

000 NEURAL LATENT ARBITRARY LAGRANGIAN- 001 002 EULERIAN GRIDS FOR FLUID-SOLID INTERACTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Fluid-solid interaction (FSI) problems are fundamental in many scientific and
011 engineering applications, yet effectively capturing the highly nonlinear two-way
012 interactions remains a significant challenge. Most existing deep learning methods
013 are limited to simplified one-way FSI scenarios, often assuming rigid and static
014 solid to reduce complexity. Even in two-way setups, prevailing approaches struggle
015 to capture dynamic, heterogeneous interactions due to the lack of cross-domain
016 awareness. In this paper, we introduce **Fisale**, a data-driven framework for handling
017 complex two-way **FSI** problems. It is inspired by classical numerical methods,
018 namely the Arbitrary Lagrangian–Eulerian (**ALE**) method and the partitioned
019 coupling algorithm. Fisale explicitly models the coupling interface as a distinct
020 component and leverages multiscale latent ALE grids to provide unified, geometry-
021 aware embeddings across domains. A partitioned coupling module (PCM) further
022 decomposes the problem into structured substeps, enabling progressive modeling
023 of nonlinear interdependencies. Compared to existing models, Fisale introduces
024 a more flexible framework that iteratively handles complex dynamics of solid,
025 fluid and their coupling interface on a unified representation, and enables scalable
026 learning of complex two-way FSI behaviors. Experimentally, Fisale excels in three
027 reality-related challenging FSI scenarios, covering 2D, 3D and various tasks. The
028 code is included in the supplementary material for reproducibility.

029 030 1 INTRODUCTION 031

032 Fluid-Solid Interaction (FSI) refers to a complex coupled phenomenon in which solids undergo
033 motion or deformation under the action of surrounding flowing fluid, and reciprocally alter the
034 pressure and velocity distribution within the fluid (Hou et al., 2012). This kind of problems are
035 ubiquitous in real-world scenarios, spanning a wide range of practical applications. From biomedical
036 engineering, such as blood flow interacting with vessel valves (Bazigou & Makinen, 2013; Enderle
037 & Bronzino, 2012), to aerospace and civil engineering involving structural responses to fluid forces
038 (Prasad & Wanhill, 2017; Zhang, 2011), FSI plays a pivotal role in both analysis and design.

039 FSI problems encompass the interplay between fluid flow, solid deformation, and their intricate
040 coupling dynamics. These interactions are typically governed by a tightly coupled system of partial
041 differential equations (PDEs) (Belytschko, 1980). Accurately and efficiently solving them is crucial
042 for practical applications (Kopriva, 2009; Roubíček, 2013). However, due to nonlinear materials,
043 moving interfaces, and strong coupling relations, analytic solutions to these PDEs are typically
044 intractable (Xing, 2019; Génevaux et al., 2003). Thus, these FSI problems are generally discretized
045 into meshes and solved using numerical methods such as the Immersed Boundary Method (IBM)
046 (Peskin, 2002) and Arbitrary Lagrangian-Eulerian (ALE) (Hirt et al., 1974) method. These approaches
047 handle the coupled system either monolithically (Heil et al., 2008), treating fluid and solid as a unified
048 domain, or through partitioned iteration (Degoote et al., 2009), where each subdomain is solved
049 separately with interface data exchanged iteratively. While effective in many cases, both approaches
050 are computationally expensive (Umetani & Bickel, 2018), strongly mesh-dependent (Berzins, 1999;
051 Burkhart et al., 2013), and face stability issues (Grétarsson et al., 2011; Pai et al., 2005).

052 Recently, deep learning has emerged as a powerful tool for solving PDEs (Li et al., 2021; Lu et al.,
053 2021), thanks to its strong capacity to effectively capture nonlinear input-output mappings. Once
trained, it can offer significantly faster inference than traditional solvers (Sirignano & Spiliopoulos,

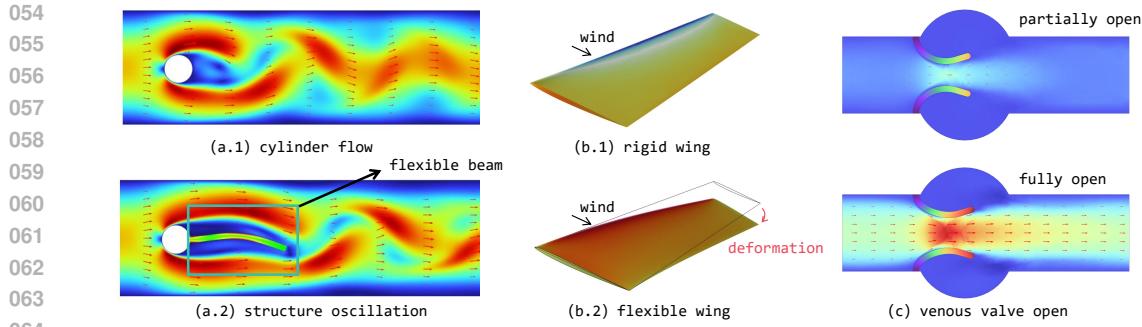


Figure 1: Fluid-solid interaction scenarios. (a.1) and (a.2) depict flow-around-body scenarios; (b.1) and (b.2) focus on aerodynamic analysis of wings; (c) illustrates the periodic dynamics of a venous valve; (a.1) and (b.1) represent one-way FSI cases, while the others involve two-way FSI.

2018; Han et al., 2018). However, in the context of FSI, most existing models primarily focus on one-way FSI, where the solid is typically treated as static and rigid. For example, many studies have explored airfoil design tasks (Bonnet et al., 2022; Valencia et al., 2025). As shown in Figure 1(b.1), the aircraft wing is typically modeled as a static rigid body. This allows the solver to treat the wing region as a fixed, undeformable inner boundary and focus solely on the fluid domain, significantly reducing the complexity. However, as shown in Figure 1(b.2), real wings are often made of flexible materials and may undergo noticeable deformation under aerodynamic loads (Aono et al., 2010; Eppler, 2012). In such cases, the fluid-solid interface becomes dynamic, and the coupling relation grows more complex. Similar assumptions also appear in other benchmarks like cylinder flow (Pfaff et al., 2020; Li et al., 2025) and car design tasks (Elrefaie et al., 2024a,b), where structural flexibility is ignored. Thus, *how to effectively handle the evolution of fluid and solid, and capture their dynamic interactions* is the key to learn two-way FSI problems with learning-based solvers.

Regarding existing two-way cases, GNN-based models have simulated several rigid motion scenarios (Sanchez-Gonzalez et al., 2020; Li et al., 2019). While message passing underpins GNNs, it is inherently stateless and undifferentiated, making it difficult to distinguish inter- and intra-domain information in complex deformation scenarios (Hou et al., 2019). Moreover, its local reception also falls short in global modeling (Li et al., 2023d). A closely related work to ours is CoDA-NO (Rahman et al., 2024), a multiphysics neural operator that tackles a classic two-way FSI problem, structure oscillation (Figure 1(a.2)) (Turek & Hron, 2006), by partitioning the input domain along physical variable channels and learning the global mapping through codomain-wise attention. However, this variable-wise strategy maintains a monolithic view and lacks explicit handling of the dynamic fluid-solid interface caused by structural deformation. More broadly, most neural operators struggle to simultaneously learn the distinct behaviors and bidirectional dependencies of fluid and solid domains under such monolithic modeling approaches. As a result, two-way FSI still remains underexplored.

To effectively capture the evolution of solid and fluid states and their complex interactions, we propose Fisale, a purely data-driven framework inspired by classical numerical methods: ALE and partitioned coupling algorithm. ALE provides a unified representation for cross domains via mesh motion, while partitioned strategies decouple fluid and solid domains for separate processing and reduced nonlinearity. In our design, recognizing the importance of the coupling interface, we explicitly model it as a separate component on par with the solid and fluid. This enables the model to better capture the coupled dynamics. We then introduce multiscale latent ALE grids, onto which fluid, solid, and interface states are interpolated. These grids serve as unified multi-physics embedding that encodes spatial and physical quantities of the FSI system. Eventually, instead of monolithic updates, we introduce a Partitioned Coupling Module (PCM) that mirrors the logic of classical partitioned solvers. By breaking the nonlinear problem into sequential substeps, it progressively captures evolutions and complex interdependencies through deep iteration. Our contributions are summarized as follows:

- We propose to solve two-way FSI problems by separately handling the evolution of different physical domains. In particular, we treat the coupling interface as an individual component, on par with fluid and solid, enabling a more effective capture of cross-domain interactions.

- 108 • We propose Fisale, a purely data-driven framework inspired by ALE and partitioned coupling
109 methods. It explicitly models fluid, solid, and their interface dynamics through multiscale
110 latent ALE grids and Partitioned Coupling Module (PCM).
- 111 • Fisale achieves consistent state-of-the-art across three challenging FSI tasks, particularly in
112 scenarios involving large deformation and complex interaction.

114 **Related Work** Deep learning has recently gained traction in addressing scientific problems across
115 various fields, including initial explorations into FSI problems. A common strategy is to hybridize
116 traditional solvers with neural networks. For instance, in partitioned frameworks, deep learning
117 models may replace either the fluid or solid solver (Xiao et al., 2024a; Zhu et al., 2019; Mazhar
118 et al., 2023; Xu et al., 2024; Liu et al., 2024), while the other remains conventional. Alternatively,
119 neural networks are integrated into solvers to accelerate costly steps like velocity estimation (Fan &
120 Wang, 2024), interface force prediction (Zhang et al., 2022; Li et al., 2023a) or control parameter
121 approximation (Takahashi et al., 2021). Different from hybrid, purely data-driven models bypass
122 traditional solvers entirely and learn physical dynamics directly from data, sometimes with the
123 guidance of physical priors. One prominent class is deep reduced-order models (ROMs) (Gupta,
124 2022; Ashwin et al., 2022), which are built on the assumption that FSI dynamics evolve on a low-
125 dimensional manifold (Lee et al., 2024). These methods use autoencoders (Zhai et al., 2018), PCA
126 (Maćkiewicz & Ratajczak, 1993), or POD (Berkooz et al., 1993) to reduce dimensionality, and utilize
127 neural networks to model the evolution in low-dimensional space efficiently. Another widely studied
128 direction is Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019), which embed the
129 governing equations of the FSI problems directly into the loss function (Wang et al., 2021; Cheng
130 et al., 2021; Chenaud et al., 2024), enabling the model to learn solutions that satisfy physical laws
131 and serve as an instance-specific solver after trained. To address generalization across geometries and
132 conditions, neural operators (Boullé & Townsend, 2023) learn mappings between function spaces,
133 offering mesh-independent PDE solvers (Wu et al., 2024; Hao et al., 2023; Li et al., 2023d; 2025).
134 These methods have also been extended to multi-physics problems like FSI (Rahman et al., 2024) by
135 learning codomain-wise operator along physical variable channels. Complementarily, GNN-based
136 simulators leverage mesh (Pfaff et al., 2020) or particle (Li et al., 2019; Sanchez-Gonzalez et al.,
137 2020) connectivity to learn local interactions and propagate across physical domains.

138 However, most of these studies remain limited to one-way FSI scenarios, where the solid is assumed
139 rigid and static, greatly simplifying the coupling dynamics. For the relatively few studies tackling
140 two-way FSI, current methods, such as GNN-based simulators (Pfaff et al., 2020; Sanchez-Gonzalez
141 et al., 2020) and multi-physics neural operators (Rahman et al., 2024), struggle to effectively capture
142 coupling behavior due to the undifferentiated and monolithic modeling. As a result, effectively
143 learning the evolution of deformable solids and surrounding fluid flows, and capturing their complex
144 coupling relations remain an underexplored challenge.

2 PRELIMINARIES

145 **Arbitrary Lagrangian-Eulerian Method** Lagrangian and Eulerian descriptions are two primary
146 views for physical simulations. While the former tracks the motion trajectories of material particles
147 (Dym et al., 1973), the latter observes physical quantities at fixed spatial locations (Morrison, 2013).
148 Accordingly, solids are typically simulated using Lagrangian meshes that follow material deformation
149 and motion, whereas fluids are often discretized using Eulerian grids to accommodate complex flow
150 behavior and topological changes, making their coupling both common in nature but difficult to
151 simulate (Xie et al., 2023; Axisa & Antunes, 2006). The Arbitrary Lagrangian-Eulerian (ALE)
152 method (Hirt et al., 1974) combines both descriptions and is widely used in FSI simulations (Takashi
153 & Hughes, 1992; Donea et al., 1982). The core idea is defining a mesh velocity \mathbf{v}_g that moves
154 independently of the material and fixed domain, enabling flexible mesh motion and improved stability.
155 The mesh velocity \mathbf{v}_g is typically equal to the material velocity \mathbf{v} in solid domains, while obtained by
156 Laplacian smoothing (Field, 1988) in fluid regions:

$$\nabla \cdot (\gamma \nabla \mathbf{v}_g) = 0 \quad (1)$$

157 where γ is a weighting coefficient and interface velocities serve as Dirichlet boundary conditions. This
158 flexibility of mesh motion enables ALE to accommodate unified representations for heterogeneous
159 domains, providing a strong foundation for learning-based modeling of evolution and interaction.

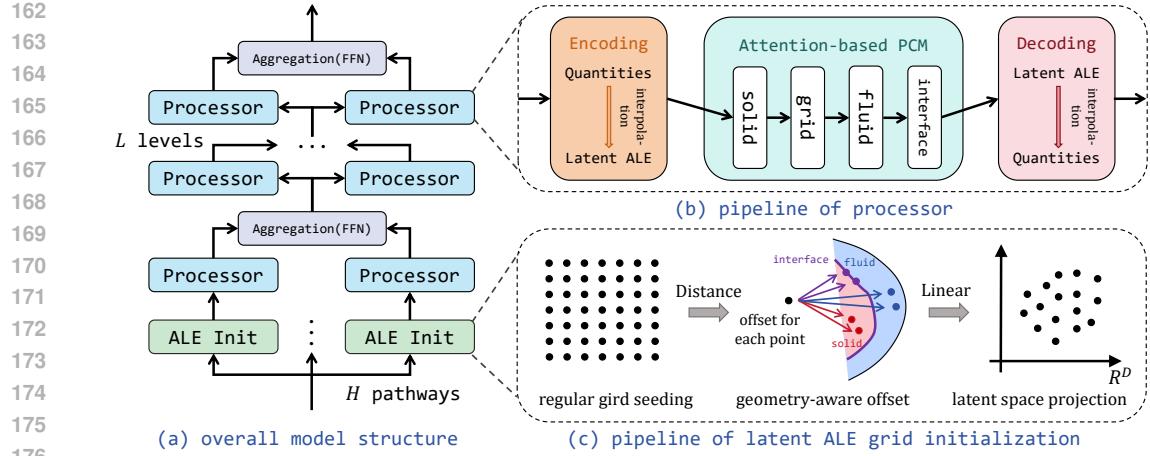


Figure 2: The overview of Fisale. (a) describes the overall structure of Fisale; (b) depicts the pipeline of the processor; (c) shows the pipeline of the latent ALE grid initialization.

Partitioned Coupling Algorithm The partitioned coupling algorithm is widely adopted in FSI simulations (Li et al., 2016; Degroote et al., 2008). By decoupling the fluid and solid, the coupled system is transformed into two smaller and typically better-conditioned problems, each of which can be solved using standard techniques. Compared to monolithic methods that solve a large, fully coupled nonlinear system, the partitioned method reduces the size and complexity of the global system matrix and often improves linearity within each subdomain. A typical solution sequence (Placzek et al., 2009) involves: (1) solving the solid subproblem using current solid and fluid states; (2) updating the computational mesh using an ALE mesh motion method to reflect the solid deformation; (3) solving the fluid subproblem with updated mesh and solid state; (4) matching interface, repeating above procedures or advancing to next step.

3 METHOD

Problem Setup Given a bounded open domain $\mathcal{D} \subset \mathbb{R}^d$ and a state space $\mathcal{U} \subset \mathbb{R}^N$ representing N physical quantities across fluid and solid fields (in Lagrangian, Eulerian, or hybrid form), we denote $\mathbf{u}_t(\mathbf{g}) \in \mathcal{U}$ and $\mathbf{u}_{t+\Delta t}(\mathbf{g}) \in \mathcal{U}$ as system states at two time steps t and $t + \Delta t$, evaluated at a generalized spatial coordinate $\mathbf{g} \in \mathbb{R}^d$. The FSI prediction problem can be formulated as $\mathbf{u}_t(\mathbf{g}) \xrightarrow{\mathcal{F}_\theta} \hat{\mathbf{u}}_{t+\Delta t}(\mathbf{g})$, where \mathcal{F}_θ represents the learned mapping function. This basic single-step prediction can be extended to several tasks like steady-state inference, as discussed in Section 4.

Notation For simplicity, we omit the time subscript t and denote the fluid and solid observations at current time step as $\mathbf{u}_f = \text{Concat}[\mathbf{g}_f \in \mathbb{R}^{N_f \times d}, \mathbf{q}_f \in \mathbb{R}^{N_f \times C_f}]$ and $\mathbf{u}_s = \text{Concat}[\mathbf{g}_s \in \mathbb{R}^{N_s \times d}, \mathbf{q}_s \in \mathbb{R}^{N_s \times C_s}]$, respectively. Here, \mathbf{g} represents the generalized spatial coordinates and \mathbf{q} denotes the associated physical quantities. As mentioned before, we explicitly treat the interface as a separate component and denote it as $\mathbf{u}_b = \text{Concat}[\mathbf{g}_b \in \mathbb{R}^{N_b \times d}, \mathbf{q}_b \in \mathbb{R}^{N_b \times C_b}]$, where $C_f + C_s = C_b$ and $N_f + N_s + N_b = N$. $\mathbf{u}_f, \mathbf{u}_s$ and \mathbf{u}_b are the inputs into the mode, containing both the geometry and physical quantities.

Overall Framework As shown in Figure 2, the pipeline of Fisale is formulated as:

$$\mathcal{F}_\theta = \left(\prod_{l=1}^L \mathcal{F}_{\theta_{\text{Aggregate}}}^{(l)} \circ \left[\bigoplus_{h=1}^H \mathcal{F}_{\theta_{\text{LatentALEToOrigin}}}^{(l,h)} \circ \mathcal{F}_{\theta_{\text{PCM}}}^{(l,h)} \circ \mathcal{F}_{\theta_{\text{OriginToLatentALE}}}^{(l,h)} \right] \right) \circ \left[\bigoplus_{h=1}^H \mathcal{F}_{\theta_{\text{ALEInit}}}^{(h)} \right] \quad (2)$$

where \circ denotes operator composition. The full model \mathcal{F}_θ consists of H parallel latent pathways corresponding to different spatial scales. Each pathway begins with an individual ALE grid initialization $\mathcal{F}_{\theta_{\text{ALEInit}}}^{(h)}$, which provides a unified representation for different domains. Then each pathway proceeds through L stacked processors. At the l -th level of the h -th pathway, the processor consists of three sequential components: an encoding step from the original space to the latent ALE space $\mathcal{F}_{\theta_{\text{OriginToLatentALE}}}^{(l,h)}$, a processing module $\mathcal{F}_{\theta_{\text{PCM}}}^{(l,h)}$ on the latent ALE grid, and a decoding step back to the

216 original space $\mathcal{F}_{\theta_{\text{LatentALEToOrigin}}^{(l,h)}}$. To enable cross-scale communication, an aggregation module $\mathcal{F}_{\theta_{\text{Aggregate}}}^{(l)}$
 217 is applied after each level l , where features from all pathways are concatenated and passed through a
 218 Feed-Forward Network (FFN) to produce updated features.
 219

220 221 3.1 MULTISCALE LATENT ALE GRIDS

222 Instead of directly solving FSI in heterogeneous descriptions, we introduce a set of multiscale latent
 223 ALE grids, which provide a unified representation for multiscale and cross-domain physics.
 224

225 **Latent ALE Grid Initiation** The initiation of a single latent ALE grid includes two steps: regular
 226 grid seeding and geometry-aware offset. As shown in Figure 2, we begin by initializing a regular,
 227 axis-aligned Cartesian grid $\mathbf{a} \in \mathbb{R}^{M \times d}$ over the d -dimensional Euclidean space $[-3.5, 3.5]^d$ via
 228 uniform sampling. Notably, we normalize the input physical domain into a $\mathcal{N}(0, 1)$; according to the
 229 3-sigma rule (Huber, 2018), the regular grid with interval $[-3.5, 3.5]^d$ covers more than 99.95% input
 230 mesh points. Here, the grid is flattened into a sequence of length M , where $M = M_1 \times M_2 \times \dots \times M_d$
 231 denotes the total number of grid nodes, and each M_k represents the number of discretization points
 232 along the k -th spatial axis. This regular grid is treated as a reference grid, independent of any specific
 233 geometry. Its uniform structure enables the decoupling of spatial topology from geometric variation
 234 and facilitates geometry-aware deformation in the subsequent initialization stage (Li et al., 2023c).
 235

236 To incorporate geometric awareness into the grid, we deform the regular reference grid \mathbf{a} by applying
 237 an offset field that reflects the spatial distribution of solid, fluid and coupling interface. We first
 238 compute direction vectors from each grid node \mathbf{a}_i to points in each domain. These vectors are
 239 weighted by a normalized radial basis kernel to prioritize closer points. For example, the offset
 240 contributed by the fluid geometry \mathbf{g}_f is given by:
 241

$$\Delta_f(\mathbf{a}_i) = \sum_{j=1}^{N_f} \frac{\exp(-\|\mathbf{a}_i - \mathbf{g}_{f_j}\|^2)}{\sum_{j=1}^{N_f} \exp(-\|\mathbf{a}_i - \mathbf{g}_{f_j}\|^2)} (\mathbf{g}_{f_j} - \mathbf{a}_i)$$

242 where the subtraction is implemented by broadcast. With this offset, fluid points that are closer to
 243 the grid node receive higher weights, leading to a geometry-aware aggregation. The total offset is
 244 obtained by summing contributions from all domains: $\Delta(\mathbf{a}) = \Delta_s(\mathbf{a}) + \Delta_f(\mathbf{a}) + \Delta_b(\mathbf{a})$. Finally,
 245 the latent grid is obtained by applying the total geometry-aware offset followed by a linear projection:
 246 $\mathbf{g}_a = \text{Linear}(\mathbf{a} + \Delta(\mathbf{a}))$. This geometry-aware offset encourages grid nodes to move closer to regions
 247 of geometric interest, such as fluid-solid interfaces, by aggregating directional influences through
 248 distance-weighted kernels. Moreover, the spatial decay of the kernel attenuates the influence of
 249 distant regions, leading to weaker and more uniform updates in non-critical regions, which helps
 250 preserve the grid’s smoothness and regularity. We then build edges by performing k -nearest neighbor
 251 (k -NN) search on the latent grid $\mathbf{g}_a \in \mathbb{R}^{M \times D}$, i.e., $E = k\text{NN}(\mathbf{g}_a)$. The edge set E defines a latent
 252 interaction graph over the deformed grid, which supports grid’s update in subsequent modules.
 253

254 **Definition of Latent ALE Grid** During the solving process, this grid is maintained and iteratively
 255 updated in latent space according to the learned dynamics. Crucially, it adheres to the principle of the
 256 ALE method, namely, evolving with a motion that is decoupled from both the frames of material points
 257 and spatial grids, allowing for intermediate behavior between Lagrangian and Eulerian descriptions
 258 (Hirt et al., 1974). Therefore, we can define it as the *Latent ALE Grid*.
 259

260 **Multiscale** FSI phenomena are inherently multiscale (Steinbauer, 2017). For example, a flexible
 261 wing interacting with airflow involves large-scale aerodynamic forces and small-scale local deforma-
 262 tions. Capturing such behaviors requires the ability to model and propagate information across
 263 different resolution levels. Fortunately, it is straightforward and natural in our framework to construct
 264 grids at multiple scales, simply by varying the number of grid nodes M during initialization. By
 265 operating in parallel, each grid records physical context at a different level of detail. This allows
 266 coarse grids to efficiently model global structures, while fine grids focus on local interactions, together
 267 forming a hierarchical representation well-suited for multiscale FSI problems.
 268

269 **Supplementary Notation** We define $\mathbf{x}_f^{(l,h)} \in \mathbb{R}^{N_f \times D}$ to be the output feature of the l -th level
 270 in the h -th pathway. The $\mathbf{x}_f^{0,h}$ corresponds to the input embedding of the observation \mathbf{u}_f , i.e.,
 $\mathbf{x}_f^{0,h} = \text{Linear}(\mathbf{u}_f)$. The solid and interface adhere the same manner. We denote $\mathbf{g}_a^{l,h}$ as the state of

270 the latent ALE grid at the l -th level of the h -th pathway. Since the encoding, decoding, and PCM
 271 operations are shared across levels and pathways, we omit l and h in the following descriptions.
 272

273 **3.2 PHYSICAL QUANTITIES ENCODING AND DECODING**
 274

275 Before each coupling process, we project physical quantities onto the grid to enable unification across
 276 heterogeneous regions. After coupling learning, we project them back for multiscale aggregation.
 277 Both processes are applied by weighted interpolation.

278 **Physical Quantities Encoding** For each domain, we compute the projection weight through an
 279 attention-like manner. The interpolation weight for fluid domain $\mathbf{w}_f \in \mathbb{R}^{M \times N_f}$ is defined as:
 280

$$281 \quad \mathbf{w}_f = \mathbf{Q}\mathbf{K}^T, \quad \text{where } \mathbf{Q} = \text{Linear}(\mathbf{g}_a) \text{ and } \mathbf{K} = \text{Linear}(\mathbf{x}_f)$$

282 Then the fluid projection $\mathbf{p}_f \in \mathbb{R}^{M \times D}$ is conducted by: $\mathbf{p}_f = \text{Softmax}(\mathbf{w}_f)\mathbf{x}_f$.
 283

284 Solid and coupling interface domains follow the same procedure with projection weights \mathbf{w}_s and
 285 \mathbf{w}_b , projected features \mathbf{p}_s and \mathbf{p}_b , respectively. As a result, we extend the latent ALE grid \mathbf{g}_a as
 286 $\{\mathbf{g}_a, \mathbf{p}_s, \mathbf{p}_f, \mathbf{p}_b\}$. This latent tuple encodes both the grid's geometry-aware position and the surround-
 287 ing physical context, serving as the input to subsequent modules. Unlike traditional discretizations
 288 that partition physical domains rigidly, we represent fluid, solid, and interface features simultane-
 289 ously at each latent node. This allows the model to naturally capture cross-domain interactions and
 290 dynamics near interfaces, forming a flexible and expressive multi-physics embedding for learning.
 291

292 **Physical Quantities Decoding** Let $\{\hat{\mathbf{g}}_a, \hat{\mathbf{p}}_s, \hat{\mathbf{p}}_f, \hat{\mathbf{p}}_b\} = \text{PCM}(\{\mathbf{g}_a, \mathbf{p}_s, \mathbf{p}_f, \mathbf{p}_b\})$ denote the updated
 293 features. The decoding is similar to the encoding as: $\hat{\mathbf{x}}_f = \text{Softmax}(\mathbf{w}_f^T)\hat{\mathbf{p}}_f$.
 294

295 Here, the direction of $\text{Softmax}(\cdot)$ is different from the encoding to keep the sum of the interpolation
 296 weight equal to 1. To fuse features in different scales, we concatenate the decoding feature from
 297 different pathways and adopt a Feed-Forward Network (FFN) for aggregation. Then the fused features
 298 are split and taken back to their own pathways.
 299

300 **3.3 PARTITIONED COUPLING MODULE**
 301

302 We design a Partitioned Coupling Module (PCM) that follows the process of partitioned coupling
 303 algorithm to learn the evolution of fluid, solid and their complex coupling in an iteratively deep
 304 manner. Each PCM includes four forward steps outlined in Section 2.
 305

306 **Update Solid State** We first employ the cross-attention mechanism to update the solid state. Attention
 307 mechanisms (Vaswani et al., 2017) are well-suited for modeling PDE-related physical systems due
 308 to their strong capacity to capture nonlinear dependencies, long-range interactions, and perform
 309 spatial aggregation across irregular domains (Hao et al., 2023; Wu et al., 2023; Li et al., 2023b).
 310 Recent studies have further shown that attention itself can be interpreted as an integral operator,
 311 capable of approximating complex mappings across function spaces (Cao, 2021; Wu et al., 2024;
 312 Li et al., 2025). Moreover, the flattened sequence of the latent ALE grid aligns naturally with the
 313 input format required by attention mechanisms, making attention a seamless and effective choice for
 314 updating physical states across fluid, solid, and interface domains. Given current latent ALE grid
 315 $(\mathbf{g}_a, \mathbf{p}_s, \mathbf{p}_f, \mathbf{p}_b)$, the update is formulated as:
 316

$$317 \quad \mathbf{Q} = \text{Linear}(\text{Concat}(\mathbf{p}_s + \mathbf{g}_a, \mathbf{p}_b + \mathbf{g}_a)), \quad \mathbf{K}, \mathbf{V} = \text{Linear}(\text{Concat}(\mathbf{p}_s + \mathbf{g}_a, \mathbf{p}_f + \mathbf{g}_a, \mathbf{p}_b + \mathbf{g}_a))$$

$$318 \quad \mathbf{p}'_s, \mathbf{p}'_b = \text{Chunk} \left(\tilde{\mathbf{Q}}(\tilde{\mathbf{K}}^T \mathbf{V} \cdot D^{-1}) \right), \quad \text{where } \tilde{\mathbf{Q}} = \text{Softmax}(\mathbf{Q}) \text{ and } \tilde{\mathbf{K}} = \text{Softmax}(\mathbf{K})$$

319 The query \mathbf{Q} is constructed by complete solid representation and the key \mathbf{K} and value \mathbf{V} include
 320 the information of the whole system. The geometry of the latent ALE grid \mathbf{g}_a serves as positional
 321 embedding that provides spatial prior. We concatenate the components along the length direction
 322 and adopt the linear attention which has been approved as a kind of neural operator (Cao, 2021).
 323 Through cross-attention, each solid node selectively attends to the entire system, allowing it to update
 324 its state based on both internal structural cues and external influences from the fluid and interface.
 325 The $\text{Chunk}(\cdot)$ divides the output to recover the updated solid state \mathbf{p}'_s and the interface state \mathbf{p}'_b .
 326

327 **Update Grid Coordinate** We next adopt a velocity-based Laplacian smoothing strategy, defined in
 328 Eq.1, to update the latent ALE grid coordinates in response to solid motion and deformation while
 329

324 preserving grid quality. Eq.1 governs the spatial diffusion of mesh velocity \mathbf{v}_g and can be interpreted
 325 as a steady-state flux balance over the grid. Upon discretization, the divergence and gradient operators
 326 naturally translate into local neighbor interactions (Han et al., 2023a): $\sum_{j \in \mathcal{N}(i)} (\mathbf{v}_{g,j} - \mathbf{v}_{g,i}) = \mathbf{0}$.
 327 The velocity at each mesh point is updated based on a weighted combination of its neighboring nodes:
 328

$$\mathbf{v}_{g,i} \leftarrow \sum_{j \in \mathcal{N}(i)} \gamma_{ij} \mathbf{v}_{g,j} \cdot \left(\sum_{j \in \mathcal{N}(i)} \gamma_{ij} \right)^{-1}$$

331 where $\mathcal{N}(i)$ denotes the neighbors of the i -th node, and γ_{ij} is a diffusion-like weight that reflects
 332 local mesh connectivity. This update scheme is naturally aligned with the local message passing
 333 (Gilmer et al., 2017) used in graph-based models. The final update of the mesh velocity at each node
 334 is formulated as:

$$\mathbf{v}_{g,i} \leftarrow \sum_{j \in \mathcal{N}(i)} \gamma_{ij} \alpha_j \text{Concat}(\mathbf{p}'_s, \mathbf{p}_f, \mathbf{p}'_b)_j$$

336 where α is learnable to facilitate the extraction of motion-relevant signals. Finally, to control the
 337 grid quality, without grid distortion, we conduct a geometry smoothing over the local neighborhood
 338 $\mathbf{g}'_{a,i} \leftarrow \sum_{j \in \mathcal{N}(i)} \beta_{ij} \hat{\mathbf{g}}_{a,j}$, where $\beta \in [0, 1]$ and $\sum_{j \in \mathcal{N}(i)} \beta_{ij} = 1$.
 339

340 **Update Fluid State** Similar to the update of the solid state, we update fluid state as:

$$\mathbf{Q} = \text{Linear}(\text{Concat}(\mathbf{p}_f + \mathbf{g}'_a, \mathbf{p}'_b + \mathbf{g}'_a)), \quad \mathbf{K}, \mathbf{V} = \text{Linear}(\text{Concat}(\mathbf{p}'_s + \mathbf{g}'_a, \mathbf{p}_f + \mathbf{g}'_a, \mathbf{p}'_b + \mathbf{g}'_a))$$

$$\mathbf{p}'_s, \mathbf{p}''_b = \text{Chunk} \left(\tilde{\mathbf{Q}}(\tilde{\mathbf{K}}^T \mathbf{V} \cdot D^{-1}) \right)$$

345 **Update Interface Influence** Finally, we use a self-attention mechanism to align the information
 346 across the solid, fluid, and their coupling interface regions as:

$$\mathbf{Q}, \mathbf{K}, \mathbf{V} = \text{Linear}(\text{Concat}(\mathbf{p}'_s + \mathbf{g}'_a, \mathbf{p}'_f + \mathbf{g}'_a, \mathbf{p}''_b + \mathbf{g}'_a)), \quad \mathbf{p}''_s, \mathbf{p}''_f, \mathbf{p}'''_b = \text{Chunk} \left(\tilde{\mathbf{Q}}(\tilde{\mathbf{K}}^T \mathbf{V} \cdot D^{-1}) \right)$$

347 The self-attention operation enables mutual interaction among the three domains, allowing the model
 348 to capture dependencies and reconcile inconsistencies across the solid–fluid interface by attending to
 349 relevant features globally. See Appendix.L for more discussion of Fisale and existing works.
 350

353 4 EXPERIMENTS

355 We evaluate Fisale on three reality-related challenging FSI scenarios. These scenarios have different
 356 dimensions, targets, scales, and complexity. Detailed benchmark information is listed in Table 4. We
 357 have also conducted more studies in Appendix.F, G and H to evaluate the model comprehensively.
 358

359 **Baselines** We compare Fisale with over ten
 360 advanced learning-based solvers, includ-
 361 ing Neural Operators: GeoFNO (Li et al.,
 362 2023c), GINO (Li et al., 2023d), CoDA-
 363 NO (Rahman et al., 2024), LSM (Wu et al.,
 364 2023), LNO (Wang & Wang, 2024); Trans-
 365 formers: Galerkin (Cao, 2021), GNOT
 366 (Hao et al., 2023), ONO (Xiao et al., 2024b)
 367 Transolver (Wu et al., 2024); GNNs: MGN
 368 (Pfaff et al., 2020), HOOD (Grigorev et al.,
 369 2023), AMG (Li et al., 2025). These base-
 370 lines represent the superior performance in
 371 data-driven PDE solvers (including several
 372 FSI tasks) and serve as strong references
 373 for Fisale on complex FSI tasks.

374 **Implementation and Metrics** See Ap-
 375 pendix D and C for more details.
 376

377 Table 1: Performance on Structure Oscillation. Relative
 378 L2 is recorded. Second-best performance is underlined.

	Solid	Fluid	Interface	Mean (↓)
Geo-FNO	0.0003	0.0387	0.0074	0.0155
GINO	0.0021	0.2536	0.0269	0.0942
LSM	0.0007	0.1951	0.0068	0.0675
CoDANO	0.0005	0.0703	0.0075	0.0261
LNO	0.0006	0.0244	0.0061	0.0104
Galerkin	0.0012	0.0507	0.0114	0.0211
GNOT	0.0006	0.0361	0.0076	0.0148
ONO	0.0012	0.0732	0.0126	0.0290
Transolver	0.0004	0.0265	0.0075	0.0115
MGN	0.0007	0.0282	0.0112	0.0134
HOOD	0.0006	0.0277	0.0109	0.0131
AMG	0.0004	0.0211	0.0051	<u>0.0089</u>
Fisale	0.0003	0.0148	0.0047	0.0066

378
379

4.1 STRUCTURE OSCILLATION

380 The structure oscillation problem, also called "FLUSTRUK-
381 A", is a famous benchmark for
382 validating classical fluid–solid interaction (FSI) solvers (Turek &
383 Hron, 2006). It involves a thin
384 elastic beam immersed in an in-
385 compressible, dynamic fluid that
386 develops self-sustained, material-
387 dependent periodic oscillations.
388 Unlike the widely studied Cylinder-
389 Flow benchmark (Pfaff et al.,
390 2020; Li et al., 2025) which involves no structural flexibility, FLUSTRUK-A introduces strong
391 two-way coupling and nonlinear deformation, making it more challenging to solve accurately. The
392 dataset is proposed in CoDA-NO (Rahman et al., 2024) with 1000 frames and different Reynolds
393 number Re . More details can be found in Appendix.B.1. Following the convention, we train the
394 Fisale and baselines learn the mapping from current \mathbf{u}_t to the next $\mathbf{u}_{t+\Delta t}$. We set Δt as 4 frames to
395 let the oscillation evolve adequately. The results are shown in Table 1. From the results we observe
396 that Fisale achieves advanced ability, particularly in fluid domains. Compared with other baselines
397 who model different domains in a homogeneous way, Fisale can better capture the bidirectional
398 interactions between fluid and solid at the interface and predict the motion and shape more accurately
399 (the tail part of the structure as shown in Figure 3). This in turn enhances the accuracy of fluid
400 predictions. The unified latent ALE representation, combined with iterative partitioned coupling,
401 allows Fisale to progressively resolve the nonlinear interactions between fluid and solid, resulting in
402 more accurate and stable predictions under strongly coupled two-way FSI.

403

4.2 VENOUS VALVE

404

405 Table 2: Performance on Venous Valve. We record RMSE-all (\downarrow), the average RMSE of the whole
406 rollout trajectory and all samples. Results of other physical quantities are listed in Table 20.

407

	Solid		Fluid		Interface		
	Geometry	Stress	Pressure	Velocity (x)	Geometry	Stress	Pressure
Geo-FNO	0.3687	3252.51	124.27	0.1304	0.3948	5471.54	110.35
LSM	0.4788	4166.96	145.03	0.1419	0.4635	6547.88	122.53
CoDANO	0.6843	4385.24	171.57	0.1713	0.7806	6843.06	143.65
Galerkin	0.3471	3226.86	109.52	0.1025	0.3213	5093.68	113.34
GNOT	0.3833	4207.17	100.59	0.1147	0.3679	5384.59	128.57
Transolver	0.3262	3055.56	91.83	0.0901	0.3432	4941.86	85.18
MGN	0.5540	4436.56	166.03	0.1362	0.5391	6646.33	158.35
HOOD	0.4647	3616.09	135.67	0.1174	0.4956	6080.94	126.05
AMG	0.4029	3784.96	107.45	0.1199	0.3809	5432.73	103.43
Fisale	0.2794	2658.59	80.23	0.0768	0.2565	4365.29	73.31

423

* Some baseline models are not included due to the training instability and convergence issues,
424 which arise from long rollout trajectories, cross domains and multiple physical quantities.

425

426 The venous valve problem models the opening and closing dynamics of valves in veins, which
427 are essential to maintain unidirectional blood flow in the circulatory system (Bazigou & Makinen,
428 2013; Enderle & Bronzino, 2012). It involves a thin, flexible leaflet interacting with a pulsatile,
429 incompressible fluid under physiological conditions. The strong contact, large deformation, and
430 highly transient behavior make this problem especially challenging for effective simulation (Buxton &
431 Clarke, 2006). We learn the transient dynamics through autoregressive simulation, which are mostly
432 explored in GNN-based works (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020). Mathematically,

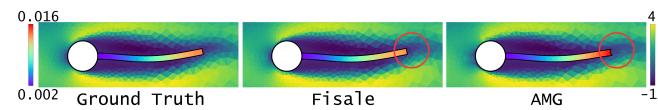


Figure 3: Local visualization of prediction results on solid displacement and fluid x -velocity. Red circle indicates the domain with most solid displacement and sharp fluid velocity change. Global view and more showcases are listed in Appendix.I.1.

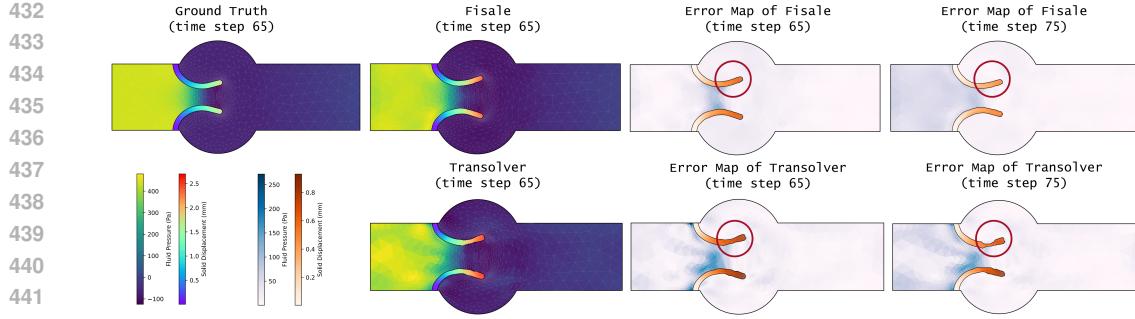


Figure 4: Visualization of ground truth and prediction results. The red circle indicates the distortion of solid shape, where Fisale can effectively handle.

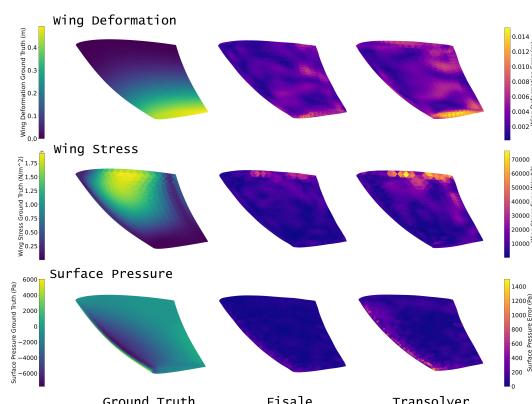
we simulate the trajectory as: $\hat{\mathbf{u}}_{t+1} = \mathcal{F}_\theta(\mathbf{u}_t)$, $\hat{\mathbf{u}}_{t+2} = \mathcal{F}_\theta(\hat{\mathbf{u}}_{t+1})$, ..., $\hat{\mathbf{u}}_{t+T} = \mathcal{F}_\theta(\hat{\mathbf{u}}_{t+T-1})$. We build the venous valve simulation model based on biology-related literature and generate a dataset where each sample has different valve material properties, flow velocities, and other parameters. The variations are designed to reflect a wide range of human conditions across ages, genders, and health status. Detailed settings can be found in the Appendix B.2. The simulation time is 1s and 0.01s per interval, with 101 frames in total. Each frame records geometry, stress, pressure, and velocity.

As shown in Table 2, Fisale achieves the best results across all physical quantities, with particularly strong performance at the fluid–solid interface. Figure 4 visualizes predictions at two time steps. It is observable that maintaining solid shape consistency becomes increasingly challenging as the rollout progresses. Thanks to the explicit modeling of the interface and the use of a unified representation to capture dynamic interactions, Fisale preserves solid geometry more effectively over long trajectories. This design allows it to handle cross-domain information exchange and maintain stability even in the later stages of rollout. Moreover, when fluid flows through the narrow valve openings, it generates sharp increases in pressure and velocity over short periods, making it hard to accurate prediction at that region. Fisale addresses this by PCM, which decomposes this complex process into a sequence of substeps. This reduces the difficulty of modeling each physical domain and its associated quantities. In contrast, other models typically adopt a monolithic modeling strategy over the entire domain, which often struggles to capture rapid dynamic changes around the interface. This further highlights the advantage of the domain-aware design in handling complex FSI phenomena.

4.3 FLEXIBLE WING

Table 3: Performance on Flexible Wing task. Relative L2 is recorded. Second-best performance is underlined. (a) the relative L2 error of the prediction results; (b) the visualization of prediction errors.

	Solid	Fluid	Interface	Mean (↓)
Geo-FNO	0.0207	0.0802	0.0564	0.0524
GINO	0.2838	0.5681	0.5715	0.4745
CoDANO	0.0355	0.1930	0.1002	0.1096
LNO	0.0173	0.0264	0.0269	0.0235
Galerkin	0.0396	0.0699	0.0635	0.0577
GNOT	0.0081	0.0558	0.0227	0.0289
ONO	0.1446	0.2362	0.2728	0.2179
Transolver	0.0051	0.0200	0.0242	<u>0.0164</u>
MGN	0.0096	0.0229	0.0281	0.0202
HOOD	0.0088	0.0218	0.0266	0.0191
AMG	0.2507	0.1692	0.2357	0.2185
Fisale	0.0042	0.0155	0.0211	0.0136



(a) The error of prediction results.

(b) The visualization of prediction errors.

486 To better reflect real aerodynamics, we study a flexible wing scenario where the wing deforms under
 487 airflow. Unlike rigid-wing assumptions with fixed fluid–solid interfaces, flexible wings involve
 488 strong two-way coupling and nonlinear behaviors such as geometry-dependent loading and large
 489 deformations, making prediction more challenging. We treat this as a steady-state inference task:
 490 given a set of problem parameters (like the wind velocity, wing material, geometry and etc.), the model
 491 directly predicts the steady-state response. Follow the 2D rigid Airfrans (Bonnet et al., 2022), we
 492 build a 3D flexible wing dataset for evaluation. Each sample contains more than 35,000 mesh points
 493 and varies in flight and design parameters (see Appendix B.3), covering diverse flight conditions.

494 As presented in Table 3, Fisale achieves the best performance across all domains. When dealing
 495 with massive mesh points, several baselines seriously degenerate due to complex dynamics. This is
 496 because dense fluid points can overwhelm solid-related information, making it difficult to capture
 497 solid changes. In turn, this also disrupts the accurate modeling of fluid evolution. Right part of Table 3
 498 visualizes the prediction errors. For the wing, deformation, stress, and wind pressure are primarily
 499 concentrated at the root, tip, and lateral surfaces, respectively. Each of these exhibits distinct spatial
 500 patterns driven by the interaction between the wind and the wing. Accurately capturing this interaction
 501 is therefore crucial. By modeling each domain separately, Fisale avoids the solid information being
 502 overwhelmed by massive fluid points. Moreover, modeling the interface allows Fisale to effectively
 503 capture the spatially varying physical quantities across different parts of the wing surface, enabling
 504 better performance in the complex, large-scale scenario.

505 5 CONSLUSION AND LIMITATION

506 We propose Fisale, a data-driven framework to solve complex two-way FSI problems. By explicitly
 507 modeling the solid, fluid and coupling interface as separate components, and leveraging multiscale
 508 latent ALE grids along with partitioned coupling modules (PCM), Fisale effectively captures nonlinear,
 509 cross-domain dynamics. Experiments on challenging tasks demonstrate the effectiveness of Fisale in
 510 solving complex two-way FSI problems.

511 **Limitation** (1) Although the running speed of Fisale remains within a reasonable range, there is
 512 still room for optimization. For example, adopting faster k -NN algorithms, performing k -NN in the
 513 original low-dimensional space, or removing this step altogether could further improve efficiency.
 514 (2) Currently, the integration of latent ALE grid geometry and physical quantities is achieved via
 515 position embedding and simple addition. Exploring more physically meaningful fusion strategies
 516 may enhance the representational capacity of the latent ALE grid and is a promising direction for
 517 future research.

518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Hikaru Aono, Satish Kumar Chimakurthi, Pin Wu, Erik Sallstrom, Bret Stanford, Carlos Cesnik,
543 Peter Ifju, Lawrence Ukeiley, and Wei Shyy. A computational and experimental studies of flexible
544 wing aerodynamics. In *48th AIAA aerospace sciences meeting including the new horizons forum
and aerospace exposition*, pp. 554, 2010.

545

546 Neil Raj Ashwin, Ze Cao, Nikhil Muralidhar, Danesh Tafti, and Anuj Karpatne. Deep learning
547 methods for predicting fluid forces in dense particle suspensions. *Powder Technology*, 401:117303,
548 2022.

549

550 François Axisa and Jose Antunes. *Modelling of mechanical systems: Fluid-structure interaction*,
551 volume 3. Elsevier, 2006.

552 Eleni Bazigou and Taija Makinen. Flow control in our vessels: vascular valves make sure there is no
553 way back. *Cellular and Molecular Life Sciences*, 70:1055–1066, 2013.

554

555 Ted Belytschko. Fluid-structure interaction. *Computers & Structures*, 12(4):459–469, 1980.

556

557 Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the
558 analysis of turbulent flows. *Annual review of fluid mechanics*, 25(1):539–575, 1993.

559

560 Martin Berzins. Mesh quality: a function of geometry, error estimates or both? *Engineering with
Computers*, 15:236–247, 1999.

561

562 Florent Bonnet, Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. Airfrans: High fidelity
563 computational fluid dynamics dataset for approximating reynolds-averaged navier–stokes solutions.
Advances in Neural Information Processing Systems, 35:23463–23478, 2022.

564

565 Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. *CoRR*, 2023.

566

567 Timothy A Burkhart, David M Andrews, and Cynthia E Dunning. Finite element modeling mesh
568 quality, energy balance and validation methods: A review with recommendations associated with
569 the modeling of bone tissue. *Journal of biomechanics*, 46(9):1477–1488, 2013.

570

571 Gavin A Buxton and Nigel Clarke. Computational phlebology: the simulation of a vein valve. *Journal
of biological physics*, 32:507–521, 2006.

572

573 Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
574 informed neural networks (pinns) for fluid mechanics: A review. *Acta Mechanica Sinica*, 37(12):
575 1727–1738, 2021.

576

577 Shuhao Cao. Choose a transformer: Fourier or galerkin. *Advances in neural information processing
systems*, 34:24924–24940, 2021.

578

579 Sudip Chakraborty and Soumya Ghosh. A cfd study on the structural parameters of naca 2412 airfoil
580 based air-wing using different composite materials. *Materials Today: Proceedings*, 60:894–901,
581 2022.

582

583 Marien Chenaud, Frédéric Magoulès, and José Alves. Physics-informed graph-mesh networks for
584 pdes: A hybrid approach for complex problems. *Advances in Engineering Software*, 197:103758,
585 2024.

586

587 Chen Cheng, Hao Meng, Yong-Zheng Li, and Guang-Tao Zhang. Deep learning based on pinn for
solving 2 dof vortex induced vibration of cylinder. *Ocean Engineering*, 240:109932, 2021.

588

589 Joris Degroote, Peter Bruggeman, Robby Haelterman, and Jan Vierendeels. Stability of a coupling
590 technique for partitioned solvers in fsi applications. *Computers & Structures*, 86(23-24):2224–2234,
2008.

591

592 Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. Performance of a new partitioned procedure
593 versus a monolithic procedure in fluid–structure interaction. *Computers & Structures*, 87(11-12):
793–801, 2009.

594 Jingyang Deng, Xingjian Li, Haoyi Xiong, Xiaoguang Hu, and Jinwen Ma. Geometry-guided
 595 conditional adaptation for surrogate models of large-scale 3d pdes on arbitrary geometries. In
 596 Kate Larson (ed.), *Proceedings of the Thirty-Third International Joint Conference on Artificial*
 597 *Intelligence, IJCAI-24*, pp. 5790–5798. International Joint Conferences on Artificial Intelligence
 598 Organization, 8 2024. Main Track.

599 Jean Donea, SHJP Giuliani, and Jean-Pierre Halleux. An arbitrary lagrangian-eulerian finite element
 600 method for transient dynamic fluid-structure interactions. *Computer methods in applied mechanics*
 601 *and engineering*, 33(1-3):689–723, 1982.

602

603 Clive L Dym, Irving Herman Shames, et al. *Solid mechanics*. Springer, 1973.

604

605 Mohamed Elrefaei, Angela Dai, and Faez Ahmed. Drivaernet: A parametric car dataset for data-
 606 driven aerodynamic design and graph-based drag prediction. In *International Design Engineering*
 607 *Technical Conferences and Computers and Information in Engineering Conference*, volume 88360,
 608 pp. V03AT03A019. American Society of Mechanical Engineers, 2024a.

609 Mohamed Elrefaei, Florin Morar, Angela Dai, and Faez Ahmed. Drivaernet++: A large-scale multi-
 610 modal car dataset with computational fluid dynamics simulations and deep learning benchmarks.
 611 *Advances in Neural Information Processing Systems*, 37:499–536, 2024b.

612

613 John Enderle and Joseph Bronzino. *Introduction to biomedical engineering*. Academic press, 2012.

614

615 Richard Eppler. *Airfoil design and data*. Springer Science & Business Media, 2012.

616

617 Xiantao Fan and Jian-Xun Wang. Differentiable hybrid neural modeling for fluid-structure interaction.
Journal of Computational Physics, 496:112584, 2024.

618

619 David A Field. Laplacian smoothing and delaunay triangulations. *Communications in applied*
numerical methods, 4(6):709–712, 1988.

620

621 Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulating fluid-solid interaction. In *Graphics Interface*, volume 2003, pp. 31–38, 2003.

622

623 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 624 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 625 1263–1272. PMLR, 2017.

626

627 Jón Tómas Grétarsson, Nipun Kwatra, and Ronald Fedkiw. Numerically stable fluid–structure
 628 interactions between compressible flow and solid structures. *Journal of Computational Physics*,
 629 230(8):3062–3084, 2011.

630

631 Artur Grigorev, Bernhard Thomaszewski, Michael J. Black, and Otmar Hilliges. HOOD: Hierar-
 632 chical graphs for generalized modelling of clothing dynamics. In *Computer Vision and Pattern*
633 Recognition (CVPR), 2023.

634

635 Rachit Gupta. *Deep learning-based reduced order modeling for unsteady flow dynamics and fluid-*
636 structure interaction. PhD thesis, The University of British Columbia (Vancouver, 2022).

637

638 Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural
 639 networks: Neural diffusion and beyond. *Transactions on Machine Learning Research*, 2023a.

640

641 Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vi-
 642 sion transformer using focused linear attention. In *Proceedings of the IEEE/CVF international*
643 conference on computer vision, pp. 5961–5971, 2023b.

644

645 Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
 646 using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510, 2018.

647

648 Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
 649 Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
650 International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

648 Matthias Heil, Andrew L Hazel, and Jonathan Boyle. Solvers for large-displacement fluid–structure
 649 interaction problems: segregated versus monolithic approaches. *Computational Mechanics*, 43:
 650 91–101, 2008.

651 Cyril W Hirt, Anthony A Amsden, and JL Cook. An arbitrary lagrangian-eulerian computing method
 652 for all flow speeds. *Journal of computational physics*, 14(3):227–253, 1974.

653
 654 Johan Hoffman, Johan Jansson, Niclas Jansson, Claes Johnson, and Rodrigo Vilela De Abreu.
 655 Turbulent flow and fluid–structure interaction. *Automated Solution of Differential Equations by the*
 656 *Finite Element Method: The FEniCS Book*, pp. 543–552, 2012.

657
 658 Gene Hou, Jin Wang, and Anita Layton. Numerical methods for fluid–structure interaction—a review.
 659 *Communications in Computational Physics*, 12(2):337–377, 2012.

660 Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi Chen, and Ming-Chang
 661 Yang. Measuring and improving the use of graph information in graph neural networks. In
 662 *International Conference on Learning Representations*, 2019.

663 Franz Huber. *A logical introduction to probability and induction*. Oxford University Press, 2018.

664 Akram Joda, Zhongmin Jin, Axel Haverich, Jon Summers, and Sotirios Korossis. Multiphysics simu-
 665 lation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress–strain
 666 distribution on the aortic valve. *Journal of Biomechanics*, 49(12):2502–2512, 2016. ISSN 0021-
 667 9290. *Cardiovascular Biomechanics in Health and Disease*.

668
 669 David A Kopriva. *Implementing spectral methods for partial differential equations: Algorithms for*
 670 *scientists and engineers*. Springer Science & Business Media, 2009.

671 Nomesh Kumar and V Venkateswara Rao. Hyperelastic mooney-rivlin model: determination and
 672 physical interpretation of material constants. *Parameters*, 2(10):01, 2016.

673
 674 SiHun Lee, Kijoo Jang, Sangmin Lee, Haeseong Cho, and SangJoon Shin. Parametric model order
 675 reduction by machine learning for fluid–structure interaction analysis. *Engineering with Computers*,
 676 40(1):45–60, 2024.

677
 678 Jin Li, Yang Gao, Ju Dai, Shuai Li, Aimin Hao, and Hong Qin. Mpmnet: A data-driven mpm
 679 framework for dynamic fluid–solid interaction. *IEEE Transactions on Visualization and Computer*
 680 *Graphics*, 2023a.

681 Longfei Li, William D Henshaw, Jeffrey W Banks, Donald W Schwendeman, and Alex Main. A stable
 682 partitioned fsi algorithm for incompressible flow and deforming beams. *Journal of computational*
 683 *Physics*, 312:272–306, 2016.

684
 685 Xuan Li, Yadi Cao, Minchen Li, Yin Yang, Craig Schroeder, and Chenfanfu Jiang. Plasticitynet:
 686 Learning to simulate metal, sand, and snow for optimization time integration. *Advances in Neural*
 687 *Information Processing Systems*, 35:27783–27796, 2022.

688
 689 Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
 690 dynamics for manipulating rigid bodies, deformable objects, and fluids. In *ICLR*, 2019.

691
 692 Zhihao Li, Haoze Song, Di Xiao, Zhilu Lai, and Wei Wang. Harnessing scale and physics: A
 693 multi-graph neural operator framework for pdes on arbitrary geometries. In *SIGKDD Conference*
 694 *on Knowledge Discovery and Data Mining (KDD)*, 2025.

695
 696 Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
 697 operator learning. *Transactions on Machine Learning Research*, 2023b. ISSN 2835-8856.

698
 699 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
 700 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 701 differential equations. In *ICLR*, 2021.

702
 703 Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
 704 with learned deformations for pdes on general geometries. *Journal of Machine Learning Research*,
 705 24(388):1–26, 2023c.

702 Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
 703 Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed
 704 neural operator for large-scale 3d pdes. *Advances in Neural Information Processing Systems*, 36:
 705 35836–35854, 2023d.

706 Boyuan Lin, Xianglei Zhang, Jiangping Xu, Haoqi Ni, and Xinhuang Lv. Numerical simulation
 707 and experimental validation of thrombolytic therapy for patients with venous isomer and normal
 708 venous valves. *International Journal for Numerical Methods in Biomedical Engineering*, 39(10):
 709 e3694, 2023.

710 Yangwei Liu, Shihang Zhao, Feitong Wang, and Yumeng Tang. A novel method for predicting
 711 fluid–structure interaction with large deformation based on masked deep neural network. *Physics
 712 of Fluids*, 36(2), 2024.

713 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 714 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 715 *Nature machine intelligence*, 3(3):218–229, 2021.

716 Qilong Ma, Haixu Wu, Lanxiang Xing, Jianmin Wang, and Mingsheng Long. Eulagnet: Eulerian
 717 fluid prediction with lagrangian dynamics. *CoRR*, 2024.

718 Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). *Computers &
 719 Geosciences*, 19(3):303–342, 1993.

720 Farrukh Mazhar, Ali Javed, and Atakan Altinkaynak. A novel artificial neural network-based interface
 721 coupling approach for partitioned fluid–structure interaction problems. *Engineering Analysis with
 722 Boundary Elements*, 151:287–308, 2023.

723 Faith A Morrison. *An introduction to fluid mechanics*. Cambridge University Press, 2013.

724 COMSOL Multiphysics. Introduction to comsol multiphysics®. *COMSOL Multiphysics, Burlington,
 725 MA, accessed Feb*, 9(2018):32, 1998.

726 MP Pai et al. Some unresolved issues in fluid-structure interactions. *Journal of Fluids and Structures*,
 727 20(6):871–890, 2005.

728 Charles S Peskin. The immersed boundary method. *Acta numerica*, 11:479–517, 2002.

729 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
 730 simulation with graph networks. In *International conference on learning representations*, 2020.

731 Antoine Placzek, Jean-François Sigrist, and Aziz Hamdouni. Numerical simulation of an oscillating
 732 cylinder in a cross-flow at low reynolds number: Forced and free oscillations. *Computers & Fluids*,
 733 38(1):80–100, 2009.

734 N Eswara Prasad and Russel JH Wanhill. *Aerospace materials and material technologies*, volume 1.
 735 Springer, 2017.

736 Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris
 737 Bonev, Colin White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain at-
 738 tention neural operators for solving multiphysics pdes. *Advances in Neural Information Processing
 739 Systems*, 37:104035–104064, 2024.

740 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 741 deep learning framework for solving forward and inverse problems involving nonlinear partial
 742 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

743 Tomáš Roubíček. *Nonlinear partial differential equations with applications*, volume 153. Springer
 744 Science & Business Media, 2013.

745 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
 746 Battaglia. Learning to simulate complex physics with graph networks. In *International conference
 747 on machine learning*, pp. 8459–8468. PMLR, 2020.

756 Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
 757 differential equations. *Journal of computational physics*, 375:1339–1364, 2018.
 758

759 Martin Oliver Steinhauser. *Computational multiscale modeling of fluids and solids*. Springer, 2017.
 760

761 Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, and Ming C Lin. Differentiable fluids with solid
 762 coupling for learning and control. In *Proceedings of the AAAI conference on artificial intelligence*,
 763 volume 35, pp. 6138–6146, 2021.
 764

765 Nomura Takashi and Thomas JR Hughes. An arbitrary lagrangian-eulerian finite element method for
 766 interaction of fluid and a rigid body. *Computer methods in applied mechanics and engineering*, 95
 767 (1):115–138, 1992.
 768

769 LG Tikhomolova, YA Gataulin, AD Yukhnev, and DA Rosukhovskiy. Fluid–structure interaction
 770 modelling of the venous valve with elastic leaflets. In *Journal of Physics: Conference Series*,
 771 volume 1697, pp. 012041. IOP Publishing, 2020.
 772

773 Stefan Turek and Jaroslav Hron. *Proposal for numerical benchmarking of fluid-structure interaction
 774 between an elastic object and laminar incompressible flow*. Springer, 2006.
 775

776 Nobuyuki Umetani and Bernd Bickel. Learning three-dimensional flow for interactive aerodynamic
 777 design. *ACM Transactions on Graphics (TOG)*, 37(4):1–10, 2018.
 778

779 Mario Lino Valencia, Tobias Pfaff, and Nils Thuerey. Learning distributions of complex fluid
 780 simulations with diffusion graph networks. In *The Thirteenth International Conference on Learning
 781 Representations*, 2025.
 782

783 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 784 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 785 systems*, 30, 2017.
 786

787 Bo Wang, Liuyang Feng, Lei Xu, Hao Gao, Xiaoyu Luo, and Nan Qi. Three-dimensional fluid–
 788 structure interaction modelling of the venous valve using immersed boundary/finite element method.
 789 *Computers in Biology and Medicine*, 185:109450, 2025.
 790

791 Kun Wang, Yu Chen, Mohamed Mehana, Nicholas Lubbers, Kane C Bennett, Qinjun Kang, Hari S
 792 Viswanathan, and Timothy C Germann. A physics-informed and hierarchically regularized data-
 793 driven model for predicting fluid flow through porous media. *Journal of Computational Physics*,
 794 443:110526, 2021.
 795

796 Tian Wang and Chuang Wang. Latent neural operator for solving forward and inverse pde problems.
 797 In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.
 798

799 Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-dimensional
 800 pdes with latent spectral models. In *International Conference on Machine Learning*, pp. 37417–
 801 37438. PMLR, 2023.
 802

803 Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A
 804 fast transformer solver for pdes on general geometries. In *International Conference on Machine
 805 Learning*, pp. 53681–53705. PMLR, 2024.
 806

807 Wang Xiao, Ting Gao, Kai Liu, Jinqiao Duan, and Meng Zhao. Fourier neural operator based
 808 fluid–structure interaction for predicting the vesicle dynamics. *Physica D: Nonlinear Phenomena*,
 809 463:134145, 2024a.
 810

811 Zipeng Xiao, Zhongkai Hao, Bokai Lin, Zhijie Deng, and Hang Su. Improved operator learning by
 812 orthogonal attention. In *International Conference on Machine Learning*, pp. 54288–54299. PMLR,
 813 2024b.
 814

815 Tianyi Xie, Minchen Li, Yin Yang, and Chenfanfu Jiang. A contact proxy splitting method for
 816 lagrangian solid-fluid coupling. *ACM Transactions on Graphics (TOG)*, 42(4):1–14, 2023.
 817

818 Jing Tang Xing. *Fluid-Solid interaction dynamics: Theory, variational principles, numerical methods,
 819 and applications*. Academic Press, 2019.

810 Jian Xu, Longyan Wang, Jianping Yuan, Zhaohui Luo, Zilu Wang, Bowen Zhang, and Andy CC
811 Tan. Dlfsi: A deep learning static fluid-structure interaction model for hydrodynamic-structural
812 optimization of composite tidal turbine blade. *Renewable Energy*, 224:120179, 2024.

813
814 Junhai Zhai, Sufang Zhang, Junfen Chen, and Qiang He. Autoencoder and its various variants. In
815 *2018 IEEE international conference on systems, man, and cybernetics (SMC)*, pp. 415–419. IEEE,
816 2018.

817 Haiwei Zhang. *Building materials in civil engineering*. Elsevier, 2011.

818
819 Mengmeng Zhang, Shixiao Fu, Haojie Ren, Leixin Ma, and Yuwang Xu. A hybrid fem-dnn-based
820 vortex-induced vibration prediction method for flexible pipes under oscillatory flow in the time
821 domain. *Ocean Engineering*, 246:110488, 2022.

822 Linyang Zhu, Weiwei Zhang, Jiaqing Kou, and Yilang Liu. Machine learning methods for turbulence
823 modeling in subsonic flows around airfoils. *Physics of Fluids*, 31(1), 2019.

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864	Contents	
865		
866	1 Introduction	1
867		
868	2 Preliminaries	3
869		
870	3 Method	4
871	3.1 Multiscale Latent ALE Grids	5
872	3.2 Physical Quantities Encoding and Decoding	6
873	3.3 Partitioned Coupling Module	6
874	4 Experiments	7
875	4.1 Structure Oscillation	8
876	4.2 Venous Valve	8
877	4.3 Flexible Wing	9
878	5 Conclusion and Limitation	10
879		
880	A Overall Pipeline	18
881		
882	B Dataset	18
883	B.1 Structure Oscillation	19
884	B.2 Venous Valve	20
885	B.3 Flexible Wing	21
886	C Metrics	23
887		
888	D Implementation	23
889		
890	E Standard Deviation	25
891		
892	F Efficiency	26
893		
894	G Ablation Study	27
895		
896	H Out-of-distribution Test	30
897		
898	I Showcases	30
899	I.1 Structure Oscillation	30
900	I.2 Venous Valve	32
901	I.3 Flexible Wing	32
902	J LLM usage clarification	32
903		
904	K Attention Pattern	35
905		
906	L Supplementary Discussion	36
907		
908		
909		
910		
911		
912		
913		
914		
915		
916		
917		

918 A OVERALL PIPELINE
919

920 Our overall framework is formulated as Eq.2, and we have described our design in Section 3 including
921 multiscale latent ALE grid, physical quantities encoding, decoding and aggregation, and partitioned
922 coupling module. To provide a global view of our design, we provide a detailed pseudocode here for
923 clarity and improve the reproducibility.

925 **Algorithm 1:** Fisale Pipeline for Tow-Way FSI Problems

926 **Input:** Observations of fluid \mathbf{u}_f , solid \mathbf{u}_s , and interface \mathbf{u}_b at time t

927 **Output:** Predicted states $\hat{\mathbf{u}}_f$, $\hat{\mathbf{u}}_s$, $\hat{\mathbf{u}}_b$ at $t + \Delta t$

928 **for** $h = 1$ **to** H **do**

929 Initialize latent ALE grid $\mathbf{g}_a^{(0,h)}$ via geometry-aware offset and k -NN edge set $E^{(h)}$
930 Embed input features: $\mathbf{x}_f^{(0,h)} \leftarrow \text{Linear}(\mathbf{u}_f)$, $\mathbf{x}_s^{(0,h)} \leftarrow \text{Linear}(\mathbf{u}_s)$, $\mathbf{x}_b^{(0,h)} \leftarrow \text{Linear}(\mathbf{u}_b)$
931

933 **for** $l = 1$ **to** L **do**

934 **for** $h = 1$ **to** H **do**

935 **Encode physical quantities onto grid:**

936 $\mathbf{p}_f \leftarrow \text{Encode}(\mathbf{x}_f^{(l-1,h)}, \mathbf{g}_a^{(l-1,h)})$
937 $\mathbf{p}_s \leftarrow \text{Encode}(\mathbf{x}_s^{(l-1,h)}, \mathbf{g}_a^{(l-1,h)})$
938 $\mathbf{p}_b \leftarrow \text{Encode}(\mathbf{x}_b^{(l-1,h)}, \mathbf{g}_a^{(l-1,h)})$

939 **Partitioned Coupling Module (PCM):**

940 Update solid state: $\mathbf{p}'_s, \mathbf{p}'_b \leftarrow \text{CrossAttention}(\mathbf{p}_s, \mathbf{p}_b, \mathbf{p}_f, \mathbf{g}_a)$
941 Update grid: $\mathbf{g}'_a \leftarrow \text{LaplacianSmooth}(\mathbf{p}'_s, \mathbf{p}_f, \mathbf{p}'_b, \mathbf{g}_a, E)$
942 Update fluid state: $\mathbf{p}'_f, \mathbf{p}''_b \leftarrow \text{CrossAttention}(\mathbf{p}_f, \mathbf{p}'_b, \mathbf{p}'_s, \mathbf{g}'_a)$
943 Update interface influence: $\mathbf{p}''_s, \mathbf{p}''_f, \mathbf{p}'''_b \leftarrow \text{SelfAttention}(\mathbf{p}'_s, \mathbf{p}'_f, \mathbf{p}''_b, \mathbf{g}'_a)$

944 **Decode features:**

945 $\mathbf{x}_f^{(l,h)} \leftarrow \text{Decode}(\mathbf{p}''_f, \mathbf{g}'_a)$
946 $\mathbf{x}_s^{(l,h)} \leftarrow \text{Decode}(\mathbf{p}''_s, \mathbf{g}'_a)$
947 $\mathbf{x}_b^{(l,h)} \leftarrow \text{Decode}(\mathbf{p}'''_b, \mathbf{g}'_a)$

948 **Aggregate across scales:**

949 $\mathbf{x}_f^{(l)} \leftarrow \text{FFN}(\text{Concat}_{h=1}^H \mathbf{x}_f^{(l,h)})$
950 $\mathbf{x}_s^{(l)} \leftarrow \text{FFN}(\text{Concat}_{h=1}^H \mathbf{x}_s^{(l,h)})$
951 $\mathbf{x}_b^{(l)} \leftarrow \text{FFN}(\text{Concat}_{h=1}^H \mathbf{x}_b^{(l,h)})$

952 **if** $l < L$ **then**

953 **Chunk fused features back to H pathways:**

954 $\{\mathbf{x}_f^{(l,h)}\}_{h=1}^H \leftarrow \text{Chunk}(\mathbf{x}_f^{(l)})$
955 $\{\mathbf{x}_s^{(l,h)}\}_{h=1}^H \leftarrow \text{Chunk}(\mathbf{x}_s^{(l)})$
956 $\{\mathbf{x}_b^{(l,h)}\}_{h=1}^H \leftarrow \text{Chunk}(\mathbf{x}_b^{(l)})$

957 **Output predictions:**

958 $\hat{\mathbf{u}}_f, \hat{\mathbf{u}}_s, \hat{\mathbf{u}}_b \leftarrow \text{Linear}(\mathbf{x}_f^{(L)}, \mathbf{x}_s^{(L)}, \mathbf{x}_b^{(L)})$

966
967 B DATASET
968

970 We evaluate our models in three public and curated datasets, whose information is summarized in
971 Table 4. Note that these benchmarks involve the following three types of fluid-solid interaction tasks,
972 which are widely explored in studies that focus only on fluid or solid:

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000

- **Single-Step Prediction** (Li et al., 2021; Rahman et al., 2024; Li et al., 2025): Given a solution sequence $\{\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_T\}$ of a time-dependent PDE, the goal is to learn a model \mathcal{F}_θ that maps the current state to the target state:

$$\hat{\mathbf{u}}_{t+\Delta t} = \mathcal{F}_\theta(\mathbf{u}_t)$$

where Δt spans the next few time steps. During both training and inference, the model always receives the ground truth \mathbf{u}_t as input to predict $\hat{\mathbf{u}}_{t+\Delta t}$. This task is fundamental for learning local temporal dynamics and serves as a building block for simulating physical processes.

- **Autoregressive Simulation** (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Ma et al., 2024): Similar to single-step prediction, but during inference, the model recursively uses its own previous prediction as input except for the first step:

$$\hat{\mathbf{u}}_{t+1} = \mathcal{F}_\theta(\mathbf{u}_t), \quad \hat{\mathbf{u}}_{t+2} = \mathcal{F}_\theta(\hat{\mathbf{u}}_{t+1}), \quad \dots, \quad \hat{\mathbf{u}}_{t+T} = \mathcal{F}_\theta(\hat{\mathbf{u}}_{t+T-1})$$

This method allows for long-term rollout of PDE solutions and is widely used in physics-informed forecasting and control.

- **Steady-State Inference** (Wu et al., 2024; Deng et al., 2024; Li et al., 2023d): Given a set of problem parameters λ (e.g., environment conditions, boundary conditions, material properties), the objective is to learn a mapping directly from input parameters to the steady-state solution \mathbf{u}^* of the PDE:

$$\mathcal{L}(\mathbf{u}^*, \lambda) = 0, \quad \mathbf{u}^* = \mathcal{F}_\theta(\lambda)$$

This parameter-to-solution formulation maps input conditions to the system’s equilibrium state and plays a central role in engineering and scientific design problems concerned with steady-state behavior.

Table 4: Summary of experiment dataset. #Mesh records the average size of discretized meshes. #Split is organized as the number of samples in training, evaluation and test sets.

Dataset	Task	#Dim	#Mesh	#Input	#Output	#Split
Structure Oscillation	Single-Step Prediction	2D	1317	Solid: Geometry; Fluid: Geometry, Pressure, Velocity	Solid: Geometry; Fluid: Geometry, Pressure, Velocity	9561 1195 1196
Venous Valve	Autoregressive Simulation	2D	1693	Solid: Geometry, Stress; Fluid: Geometry, Pressure, Velocity	Solid: Geometry, Stress; Fluid: Geometry, Pressure, Velocity	720 90 90
Flexible Wing	Steady-State Inference	3D	37441	Solid: Geometry, Material; Fluid: Geometry, Attack Angle, Velocity	Solid: Geometry, Stress; Fluid: Geometry, Pressure, Velocity	1036 129 131

B.1 STRUCTURE OSCILLATION

The structure oscillation problem, also known as “FLUSTRUK-A”, is a well-established benchmark in the field of computational FSI. It models the interaction between an incompressible, viscous fluid and a thin, elastic beam attached to the rear of a rigid cylinder placed in a channel. The fluid flow around the cylinder induces unsteady forces on the beam, which, in turn, leads to self-sustained oscillations of the structure. These oscillations are periodic and strongly depend on the material properties of the beam, such as its density, elasticity, and damping (Turek & Hron, 2006). This problem plays a crucial role in validating and comparing the performance of FSI solvers due to its nonlinear, coupled nature. Unlike purely fluid or solid benchmarks, FLUSTRUK-A tests a solver’s ability to accurately capture dynamic feedback between two physical domains. It is widely used in

1026 academic research and engineering applications, especially in domains where flow-induced vibrations
 1027 (FIV) are significant, such as aerospace, civil engineering, and biomedical simulations (e.g., modeling
 1028 blood flow through flexible vessels). The problem is particularly challenging due to the fine balance
 1029 required between numerical stability and physical fidelity, making it an ideal dataset for developing
 1030 and benchmarking advanced data-driven or physics-based models (Hoffman et al., 2012).

1031 The dataset used in our experiments is proposed in CoDA-NO (Rahman et al., 2024). The com-
 1032 putational domain is a two-dimensional channel of length 2.5 and height 0.41, containing a fixed
 1033 circular cylinder of radius 0.05 centered at (0.2, 0.2), and a thin elastic beam attached to the rear of
 1034 the cylinder with a length of 0.35 and thickness of 0.02. The fluid is modeled as water with a constant
 1035 density of 1000 kg/m^3 . The flow enters the domain through the left boundary with a time-dependent
 1036 fourth-order polynomial velocity profile that vanishes at the top and bottom walls. The inlet condi-
 1037 tions vary across 28 predefined configurations, and the peak inlet velocity reaches approximately
 1038 4 m/s , enabling diverse and realistic flow conditions for each viscosity setting. The outlet (right
 1039 boundary) applies a zero-pressure condition, and no-slip boundary conditions are enforced on the
 1040 channel walls, the cylinder, and the elastic beam. To investigate different flow regimes, the dataset
 1041 includes simulations with four viscosity values: $\mu \in \{0.5, 1, 5, 10\}$, resulting in Reynolds numbers
 1042 approximately ranging from 4000 (for $\mu = 0.5$) to 200 (for $\mu = 10$). For the solid, the density is set
 1043 to 1000 kg/m^3 with Lamé parameters $\lambda = 4.0 \times 10^6$ and $\mu = 2.0 \times 10^6$. Simulations are run up
 1044 to a final time $T_f = 10$ seconds, using a fixed time step of $\delta t = 0.01$, resulting in 1000 time steps
 1045 per trajectory. Samples share the same physical domain and mesh. Each sample contains 1317 mesh
 1046 points.

1047 In our experiments, we set the prediction interval to $\Delta t = 4\delta t$ in order to allow the oscillation
 1048 to evolve sufficiently and evaluate the model’s ability to predict over longer time horizons. We
 1049 first conduct training and evaluation on data with Reynolds numbers $Re \in \{200, 400, 2000\}$. The
 1050 data frames is randomly split into training, validation, and test sets in a ratio of 8:1:1, resulting in
 1051 9561 training samples, 1195 validation samples, and 1196 test samples. We further test the out-
 1052 of-distribution (OOD) generalization of trained models on a separate set of 498 samples generated
 1053 with $Re = 4000$. This setup is similar in spirit to that used in CoDA-NO (Rahman et al., 2024),
 1054 but with important differences. Specifically, CoDA-NO employs pretraining on the first 700 frames
 1055 of each trajectory followed by few-shot fine-tuning. In contrast, our study does not involve any
 1056 pretraining or fine-tuning procedures. All models are trained and evaluated under the same conditions,
 1057 using longer time interval and randomly shuffled samples. This design ensures a fair comparison
 1058 of in-distribution and OOD performance across models. Additionally, we use a different evaluation
 1059 metric from CoDA-NO. The rationale for this choice is detailed in Appendix C.

1060 B.2 VENOUS VALVE

1061 The venous valve problem models the dynamics of valve leaflets within veins, which play a critical
 1062 role in ensuring unidirectional blood flow and preventing backflow in the human circulatory system
 1063 (Bazigou & Makinen, 2013; Enderle & Bronzino, 2012). The system involves a thin, flexible leaflet
 1064 that interacts with a pulsatile, incompressible fluid under physiological conditions. The valve opens
 1065 and closes in response to changes in local pressure and flow rate, mimicking the behavior observed
 1066 in venous circulation. This problem presents several unique challenges. First, the contact between
 1067 the leaflets during valve closure introduces discontinuities and non-smooth behavior in the fluid-
 1068 solid interface. Second, the large deformation of the leaflet requires robust modeling of nonlinear
 1069 elasticity. Third, the highly transient, time-dependent nature of the flow, driven by periodic inlet
 1070 conditions, demands accurate and stable single-step prediction to effectively simulate the full valve
 1071 cycle. Due to these complexities, the venous valve problem serves as a stringent benchmark for
 1072 evaluating FSI solvers, especially those aiming to operate under realistic biomedical conditions. It
 1073 has important implications in biomedical research and healthcare applications, including the study
 1074 of venous insufficiency, the design of prosthetic valves, and the development of patient-specific
 1075 simulation tools for diagnosis.

1076 To deeply investigate this problem and evaluate the effectiveness of Fisale, we constructed a simulation
 1077 model based on related literature (Lin et al., 2023; Wang et al., 2025; Tikhomolova et al., 2020). The
 1078 simulation is implemented using COMSOL Multiphysics (Multiphysics, 1998), a widely used finite
 1079 element solver for coupled multiphysics problems. The domain shape of venous valve (Joda et al.,
 2016) is illustrated in Figure 5.

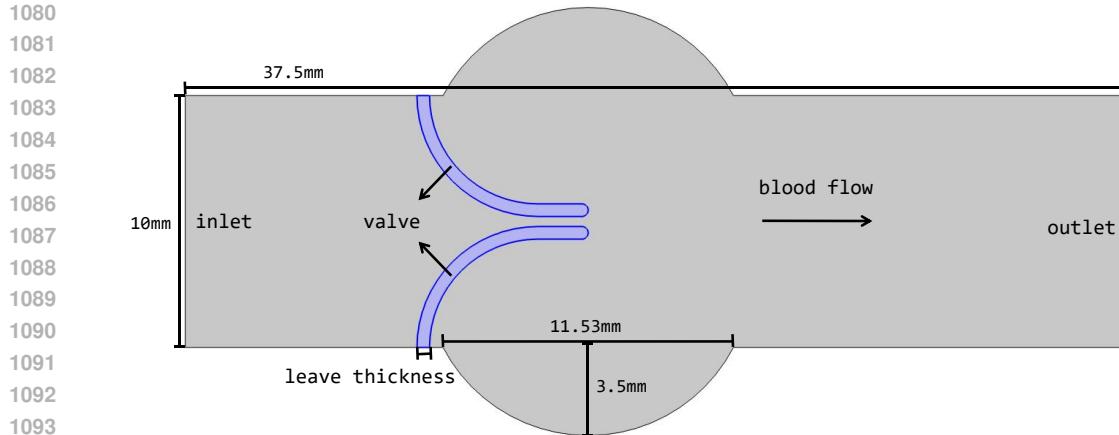


Figure 5: The physical domain of venous valve simulation model.

To simulate venous valve dynamics across a range of physiological variations, we define parameter sets for leaflet thickness, inlet blood velocity, and the mechanical properties of the valve tissue. These parameters are varied systematically using a full factorial combination scheme, allowing us to generate data that reflect a diverse set of biological scenarios corresponding to different genders, age groups, and biological states. While some parameters and combinations may extend beyond typical values observed in healthy individuals, they are intentionally included to explore extreme or pathological scenarios. This broader coverage is important for studying disease-related valve dysfunction as well as for informing the design and testing of prosthetic valves. The specific parameter settings used in the simulations are summarized in Table 5.

Table 5: Parameter settings of venous valve simulation model.

Leaflet Thickness (mm)	Inlet Blood Velocity (m/s)	Valve Material	
		C_1 (MPa)	C_2 (MPa)
range(0.5,1.0,0.1)	range(0.1,0.6,0.1)	{0.01,0.05,0.1,0.15,0.2}	{0.001,0.005,0.01,0.02,0.05}

The leaflet is modeled as a hyperelastic Mooney–Rivlin material (Kumar & Rao, 2016), which is widely used for soft biological tissues. The material behavior is governed by two coefficients, C_1 and C_2 , representing the elastic response under deformation. The leaflet thickness is varied from 0.5mm to 1.0mm in increments of 0.1mm, while the inlet blood velocity ranges from 0.1m/s to 0.6m/s with the same step size. The outlet applies a zero-pressure condition, and no-slip boundary conditions are enforced on the vessel walls. The blood is modeled as an incompressible Newtonian fluid, with density $\rho = 1050\text{kg/m}^3$ and dynamic viscosity 0.0035Pa · s. We formulate it as a transient FSI problem. A time-dependent inlet velocity function $\sin^2 \pi t$ is applied, modeling a periodic blood flow cycle with a period of 1 second. Simulations are performed with a time step of 0.01s, resulting in 101 frames per trajectory. Each frame records multiple physical quantities, including current geometry, stress, pressure, and velocity. Based on the full factorial combination of parameter settings, we generate a total of 900 simulation trajectories. Among them, 720 trajectories are used for training, 90 for validation, and 90 for testing. Each sample contains 1693 mesh points on average.

B.3 FLEXIBLE WING

The flexible wing problem is of practical importance in numerous engineering and biological contexts. In aerospace engineering, understanding the aerodynamics of flexible wings is crucial for designing next-generation aircraft, drones, and morphing airframes that can adapt to changing flight conditions. To better capture realistic aerodynamic behavior, we study a FSI problem involving a flexible wing. Unlike traditional rigid-wing models that assume a fixed structural geometry and static fluid–solid interface, the flexible wing can deform under aerodynamic loading, introducing strong two-way

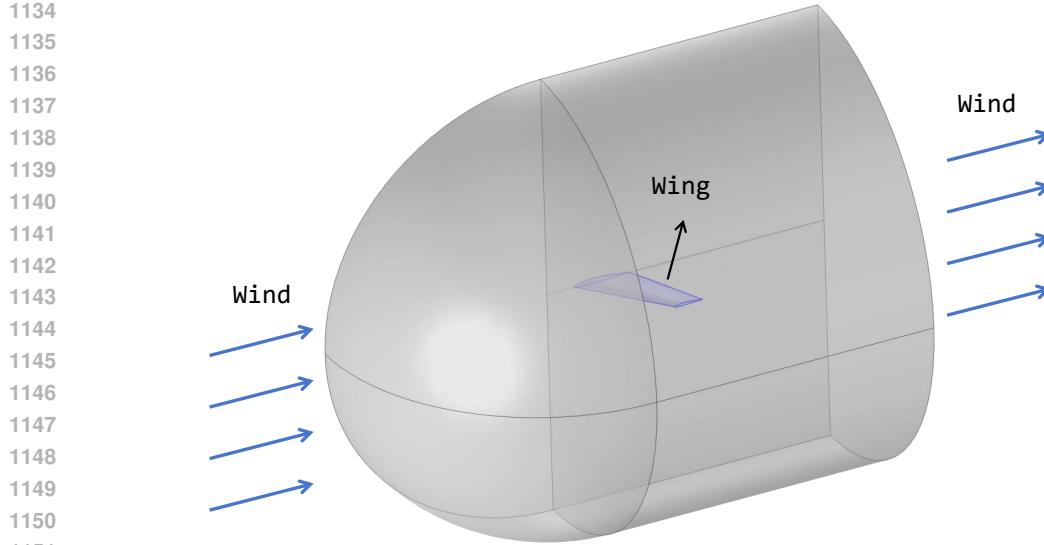


Figure 6: The physical domain of flexible wing simulation model.

coupling between the flow field and the structure. This coupling results in highly nonlinear and geometry-dependent behavior, including large elastic deformations and nontrivial load pressure across the wing surface. In this task, the goal is steady-state inference: given boundary conditions such as inflow velocity and structural material properties, the model aims to predict the equilibrium configuration of the wing and the corresponding steady-state fluid flow around it. This differs fundamentally from time-dependent FSI tasks in that it seeks a converged static solution representing the long-time behavior of the system, rather than predicting transient trajectories.

We follow the conventions (Bonnet et al., 2022; Valencia et al., 2025) to generate the dataset. The simulation domain is shown in Figure 6. The free-stream kinematic viscosity is $1.5 \times 10^{-5} m^2/s$. The wing sections are 24XX NACA airfoils with constant relative thickness (indicated by XX). The wing has a length of 1.5m and a root chord length of 1m. The geometric parameters of the wing vary across samples include the relative thickness, the taper ratio (ratio between the tip and root chords), the sweep angle (angle between the quarter-chord line and a line perpendicular to the wing root). Additionally, the free-stream velocity, attack angle and the wing materials are also variations for diversity. These parameters are listed in Table 6.

Table 6: Parameter settings of flexible wing.

Thickness	Taper Ratio	Sweep Angle (°)	Free-stream Velocity (m/s)	Attack Angle (°)	Wing Material
{10,12,14,16}	{0.5,0.6,0.7}	{10,25,40}	{50,75,100}	{-12,10,14,18}	Carbon Fibers
					Titanium Alloy
					Al-Zn-Mg Alloy

Here, three different materials namely Carbon Fibers, Alpha-Beta Titanium Alloy and Al-Zn-Mg Alloy have been utilized based on previous literature (Chakraborty & Ghosh, 2022), which are widely used materials for air-wing analysis. The detailed material parameters are listed in Table 7.

The dataset samples are generated through a full factorial combination of the simulation parameters, resulting in a total of 1296 unique configurations. Among them, 1036 samples are used for training, 129 for validation, and 131 for testing. Each sample contains 37441 mesh points on average.

1188
1189
1190
1191 Table 7: Material parameters of wings.
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

Material Name	Density (kg/m^3)	Young's Modulus (MPa)	Poisson's Ratio
Carbon Fibers	2.30×10^{-6}	2.30×10^5	0.210
Alpha-Beta Titanium Alloy	4.43×10^{-6}	1.13×10^5	0.342
Al-Zn-Mg Alloy	2.83×10^{-6}	7.20×10^4	0.327

C METRICS

We employ different metrics for specific tasks, adhering to the evaluation approaches in related works.

Single-Step Prediction & Steady-State Inference: Relative L2 In line with prior studies on single-step prediction (Li et al., 2021; Rahman et al., 2024; Li et al., 2025) and steady-state inference (Wu et al., 2024; Deng et al., 2024; Li et al., 2023d) tasks, we use the relative L2 to assess performance. Given the input physical quantities \mathbf{u} and the predictions $\hat{\mathbf{u}}$, the relative L2 is computed as:

$$\text{Relative L2} = \frac{\|\mathbf{u} - \hat{\mathbf{u}}\|}{\|\mathbf{u}\|}$$

It is worth noting that for the structure oscillation task, we adopt the Relative L2 error as the evaluation metric, instead of the Mean Square Error (MSE) used in CoDA-NO (Rahman et al., 2024). This task involves predicting multiple physical quantities with different units and orders of magnitude. While CoDA-NO reported MSE results based on normalized data to mitigate the influence of scale differences, this approach may not fully reflect model performance on the original data distribution. In contrast, Relative L2 is a more commonly used metric for this task. By computing the Relative L2 error for each physical quantity separately and then averaging the results, we effectively account for differences in scale while preserving fidelity to the original, unnormalized data.

Autoregressive Simulation: RMSE Consistent with works (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Ma et al., 2024) focused on autoregressive simulation tasks, we use Root Mean Square Error (RMSE) as the evaluation metric. Given the input physical quantities \mathbf{u} and the predictions $\hat{\mathbf{u}}$, RMSE is calculated as:

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^N \|\mathbf{u}_i - \hat{\mathbf{u}}_i\|^2}$$

During training, we compute the loss using normalized data, which is used for backpropagation and parameter updates. In the evaluation and test phases, we report the RMSE for each physical quantity within each domain based on the original data.

D IMPLEMENTATION

As shown in Table 8, Fisale and all baseline models are trained and tested using the same training strategy. We utilize relative L2 as loss function for single-step prediction and steady-state inference tasks, and MSE for autoregressive simulation task. For different physical domains, we add each loss with equal weights. To ensure fair comparisons, we first approximate the parameter count of all baselines to match that of Fisale and then adjust their parameters to minimize overfitting and achieve better performance. All experiments are conducted on a single RTX 3090 GPU (24GB memory) and repeated three times. We provide the parameter count of each model in Table 9 for reference.

We implement baselines based on official and popular implementations. For autoregressive simulation task, we uniformly add noise with a mean of 0 and a variance of 0.001 to improve the error accumulation control during rollout. Since several neural operators and transformer-based baselines are primarily designed for fluid scenarios with Eulerian settings, they are not naturally suited for handling scenarios with Lagrangian views, such as two-way FSI problems. We preprocess the data to adapt it for use with these baselines. Specifically, we first align the feature dimensions of different domains using padding, then concatenate along the length dimension to combine all domains into a

Table 8: Training and Model Configurations of Fisale. The definition of batch size differs between autoregressive simulation task and other two tasks. For single-step prediction and steady-state inference tasks, the batch size refers to the number of samples in a batch. For autoregressive simulation, only one sample is processed during each forward and backward pass, and the batch size corresponds to the number of time steps in the sample. Since GPU memory usage varies across different models, the batch sizes of baseline models in the autoregressive simulation task are dynamically adjusted to avoid GPU memory overflow while maintaining performance.

Datasets	Training Configuration			Model Configuration			
	Epochs	LR	Batch	Level (L)	Pathway (H)	Grid Shape (M)	Channels (D)
Structure Oscillation	100	1×10^{-3}	50	2	2	[16, 16] [8, 8]	[64, 64]
Venous Valve	100	1×10^{-3}	50	2	2	[16, 16] [8, 8]	[64, 64]
Flexible Wing	100	5×10^{-4}	1	3	2	[5, 5, 5] [4, 4, 4]	[96, 128]

Table 9: Parameter count of baseline models and Fisale.

	Structure Oscillation	Venous Valve	Flexible Wing
Geo-FNO	1.60 M	1.60 M	5.22 M
GINO	1.72 M	/	5.17 M
LSM	2.23 M	2.23 M	/
CoDANO	1.83 M	1.83 M	5.01 M
LNO	1.62 M	/	5.34 M
Galerkin	1.74 M	1.74 M	3.18 M
GNOT	1.64 M	1.64 M	4.64 M
ONO	1.63 M	/	5.07 M
Transolver	1.55 M	1.55 M	4.61 M
MGN	1.82 M	1.82 M	4.86 M
HOOD	1.79 M	1.79 M	5.31 M
AMG	1.34 M	1.34 M	4.71 M
Fisale	1.54 M	1.54 M	4.88 M

single large sequence of points. For models that struggle to handle the Lagrangian setting (Rahman et al., 2024; Li et al., 2023c; Wu et al., 2023), we map each point to a regular grid, transforming the data into an Eulerian representation. Specifically, for a point sequence of size $N \times D$, we discretize a cubic space $[x, y, z] \in [-1, 1]^3$ into a regular grid, with the number of discretization points along each axis set to $\lceil \sqrt[3]{N} \rceil$. We then concatenate each point’s coordinates and physical quantities with the corresponding grid points based on their matching order. Excess grid cells are padded to align dimensions. For other baseline models, we utilize geometry transformation functions provided in their implementations. Additionally, the fixed boundary condition is maintained by directly setting the displacement of the corresponding region as zero like the operation in MGN Pfaff et al. (2020).

Efficiency We report GPU memory usage based on measurements from the operating system, which include memory pre-allocated by PyTorch’s caching allocator. Although not all of this memory is actively used at every moment, it remains unavailable to other processes once reserved. Therefore, this reporting strategy offers a conservative yet practical estimate of the actual hardware demands during training. It better reflects the real-world resource constraints typically encountered in deployment scenarios. To ensure fairness, all models are evaluated using PyTorch’s default memory management on a single RTX 3090 GPU.

1296 E STANDARD DEVIATION
1297

1298 We repeat all the experiments three times and provide standard deviations here in Table 10, 11 and
 1299 10. It is worth noting that autoregressive simulation involves a rollout process based on sequential
 1300 predictions, where error accumulation is inevitable. When the rollout trajectory is long, such
 1301 accumulated errors can become unstable and difficult to control. In addition, our venous valve
 1302 experiment poses a greater challenge to result stability due to the presence of multiple target physical
 1303 quantities across different physical domains. As a result, this task exhibits higher variance compared
 1304 to the other two tasks. Moreover, to ensure fairness and maintain the integrity of each method, we
 1305 adopt the initialization schemes provided in the official and popular implementations, rather than
 1306 applying a unified initialization across all baselines. As a result, the scale and variance of network
 1307 parameters vary across models, which may lead to differences in performance variance. As shown in
 1308 Table 11, although Fisale does not always exhibit the lowest variance across all physical quantities, its
 1309 overall performance remains consistently stable. This indicates that Fisale not only achieves superior
 1310 performance, but also maintains robustness in long-time rollout, which is an essential property for
 1311 reliable simulation in complex FSI scenarios.

1312
1313 Table 10: Standard deviations on Structure Ocsillation experiment.
1314

	Solid ($\times 10^{-3}$)	Fluid ($\times 10^{-2}$)	Interface ($\times 10^{-2}$)
Geo-FNO	± 0.01	± 0.05	± 0.01
GINO	± 0.50	± 2.02	± 0.78
LSM	± 0.01	± 0.72	± 0.02
CoDANO	± 0.07	± 0.05	± 0.07
LNO	± 0.03	± 0.29	± 0.12
Galerkin	± 0.08	± 0.03	± 0.02
GNOT	± 0.02	± 0.05	± 0.06
ONO	± 0.24	± 0.92	± 0.12
Transolver	± 0.07	± 0.05	± 0.08
MGN	± 0.04	± 0.03	± 0.03
HOOD	± 0.05	± 0.03	± 0.04
AMG	± 0.01	± 0.01	± 0.01
Fisale	± 0.01	± 0.04	± 0.01

1332 Table 11: Standard deviations on Venous Valve experiment.
1333

	Solid		Fluid		Interface		
	Geometry ($\times 10^{-2}$)	Stress ($\times 10^0$)	Pressure ($\times 10^0$)	Velocity (x) ($\times 10^{-2}$)	Geometry ($\times 10^{-2}$)	Stress ($\times 10^0$)	Pressure ($\times 10^0$)
Geo-FNO	± 3.88	± 319.62	± 12.61	± 1.69	± 4.19	± 483.77	± 11.81
LSM	± 4.26	± 216.70	± 13.08	± 2.12	± 4.56	± 286.48	± 11.13
CoDANO	± 6.67	± 552.81	± 18.19	± 2.87	± 6.30	± 603.29	± 16.16
Galerkin	± 0.71	± 79.86	± 4.24	± 0.86	± 1.02	± 107.30	± 2.62
GNOT	± 1.66	± 258.56	± 8.69	± 1.04	± 1.89	± 236.67	± 3.87
Transolver	± 2.18	± 176.98	± 3.37	± 0.81	± 2.50	± 184.31	± 4.23
MGN	± 6.28	± 417.58	± 15.00	± 2.21	± 5.46	± 448.81	± 9.54
HOOD	± 4.50	± 359.47	± 13.37	± 1.48	± 3.95	± 351.29	± 7.29
AMG	± 5.28	± 329.23	± 8.47	± 1.37	± 3.18	± 313.47	± 7.36
Fisale	± 2.01	± 189.26	± 3.05	± 0.92	± 1.92	± 223.60	± 3.58

1350 Table 12: Standard deviations on Flexible Wing experiment. Some baselines are not included due to
 1351 severe degradation, where standard deviations are too unstable to provide meaningful reference.

	Solid ($\times 10^{-2}$)	Fluid ($\times 10^{-2}$)	Interface ($\times 10^{-2}$)
Geo-FNO	± 0.01	± 0.04	± 0.24
CoDANO	± 0.18	± 0.15	± 0.27
LNO	± 0.02	± 0.02	± 0.04
Galerkin	± 0.09	± 0.19	± 0.25
GNOT	± 0.02	± 0.04	± 0.01
Transolver	± 0.01	± 0.04	± 0.03
MGN	± 0.01	± 0.02	± 0.01
HOOD	± 0.01	± 0.02	± 0.02
Fisale	± 0.01	± 0.01	± 0.02

F EFFICIENCY

Efficiency is a key concern in practical applications, especially in large-scale scenarios involving massive mesh points. Therefore, we provide a dedicated discussion on the computational efficiency of Fisale here.

In the computation pipeline of Fisale, the major modules include ALE initialization, physical quantity encoding and decoding, attention-based Partitioned Coupling Module (PCM), and FFN-based aggregation.

- For ALE initialization, the most expensive step is computing offsets, which involves calculating distances between N observed physical points and M ALE grid points, resulting in a complexity of $\mathcal{O}(NM)$. After constructing the ALE grid, we apply k-Nearest Neighbors (kNN) to build edge connections, which incurs a complexity of $\mathcal{O}(M^2D)$.
- In the encoding stage, attention-like weights and spatial mappings are computed, both with a complexity of $\mathcal{O}(NMD)$. Similarly, the decoding stage also involves mapping from grids to physical points, again costing $\mathcal{O}(MND)$.
- During the PCM evolution, we adopt linear attention, leading to a complexity of $\mathcal{O}(MD^2)$.
- The FFN-based aggregation module uses stacked linear layers over N physical points, contributing a complexity of $\mathcal{O}(ND^2)$.

We have ignored constant factors such as level L , pathway H , problem dimension C and scalar coefficients. The total computational complexity is:

$$\mathcal{O}(NMD + M^2D + ND^2 + MD^2)$$

In this expression, M (the number of ALE grid points) and D (the feature channels) are user-defined hyperparameters, while N (the number of physical observation points) is determined by the task and dataset scale. Typically, both $M \ll N$ and $D \ll N$. For instance, in the Flexible Wing task, $N > 10^4$, while in the other two tasks, $N > 10^3$. In contrast, M and D are both on the order of 10^2 . Therefore, we can approximate the overall computational complexity of Fisale as growing linearly with the problem size N , making it scalable to large-scale FSI scenarios. We further conduct an experiment to demonstrate the efficiency of Fisale.

As shown in Table 13, Fisale achieves a favorable trade-off between efficiency and predictive performance. Benefiting from its parallel module design, Fisale maintains a relatively wide architecture under a similar parameter scale, which alleviates the memory burden associated with gradient storage during backpropagation. Moreover, by decomposing the physical domain into fluid, solid, and interface components, Fisale effectively splits large matrices into smaller submatrices. This reduces the memory footprint of intermediate computations. Together, these design choices lead to significantly lower GPU memory usage compared to other attention-based, GNN-based models and most

Table 13: The efficiency comparison on Flexible Wing dataset with more than 35,000 mesh points for each sample in average. The Running Time is measured by the time to complete one epoch. Since the number of mesh points varies across samples, we report the peak GPU memory usage observed within a single epoch. Additionally, the recorded runtime includes the time spent on constructing graph edges. As a result, models like HOOD (Grigorev et al., 2023) and AMG (Li et al., 2025), which involve multiple rounds of dynamic edge construction during iteration steps, become particularly time-consuming.

	Parameters (M)	Running Time (S)	GPU Memory (GiB)	Mean Relative L2 (↓)
Geo-FNO	5.22	71.97	0.66	0.0524
GINO	5.17	223.74	22.95	0.4745
CodANO	5.01	1167.47	17.48	0.1096
LNO	5.34	50.4	1.60	0.0235
Galerkin	3.18	129.40	4.15	0.0577
GNOT	4.64	246.42	13.04	0.0289
ONO	5.07	152.87	7.46	0.2179
Transolver	4.61	245.75	11.09	0.0164
MGN	4.86	506.77	22.50	0.0202
HOOD	5.31	> 1500	22.80	0.0191
AMG	4.71	> 1500	21.92	0.2185
Fisale	4.88	296.30	3.10	0.0136

neural operators. Although Fisale involves kNN operations and multiple attention passes within each module, which limit its speed advantage, its runtime remains within a practically acceptable range. In summary, Fisale delivers high prediction accuracy with minimal memory overhead and without significant computational time increase, making it a good candidate for large-scale, real-world FSI applications.

G ABLATION STUDY

Beyond the main results, we conduct a series of ablation studies to comprehensively evaluate the design. All ablation study experiments are conducted on the Flexible Wing task, which is a challenging long-range steady-state inference problem and contains more than 35,000 mesh points per instance.

Table 14: Ablation study of the explicit interface component.

	Solid	Fluid	Interface	Mean Relative L2 (↓)	Decrease
Fisale	0.0042	0.0155	0.0211	0.0136	-
w/o explicit interface	0.0061	0.0212	0.0251	0.0175	28.68%

Explicit interface component In our design, recognizing the importance of the coupling interface, we explicitly model it as a separate component on par with the solid and fluid. Here, we explore the necessity of this operation. Specifically, since the interface inherently shares properties (solid stress, fluid pressure, and velocity) from both the fluid and solid domains, we cannot directly merge it into one of them. Hence, we duplicate the interface coordinates: one copy is concatenated with the physical attributes of the solid and included as part of the solid input, while the other is concatenated with the attributes of the fluid and treated as part of the fluid input. For the output, we average the coordinates from the two branches as the final position of the interface and calculate the loss on each attribute. The network architecture remains unchanged except for removing the projection and deprojection of the interface component. The result is shown in Table 14. We can observe that removing the interface component leads to notable degraded performance. Since the behavior of the fluid-solid interface differs from both the solid and the fluid, merging it with either domain not only reduces the accuracy of the interface itself, but also adversely affects the evolution of the fluid and

1458 solid domains. This confirms that modeling the interface as an independent component contributes
 1459 positively to the predictions.
 1460

1461 **Ordering of the PCM** In fact, the Partitioned Coupling Algorithm is a flexible framework, and the
 1462 specific ordering used in our design is one representative choice rather than a fixed requirement.
 1463 As we described in Section 2, a common and intuitive coupling loop (Placzek et al., 2009) proceeds
 1464 as: the fluid exerts pressure on the solid, causing deformation; this alters the geometry and updates
 1465 the grid positions; the updated grid affects the fluid state, which is then updated; finally, the updated
 1466 fluid and solid states jointly determine the interface dynamics. Given this cycle, it is reasonable to
 1467 begin with either the solid or the fluid, as both influence the evolution of the system. Different update
 1468 sequences can be also physically justified. To further explore the order influence, we systematically
 1469 test alternative update orders by permuting the four components. As shown in Table 15, we observe
 1470 that: regardless of the specific update order, the model achieves comparable performance across all
 1471 permutations. This indicates that the PCM is inherently a flexible and robust framework. Since Fisale
 1472 adopts a stacked architecture, the update order of components does not need to remain fixed within
 1473 each layer. Instead, the interactions among fluid, solid, grid, and interface can be iteratively adjusted
 1474 through vertical information flow across layers. This iterative propagation helps compensate for local
 1475 order choices, allowing the model to refine cross-domain interactions over multiple stages. Therefore,
 1476 while we adopt a physically reasonable ordering in our implementation, the model’s performance
 1477 remains stable under other plausible orderings, further validating the flexibility of PCM.
 1478

1479 Table 15: Ablation study of the update ordering within PCM.
 1480

Ordering	Solid	Fluid	Interface	Mean Relative L2 (↓)
fluid-grid-solid-interface	0.0043	0.0155	0.0206	0.0135
grid-solid-fluid-interface	0.0042	0.0155	0.0206	0.0134
grid-solid-interface-fluid	0.0041	0.0157	0.0216	0.0138
grid-interface-solid-fluid	0.0041	0.0155	0.0212	0.0136
solid-fluid-interface-grid	0.0044	0.0161	0.0213	0.0139
solid-grid-fluid-interface	0.0042	0.0155	0.0211	0.0136

1487 **Replace PCM with a simpler attention module** We conduct an ablation experiment in which we
 1488 replace the entire multi-stage attention cascade with a simpler module including an attention layer
 1489 followed by an FFN. We concatenate four components (solid, fluid, interface, grid) as input like the
 1490 representation format in learning-based fluid field and keep comparable model parameters by modify
 1491 the latent dimension. As shown in the Table 16, the replacement leads to a drop in performance. This
 1492 degradation is observed consistently across all regions. This indicates that cross-domain attentions in
 1493 our design play a crucial role in modeling the intricate interactions among components. Although
 1494 the simplified variant is more compact in structure, it lacks the ability to disentangle and coordinate
 1495 domain-specific interactions, which are essential in FSI systems.
 1496

1497 Table 16: Ablation study of replacing PCM with a simpler attention module.
 1498

	Params (M)	Solid	Fluid	Interface	Mean Relative L2 (↓)	Decrease
Fisale	4.88	0.0042	0.0155	0.0211	0.0136	-
Simpler Module	4.96	0.0045	0.0178	0.0223	0.0149	9.56%

1504 **Multiscale Latent ALE Grids** To evaluate the effectiveness of multiscale design within Fisale, we
 1505 perform two scaling experiments. First, we explore the effect of mesh resolution M . To isolate this
 1506 factor, we use a single pathway and gradually increase M to investigate how it influences model
 1507 performance. Except for the M and channel number, other settings are kept. The channel is set as 128
 1508 for each experiment. As shown in Table 17, increasing the resolution level M in the single-pathway
 1509 setting leads to slight improvements in performance. However, overall, the performance remains
 1510 largely consistent across different values of M . This trend suggests that, in a single-resolution
 1511 configuration, increasing resolution alone offers limited benefit. Each fixed-resolution mesh captures
 only a specific scale of geometric and physical patterns, and lacks the flexibility to simultaneously

represent both coarse global structures and fine local details. Moreover, even when the parameter count increases to match that of our main model, the accuracy still lags behind the multi-resolution two-pathway design. This indicates that the exact value of M is not a dominant critical factor in determining the model's learning capability.

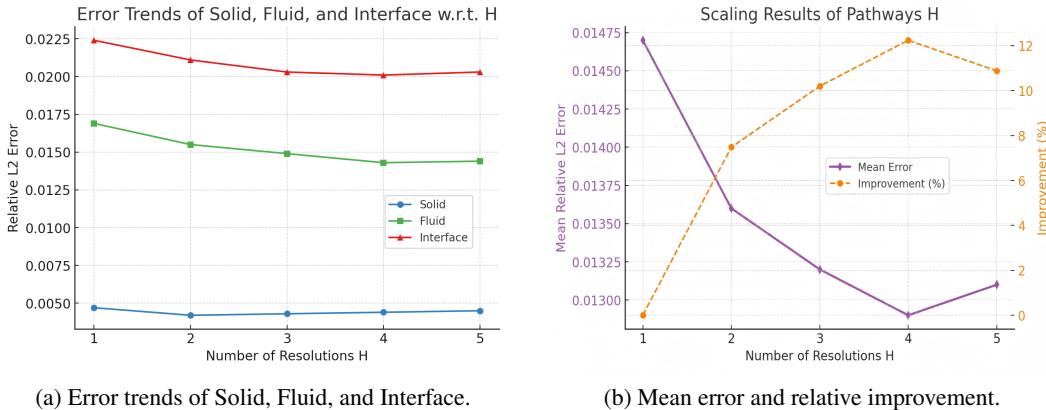
Table 17: Scaling results of mesh resolution M with a single pathway.

$M^{1/3}$	Params (M)	Solid	Fluid	Interface	Mean Relative L2 (↓)
3	2.48	0.0047	0.0171	0.0226	0.0148
5	2.63	0.0047	0.0169	0.0224	0.0147
7	3.66	0.0044	0.0171	0.0221	0.0145
8	5.11	0.0045	0.0172	0.0223	0.0147
9	7.81	0.0046	0.0167	0.0219	0.0144
10	12.50	0.0049	0.0172	0.0227	0.0149

Second, to further examine whether multi-resolution pathways can indeed capture richer and more complementary information, we conduct an additional ablation study on the high-resolution pathway H . The setting and results are shown in Table 18 and Figure 7, respectively.

Table 18: Scaling settings of pathways H .

H	$M^{1/3}$	Channels	Params (M)
1	[5]	[128]	2.63
2	[4, 5]	[128, 96]	4.88
3	[4, 5, 6]	[128, 96, 64]	6.99
4	[3, 4, 5, 6]	[128, 128, 96, 64]	11.99
5	[3, 4, 5, 6, 7]	[128, 128, 96, 64, 64]	15.69

Figure 7: Scaling results of pathways H .

Through the results we find that increasing the number of resolutions H in the high-resolution pathway leads to clear performance gains. Notably, moving from $H = 1$ to $H = 2$ results in a significant improvement in overall accuracy demonstrating that the incorporation of multi-resolution features is highly beneficial for FSI tasks. This supports the idea that coupling information across multiple spatial scales is critical to capture complex cross-domain dynamics. As H continues to increase, we observe gradual but diminishing improvements. This trend suggests two important insights:

- Multi-resolution aggregation is indeed effective, especially when moving from single-scale to dual- or tri-scale setups.

1566
 1567
 1568
 1569
 1570
 1571 • Beyond a certain point ($H = 4$ for example), the model reaches a saturation limit, where
 1572 adding more resolutions and parameters yields only marginal gains or even degradation.
 1573 This is due to the limited data capacity or the task-specific resolution requirements already
 1574 being fulfilled.

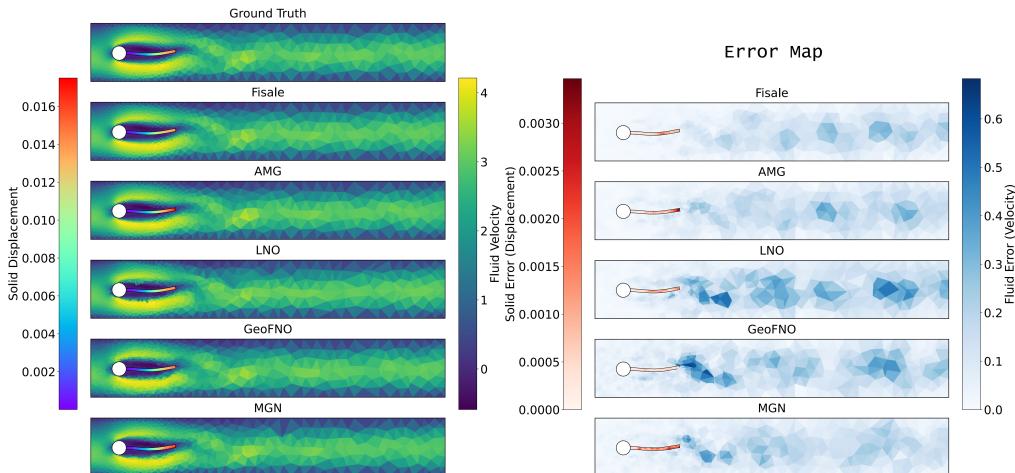
1571 These findings highlight both the value and the limitations of increasing resolution diversity within the
 1572 architecture. Our final selection of hyperparameters strikes a practical balance between performance
 1573 and efficiency.

1575 H OUT-OF-DISTRIBUTION TEST

1577 Follow the convention in CoDA-NO (Rahman et al., 2024),
 1578 we explore the out-of-distribution (OOD) performance on
 1579 structure oscillation task. We use the model trained in the
 1580 main experiment whose data contains Reynolds number
 1581 $Re \in \{200, 400, 2000\}$. We test the trained model on
 1582 data with $Re \in \{4000\}$. As presented in Table 19, Fisale
 1583 consistently performs best over strong baselines on OOD
 1584 samples. This better generalization can be attributed to its
 1585 latent ALE representation, which captures flow patterns
 1586 across multiple spatial scales, and the partitioned coupling
 1587 design, which provides a modular and robust way to update
 1588 interdependent physical states. Furthermore, the explicit
 1589 modeling of the coupling interface enhances the model’s
 1590 ability to extrapolate dynamic interface interactions under
 1591 stronger nonlinear coupling, which is prevalent in high-
 1592 Reynolds-number regimes.

1593 I SHOWCASES

1595 I.1 STRUCTURE OSCILLATION



1613 Figure 8: Showcase comparison of structure oscillation task. The solid deformation and fluid velocity
 1614 are shown.
 1615

1616 Figures 8 and 9 present qualitative comparisons and corresponding error maps on the Structure
 1617 Oscillation benchmark regarding the solid displacement, fluid x -velocity, and fluid pressure. This
 1618 two-way FSI problem is characterized by strong mutual influence between the fluid and the solid:
 1619 pressure from the fluid deforms the solid, while the resulting structural motion feeds back to alter the

1571 Table 19: Performance of OOD experimen-
 1572 t. We choose models that perform
 1573 well before.

	Relative L2 (\downarrow)
Geo-FNO	0.0730
LNO	0.0715
GNOT	0.0889
Transolver	0.0722
MGN	0.0742
AMG	0.0696
Fisale	0.0637

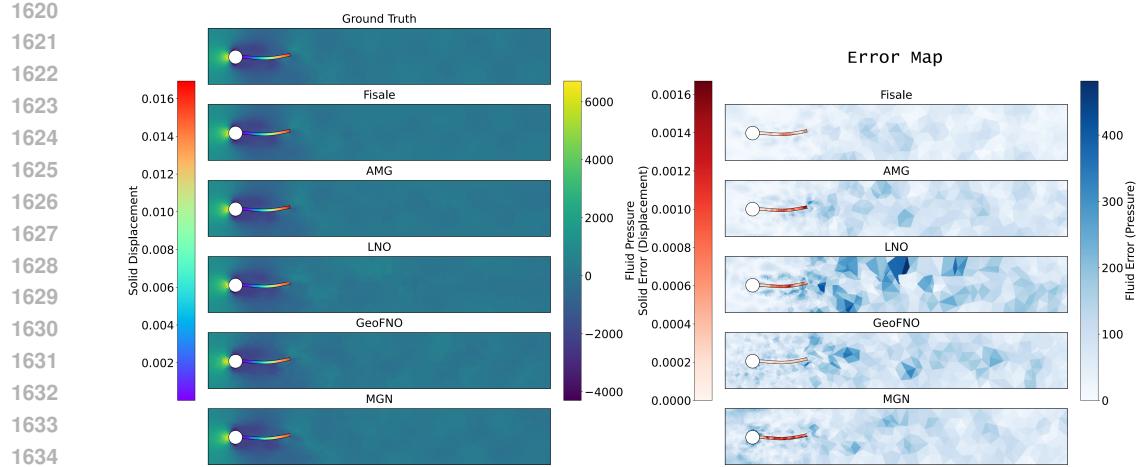


Figure 9: Showcase comparison of structure oscillation task. The solid deformation and fluid pressure are shown.

surrounding flow. Accurate prediction in such scenarios requires simultaneous fidelity in both the fluid and solid domains. As shown in Figures 8 and 9, several baseline models suffer from severe artifacts, including discontinuities in flow velocity and distorted solid shapes, which break the physical coupling and lead to unstable predictions. In contrast, Fisale maintains global coherence across the entire domain: the solid structure remains intact and physically plausible, and the surrounding flow field is smooth and consistent.

This consistency stems from Fisale’s architectural design: the explicit modeling of the coupling interface ensures localized continuity across domains; the multiscale latent ALE representation provides a flexible and unified embedding for cross-domain geometries; and the stacked partitioned coupling modules enable progressive and iterative updates across the fluid–solid system. Together, these components allow Fisale to preserve the integrity of the coupling dynamics, leading to more reliable predictions in highly nonlinear, strongly coupled FSI regimes.

Table 20: Performance comparison on Venous Valve. Supplementary results of Table 2. We record RMSE-all, the average RMSE of the whole rollout trajectory and all samples. A smaller value indicates better performance.

	Fluid		Interface	
	Geometry	Velocity (y)	Velocity (x)	Velocity (y)
Geo-FNO	0.2850	0.0225	0.0780	0.0174
LSM	0.4022	0.0323	0.0825	0.0196
CoDANO	0.6203	0.0378	0.1042	0.0265
Galerkin	0.2811	0.0195	0.0658	0.0130
GNOT	0.2971	0.0182	0.0891	0.0157
Transolver	0.2867	0.0183	0.0641	0.0132
MGN	0.3851	0.0211	0.1018	0.0193
HOOD	0.3216	0.0204	0.0706	0.0152
AMG	0.3159	0.0193	0.0846	0.0161
Fisale	0.2337	0.0129	0.0542	0.0119

1674 I.2 VENOUS VALVE
1675

1676 The Table 20 contains the results of physical quantities that not included in main experimental table.
 1677 Figure 10 and Figure 11 present qualitative comparisons and corresponding error maps for the venous
 1678 valve task, focusing on valve deformation, stress, blood flow velocity, and pressure. In the early
 1679 to mid stages of the rollout (before time step 55), Transolver is able to maintain the overall valve
 1680 shape. However, the fluid field exhibits more significant error accumulation, with uneven distribution
 1681 and particularly large errors near the valve opening. As the rollout progresses (after time step 65),
 1682 the stability of Transolver degrades further, and noticeable geometric distortions appear in the valve
 1683 structure. This can be attributed to its homogeneous modeling across the entire domain, which limits
 1684 its ability to distinguish between fluid and solid regions and to capture their dynamic interactions at
 1685 the interface. In contrast, Fisale explicitly models fluid, solid, and the coupling interface as separate
 1686 components, assigning equal attention to each. This enables the model to better track interface
 1687 dynamics and structural changes. As shown in Figure 10 and Figure 11, Fisale maintains valve shape
 1688 stability even over long rollout trajectories and produces more accurate predictions for both fluid and
 1689 solid fields, especially around the opening during peak states.

1690 I.3 FLEXIBLE WING
1691

1692 Figure 12 presents qualitative comparisons and corresponding error maps on the Flexible Wing
 1693 dataset, focusing on wing deformation, stress, and surface pressure. The figure reveals clear spatial
 1694 patterns across these physical quantities: deformation is concentrated at the tip of the wing, where
 1695 the structural flexibility is highest; stress peaks at the root of the wing, where the wing connects
 1696 to the fuselage; and pressure is distributed primarily along the wind-facing side of the wing. Such
 1697 region-specific distribution behaviors introduce challenges for accurate prediction.

1698 The figure also highlights the difficulty faced by models that apply a homogeneous modeling strategy
 1699 across the entire domain. These models struggle to effectively capture the region-specific dynamics
 1700 of each physical quantity. Moreover, in this dataset, the number of mesh points in the fluid domain
 1701 significantly exceeds that in the solid domain, making it easy for solid-related information to be
 1702 overwhelmed. Some baselines exhibit severe degradation, while others fail to distinguish fluid,
 1703 solid, and surface regions, which hinders their ability to extract useful signals from dense mesh
 1704 representations. This further demonstrates the effectiveness of Fisale’s domain-aware design in
 1705 capturing cross-domain dynamics and maintaining robustness under such challenging conditions.

1706 J LLM USAGE CLARIFICATION
1707

1708 We declare that the Large Language Models (LLMs) are only used for language polishing and
 1709 grammar correction during the writing of this manuscript. All research content, conclusions, and data
 1710 are solely produced by the authors, without subjective arguments, conclusions, or data generated by
 1711 LLMs. We take full responsibility for the entire content of this paper.

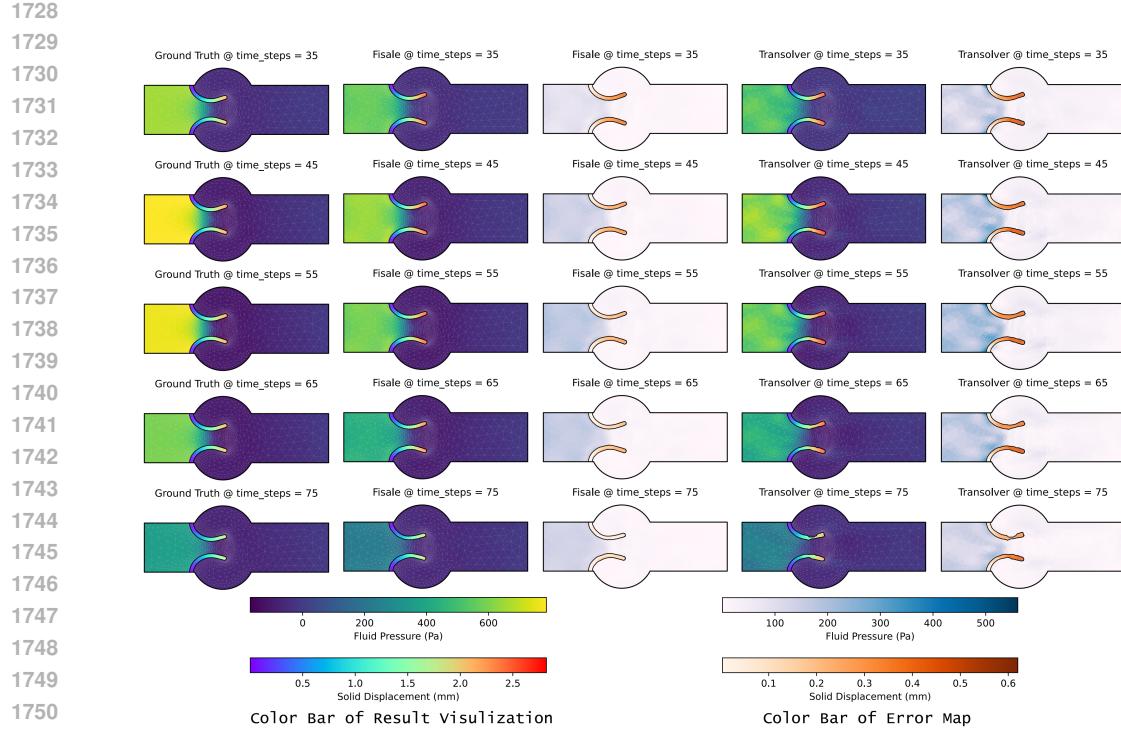


Figure 10: Showcase comparison of venous valve task. The solid deformation and fluid pressure are shown.

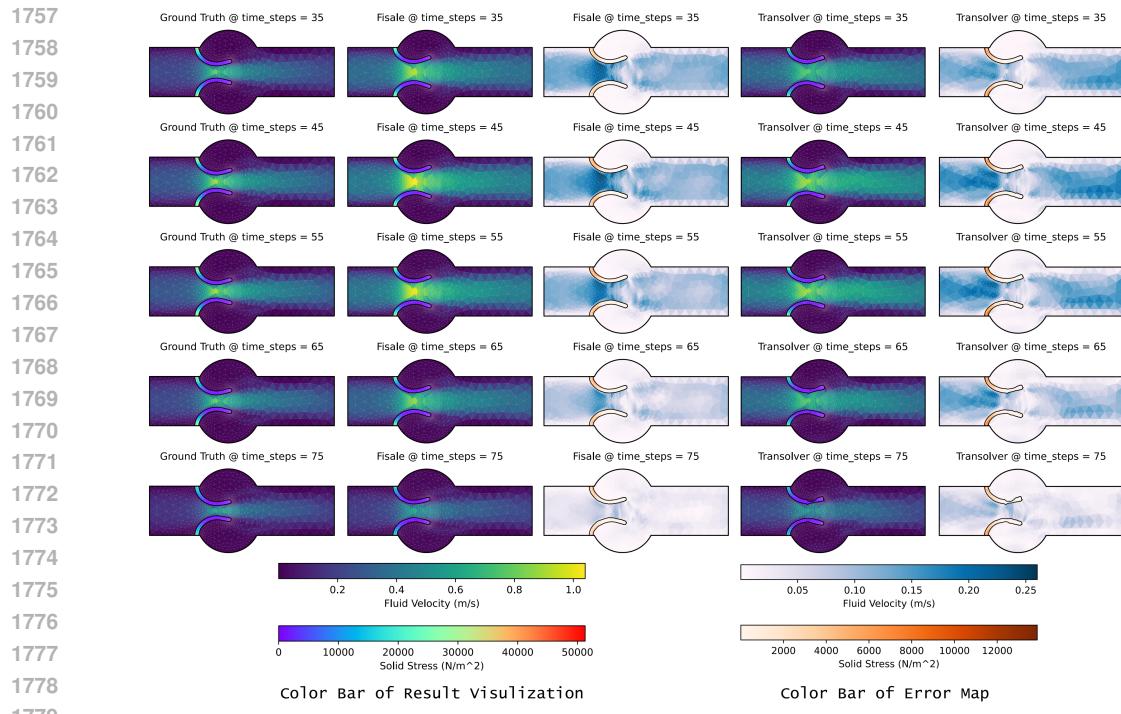
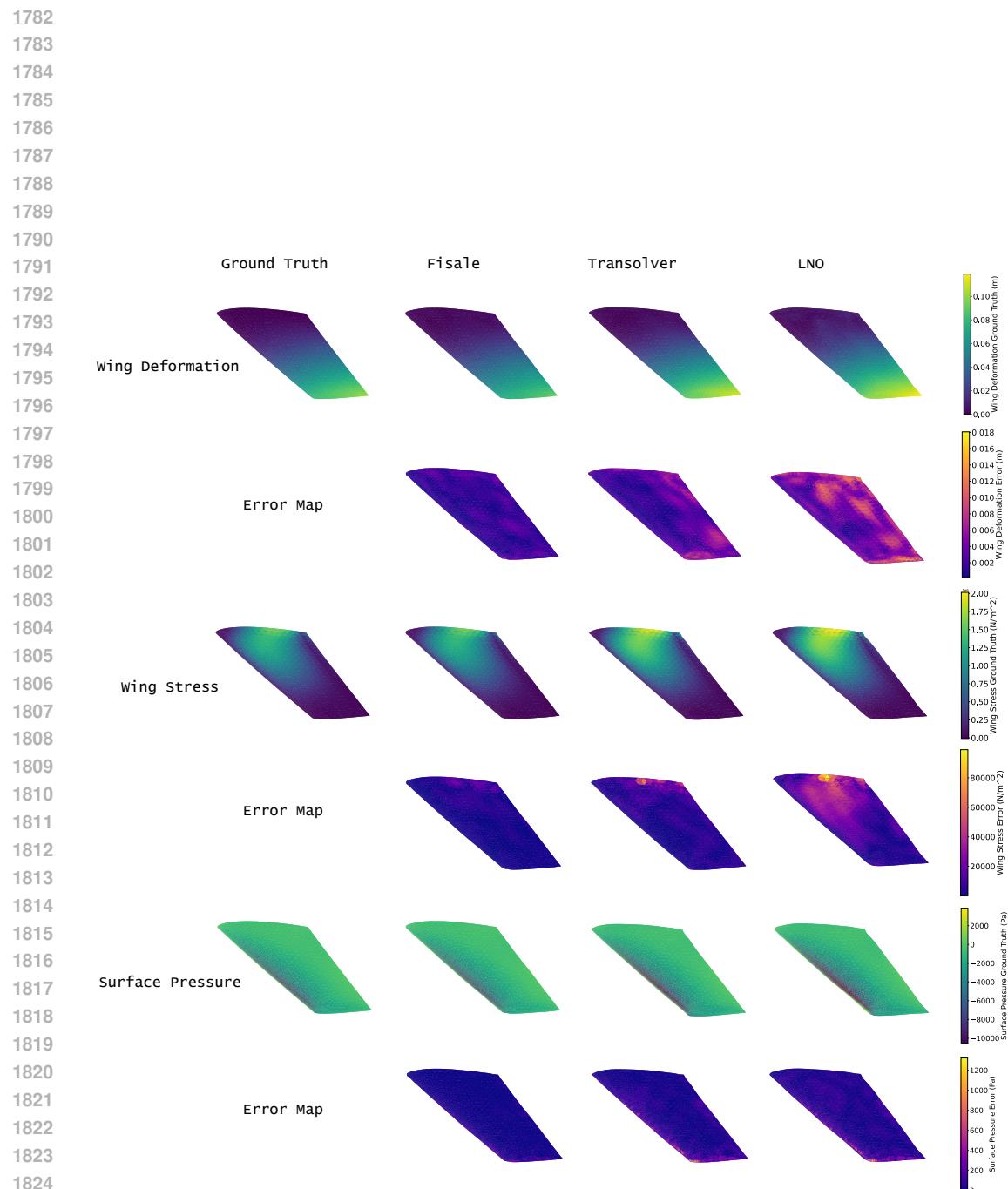


Figure 11: Showcase comparison of venous valve task. The solid stress and fluid velocity are shown.



1826 Figure 12: Showcase comparison of venous valve task. The wing deformation, wing stress and
 1827 surface pressure are shown.
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

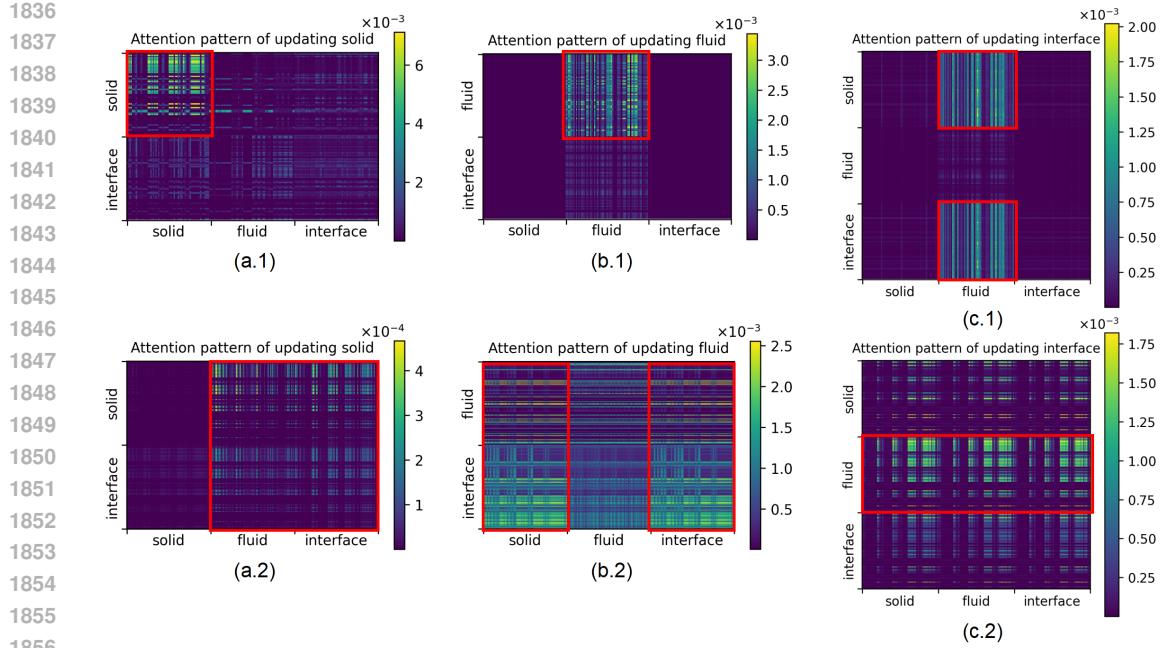


Figure 13: **Attention pattern in last layer PCM modules of Fisale.** The top row corresponds to the low-resolution latent ALE grid, and the bottom row corresponds to the high-resolution latent ALE grid. Regions with higher activation intensity are highlighted with red boxes. (a.1) and (a.2) represent the updating of the solid component; (b.1) and (b.2) represent the updating of the fluid component; (c.1) and (c.2) represent the interaction on the interface component.

K ATTENTION PATTERN

We visualize and analyze the attention patterns in each update step of the PCM module to provide intuitive insight into how attention contributes to modeling the two FSI problem and updating the various physical components. It is worth noting that we use linear attention(Cao, 2021), where the softmax operation is removed and the computation prioritizes $\mathbf{K}^T \mathbf{V}$. Although we cannot directly visualize the attention weights as in standard attention (Vaswani et al., 2017), analyzing \mathbf{QK}^T remains meaningful. On the one hand, from the perspective of matrix multiplication, $\mathbf{Q}(\mathbf{K}^T \mathbf{V})$ and $(\mathbf{QK}^T)\mathbf{V}$ produce the same result. On the other hand, \mathbf{QK}^T explicitly characterizes the correlation between the Query and Key vectors. Even without softmax, the magnitude of its entries reflects the strength with which each Query token aggregates information from the Keys. This form of analysis is also widely used in existing works (Han et al., 2023b; Wu et al., 2024).

Figure 13 illustrates the attention patterns in the last PCM layer of each pathway. The top row corresponds to the low-resolution latent ALE grid, and the bottom row corresponds to the high-resolution latent ALE grid. Regions with higher activation intensity are highlighted with red boxes, indicating where attention tends to aggregate information for the Query.

From the vertical comparison, we observe two key phenomena:

1. **Complementary patterns across resolutions.** The attention learned on the low- and high-resolution latent ALE grids exhibits clearly complementary behaviors. From the vertical comparison of the highlighted red boxes, we observe that the two resolutions assign different activation strengths to different components. For example, on the low-resolution grid, attention mainly captures the solid-to-solid relationships (Figure 13(a.1)), whereas on the high-resolution grid, it shifts toward capturing interactions between the solid and other components (Figure 13(a.2)). Similar complementary patterns appear across the other attention layers as well. This indicates that the two pathways capture different aspects of the underlying dynamics, further demonstrating the importance of the multi-scale design for modeling two-way FSI.

1890 2. **Different learning tendencies for cross-attention and self-attention across resolutions.**
 1891 For example, in the cross-attention used for updating the solid and fluid components, the
 1892 low-resolution grid tends to focus on self-relations (solid-to-solid in Figure 13(a.1) and fluid-
 1893 to-fluid in Figure 13(b.1)), aggregating information primarily from the same component.
 1894 In contrast, the high-resolution grid shows the opposite trend, where the solid aggregates
 1895 information from the fluid and interface (Figure 13(a.2)), and the fluid aggregates information
 1896 from the solid and interface (Figure 13(b.2)). However, for the interface self-attention,
 1897 we observe a reversed pattern compared to cross attention (Figure 13(c.1) and Figure
 1898 13(c.2)): although still complementary across resolutions, both resolutions tend to assign
 1899 higher activation to inter-region aggregation (e.g., interface-to-solid or interface-to-fluid).
 1900 Meanwhile, for self-aggregation, the fluid component shows stronger activation (primarily
 1901 because the fluid region occupies the majority of the computational domain), whereas the
 1902 solid and interface components exhibit relatively weaker self-focused aggregation. This
 1903 observation further highlights the importance of the multi-scale PCM. Different components
 1904 require different aggregation priorities when being updated, and the attention patterns
 1905 learned on different resolution grids emphasize different regions of influence. By combining
 1906 these complementary behaviors, the multi-scale PCM ensures comprehensive coverage
 1907 during updates: capturing both self-related information and cross-component interactions.
 1908 Therefore, it enables a more complete and physically meaningful representation of two-way
 1909 FSI dynamics.

L SUPPLEMENTARY DISCUSSION

1910 As discussed in the related work, current deep learning approaches for solving PDEs and FSI
 1911 problems mainly follow two paradigms. The first is the hybrid paradigm, which combines traditional
 1912 numerical algorithms with deep learning models. In this setting, neural networks are used to replace
 1913 computationally expensive steps (Fan & Wang, 2024; Zhang et al., 2022; Li et al., 2023a) or to solve
 1914 specific subproblems within established pipelines (Xiao et al., 2024a; Zhu et al., 2019; Xu et al.,
 1915 2024; Liu et al., 2024). The second is the purely data-driven approach (Gupta, 2022; Wang et al.,
 1916 2021; Li et al., 2023d; Pfaff et al., 2020), which relies entirely on deep learning models. These
 1917 methods introduce domain-specific inductive biases through architectural design and loss function,
 1918 guiding the model to learn underlying physical principles directly from data. The first paradigm
 1919 typically relies on simplified assumptions, such as rigid solids (Takahashi et al., 2021) or potential
 1920 flow assumptions for fluids (Mazhar et al., 2023), such that explicit governing PDEs or ODEs exist,
 1921 thereby facilitating the simulation of relevant physical quantities. Deep learning models are then
 1922 used to approximate certain components of the numerical solver under these assumptions. As the
 1923 core solver structure remains intact, such methods tend to be less data-dependent and exhibit better
 1924 generalization. However, their applicability is limited by the assumptions imposed, which constrain
 1925 the types of physical systems they can handle (Li et al., 2022).

1926 Within the purely data-driven paradigm, existing methods can be further categorized based on how
 1927 inductive biases are introduced. One line of research incorporates physical priors through architectural
 1928 design, embedding domain knowledge directly into the model structure (Boullé & Townsend, 2023;
 1929 Sanchez-Gonzalez et al., 2020). The other one imposes physical constraints via the loss function,
 1930 typically by minimizing PDE residuals—a strategy commonly known as Physics-Informed Neural
 1931 Networks (PINNs) (Raissi et al., 2019). Fisale follows the former approach, leveraging architecture-
 1932 level bias to capture the dynamics of multi-domain interactions without requiring explicit PDE
 1933 supervision. Although PINNs are grounded in PDE formulations, which help enforce physical
 1934 consistency, they also rely on strong assumptions to ensure the existence of explicit governing
 1935 equations—e.g, mass-spring-damper assumption for cylinder flow (Cheng et al., 2021). However,
 1936 in complex, real-world FSI tasks, it is difficult to define a single global and well-studied PDE (like
 1937 N-S equation in Computational Fluid Dynamics (Morrison, 2013)) to describe the entire system
 1938 accurately. Instead, its behavior is governed by multiple different relations, such as interaction at the
 1939 interface, load applications and deformations, fluid evolution. Directly embedding them into the loss
 1940 leads to complex, multi-term objectives that are hard to optimize and often limited in applicability.
 1941 This remains an open challenge in the field (Cai et al., 2021).

1942 Therefore, we take a purely data-driven approach and propose to model the physics through the model
 1943 architecture. These models aim to learn the underlying physical mechanisms directly from data,

1944 without relying on oversimplified assumptions or explicit PDE formulations. Instead, domain-specific
1945 inductive biases are embedded into the architecture to help guide the learning process. While this
1946 approach typically requires more data, it allows for greater flexibility and broader applicability
1947 across complex and realistic scenarios. Since our model differs fundamentally in design philosophy
1948 and execution logic from hybrid models and PINNs, a direct comparison would be inappropriate.
1949 Therefore, we do not include them as baselines in this work. However, we believe that these paradigms
1950 are complementary in nature, and integrating their strengths may offer a promising direction for
1951 future research. Combining data-driven flexibility with physics-based rigor could lead to more robust
1952 and generalizable solutions for complex physical systems.

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997