro scale and high frequency on a micro scale, resembling numerous
practical multiscale scenarios (Wang et al., 2021). As canonical examples for general initial con-
ditions, polynomials of orders 3 and 4 satisfying the vanishing Neumann boundary conditions are
considered. These polynomials are strictly increasing and parabola-shaped, respectively, and are
normalized to range in [0, 1]. They result in solutions composed of superpositions of infinite spatial
frequencies, although the solutions are dominated by low frequency effects. The diffusivity param-
eters D are chosen such that the solutions’ temporal decay speeds are similar (cf. appendix A) – the
same strategy has been used in Wang et al. (2021).

Table 1: Initial conditions and diffusivity parameters in the diffusion problem (equations 1–3) con-
sidered for the numerical experiments. The resulting solutions are stated in appendix A.

Description Initial condition Diffusivity parameter
Low frequency g(x) = cos(2πx) D = (2π)−2

High frequency g(x) = cos(50πx) D = (50π)−2

Multiscale g(x) = cos(2πx) + 0.1 cos(50πx) D = (50π)−2

Polynom 3rd order g(x) = 3x2 − 2x3 D = π−2

Polynom 4th order g(x) = 16x4 − 32x3 + 16x2 D = π−2

The basic hyperparameters of all models are chosen similarly to Wang et al. (2021), see ap-
pendix C for details. The code is written in the widely used PINN framework DeepXDE (Lu et al.,
2021a). Fourier embeddings are easy to implement in DeepXDE by using the pre-build function
apply feature transform. Implementing the existing hard-constraining technique (cf. sec-
tion 2.2) is not that straightforward due to the derivative evaluation of the neural network contained
in equation 4. It can be realized by suitable modifications to the neural network class.

For each of the settings from Table 1, nine different PINN methods are compared with one another.
Firstly, the vanilla PINN approach is considered, i.e., no hard-constraining of the Neumann bound-
ary condition. Secondly, a PINN with the existing approach to hard-constrain Neumann boundary
conditions (recall section 2.2) is examined. In addition, for both of these methods the use of random
Fourier feature embeddings (recall section 2.3) is analyzed. More precisely, Fourier embeddings of
sizes 20 and 50 with random frequencies sampled from N (0, 20) are studied. This distribution and
the embedding sizes have been chosen according to the guidelines outlined in Wang et al. (2021).
Lastly, the newly proposed approach of hard-constraining Neumann boundary conditions is con-
sidered (recall section 3). To compare its performance with the aforementioned methods, a Fourier
embedding with single frequency 1 (cf. equation 5) as well as Fourier embeddings of sizes 20 and 50
(cf. equation 6) with random (integer) frequencies sampled from N (0, 20) are used. For the sake
of clarity, we abstain from adding the term x2(1− x)2vNN(x, t) with an additional trainable neural
network vNN to the output of both the existing and the newly proposed method of hard-constraining.

The performances of the different methods are compared in the same way as in Liu et al. (2025a)
by computing the relative improvements of the accuracies w.r.t. a reference method. For instance,
relative improvements of +50% and −100% correspond to half and twice the error of the reference
method, respectively. The reference method is always the vanilla PINN (i.e., no hard-constraining)
with the Fourier embedding strategy leading to the best accuracy. The accuracy always refers to the
relative L2-distance to the analytical solution. To obtain a fair comparison, all models are trained
for the same time – the time it took the vanilla PINN to complete 106 iterations. The relative im-
provements of all methods are shown in Figure 2, the accuracies are stated in Table 2 in appendix C.

In the cases where the solution is dominated by low frequency effects, hard-constraining Neumann
boundary conditions via a single Fourier embedding of frequency 1 yields the best accuracies. Con-
cretely, compared to the best vanilla PINN (no hard-constraining and no Fourier embeddings), this
newly proposed method achieves relative improvements of 54.2%, 47.2%, and 25.6% for low fre-
quency, 3rd order polynomial, and 4th order polynomial initial conditions, respectively. In all of
these three cases, the existing hard-constraining technique performs slightly worse than the vanilla

5



Published as a workshop paper at ICLR 2025 MLMP

Figure 2: Relative improvements of the accuracies of PINNs with different hard-constraining (HC)
and Fourier embedding strategies w.r.t. the reference PINN. All models have been trained for the
same time. More details on the simulations are provided in Figure 3 in appendix C.

PINN. Adding high frequency random Fourier embeddings results in a substantial deterioration in
the performance of all hard-constraining techniques, where it can be observed that the accuracy de-
creases as the size of the Fourier embedding increases from 20 to 50. The reason for this is that
the PINN’s training process to approximate a low frequency solution becomes significantly more
complex and unstable when the spatial input x is mainly provided via high frequency feature em-
beddings.

For the high frequency and multiscale initial conditions, the reference method is the vanilla PINN
with random Fourier embedding of size 50. Better performances are achieved only by the newly pro-
posed method of using Fourier embeddings of 20 or 50 random integer frequencies to hard-constrain
Neumann boundary conditions. Concretely, hard-constraining the Neumann boundary conditions
via a Fourier embedding of size 50 leads to a relative improvement of 96.5% and 74.8% in the high
frequency and multiscale setting, respectively. The existing hard-constraining technique combined
with a random Fourier embedding again performs slightly worse than the reference method. It can
further be seen in Figure 2 that using smaller Fourier embeddings or no Fourier embedding leads
to considerably worse accuracies (across all hard-constraining techniques), which is consistent with
the analysis in Wang et al. (2021).

In all settings, the main reason for the inferior performance of the existing hard-constraining tech-
nique compared to both the vanilla PINN and the newly proposed method of hard-constraining is its
significantly longer training time. Concretely, with no Fourier feature embeddings, the vanilla PINN
takes (on average) 13.5ms to complete a single training iteration, the existing hard-constraining
method 63.1ms, and the newly proposed approach of hard-constraining Neumann boundary con-
ditions via a single Fourier feature mapping takes 14.6ms. When training all models for 106 it-
erations (instead of fixing the training time as in Figure 2), it can be observed that the existing
hard-constraining technique mostly performs better than the best vanilla PINN, but still worse than
the newly proposed method, cf. Figure 3 in appendix C. This shows that hard-constraining boundary
conditions indeed improves the performance of PINNs due to the reduction of the number of train-
ing task, which is consistent with the analyses from Lu et al. (2021b); Zeinhofer et al. (2024) in the
case of Dirichlet conditions. The newly proposed approach offers a computationally efficient way
of benefiting from this effect in the case of Neumann boundary conditions.

The results further show that choosing a suitable Fourier embedding strategy is crucial to obtain
accurate results – sufficiently large Fourier embeddings are needed to approximate high frequency
behavior and no Fourier embeddings should be used for low frequency behavior. While this can
be observed for all hard-constraining techniques, Figure 2 indicates that it is particularly important
for the newly proposed approach. Some guidelines on how to choose the Fourier embedding’s
parameters (i.e., its size and the distribution from which to sample the random frequencies) are
outlined in Wang et al. (2021).

5 CONCLUSION

We have presented a new approach utilizing specific Fourier feature embeddings to hard-constrain
Neumann boundary conditions into PINNs. Compared to existing hard-constraining techniques for
Neumann boundary conditions, the new method is easier to implement and more computationally

6



Published as a workshop paper at ICLR 2025 MLMP

efficient. In addition, it demonstrates superior performance in solving a diffusion problem, partic-
ularly excelling in high frequency and multiscale settings. Moreover, although we have focused on
a simple forward diffusion problem in this study, the method’s versatility allows for its application
across various contexts including inverse problems and operator learning tasks. The new approach
is expected to serve as a valuable tool in representing multiscale processes through PINNs, although
further exploration is needed to fully understand its capabilities.

ACKNOWLEDGMENTS

This work was supported by the Fraunhofer Internal Programs under Grant No. PREPARE 40-
08394.

DATA AVAILABILITY STATEMENT

The source code used for the experiments is publicly available at

https://github.com/FhG-IISB-MKI/HC_Neumann_Experiments

REFERENCES

O.V. Aleksandrov and V.V. Kozlovski. Simulation of interaction between nickel and silicon carbide
during the formation of ohmic contacts. Semiconductors, 43:885–891, 2009. doi: 10.1134/
S1063782609070100.

Suchuan Dong and Naxian Ni. A method for representing periodic functions and enforcing exactly
periodic boundary conditions with deep neural networks. Journal of Computational Physics, 435:
110242, 2021. doi: 10.1016/j.jcp.2021.110242.

Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and discharge
of the lithium/polymer/insertion cell. Journal of The Electrochemical Society, 140(6):1526, 1993.
doi: 10.1149/1.2221597.

Lawrence C. Evans. Partial Differential Equations (second edition). Graduate studies in mathemat-
ics 19. American Mathematical Society, 2010.

Mohammad Ghalambaz, Mikhail A. Sheremet, Mohammed Arshad Khan, Zehba Raizah, and Jana
Shafi. Physics-informed neural networks (PINNs): application categories, trends and impact.
International Journal of Numerical Methods for Heat & Fluid Flow, 34:3131–3165, 2024. doi:
10.1108/HFF-09-2023-0568.

Ryan M. Holmes, Jan D. Zika, Stephen M. Griffies, Andy Hogg, Andrew E. Kiss, and Matthew H.
England. The geography of numerical mixing in a suite of global ocean models. Journal of Ad-
vances in Modeling Earth Systems, 13(7):e2020MS002333, 2021. doi: 10.1029/2020MS002333.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3:422–440, 2021. doi: 10.1038/
s42254-021-00314-5.

Isaac Elias Lagaris, Aristidis Likas, and Dimitrios I. Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9:987–1000,
1998. doi: 10.1109/72.712178.

Carl Leake and Daniele Mortari. Deep theory of functional connections: A new method for estimat-
ing the solutions of partial differential equations. Machine Learning and Knowledge Extraction,
2(1):37–55, 2020. doi: 10.3390/make2010004.

Qiang Liu, Mengyu Chu, and Nils Thuerey. ConFIG: Towards conflict-free training of physics
informed neural networks. In 13th ICLR, 2025a. doi: 10.48550/arXiv.2408.11104.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov-Arnold networks. In 13th ICLR, 2025b.
doi: 10.48550/arXiv.2404.19756.

7

https://github.com/FhG-IISB-MKI/HC_Neumann_Experiments


Published as a workshop paper at ICLR 2025 MLMP

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM Review, 63:208–228, 2021a. doi: 10.1137/19M1274067.

Lu Lu, Raphaël Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G. Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b. doi: 10.1137/21M1397908.

Kevin Stanley McFall and James Robert Mahan. Artificial neural network method for solution of
boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE Trans-
actions on Neural Networks, 20(8):1221–1233, 2009. doi: 10.1109/TNN.2009.2020735.

Paolo Mereghetti, Daria Kokh, J. Andrew McCammon, and Rebecca C. Wade. Diffusion and asso-
ciation processes in biological systems: theory, computation and experiment. BMC Biophysics, 4
(2), 2011. doi: 10.1186/2046-1682-4-2.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep
learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Mark A. Pinsky. Introduction to Fourier Analysis and Wavelets. Graduate studies in mathematics
102. American Mathematical Society, 2008.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019. doi: 10.1016/j.jcp.
2018.10.045.

Maithili Sharan and Sundararaman Gopalakrishnan. Mathematical modeling of diffusion and trans-
port of pollutants in the atmospheric boundary layer. Pure Appl. Geophys., 160:357–394, 2003.
doi: 10.1007/s00024-003-8784-5.

R. Shekari Beidokhti and Alaeddin Malek. Solving initial-boundary value problems for systems of
partial differential equations using neural networks and optimization techniques. Journal of the
Franklin Institute, 346(9):898–913, 2009. doi: 10.1016/j.jfranklin.2009.05.003.

Khemraj Shukla, Juan Diego Toscano, Zhicheng Wang, Zongren Zou, and George Em Karniadakis.
A comprehensive and fair comparison between MLP and KAN representations for differential
equations and operator networks. Computer Methods in Applied Mechanics and Engineering,
431:117290, 2024. doi: 10.1016/j.cma.2024.117290.

Natarajan Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance
functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics
and Engineering, 389:114333, 2022. doi: 10.1016/j.cma.2021.114333.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. NeurIPS, 2020. doi:
10.48550/arXiv.2006.10739.

Juan Diego Toscano, Vivek Oommen, Alan John Varghese, Zongren Zou, Nazanin Ahmadi Daryak-
enari, Chenxi Wu, and George Em Karniadakis. From PINNs to PIKANs: Recent advances
in physics-informed machine learning. Mach. Learn. Comput. Sci. Eng., 1, 2025. doi:
10.1007/s44379-025-00015-1.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature
networks: From regression to solving multi-scale PDEs with physics-informed neural net-
works. Computer Methods in Applied Mechanics and Engineering, 384:113938, 2021. doi:
10.1016/j.cma.2021.113938.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022. doi: 10.1016/j.jcp.
2021.110768.

8



Published as a workshop paper at ICLR 2025 MLMP

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks. CoRR, 2023. doi: 10.48550/arXiv.2308.08468.

Marius Zeinhofer, Rami Masri, and Kent–André Mardal. A unified framework for the error analysis
of physics-informed neural networks. IMA Journal of Numerical Analysis, pp. drae081, 2024.
doi: 10.1093/imanum/drae081.

A THEORETICAL BACKGROUND ON THE ONE-DIMENSIONAL DIFFUSION
PROBLEM

In this appendix, we provide the analytical formula of the solution of the diffusion problem stated
in equations 1–3. Applying basic separation-of-variables and superposition techniques (Evans,
2010) yields that the unique solution u of the system is of the form

u(x, t) =
a0
2

+

∞∑
j=1

aj exp
(
−Dπ2j2t

)
cos (πjx) , x, t ∈ [0, 1], (9)

where (aj)j∈N0
⊂ R are the Fourier coefficients of the initial condition g:

aj = 2

∫ 1

0

g(x) cos (πjx) dx, j ∈ N0. (10)

More details on how the limit in equation 9 can be interpreted under which assumptions on g can
be found in (Evans, 2010; Pinsky, 2008). In the case of sufficiently smooth initial data g satisfying
the vanishing Neumann boundary conditions (equation 2), i.e., g′(0) = 0 = g′(1), the infinite sum
in equation 9 converges uniformly on [0, 1]2 (Pinsky, 2008).

In the case where g consists of a single spatial frequency, all Fourier coefficients aj except of one
vanish. Concretely, if g(x) = cos(πnx) for some n ∈ N, evaluating the integrals in equation 10
yields an = 1 and aj = 0 for j ̸= n. This is because (cos(πm·))m∈N0

is an orthogonal system of
L2([0, 1]) (Pinsky, 2008). In this case, the solution of the diffusion problem given by equations 1–3
is therefore of the form

u(x, t) = exp
(
−Dπ2n2t

)
cos (πnx) , x, t ∈ [0, 1]. (11)

This formula gives the explicit solutions in the low frequency and high frequency cases described in
Table 1 and, due to the linearity of the diffusion problem, also in the multiscale case.

In the case of simple initial data g, the Fourier coefficients can be computed explicitly. For instance,
if g is a polynomial, this is possible by integrating by parts in the integrals from equation 10. In
this way, one can obtain the explicit solution formula for the two polynomials from Table 1. Notice,
however, that in this case, the sum in equation 9 is indeed infinite. For the numerics, we thus have
to truncate the sum, i.e., we approximate equation 9 by

u(x, t) ≈ a0
2

+

N∑
j=1

aj exp
(
−Dπ2j2t

)
cos (πjx) , x, t ∈ [0, 1], (12)

for some sufficiently large N ∈ N. For the numerical experiments conducted in section 4, we used
N = 200 terms.

B METHODOLOGY – MORE GENERAL CASES

In section 3, the formulae for hard-constraining Neumann boundary conditions are restricted to
the case of one spatial variable x in the domain [0, 1] and boundary conditions at both parts of
the boundary. We now show that the same idea can be used to hard-constrain Neumann boundary
conditions on general intervals, only on one part of the boundary, and in higher dimensional spatial
domains.

In all of the below, we again consider the case where the solution has an additional time dependency,
although this is not necessary.

9



Published as a workshop paper at ICLR 2025 MLMP

B.1 GENERAL INTERVALS

We first consider Neumann boundary conditions on a general interval [α, β], i.e.,

∂xu(α, t) = A, ∂xu(β, t) = B, (13)

for a sought function u : [α, β] × [0, T ] → R and prescribed α < β, T > 0, and A,B ∈ R.
Equation 13 can be hard-constrained by suitably rescaling the functions from section 3. Concretely,
the Fourier embeddings defined in equation 5 and equation 6 need to be replaced by

[α, β] ∋ x 7→ γ1(x) = cos

(
π
x− α

β − α

)
(14)

and

[α, β] ∋ x 7→ γ1,b2,...,bn(x) =

(
cos

(
π
x− α

β − α

)
, cos

(
πb2

x− α

β − α

)
, . . . , cos

(
πbn

x− α

β − α

))
,

(15)
respectively, where b2, . . . , bn ∈ Z are again (randomly sampled) integer frequencies. The output
transformation from equation 8 adjusting for non-vanishing Neumann boundary data becomes

utrafo(x, t) = uNN
(
γ(x), t

)
+ (x− α)(β − x)2A+ (x− α)2(x− β)B. (16)

where γ can be γ1 or γ1,b2,...,bn . It is straight-forward to verify via the chain rule that utrafo defined
by equation 16 indeed satisfies equation 13 for any smooth representation model uNN.

B.2 ONE-SIDED NEUMANN BOUNDARY CONDITION

We next consider the situation where only a Neumann boundary condition at one side of the bound-
ary is hard-constrained, i.e.,

∂xu(α, t) = A, (17)

for a sought function u : [α, β] × [0, T ] → R and prescribed α < β, T > 0, and A ∈ R. In
equation 17, the Neumann boundary condition is imposed at the left side of the spatial interval [α, β];
straightforward modifications of the formulae below allow to treat the right boundary in the same
way. To hard-constrain equation 17, we use the feature transformation

[α, β] ∋ x 7→ γ1(x) = cos

(
π

2

x− α

β − α

)
. (18)

This mapping is a suitable substitute for equation 5 because γ′
1(α) = 0 and γ′

1(x) ̸= 0 for α < x ≤
β. The latter is needed for the transformed model to be able to learn general derivative values on
]α, β], in particular, at the right boundary x = β. To better capture high-frequency phenomena, the
above transformation can be extended to

[α, β] ∋ x 7→ γ1,b2,...,bn(x) =

(
cos

(
π

2

x− α

β − α

)
, cos

(
π

2
b2

x− α

β − α

)
, . . . , cos

(
π

2
bn

x− α

β − α

))
.

(19)
In this case, the (randomly sampled) frequencies b2, . . . , bn can be arbitrary real numbers (not nec-
essarily integers). The key property ∂

∂xγ1,b2,...,bn(α) = 0 is ensured by using only Cosine mappings
and no Sines. The overall transformation to hard-constrain equation 17 for a arbitrary smooth rep-
resentation model uNN takes on the form

utrafo(x, t) = uNN
(
γ(x), t

)
+ (x− α)A, (20)

where γ can be defined by equation 18 or equation 19.

B.3 NEUMANN BOUNDARY CONDITION IN HIGHER DIMENSIONS

Lastly, we show how the newly proposed method to hard-constrain Neumann boundary conditions
can be applied in the case where the spatial domain is a hyperrectangle [α1, β1] × . . . × [αd, βd]
of dimension d ∈ N for prescribed α = (α1, . . . , αd), b = (β1, . . . , βd) ∈ Rd with αi < βi for

10



Published as a workshop paper at ICLR 2025 MLMP

i = 1, . . . , d. We consider the case where Neumann boundary conditions are imposed at all parts of
the boundary, i.e.,

∂xiu(x1, . . . , xi−1, αi, xi+1, . . . , xd, t) = Ai, i = 1, . . . , d, (21)
∂xi

u(x1, . . . , xi−1, βi, xi+1, . . . , xd, t) = Bi, i = 1, . . . , d, (22)

where A1, . . . , Ad, B1, . . . , Bd ∈ R are given and u : [α1, β1]× . . .× [αd, βd]× [0, T ] → R denotes
the sought solution. To hard-constrain equations 21–22, the transformations from equations 14–15
need to be applied to all input dimensions. Concretely, let

[α1, β1]× . . .× [αd, βd] ∋ x 7→ γ1(x) =

(
cos

(
π
x1 − α1

β1 − α1

)
, . . . , cos

(
π
xd − αd

βd − αd

))
(23)

and

[α1, β1]× . . .× [αd, βd] ∋ x 7→ γ1,b2,...,bn(x) =

=

(
cos

(
π
x− α

β − α

)
, cos

(
πb2

x− α

β − α

)
, . . . , cos

(
πbn

x− α

β − α

))
. (24)

In the latter expression, the frequencies b2, . . . , bn are again required to be integers and all vector-
operations are meant in a component-wise way, so that the output of γ1,b2,...,bn is of dimension n ·d.
The overall transformation to hard-constrain equations 21–22 is

utrafo(x, t) = uNN
(
γ(x), t

)
+

d∑
i=1

(
Ai(xi−αi)

d∏
j=1,
j ̸=i

(βj−xj)
2+Bi(xi−βi)

d∏
j=1,
j ̸=i

(xj−αj)
2

)
(25)

for x = (x1, . . . , xn) ∈ [α1, β1] × . . . × [αd, βd] and 0 ≤ t ≤ T , where γ can be defined by
equation 23 or equation 24 and uNN is an arbitrary smooth representation model.

In order to not hard-constrain Neumann boundary conditions for certain spatial input variables,
the feature transformations from equations 23–24 can simply be modified so that they leave the
corresponding variables unchanged. Hard-constraining Neumann boundary conditions only at one
part of the boundary in certain spatial input dimension can be achieved by modifications similar to
those presented in section B.2.

C MORE DETAILS ON THE EXPERIMENTS

The aim of this appendix is to provide further details on the experiments conducted and mentioned
in section 4.

Firstly, we specify the hyperparameters used for all numerical experiments in this study. As men-
tioned in section 4, these hyperparameters are chosen similarly to those used in Wang et al. (2021).
The representation model is always a fully connected neural network with 3 hidden layers consisting
of 100 neurons each. The activation function is tanh. The models are trained with a fixed learning
rate of 10−4 using the Adam optimizer. The numbers of collocation points used to compute the
loss L are NPDE = 2 · 104, NIC = 500, and NBC = 103. In all settings, the accuracy is computed
for the model with the lowest (training) loss encountered during training. The code is written in
DeepXDE (Lu et al., 2021a) with backend PyTorch (Paszke et al., 2019). All experiments were
carried out on an NVIDIA Quadro RTX 5000 (16GB RAM).

Secondly, we provide more details on the experiments visualized in Figure 2. Concretely, raw
data for the accuracies (relative L2-error w.r.t. the analytical reference solution) of all models from
Figure 2 are given in Table 2.

Recall that for the simulations visualized in Figure 2, the training time of all models is fixed to
ensure a fair comparison across the different methods. As discussed in section 4, this is the main
reason for the consistently inferior performance of the existing hard-constraining method because of
the longer time it takes to train. To underpin this statement, all models from section 4 have also been
trained for the same number of 106 iterations. The results of these modified experiments are given
below. Concretely, Figure 3 and Table 3 are the analogues of Figure 2 and Table 2, respectively, in

11



Published as a workshop paper at ICLR 2025 MLMP

Table 2: Accuracies for the experiments visualized in Figure 2 in the settings given by in Table 1. In
each setting, the data corresponding to the reference method (which is always chosen as the vanilla
PINN with the Fourier embedding strategy leading to the best accuracy) is shown in italic font. The
data corresponding to the best accuracy is highlighted in bold font.

Low
frequency

High
frequency Multiscale Polynom

3rd order
Polynom
4th order

Vanilla PINN 4 .14 · 10−5 1.64 · 10−1 3.80 · 10−2 1 .30 · 10−4 1 .61 · 10−4

Vanilla PINN
w/ Fourier 20

9.54 · 10−5 5.49 · 10−3 4.22 · 10−4 3.85 · 10−4 5.66 · 10−4

Vanilla PINN
w/ Fourier 50

8.34 · 10−4 3 .69 · 10−3 2 .40 · 10−4 3.66 · 10−3 4.26 · 10−3

Existing HC 6.58 · 10−5 4.50 · 10−1 6.57 · 10−2 1.40 · 10−4 3.39 · 10−4

Existing HC
w/ Fourier 20

7.33 · 10−4 8.08 · 10−3 9.86 · 10−4 4.13 · 10−3 3.99 · 10−3

Existing HC
w/ Fourier 50

2.80 · 10−2 8.42 · 10−3 3.34 · 10−4 1.22 · 10−1 1.92 · 10−1

New HC via
1 Fourier frequency

1.90 · 10−5 3.73 · 10−1 1.15 · 10−2 6.85 · 10−5 1.20 · 10−4

New HC via
20 Fourier frequencies

8.01 · 10−4 1.61 · 10−4 1.18 · 10−4 3.13 · 10−3 3.55 · 10−3

New HC via
50 Fourier frequencies

9.43 · 10−3 1.30 · 10−4 6.05 · 10−5 1.55 · 10−1 2.02 · 10−1

Figure 3: Relative improvements of the accuracies of PINNs with different hard-constraining (HC)
and Fourier embedding strategies w.r.t. a reference PINN in the settings described in Table 1. Dif-
ferent to Figure 2, all models are trained for the same number of iterations (106 training iterations)
here.

the case where all models are trained for a fixed number of iterations. As discussed in section 4,
it can be seen that the models based on the existing hard-constraining technique indeed perform
better than the vanilla PINN in most of the cases when trained for the same number of iterations.
Nonetheless, in all of the settings described in Table 1, the best performances can always be observed
when using the newly proposed method of hard-constraining the Neumann boundary conditions via
Fourier embeddings.

12



Published as a workshop paper at ICLR 2025 MLMP

Table 3: Accuracies for the experiments visualized in Figure 3 in the settings given by in Table 1.
Different to Table 2, all models have been trained for the same number of iterations (106 training
iterations) here. In each setting, the data corresponding to the reference method (which is always
chosen as the vanilla PINN with the Fourier embedding strategy leading to the best accuracy) is
shown in italic font. The data corresponding to the best accuracy is highlighted in bold font.

Low
frequency

High
frequency Multiscale Polynom

3rd order
Polynom
4th order

Vanilla PINN 4 .14 · 10−5 1.64 · 10−1 3.80 · 10−2 1 .30 · 10−4 1 .61 · 10−4

Vanilla PINN
w/ Fourier 20

6.51 · 10−5 5.00 · 10−3 3.74 · 10−4 2.25 · 10−4 3.57 · 10−4

Vanilla PINN
w/ Fourier 50

2.82 · 10−4 3 .37 · 10−3 1 .72 · 10−4 1.83 · 10−3 1.75 · 10−3

Existing HC 2.21 · 10−5 5.60 · 10−2 6.59 · 10−2 1.14 · 10−4 1.75 · 10−4

Existing HC
w/ Fourier 20

1.09 · 10−4 2.86 · 10−3 3.54 · 10−4 1.39 · 10−4 4.55 · 10−4

Existing HC
w/ Fourier 50

7.91 · 10−4 3.62 · 10−3 8.75 · 10−5 3.04 · 10−3 5.44 · 10−3

New HC via
1 Fourier frequency

1.78 · 10−5 3.64 · 10−1 1.01 · 10−3 5.71 · 10−5 1.10 · 10−4

New HC via
20 Fourier frequencies

6.81 · 10−4 1.06 · 10−4 1.19 · 10−4 2.47 · 10−3 2.05 · 10−3

New HC via
50 Fourier frequencies

6.28 · 10−3 7.23 · 10−5 4.18 · 10−5 1.47 · 10−1 4.00 · 10−2

13


	Introduction
	Theoretical Background
	Physics-informed neural networks
	Existing hard-constraining techniques for Neumann boundary conditions
	Fourier feature embeddings

	Methodology
	Experiments
	Conclusion
	Theoretical background on the one-dimensional diffusion problem
	Methodology – More general cases
	General intervals
	One-sided Neumann boundary condition
	Neumann boundary condition in higher dimensions

	More details on the experiments

