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ABSTRACT

Fluid-solid interaction (FSI) problems are fundamental in many scientific and
engineering applications, yet effectively capturing the highly nonlinear two-way
interactions remains a significant challenge. Most existing deep learning methods
are limited to simplified one-way FSI scenarios, often assuming rigid and static
solid to reduce complexity. Even in two-way setups, prevailing approaches struggle
to capture dynamic, heterogeneous interactions due to the lack of cross-domain
awareness. In this paper, we introduce Fisale, a data-driven framework for handling
complex two-way FSI problems. It is inspired by classical numerical methods,
namely the Arbitrary Lagrangian–Eulerian (ALE) method and the partitioned
coupling algorithm. Fisale explicitly models the coupling interface as a distinct
component and leverages multiscale latent ALE grids to provide unified, geometry-
aware embeddings across domains. A partitioned coupling module (PCM) further
decomposes the problem into structured substeps, enabling progressive modeling
of nonlinear interdependencies. Compared to existing models, Fisale introduces
a more flexible framework that iteratively handles complex dynamics of solid,
fluid and their coupling interface on a unified representation, and enables scalable
learning of complex two-way FSI behaviors. Experimentally, Fisale excels in three
reality-related challenging FSI scenarios, covering 2D, 3D and various tasks. The
code is included in the supplementary material for reproductivity.

1 INTRODUCTION

Fluid-Solid Interaction (FSI) refers to a complex coupled phenomenon in which solids undergo
motion or deformation under the action of surrounding flowing fluid, and reciprocally alter the
pressure and velocity distribution within the fluid (Hou et al., 2012). This kind of problems are
ubiquitous in real-world scenarios, spanning a wide range of practical applications. From biomedical
engineering, such as blood flow interacting with vessel valves (Bazigou & Makinen, 2013; Enderle
& Bronzino, 2012), to aerospace and civil engineering involving structural responses to fluid forces
(Prasad & Wanhill, 2017; Zhang, 2011), FSI plays a pivotal role in both analysis and design.

FSI problems encompass the interplay between fluid flow, solid deformation, and their intricate
coupling dynamics. These interactions are typically governed by a tightly coupled system of partial
differential equations (PDEs) (Belytschko, 1980). Accurately and efficiently solving them is crucial
for practical applications (Kopriva, 2009; Roubı́ček, 2013). However, due to nonlinear materials,
moving interfaces, and strong coupling relations, analytic solutions to these PDEs are typically
intractable (Xing, 2019; Génevaux et al., 2003). Thus, these FSI problems are generally discretized
into meshes and solved using numerical methods such as the Immersed Boundary Method (IBM)
(Peskin, 2002) and Arbitrary Lagrangian-Eulerian (ALE) (Hirt et al., 1974) method. These approaches
handle the coupled system either monolithically (Heil et al., 2008), treating fluid and solid as a unified
domain, or through partitioned iteration (Degroote et al., 2009), where each subdomain is solved
separately with interface data exchanged iteratively. While effective in many cases, both approaches
are computationally expensive (Umetani & Bickel, 2018), strongly mesh-dependent (Berzins, 1999;
Burkhart et al., 2013), and face stability issues (Grétarsson et al., 2011; Paı et al., 2005).

Recently, deep learning has emerged as a powerful tool for solving PDEs (Li et al., 2021; Lu et al.,
2021), thanks to its strong capacity to effectively capture nonlinear input-output mappings. Once
trained, it can offer significantly faster inference than traditional solvers (Sirignano & Spiliopoulos,
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Figure 1: Fluid-solid interaction scenarios. (a.1) and (a.2) depict flow-around-body scenarios; (b.1)
and (b.2) focus on aerodynamic analysis of wings; (c) illustrates the periodic dynamics of a venous
valve; (a.1) and (b.1) represent one-way FSI cases, while the others involve two-way FSI.

2018; Han et al., 2018). However, in the context of FSI, most existing models primarily focus on
one-way FSI, where the solid is typically treated as static and rigid. For example, many studies have
explored airfoil design tasks (Bonnet et al., 2022; Valencia et al., 2025). As shown in Figure 1(b.1),
the aircraft wing is typically modeled as a static rigid body. This allows the solver to treat the wing
region as a fixed, undeformable inner boundary and focus solely on the fluid domain, significantly
reducing the complexity. However, as shown in Figure 1(b.2), real wings are often made of flexible
materials and may undergo noticeable deformation under aerodynamic loads (Aono et al., 2010;
Eppler, 2012). In such cases, the fluid-solid interface becomes dynamic, and the coupling relation
grows more complex. Similar assumptions also appear in other benchmarks like cylinder flow (Pfaff
et al., 2020; Li et al., 2025) and car design tasks (Elrefaie et al., 2024a;b), where structural flexibility
is ignored. Thus, how to effectively handle the evolution of fluid and solid, and capture their dynamic
interactions is the key to learn two-way FSI problems with learning-based solvers.

Regarding existing two-way cases, GNN-based models have simulated several rigid motion scenarios
(Sanchez-Gonzalez et al., 2020; Li et al., 2019). While message passing underpins GNNs, it is
inherently stateless and undifferentiated, making it difficult to distinguish inter- and intra-domain
information in complex deformation scenarios (Hou et al., 2019). Moreover, its local reception also
falls short in global modeling (Li et al., 2023d). A closely related work to ours is CoDA-NO (Rahman
et al., 2024), a multiphysics neural operator that tackles a classic two-way FSI problem, structure
oscillation (Figure 1(a.2)) (Turek & Hron, 2006), by partitioning the input domain along physical
variable channels and learning the global mapping through codomain-wise attention. However,
this variable-wise strategy maintains a monolithic view and lacks explicit handling of the dynamic
fluid–solid interface caused by structural deformation. More broadly, most neural operators struggle to
simultaneously learn the distinct behaviors and bidirectional dependencies of fluid and solid domains
under such monolithic modeling approaches. As a result, two-way FSI still remains underexplored.

To effectively capture the evolution of solid and fluid states and their complex interactions, we propose
Fisale, a purely data-driven framework inspired by classical numerical methods: ALE and partitioned
coupling algorithm. ALE provides a unified representation for cross domains via mesh motion,
while partitioned strategies decouple fluid and solid domains for separate processing and reduced
nonlinearity. In our design, recognizing the importance of the coupling interface, we explicitly model
it as a separate component on par with the solid and fluid. This enables the model to better capture
the coupled dynamics. We then introduce multiscale latent ALE grids, onto which fluid, solid, and
interface states are interpolated. These grids serve as unified multi-physics embedding that encodes
spatial and physical quantities of the FSI system. Eventually, instead of monolithic updates, we
introduce a Partitioned Coupling Module (PCM) that mirrors the logic of classical partitioned solvers.
By breaking the nonlinear problem into sequential substeps, it progressively captures evolutions and
complex interdependencies through deep iteration. Our contributions are summarized as follows:

• We propose to solve two-way FSI problems by separately handling the evolution of different
physical domains. In particular, we treat the coupling interface as an individual component,
on par with fluid and solid, enabling a more effective capture of cross-domain interactions.
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• We propose Fisale, a purely data-driven framework inspired by ALE and partitioned coupling
methods. It explicitly models fluid, solid, and their interface dynamics through multiscale
latent ALE grids and Partitioned Coupling Module (PCM).

• Fisale achieves consistent state-of-the-art across three challenging FSI tasks, particularly in
scenarios involving large deformation and complex interaction.

Related Work Deep learning has recently gained traction in addressing scientific problems across
various fields, including initial explorations into FSI problems. A common strategy is to hybridize
traditional solvers with neural networks. For instance, in partitioned frameworks, deep learning
models may replace either the fluid or solid solver (Xiao et al., 2024a; Zhu et al., 2019; Mazhar
et al., 2023; Xu et al., 2024; Liu et al., 2024), while the other remains conventional. Alternatively,
neural networks are integrated into solvers to accelerate costly steps like velocity estimation (Fan &
Wang, 2024), interface force prediction (Zhang et al., 2022; Li et al., 2023a) or control parameter
approximation (Takahashi et al., 2021). Different from hybrid, purely data-driven models bypass
traditional solvers entirely and learn physical dynamics directly from data, sometimes with the
guidance of physical priors. One prominent class is deep reduced-order models (ROMs) (Gupta,
2022; Ashwin et al., 2022), which are built on the assumption that FSI dynamics evolve on a low-
dimensional manifold (Lee et al., 2024). These methods use autoencoders (Zhai et al., 2018), PCA
(Maćkiewicz & Ratajczak, 1993), or POD (Berkooz et al., 1993) to reduce dimensionality, and utilize
neural networks to model the evolution in low-dimensional space efficiently. Another widely studied
direction is Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019), which embed the
governing equations of the FSI problems directly into the loss function (Wang et al., 2021; Cheng
et al., 2021; Chenaud et al., 2024), enabling the model to learn solutions that satisfy physical laws
and serve as an instance-specific solver after trained. To address generalization across geometries and
conditions, neural operators (Boullé & Townsend, 2023) learn mappings between function spaces,
offering mesh-independent PDE solvers (Wu et al., 2024; Hao et al., 2023; Li et al., 2023d; 2025).
These methods have also been extended to multi-physics problems like FSI (Rahman et al., 2024) by
learning codomain-wise operator along physical variable channels. Complementarily, GNN-based
simulators leverage mesh (Pfaff et al., 2020) or particle (Li et al., 2019; Sanchez-Gonzalez et al.,
2020) connectivity to learn local interactions and propagate across physical domains.

However, most of these studies remain limited to one-way FSI scenarios, where the solid is assumed
rigid and static, greatly simplifying the coupling dynamics. For the relatively few studies tackling
two-way FSI, current methods, such as GNN-based simulators (Pfaff et al., 2020; Sanchez-Gonzalez
et al., 2020) and multi-physics neural operators (Rahman et al., 2024), struggle to effectively capture
coupling behavior due to the undifferentiated and monolithic modeling. As a result, effectively
learning the evolution of deformable solids and surrounding fluid flows, and capturing their complex
coupling relations remain an underexplored challenge.

2 PRELIMINARIES

Arbitrary Lagrangian-Eulerian Method Lagrangian and Eulerian descriptions are two primary
views for physical simulations. While the former tracks the motion trajectories of material particles
(Dym et al., 1973), the latter observes physical quantities at fixed spatial locations (Morrison, 2013).
Accordingly, solids are typically simulated using Lagrangian meshes that follow material deformation
and motion, whereas fluids are often discretized using Eulerian grids to accommodate complex flow
behavior and topological changes, making their coupling both common in nature but difficult to
simulate (Xie et al., 2023; Axisa & Antunes, 2006). The Arbitrary Lagrangian–Eulerian (ALE)
method (Hirt et al., 1974) combines both descriptions and is widely used in FSI simulations (Takashi
& Hughes, 1992; Donea et al., 1982). The core idea is defining a mesh velocity vg that moves
independently of the material and fixed domain, enabling flexible mesh motion and improved stability.
The mesh velocity vg is typically equal to the material velocity v in solid domains, while obtained by
Laplacian smoothing (Field, 1988) in fluid regions:

∇ · (γ∇vg) = 0 (1)

where γ is a weighting coefficient and interface velocities serve as Dirichlet boundary conditions. This
flexibility of mesh motion enables ALE to accommodate unified representations for heterogeneous
domains, providing a strong foundation for learning-based modeling of evolution and interaction.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

···

Processor

Processor

ALE Init

Processor

Processor

Aggregation(FFN)

Aggregation(FFN)

Processor Processor

···

ALE Init

� pathways

� levels

regular gird seeding

solid

fluidinterface

offset for 
each point

geometry-aware offset latent space projection
��

LinearDistance

Encoding

Quantities

Latent ALE

Attention-based PCM Decoding

Latent ALE

Quantities

solid

grid

fluid

interface

interpola-
tion

interpola-
tion

(a) overall model structure (c) pipeline of latent ALE grid initialization

(b) pipeline of processor

Figure 2: The overview of Fisale. (a) describes the overall structure of Fisale; (b) depicts the pipeline
of the processor; (c) shows the pipeline of the latent ALE grid initialization.

Partitioned Coupling Algorithm The partitioned coupling algorithm is widely adopted in FSI
simulations (Li et al., 2016; Degroote et al., 2008). By decoupling the fluid and solid, the coupled
system is transformed into two smaller and typically better-conditioned problems, each of which
can be solved using standard techniques. Compared to monolithic methods that solve a large, fully
coupled nonlinear system, the partitioned method reduces the size and complexity of the global
system matrix and often improves linearity within each subdomain. A typical solution sequence
(Placzek et al., 2009) involves: (1) solving the solid subproblem using current solid and fluid states; (2)
updating the computational mesh using an ALE mesh motion method to reflect the solid deformation;
(3) solving the fluid subproblem with updated mesh and solid state; (4) matching interface, repeating
above procedures or advancing to next step.

3 METHOD

Problem Setup Given a bounded open domain D ⊂ Rd and a state space U ⊂ RN representing
N physical quantities across fluid and solid fields (in Lagrangian, Eulerian, or hybrid form), we
denote ut(g) ∈ U and ut+∆t(g) ∈ U as system states at two time steps t and t + ∆t, evaluated
at a generalized spatial coordinate g ∈ Rd. The FSI prediction problem can be formulated as
ut(g)

Fθ−→ ût+∆t(g), where Fθ represents the learned mapping function. This basic single-step
prediction can be extended to several tasks like steady-state inference, as discussed in Section 4.

Notation For simplicity, we omit the time subscript t and denote the fluid and solid observa-
tions at current time step as uf = Concat[gf ∈ RNf×d,qf ∈ RNf×Cf ] and us = Concat[gs ∈
RNs×d,qs ∈ RNs×Cs ], respectively. Here, g represents the generalized spatial coordinates and q
denotes the associated physical quantities. As mentioned before, we explicitly treat the interface as a
separate component and denote it as ub = Concat[gb ∈ RNb×d,qb ∈ RNb×Cb ], where Cf+Cs = Cb

and Nf +Ns +Nb = N . uf ,us and ub are the inputs into the mode, containing both the geometry
and physical quantities.

Overall Framework As shown in Figure 2, the pipeline of Fisale is formulated as:

Fθ =

(
L∏

l=1

F (l)
θAggregate

◦

[
H⊕

h=1

F
θ
(l,h)
LatentALEToOrigin

◦ F
θ
(l,h)
PCM
◦ F

θ
(l,h)
OriginToLatentALE

])
◦

[
H⊕

h=1

F (h)
θALEInit

]
(2)

where ◦ denotes operator composition. The full model Fθ consists of H parallel latent pathways
corresponding to different spatial scales. Each pathway begins with an individual ALE grid initial-
ization F (h)

θALEInit
, which provides a unified representation for different domains. Then each pathway

proceeds through L stacked processors. At the l-th level of the h-th pathway, the processor consists
of three sequential components: an encoding step from the original space to the latent ALE space
F

θ
(l,h)
OriginToLatentALE

, a processing module F
θ
(l,h)
PCM

on the latent ALE grid, and a decoding step back to the
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original space F
θ
(l,h)
LatentALEToOrigin

. To enable cross-scale communication, an aggregation module F (l)
θAggregate

is applied after each level l, where features from all pathways are concatenated and passed through a
Feed-Forward Network (FFN) to produce updated features.

3.1 MULTISCALE LATENT ALE GRIDS

Instead of directly solving FSI in heterogeneous descriptions, we introduce a set of multiscale latent
ALE grids, which provide a unified representation for multiscale and cross-domain physics.

Latent ALE Grid Initiation The initiation of a single latent ALE grid includes two steps: regular
grid seeding and geometry-aware offset. As shown in Figure 2, we begin by initializing a regular,
axis-aligned Cartesian grid a ∈ RM×d over the d-dimensional Euclidean space [−3.5, 3.5]d via
uniform sampling. Notably, we normalize the input physical domain into a N (0,1); according to the
3-sigma rule (Huber, 2018), the regular grid with interval [−3.5, 3.5]d covers more than 99.95% input
mesh points. Here, the grid is flattened into a sequence of length M , where M = M1×M2×· · ·×Md

denotes the total number of grid nodes, and each Mk represents the number of discretization points
along the k-th spatial axis. This regular grid is treated as a reference grid, independent of any specific
geometry. Its uniform structure enables the decoupling of spatial topology from geometric variation
and facilitates geometry-aware deformation in the subsequent initialization stage (Li et al., 2023c).

To incorporate geometric awareness into the grid, we deform the regular reference grid a by applying
an offset field that reflects the spatial distribution of solid, fluid and coupling interface. We first
compute direction vectors from each grid node ai to points in each domain. These vectors are
weighted by a normalized radial basis kernel to prioritize closer points. For example, the offset
contributed by the fluid geometry gf is given by:

∆f (ai) =

Nf∑
j=1

exp(−∥ai − gfj∥2)∑Nf

j=1 exp(−∥ai − gfj∥2)
(gfj − ai)

where the subtraction is implemented by broadcast. With this offset, fluid points that are closer to
the grid node receive higher weights, leading to a geometry-aware aggregation. The total offset is
obtained by summing contributions from all domains: ∆(a) = ∆s(a) + ∆f (a) + ∆b(a). Finally,
the latent grid is obtained by applying the total geometry-aware offset followed by a linear projection:
ga = Linear(a+∆(a)). This geometry-aware offset encourages grid nodes to move closer to regions
of geometric interest, such as fluid-solid interfaces, by aggregating directional influences through
distance-weighted kernels. Moreover, the spatial decay of the kernel attenuates the influence of
distant regions, leading to weaker and more uniform updates in non-critical regions, which helps
preserve the grid’s smoothness and regularity. We then build edges by performing k-nearest neighbor
(k-NN) search on the latent grid ga ∈ RM×D, i.e., E = kNN(ga). The edge set E defines a latent
interaction graph over the deformed grid, which supports grid’s update in subsequent modules.

Definition of Latent ALE Grid During the solving process, this grid is maintained and iteratively
updated in latent space according to the learned dynamics. Crucially, it adheres to the principle of the
ALE method, namely, evolving with a motion that is decoupled from both the frames of material points
and spatial grids, allowing for intermediate behavior between Lagrangian and Eulerian descriptions
(Hirt et al., 1974). Therefore, we can define it as the Latent ALE Grid.

Multiscale FSI phenomena are inherently multiscale (Steinhauser, 2017). For example, a flexible
wing interacting with airflow involves large-scale aerodynamic forces and small-scale local defor-
mations. Capturing such behaviors requires the ability to model and propagate information across
different resolution levels. Fortunately, it is straightforward and natural in our framework to construct
grids at multiple scales, simply by varying the number of grid nodes M during initialization. By
operating in parallel, each grid records physical context at a different level of detail. This allows
coarse grids to efficiently model global structures, while fine grids focus on local interactions, together
forming a hierarchical representation well-suited for multiscale FSI problems.

Supplementary Notation We define x
(l,h)
f ∈ RNf×D to be the output feature of the l-th level

in the h-th pathway. The x0,h
f corresponds to the input embedding of the observation uf , i.e.,

x0,h
f = Linear(uf ). The solid and interface adhere the same manner. We denote gl,h

a as the state of
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the latent ALE grid at the l-th level of the h-th pathway. Since the encoding, decoding, and PCM
operations are shared across levels and pathways, we omit l and h in the following descriptions.

3.2 PHYSICAL QUANTITIES ENCODING AND DECODING

Before each coupling process, we project physical quantities onto the grid to enable unification across
heterogeneous regions. After coupling learning, we project them back for multiscale aggregation.
Both processes are applied by weighted interpolation.

Physical Quantities Encoding For each domain, we compute the projection weight through an
attention-like manner. The interpolation weight for fluid domain wf ∈ RM×Nf is defined as:

wf = QKT , where Q = Linear(ga) and K = Linear(xf )

Then the fluid projection pf ∈ RM×D is conducted by: pf = Softmax(wf )xf .

Solid and coupling interface domains follow the same procedure with projection weights ws and
wb, projected features ps and pb, respectively. As a result, we extend the latent ALE grid ga as
{ga,ps,pf ,pb}. This latent tuple encodes both the grid’s geometry-aware position and the surround-
ing physical context, serving as the input to subsequent modules. Unlike traditional discretizations
that partition physical domains rigidly, we represent fluid, solid, and interface features simultane-
ously at each latent node. This allows the model to naturally capture cross-domain interactions and
dynamics near interfaces, forming a flexible and expressive multi-physics embedding for learning.

Physical Quantities Decoding Let {ĝa, p̂s, p̂f , p̂b} = PCM({ga,ps,pf ,pb}) denote the updated
features. The decoding is similar to the encoding as: x̂f = Softmax(wT

f )p̂f .

Here, the direction of Softmax(·) is different from the encoding to keep the sum of the interpolation
weight equal to 1. To fuse features in different scales, we concatenate the decoding feature from
different pathways and adopt a Feed-Forward Network (FFN) for aggregation. Then the fused features
are split and taken back to their own pathways.

3.3 PARTITIONED COUPLING MODULE

We design a Partitioned Coupling Module (PCM) that follows the process of partitioned coupling
algorithm to learn the evolution of fluid, solid and their complex coupling in an iteratively deep
manner. Each PCM includes four forward steps outlined in Section 2.

Update Solid State We first employ the cross-attention mechanism to update the solid state. Attention
mechanisms (Vaswani et al., 2017) are well-suited for modeling PDE-related physical systems due
to their strong capacity to capture nonlinear dependencies, long-range interactions, and perform
spatial aggregation across irregular domains (Hao et al., 2023; Wu et al., 2023; Li et al., 2023b).
Recent studies have further shown that attention itself can be interpreted as an integral operator,
capable of approximating complex mappings across function spaces (Cao, 2021; Wu et al., 2024;
Li et al., 2025). Moreover, the flattened sequence of the latent ALE grid aligns naturally with the
input format required by attention mechanisms, making attention a seamless and effective choice for
updating physical states across fluid, solid, and interface domains. Given current latent ALE grid
(ga,ps,pf ,pb), the update is formulated as:

Q = Linear(Concat(ps + ga,pb + ga)), K,V = Linear(Concat(ps + ga,pf + ga,pb + ga))

p′
s,p

′
b = Chunk

(
Q̃(K̃TV ·D−1)

)
, where Q̃ = Softmax(Q) and K̃ = Softmax(K)

The query Q is constructed by complete solid representation and the key K and value V include
the information of the whole system. The geometry of the latent ALE grid ga serves as positional
embedding that provides spatial prior. We concatenate the components along the length direction
and adopt the linear attention which has been approved as a kind of neural operator (Cao, 2021).
Through cross-attention, each solid node selectively attends to the entire system, allowing it to update
its state based on both internal structural cues and external influences from the fluid and interface.
The Chunk(·) divides the output to recover the updated solid state p′

s and the interface state p′
b.

Update Grid Coordinate We next adopt a velocity-based Laplacian smoothing strategy, defined in
Eq.1, to update the latent ALE grid coordinates in response to solid motion and deformation while
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preserving grid quality. Eq.1 governs the spatial diffusion of mesh velocity vg and can be interpreted
as a steady-state flux balance over the grid. Upon discretization, the divergence and gradient operators
naturally translate into local neighbor interactions (Han et al., 2023a):

∑
j∈N (i)(vg,j − vg,i) = 0.

The velocity at each mesh point is updated based on a weighted combination of its neighboring nodes:

vg,i ←
∑

j∈N (i)
γijvg,j · (

∑
j∈N (i)

γij)
−1

where N (i) denotes the neighbors of the i-th node, and γij is a diffusion-like weight that reflects
local mesh connectivity. This update scheme is naturally aligned with the local message passing
(Gilmer et al., 2017) used in graph-based models. The final update of the mesh velocity at each node
is formulated as:

vg,i ←
∑

j∈N (i)
γijαjConcat(p′

s,pf ,p
′
b)j

where α is learnable to facilitate the extraction of motion-relevant signals. Finally, to control the
grid quality, without grid distortion, we conduct a geometry smoothing over the local neighborhood
g′
a,i ←

∑
j∈N (i) βij ĝa,j , where β ∈ [0, 1] and

∑
j∈N (i) βij = 1.

Update Fluid State Similar to the update of the solid state, we update fluid state as:

Q = Linear(Concat(pf + g′
a,p

′
b + g′

a)), K,V = Linear(Concat(p′
s + g′

a,pf + g′
a,p

′
b + g′

a))

p′
s,p

′′
b = Chunk

(
Q̃(K̃TV ·D−1)

)
Update Interface Influence Finally, we use a self-attention mechanism to align the information
across the solid, fluid, and their coupling interface regions as:

Q,K,V = Linear(Concat(p′
s+g′

a,p
′
f+g′

a,p
′′
b +g′

a)), p′′
s ,p

′′
f ,p

′′′
b = Chunk

(
Q̃(K̃TV ·D−1)

)
The self-attention operation enables mutual interaction among the three domains, allowing the model
to capture dependencies and reconcile inconsistencies across the solid–fluid interface by attending to
relevant features globally. See Appendix.L for more discussion of Fisale and existing works.

4 EXPERIMENTS

We evaluate Fisale on three reality-related challenging FSI scenarios. These scenarios have different
dimensions, targets, scales, and complexity. Detailed benchmark information is listed in Table 4. We
have also conducted more studies in Appendix.F, G and H to evaluate the model comprehensively.

Table 1: Performance on Structure Oscillation. Relative
L2 is recorded. Second-best performance is underlined.

Solid Fluid Interface Mean (↓)
Geo-FNO 0.0003 0.0387 0.0074 0.0155
GINO 0.0021 0.2536 0.0269 0.0942
LSM 0.0007 0.1951 0.0068 0.0675
CoDANO 0.0005 0.0703 0.0075 0.0261
LNO 0.0006 0.0244 0.0061 0.0104

Galerkin 0.0012 0.0507 0.0114 0.0211
GNOT 0.0006 0.0361 0.0076 0.0148
ONO 0.0012 0.0732 0.0126 0.0290
Transolver 0.0004 0.0265 0.0075 0.0115

MGN 0.0007 0.0282 0.0112 0.0134
HOOD 0.0006 0.0277 0.0109 0.0131
AMG 0.0004 0.0211 0.0051 0.0089

Fisale 0.0003 0.0148 0.0047 0.0066

Baselines We compare Fisale with over ten
advanced learning-based solvers, includ-
ing Neural Operators: GeoFNO (Li et al.,
2023c), GINO (Li et al., 2023d), CoDA-
NO (Rahman et al., 2024), LSM (Wu et al.,
2023), LNO (Wang & Wang, 2024); Trans-
formers: Galerkin (Cao, 2021), GNOT
(Hao et al., 2023), ONO (Xiao et al., 2024b)
Transolver (Wu et al., 2024); GNNs: MGN
(Pfaff et al., 2020), HOOD (Grigorev et al.,
2023), AMG (Li et al., 2025). These base-
lines represent the superior performance in
data-driven PDE solvers (including several
FSI tasks) and serve as strong references
for Fisale on complex FSI tasks.

Implementation and Metrics See Ap-
pendix D and C for more details.
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4.1 STRUCTURE OSCILLATION

Figure 3: Local visualization of prediction results on solid dis-
placement and fluid x-velocity. Red circle indicates the domain
with most solid displacement and sharp fluid velocity change.
Global view and more showcases are listed in Appendix.I.1.

The structure oscillation prob-
lem, also called ”FLUSTRUK-
A”, is a famous benchmark for
validating classical fluid–solid in-
teraction (FSI) solvers (Turek &
Hron, 2006). It involves a thin
elastic beam immersed in an in-
compressible, dynamic fluid that
develops self-sustained, material-
dependent periodic oscillations.
Unlike the widely studied Cylin-
derFlow benchmark (Pfaff et al.,
2020; Li et al., 2025) which involves no structural flexibility, FLUSTRUK-A introduces strong
two-way coupling and nonlinear deformation, making it more challenging to solve accurately. The
dataset is proposed in CoDA-NO (Rahman et al., 2024) with 1000 frames and different Reynolds
number Re. More details can be found in Appendix.B.1. Following the convention, we train the
Fisale and baselines learn the mapping from current ut to the next ut+∆t. We set ∆t as 4 frames to
let the oscillation evolve adequately. The results are shown in Table 1. From the results we observe
that Fisale achieves advanced ability, particularly in fluid domains. Compared with other baselines
who model different domains in a homogeneous way, Fisale can better capture the bidirectional
interactions between fluid and solid at the interface and predict the motion and shape more accurately
(the tail part of the structure as shown in Figure 3). This in turn enhances the accuracy of fluid
predictions. The unified latent ALE representation, combined with iterative partitioned coupling,
allows Fisale to progressively resolve the nonlinear interactions between fluid and solid, resulting in
more accurate and stable predictions under strongly coupled two-way FSI.

4.2 VENOUS VALVE

Table 2: Performance on Venous Valve. We record RMSE-all (↓), the average RMSE of the whole
rollout trajectory and all samples. Results of other physical quantities are listed in Table 20.

Solid Fluid Interface

Geometry Stress Pressure Velocity (x) Geometry Stress Pressure

Geo-FNO 0.3687 3252.51 124.27 0.1304 0.3948 5471.54 110.35
LSM 0.4788 4166.96 145.03 0.1419 0.4635 6547.88 122.53
CoDANO 0.6843 4385.24 171.57 0.1713 0.7806 6843.06 143.65

Galerkin 0.3471 3226.86 109.52 0.1025 0.3213 5093.68 113.34
GNOT 0.3833 4207.17 100.59 0.1147 0.3679 5384.59 128.57
Transolver 0.3262 3055.56 91.83 0.0901 0.3432 4941.86 85.18

MGN 0.5540 4436.56 166.03 0.1362 0.5391 6646.33 158.35
HOOD 0.4647 3616.09 135.67 0.1174 0.4956 6080.94 126.05
AMG 0.4029 3784.96 107.45 0.1199 0.3809 5432.73 103.43

Fisale 0.2794 2658.59 80.23 0.0768 0.2565 4365.29 73.31

* Some baseline models are not included due to the training instability and convergence issues,
which arise from long rollout trajectories, cross domains and multiple physical quantities.

The venous valve problem models the opening and closing dynamics of valves in veins, which
are essential to maintain unidirectional blood flow in the circulatory system (Bazigou & Makinen,
2013; Enderle & Bronzino, 2012). It involves a thin, flexible leaflet interacting with a pulsatile,
incompressible fluid under physiological conditions. The strong contact, large deformation, and
highly transient behavior make this problem especially challenging for effective simulation (Buxton &
Clarke, 2006). We learn the transient dynamics through autoregressive simulation, which are mostly
explored in GNN-based works (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020). Mathematically,
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Figure 4: Visualization of ground truth and prediction results. The red circle indicates the distortion
of solid shape, where Fisale can effectively handle.

we simulate the trajectory as: ût+1 = Fθ(ut), ût+2 = Fθ(ût+1), . . . , ût+T = Fθ(ût+T−1). We
build the venous valve simulation model based on biology-related literature and generate a dataset
where each sample has different valve material properties, flow velocities, and other parameters. The
variations are designed to reflect a wide range of human conditions across ages, genders, and health
status. Detailed settings can be found in the Appendix B.2. The simulation time is 1s and 0.01s per
interval, with 101 frames in total. Each frame records geometry, stress, pressure, and velocity.

As shown in Table 2, Fisale achieves the best results across all physical quantities, with particularly
strong performance at the fluid–solid interface. Figure 4 visualizes predictions at two time steps. It is
observable that maintaining solid shape consistency becomes increasingly challenging as the rollout
progresses. Thanks to the explicit modeling of the interface and the use of a unified representation to
capture dynamic interactions, Fisale preserves solid geometry more effectively over long trajectories.
This design allows it to handle cross-domain information exchange and maintain stability even in the
later stages of rollout. Moreover, when fluid flows through the narrow valve openings, it generates
sharp increases in pressure and velocity over short periods, making it hard to accurate prediction at
that region. Fisale addresses this by PCM, which decomposes this complex process into a sequence of
substeps. This reduces the difficulty of modeling each physical domain and its associated quantities.
In contrast, other models typically adopt a monolithic modeling strategy over the entire domain,
which often struggles to capture rapid dynamic changes around the interface. This further highlights
the advantage of the domain-aware design in handling complex FSI phenomena.

4.3 FLEXIBLE WING

Table 3: Performance on Flexible Wing task. Relative L2 is recorded. Second-best performance is
underlined. (a) the relative L2 error of the prediction results; (b) the visualization of prediction errors.

Solid Fluid Interface Mean (↓)
Geo-FNO 0.0207 0.0802 0.0564 0.0524
GINO 0.2838 0.5681 0.5715 0.4745
CoDANO 0.0355 0.1930 0.1002 0.1096
LNO 0.0173 0.0264 0.0269 0.0235

Galerkin 0.0396 0.0699 0.0635 0.0577
GNOT 0.0081 0.0558 0.0227 0.0289
ONO 0.1446 0.2362 0.2728 0.2179
Transolver 0.0051 0.0200 0.0242 0.0164

MGN 0.0096 0.0229 0.0281 0.0202
HOOD 0.0088 0.0218 0.0266 0.0191
AMG 0.2507 0.1692 0.2357 0.2185

Fisale 0.0042 0.0155 0.0211 0.0136

(a) The error of prediction results. (b) The visualization of prediction errors.
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To better reflect real aerodynamics, we study a flexible wing scenario where the wing deforms under
airflow. Unlike rigid-wing assumptions with fixed fluid–solid interfaces, flexible wings involve
strong two-way coupling and nonlinear behaviors such as geometry-dependent loading and large
deformations, making prediction more challenging. We treat this as a steady-state inference task:
given a set of problem parameters (like the wind velocity, wing material, geometry and etc.), the model
directly predicts the steady-state response. Follow the 2D rigid Airfrans (Bonnet et al., 2022), we
build a 3D flexible wing dataset for evaluation. Each sample contains more than 35,000 mesh points
and varies in flight and design parameters (see Appendix B.3), covering diverse flight conditions.

As presented in Table 3, Fisale achieves the best performance across all domains. When dealing
with massive mesh points, several baselines seriously degenerate due to complex dynamics. This is
because dense fluid points can overwhelm solid-related information, making it difficult to capture
solid changes. In turn, this also disrupts the accurate modeling of fluid evolution. Right part of Table 3
visualizes the prediction errors. For the wing, deformation, stress, and wind pressure are primarily
concentrated at the root, tip, and lateral surfaces, respectively. Each of these exhibits distinct spatial
patterns driven by the interaction between the wind and the wing. Accurately capturing this interaction
is therefore crucial. By modeling each domain separately, Fisale avoids the solid information being
overwhelmed by massive fluid points. Moreover, modeling the interface allows Fisale to effectively
capture the spatially varying physical quantities across different parts of the wing surface, enabling
better performance in the complex, large-scale scenario.

5 CONSLUSION AND LIMITATION

We propose Fisale, a data-driven framework to solve complex two-way FSI problems. By explicitly
modeling the solid, fluid and coupling interface as separate components, and leveraging multiscale
latent ALE grids along with partitioned coupling modules (PCM), Fisale effectively captures nonlinear,
cross-domain dynamics. Experiments on challenging tasks demonstrate the effectiveness of Fisale in
solving complex two-way FSI problems.

Limitation (1) Although the running speed of Fisale remains within a reasonable range, there is
still room for optimization. For example, adopting faster k-NN algorithms, performing k-NN in the
original low-dimensional space, or removing this step altogether could further improve efficiency.
(2) Currently, the integration of latent ALE grid geometry and physical quantities is achieved via
position embedding and simple addition. Exploring more physically meaningful fusion strategies
may enhance the representational capacity of the latent ALE grid and is a promising direction for
future research.
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A OVERALL PIPELINE

Our overall framework is formulated as Eq.2, and we have described our design in Section 3 including
multiscale latent ALE grid, physical quantities encoding, decoding and aggregation, and partitioned
coupling module. To provide a global view of our design, we provide a detailed pseudocode here for
clarity and improve the reproductivity.

Algorithm 1: Fisale Pipeline for Tow-Way FSI Problems
Input: Observations of fluid uf , solid us, and interface ub at time t

Output: Predicted states ûf , ûs, ûb at t+∆t

for h = 1 to H do
Initialize latent ALE grid g

(0,h)
a via geometry-aware offset and k-NN edge set E(h)

Embed input features: x(0,h)
f ← Linear(uf ), x

(0,h)
s ← Linear(us), x

(0,h)
b ← Linear(ub)

for l = 1 to L do
for h = 1 to H do

Encode physical quantities onto grid:
pf ← Encode(x(l−1,h)

f ,g
(l−1,h)
a )

ps ← Encode(x(l−1,h)
s ,g

(l−1,h)
a )

pb ← Encode(x(l−1,h)
b ,g

(l−1,h)
a )

Partitioned Coupling Module (PCM):
Update solid state: p′

s,p
′
b ← CrossAttention(ps,pb,pf ,ga)

Update grid: g′
a ← LaplacianSmooth(p′

s,pf ,p
′
b,ga, E)

Update fluid state: p′
f ,p

′′
b ← CrossAttention(pf ,p

′
b,p

′
s,g

′
a)

Update interface influence: p′′
s ,p

′′
f ,p

′′′
b ← SelfAttention(p′

s,p
′
f ,p

′′
b ,g

′
a)

Decode features:
x
(l,h)
f ← Decode(p′′

f ,g
′
a)

x
(l,h)
s ← Decode(p′′

s ,g
′
a)

x
(l,h)
b ← Decode(p′′′

b ,g′
a)

Aggregate across scales:
x
(l)
f ← FFN(ConcatHh=1x

(l,h)
f )

x
(l)
s ← FFN(ConcatHh=1x

(l,h)
s )

x
(l)
b ← FFN(ConcatHh=1x

(l,h)
b )

if l < L then
Chunk fused features back to H pathways:
{x(l,h)

f }Hh=1 ← Chunk(x(l)
f )

{x(l,h)
s }Hh=1 ← Chunk(x(l)

s )

{x(l,h)
b }Hh=1 ← Chunk(x(l)

b )

Output predictions:
ûf , ûs, ûb ← Linear(x(L)

f ,x
(L)
s ,x

(L)
b )

B DATASET

We evaluate our models in three public and curated datasets, whose information is summarized in
Table 4. Note that these benchmarks involve the following three types of fluid-solid interaction tasks,
which are widely explored in studies that focus only on fluid or solid:
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• Single-Step Prediction (Li et al., 2021; Rahman et al., 2024; Li et al., 2025): Given a
solution sequence {u0,u1, . . . ,uT } of a time-dependent PDE, the goal is to learn a model
Fθ that maps the current state to the target state:

ût+∆t = Fθ(ut)

where ∆t spans the next few time steps. During both training and inference, the model
always receives the ground truth ut as input to predict ut+∆t. This task is fundamental for
learning local temporal dynamics and serves as a building block for simulating physical
processes.

• Autoregressive Simulation (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Ma et al.,
2024): Similar to single-step prediction, but during inference, the model recursively uses its
own previous prediction as input except for the first step:

ût+1 = Fθ(ut), ût+2 = Fθ(ût+1), . . . , ût+T = Fθ(ût+T−1)

This method allows for long-term rollout of PDE solutions and is widely used in physics-
informed forecasting and control.

• Steady-State Inference (Wu et al., 2024; Deng et al., 2024; Li et al., 2023d): Given a
set of problem parameters λ (e.g., environment conditions, boundary conditions, material
properties), the objective is to learn a mapping directly from input parameters to the steady-
state solution u∗ of the PDE:

L(u∗, λ) = 0, u∗ = Fθ(λ)

This parameter-to-solution formulation maps input conditions to the system’s equilibrium
state and plays a central role in engineering and scientific design problems concerned with
steady-state behavior.

Table 4: Summary of experiment dataset. #Mesh records the average size of discretized meshes.
#Split is organized as the number of samples in training, evaluation and test sets.

Dataset Task #Dim #Mesh #Input #Output #Split

Structure
Oscillation

Single-Step
Prediction 2D 1317

Solid: Geometry;
Fluid: Geometry,
Pressure, Velocity

Solid: Geometry;
Fluid: Geometry,
Pressure, Velocity

9561
1195
1196

Venous
Valve

Autoregressive
Simulation 2D 1693

Solid: Geometry,
Stress;

Fluid: Geometry,
Pressure, Velocity

Solid: Geometry,
Stress;

Fluid: Geometry,
Pressure, Velocity

720
90
90

Flexible
Wing

Steady-State
Inference 3D 37441

Solid: Geometry,
Material;

Fluid: Geometry,
Attack Angle,

Velocity

Solid: Geometry,
Stress;

Fluid: Geometry,
Pressure,
Velocity

1036
129
131

B.1 STRUCTURE OSCILLATION

The structure oscillation problem, also known as “FLUSTRUK-A”, is a well-established benchmark
in the field of computational FSI. It models the interaction between an incompressible, viscous fluid
and a thin, elastic beam attached to the rear of a rigid cylinder placed in a channel. The fluid flow
around the cylinder induces unsteady forces on the beam, which, in turn, leads to self-sustained
oscillations of the structure. These oscillations are periodic and strongly depend on the material
properties of the beam, such as its density, elasticity, and damping (Turek & Hron, 2006). This
problem plays a crucial role in validating and comparing the performance of FSI solvers due to its
nonlinear, coupled nature. Unlike purely fluid or solid benchmarks, FLUSTRUK-A tests a solver’s
ability to accurately capture dynamic feedback between two physical domains. It is widely used in
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academic research and engineering applications, especially in domains where flow-induced vibrations
(FIV) are significant, such as aerospace, civil engineering, and biomedical simulations (e.g., modeling
blood flow through flexible vessels). The problem is particularly challenging due to the fine balance
required between numerical stability and physical fidelity, making it an ideal dataset for developing
and benchmarking advanced data-driven or physics-based models (Hoffman et al., 2012).

The dataset used in our experiments is proposed in CoDA-NO (Rahman et al., 2024). The com-
putational domain is a two-dimensional channel of length 2.5 and height 0.41, containing a fixed
circular cylinder of radius 0.05 centered at (0.2, 0.2), and a thin elastic beam attached to the rear of
the cylinder with a length of 0.35 and thickness of 0.02. The fluid is modeled as water with a constant
density of 1000kg/m3. The flow enters the domain through the left boundary with a time-dependent
fourth-order polynomial velocity profile that vanishes at the top and bottom walls. The inlet condi-
tions vary across 28 predefined configurations, and the peak inlet velocity reaches approximately
4 m/s, enabling diverse and realistic flow conditions for each viscosity setting. The outlet (right
boundary) applies a zero-pressure condition, and no-slip boundary conditions are enforced on the
channel walls, the cylinder, and the elastic beam. To investigate different flow regimes, the dataset
includes simulations with four viscosity values: µ ∈ {0.5, 1, 5, 10}, resulting in Reynolds numbers
approximately ranging from 4000 (for µ = 0.5) to 200 (for µ = 10). For the solid, the density is set
to 1000 kg/m3 with Lamé parameters λ = 4.0 × 106 and µ = 2.0 × 106. Simulations are run up
to a final time Tf = 10 seconds, using a fixed time step of δt = 0.01, resulting in 1000 time steps
per trajectory. Samples share the same physical domain and mesh. Each sample contains 1317 mesh
points.

In our experiments, we set the prediction interval to ∆t = 4δt in order to allow the oscillation
to evolve sufficiently and evaluate the model’s ability to predict over longer time horizons. We
first conduct training and evaluation on data with Reynolds numbers Re ∈ {200, 400, 2000}. The
data frames is randomly split into training, validation, and test sets in a ratio of 8:1:1, resulting in
9561 training samples, 1195 validation samples, and 1196 test samples. We further test the out-
of-distribution (OOD) generalization of trained models on a separate set of 498 samples generated
with Re = 4000. This setup is similar in spirit to that used in CoDA-NO (Rahman et al., 2024),
but with important differences. Specifically, CoDA-NO employs pretraining on the first 700 frames
of each trajectory followed by few-shot fine-tuning. In contrast, our study does not involve any
pretraining or fine-tuning procedures. All models are trained and evaluated under the same conditions,
using longer time interval and randomly shuffled samples. This design ensures a fair comparison
of in-distribution and OOD performance across models. Additionally, we use a different evaluation
metric from CoDA-NO. The rationale for this choice is detailed in Appendix C.

B.2 VENOUS VALVE

The venous valve problem models the dynamics of valve leaflets within veins, which play a critical
role in ensuring unidirectional blood flow and preventing backflow in the human circulatory system
(Bazigou & Makinen, 2013; Enderle & Bronzino, 2012). The system involves a thin, flexible leaflet
that interacts with a pulsatile, incompressible fluid under physiological conditions. The valve opens
and closes in response to changes in local pressure and flow rate, mimicking the behavior observed
in venous circulation. This problem presents several unique challenges. First, the contact between
the leaflets during valve closure introduces discontinuities and non-smooth behavior in the fluid-
solid interface. Second, the large deformation of the leaflet requires robust modeling of nonlinear
elasticity. Third, the highly transient, time-dependent nature of the flow, driven by periodic inlet
conditions, demands accurate and stable single-step prediction to effectively simulate the full valve
cycle. Due to these complexities, the venous valve problem serves as a stringent benchmark for
evaluating FSI solvers, especially those aiming to operate under realistic biomedical conditions. It
has important implications in biomedical research and healthcare applications, including the study
of venous insufficiency, the design of prosthetic valves, and the development of patient-specific
simulation tools for diagnosis.

To deeply investigate this problem and evaluate the effectiveness of Fisale, we constructed a simulation
model based on related literature (Lin et al., 2023; Wang et al., 2025; Tikhomolova et al., 2020). The
simulation is implemented using COMSOL Multiphysics (Multiphysics, 1998), a widely used finite
element solver for coupled multiphysics problems. The domain shape of venous valve (Joda et al.,
2016) is illustrated in Figure 5.
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Figure 5: The physical domain of venous valve simulation model.

To simulate venous valve dynamics across a range of physiological variations, we define parameter
sets for leaflet thickness, inlet blood velocity, and the mechanical properties of the valve tissue.
These parameters are varied systematically using a full factorial combination scheme, allowing us
to generate data that reflect a diverse set of biological scenarios corresponding to different genders,
age groups, and biological states. While some parameters and combinations may extend beyond
typical values observed in healthy individuals, they are intentionally included to explore extreme
or pathological scenarios. This broader coverage is important for studying disease-related valve
dysfunction as well as for informing the design and testing of prosthetic valves. The specific parameter
settings used in the simulations are summarized in Table 5.

Table 5: Parameter settings of venous valve simulation model.

Leaflet Thickness
(mm)

Inlet Blood Velocity
(m/s)

Valve Material

C1 (MPa) C2 (MPa)

range(0.5,1.0,0.1) range(0.1,0.6,0.1) {0.01,0.05,0.1,0.15,0.2} {0.001,0.005,0.01,0.02,0.05}

The leaflet is modeled as a hyperelastic Mooney–Rivlin material (Kumar & Rao, 2016), which is
widely used for soft biological tissues. The material behavior is governed by two coefficients, C1 and
C2, representing the elastic response under deformation. The leaflet thickness is varied from 0.5mm
to 1.0mm in increments of 0.1mm, while the inlet blood velocity ranges from 0.1m/s to 0.6m/s
with the same step size. The outlet applies a zero-pressure condition, and no-slip boundary conditions
are enforced on the vessel walls. The blood is modeled as an incompressible Newtonian fluid, with
density ρ = 1050kg/m3 and dynamic viscosity 0.0035Pa · s. We formulate it as a transient FSI
problem. A time-dependent inlet velocity function sin2 πt is applied, modeling a periodic blood flow
cycle with a period of 1 second. Simulations are performed with a time step of 0.01s, resulting in 101
frames per trajectory. Each frame records multiple physical quantities, including current geometry,
stress, pressure, and velocity. Based on the full factorial combination of parameter settings, we
generate a total of 900 simulation trajectories. Among them, 720 trajectories are used for training, 90
for validation, and 90 for testing. Each sample contains 1693 mesh points on average.

B.3 FLEXIBLE WING

The flexible wing problem is of practical importance in numerous engineering and biological contexts.
In aerospace engineering, understanding the aerodynamics of flexible wings is crucial for designing
next-generation aircraft, drones, and morphing airframes that can adapt to changing flight conditions.
To better capture realistic aerodynamic behavior, we study a FSI problem involving a flexible wing.
Unlike traditional rigid-wing models that assume a fixed structural geometry and static fluid–solid
interface, the flexible wing can deform under aerodynamic loading, introducing strong two-way
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Wind

Wind

Wing

Figure 6: The physical domain of flexible wing simulation model.

coupling between the flow field and the structure. This coupling results in highly nonlinear and
geometry-dependent behavior, including large elastic deformations and nontrivial load pressure
across the wing surface. In this task, the goal is steady-state inference: given boundary conditions
such as inflow velocity and structural material properties, the model aims to predict the equilibrium
configuration of the wing and the corresponding steady-state fluid flow around it. This differs
fundamentally from time-dependent FSI tasks in that it seeks a converged static solution representing
the long-time behavior of the system, rather than predicting transient trajectories.

We follow the conventions (Bonnet et al., 2022; Valencia et al., 2025) to generate the dataset. The
simulation domain is shown in Figure 6. The free-stream kinematic viscosity is 1.5 × 10−5m2/s.
The wing sections are 24XX NACA airfoils with constant relative thickness (indicated by XX). The
wing has a length of 1.5m and a root chord length of 1m. The geometric parameters of the wing vary
across samples include the relative thickness, the taper ratio (ratio between the tip and root chords),
the sweep angle (angle between the quarter-chord line and a line perpendicular to the wing root).
Additionally, the free-stream velocity, attack angle and the wing materials are also variations for
diversity. These parameters are listed in Table 6.

Table 6: Parameter settings of flexible wing.

Thickness Taper
Ratio

Sweep
Angle

(◦)

Free-stream
Velocity
(m/s)

Attack
Angle

(◦)

Wing
Material

{10,12,14,16} {0.5,0.6,0.7} {10,25,40} {50,75,100} {-12,10,14,18}
Carbon Fibers
Titanium Alloy

Al-Zn-Mg Alloy

Here, three different materials namely Carbon Fibers, Alpha-Beta Titanium Alloy and Al-Zn-Mg
Alloy have been utilized based on previous literature (Chakraborty & Ghosh, 2022), which are widely
used materials for air-wing analysis. The detailed material parameters are listed in Table 7.

The dataset samples are generated through a full factorial combination of the simulation parameters,
resulting in a total of 1296 unique configurations. Among them, 1036 samples are used for training,
129 for validation, and 131 for testing. Each sample contains 37441 mesh points on average.
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Table 7: Material parameters of wings.

Material Name Density (kg/m3) Young’s Modulus (MPa) Poisson’s Ratio

Carbon Fibers 2.30× 10−6 2.30× 105 0.210
Alpha-Beta Titanium Alloy 4.43× 10−6 1.13× 105 0.342
Al-Zn-Mg Alloy 2.83× 10−6 7.20× 104 0.327

C METRICS

We employ different metrics for specific tasks, adhering to the evaluation approaches in related works.

Single-Step Prediction & Steady-State Inference: Relative L2 In line with prior studies on single-
step prediction (Li et al., 2021; Rahman et al., 2024; Li et al., 2025) and steady-state inference (Wu
et al., 2024; Deng et al., 2024; Li et al., 2023d) tasks, we use the relative L2 to assess performance.
Given the input physical quantities u and the predictions û, the relative L2 is computed as:

Relative L2 =
∥u− û∥
∥u∥

It is worth noting that for the structure oscillation task, we adopt the Relative L2 error as the evaluation
metric, instead of the Mean Square Error (MSE) used in CoDA-NO (Rahman et al., 2024). This
task involves predicting multiple physical quantities with different units and orders of magnitude.
While CoDA-NO reported MSE results based on normalized data to mitigate the influence of scale
differences, this approach may not fully reflect model performance on the original data distribution.
In contrast, Relative L2 is a more commonly used metric for this task. By computing the Relative L2
error for each physical quantity separately and then averaging the results, we effectively account for
differences in scale while preserving fidelity to the original, unnormalized data.

Autoregressive Simulation: RMSE Consistent with works (Pfaff et al., 2020; Sanchez-Gonzalez
et al., 2020; Ma et al., 2024) focused on autoregressive simulation tasks, we use Root Mean Square
Error (RMSE) as the evaluation metric. Given the input physical quantities u and the predictions û,
RMSE is calculated as:

RMSE =

√√√√ 1

N

N∑
i=1

∥ui − ûi∥2

During training, we compute the loss using normalized data, which is used for backpropagation and
parameter updates. In the evaluation and test phases, we report the RMSE for each physical quantity
within each domain based on the original data.

D IMPLEMENTATION

As shown in Table 8, Fisale and all baseline models are trained and tested using the same training
strategy. We utilize relative L2 as loss function for single-step prediction and steady-state inference
tasks, and MSE for autoregressive simulation task. For different physical domains, we add each
loss with equal weights. To ensure fair comparisons, we first approximate the parameter count of all
baselines to match that of Fisale and then adjust their parameters to minimize overfitting and achieve
better performance. All experiments are conducted on a single RTX 3090 GPU (24GB memory) and
repeated three times. We provide the parameter count of each model in Table 9 for reference.

We implement baselines based on official and popular implementations. For autoregressive simulation
task, we uniformly add noise with a mean of 0 and a variance of 0.001 to improve the error
accumulation control during rollout. Since several neural operators and transformer-based baselines
are primarily designed for fluid scenarios with Eulerian settings, they are not naturally suited for
handling scenarios with Lagrangian views, such as two-way FSI problems. We preprocess the data to
adapt it for use with these baselines. Specifically, we first align the feature dimensions of different
domains using padding, then concatenate along the length dimension to combine all domains into a
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Table 8: Training and Model Configurations of Fisale. The definition of batch size differs between
autoregressive simulation task and other two tasks. For single-step prediction and steady-state
inference tasks, the batch size refers to the number of samples in a batch. For autoregressive
simulation, only one sample is processed during each forward and backward pass, and the batch
size corresponds to the number of time steps in the sample. Since GPU memory usage varies
across different models, the batch sizes of baseline models in the autoregressive simulation task are
dynamically adjusted to avoid GPU memory overflow while maintaining performance.

Datasets Training Configuration Model Configuration

Epochs LR Batch Level (L) Pathway (H) Grid Shape (M ) Channels (D)

Structure
Oscillation 100 1× 10−3 50 2 2 [16, 16]

[8, 8]
[64, 64]

Venous
Valve 100 1× 10−3 50 2 2 [16, 16]

[8, 8]
[64, 64]

Flexible
Wing 100 5× 10−4 1 3 2 [5, 5, 5]

[4, 4, 4]
[96, 128]

Table 9: Parameter count of baseline models and Fisale.

Structure Oscillation Venous Valve Flexible Wing

Geo-FNO 1.60 M 1.60 M 5.22 M
GINO 1.72 M / 5.17 M
LSM 2.23 M 2.23 M /
CoDANO 1.83 M 1.83 M 5.01 M
LNO 1.62 M / 5.34 M
Galerkin 1.74 M 1.74 M 3.18 M
GNOT 1.64 M 1.64 M 4.64 M
ONO 1.63 M / 5.07 M
Transolver 1.55 M 1.55 M 4.61 M
MGN 1.82 M 1.82 M 4.86 M
HOOD 1.79 M 1.79 M 5.31 M
AMG 1.34 M 1.34 M 4.71 M

Fisale 1.54 M 1.54 M 4.88 M

single large sequence of points. For models that struggle to handle the Lagrangian setting (Rahman
et al., 2024; Li et al., 2023c; Wu et al., 2023), we map each point to a regular grid, transforming the
data into an Eulerian representation. Specifically, for a point sequence of size N ×D, we discretize a
cubic space [x, y, z] ∈ [−1, 1]3 into a regular grid, with the number of discretization points along
each axis set to ⌈ 3

√
N⌉. We then concatenate each point’s coordinates and physical quantities with

the corresponding grid points based on their matching order. Excess grid cells are padded to align
dimensions. For other baseline models, we utilize geometry transformation functions provided in
their implementations. Additionally, the fixed boundary condition is maintained by directly setting
the displacement of the corresponding region as zero like the operation in MGN Pfaff et al. (2020).

Efficiency We report GPU memory usage based on measurements from the operating system, which
include memory pre-allocated by PyTorch’s caching allocator. Although not all of this memory is
actively used at every moment, it remains unavailable to other processes once reserved. Therefore, this
reporting strategy offers a conservative yet practical estimate of the actual hardware demands during
training. It better reflects the real-world resource constraints typically encountered in deployment
scenarios. To ensure fairness, all models are evaluated using PyTorch’s default memory management
on a single RTX 3090 GPU.
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E STANDARD DEVIATION

We repeat all the experiments three times and provide standard deviations here in Table 10, 11 and
12. It is worth noting that autoregressive simulation involves a rollout process based on sequential
predictions, where error accumulation is inevitable. When the rollout trajectory is long, such
accumulated errors can become unstable and difficult to control. In addition, our venous valve
experiment poses a greater challenge to result stability due to the presence of multiple target physical
quantities across different physical domains. As a result, this task exhibits higher variance compared
to the other two tasks. Moreover, to ensure fairness and maintain the integrity of each method, we
adopt the initialization schemes provided in the official and popular implementations, rather than
applying a unified initialization across all baselines. As a result, the scale and variance of network
parameters vary across models, which may lead to differences in performance variance. As shown in
Table 11, although Fisale does not always exhibit the lowest variance across all physical quantities, its
overall performance remains consistently stable. This indicates that Fisale not only achieves superior
performance, but also maintains robustness in long-time rollout, which is an essential property for
reliable simulation in complex FSI scenarios.

Table 10: Standard deviations on Structure Ocsillation experiment.

Solid (×10−3) Fluid (×10−2) Interface (×10−2)

Geo-FNO ±0.01 ±0.05 ±0.01
GINO ±0.50 ±2.02 ±0.78
LSM ±0.01 ±0.72 ±0.02
CoDANO ±0.07 ±0.05 ±0.07
LNO ±0.03 ±0.29 ±0.12
Galerkin ±0.08 ±0.03 ±0.02
GNOT ±0.02 ±0.05 ±0.06
ONO ±0.24 ±0.92 ±0.12
Transolver ±0.07 ±0.05 ±0.08
MGN ±0.04 ±0.03 ±0.03
HOOD ±0.05 ±0.03 ±0.04
AMG ±0.01 ±0.01 ±0.01
Fisale ±0.01 ±0.04 ±0.01

Table 11: Standard deviations on Venous Valve experiment.

Solid Fluid Interface

Geometry
(×10−2)

Stress
(×100)

Pressure
(×100)

Velocity (x)
(×10−2)

Geometry
(×10−2)

Stress
(×100)

Pressure
(×100)

Geo-FNO ±3.88 ±319.62 ±12.61 ±1.69 ±4.19 ±483.77 ±11.81
LSM ±4.26 ±216.70 ±13.08 ±2.12 ±4.56 ±286.48 ±11.13
CoDANO ±6.67 ±552.81 ±18.19 ±2.87 ±6.30 ±603.29 ±16.16
Galerkin ±0.71 ±79.86 ±4.24 ±0.86 ±1.02 ±107.30 ±2.62
GNOT ±1.66 ±258.56 ±8.69 ±1.04 ±1.89 ±236.67 ±3.87
Transolver ±2.18 ±176.98 ±3.37 ±0.81 ±2.50 ±184.31 ±4.23
MGN ±6.28 ±417.58 ±15.00 ±2.21 ±5.46 ±448.81 ±9.54
HOOD ±4.50 ±359.47 ±13.37 ±1.48 ±3.95 ±351.29 ±7.29
AMG ±5.28 ±329.23 ±8.47 ±1.37 ±3.18 ±313.47 ±7.36
Fisale ±2.01 ±189.26 ±3.05 ±0.92 ±1.92 ±223.60 ±3.58
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Table 12: Standard deviations on Flexible Wing experiment. Some baselines are not included due to
severe degradation, where standard deviations are too unstable to provide meaningful reference.

Solid (×10−2) Fluid (×10−2) Interface (×10−2)

Geo-FNO ±0.01 ±0.04 ±0.24
CoDANO ±0.18 ±0.15 ±0.27
LNO ±0.02 ±0.02 ±0.04
Galerkin ±0.09 ±0.19 ±0.25
GNOT ±0.02 ±0.04 ±0.01
Transolver ±0.01 ±0.04 ±0.03
MGN ±0.01 ±0.02 ±0.01
HOOD ±0.01 ±0.02 ±0.02
Fisale ±0.01 ±0.01 ±0.02

F EFFICIENCY

Efficiency is a key concern in practical applications, especially in large-scale scenarios involving
massive mesh points. Therefore, we provide a dedicated discussion on the computational efficiency
of Fisale here.

In the computation pipeline of Fisale, the major modules include ALE initialization, physical
quantity encoding and decoding, attention-based Partitioned Coupling Module (PCM), and FFN-
based aggregation.

• For ALE initialization, the most expensive step is computing offsets, which involves calcu-
lating distances between N observed physical points and M ALE grid points, resulting in a
complexity of O(NM). After constructing the ALE grid, we apply k-Nearest Neighbors
(kNN) to build edge connections, which incurs a complexity of O(M2D).

• In the encoding stage, attention-like weights and spatial mappings are computed, both with
a complexity of O(NMD). Similarly, the decoding stage also involves mapping from grids
to physical points, again costing O(MND).

• During the PCM evolution, we adopt linear attention, leading to a complexity of O(MD2).
• The FFN-based aggregation module uses stacked linear layers over N physical points,

contributing a complexity of O(ND2).

We have ignored constant factors such as level L, pathway H , problem dimension C and scalar
coefficients. The total computational complexity is:

O(NMD +M2D +ND2 +MD2)

In this expression, M (the number of ALE grid points) and D (the feature channels) are user-defined
hyperparameters, while N (the number of physical observation points) is determined by the task
and dataset scale. Typically, both M ≪ N and D ≪ N . For instance, in the Flexible Wing task,
N > 104, while in the other two tasks, N > 103. In contrast, M and D are both on the order of 102.
Therefore, we can approximate the overall computational complexity of Fisale as growing linearly
with the problem size N , making it scalable to large-scale FSI scenarios. We further conduct an
experiment to demonstrate the efficiency of Fisale.

As shown in Table 13, Fisale achieves a favorable trade-off between efficiency and predictive perfor-
mance. Benefiting from its parallel module design, Fisale maintains a relatively wide architecture
under a similar parameter scale, which alleviates the memory burden associated with gradient storage
during backpropagation. Moreover, by decomposing the physical domain into fluid, solid, and
interface components, Fisale effectively splits large matrices into smaller submatrices. This reduces
the memory footprint of intermediate computations. Together, these design choices lead to signifi-
cantly lower GPU memory usage compared to other attention-based, GNN-based models and most
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Table 13: The efficiency comparison on Flexible Wing dataset with more than 35,000 mesh points for
each sample in average. The Running Time is measured by the time to complete one epoch. Since
the number of mesh points varies across samples, we report the peak GPU memory usage observed
within a single epoch. Additionally, the recorded runtime includes the time spent on constructing
graph edges. As a result, models like HOOD (Grigorev et al., 2023) and AMG (Li et al., 2025), which
involve multiple rounds of dynamic edge construction during iteration steps, become particularly
time-consuming.

Parameters (M) Running Time (S) GPU Memory (GiB) Mean Relative L2 (↓)
Geo-FNO 5.22 71.97 0.66 0.0524
GINO 5.17 223.74 22.95 0.4745
CoDANO 5.01 1167.47 17.48 0.1096
LNO 5.34 50.4 1.60 0.0235
Galerkin 3.18 129.40 4.15 0.0577
GNOT 4.64 246.42 13.04 0.0289
ONO 5.07 152.87 7.46 0.2179
Transolver 4.61 245.75 11.09 0.0164
MGN 4.86 506.77 22.50 0.0202
HOOD 5.31 > 1500 22.80 0.0191
AMG 4.71 > 1500 21.92 0.2185

Fisale 4.88 296.30 3.10 0.0136

neural operators. Although Fisale involves kNN operations and multiple attention passes within each
module, which limit its speed advantage, its runtime remains within a practically acceptable range.
In summary, Fisale delivers high prediction accuracy with minimal memory overhead and without
significant computational time increase, making it a good candidate for large-scale, real-world FSI
applications.

G ABLATION STUDY

Beyond the main results, we conduct a series of ablation studies to comprehensively evaluate the
design. All ablation study experiments are conducted on the Flexible Wing task, which is a challenging
long-range steady-state inference problem and contains more than 35,000 mesh points per instance.

Table 14: Ablation study of the explicit interface component.

Solid Fluid Interface Mean Relative L2 (↓) Decrease

Fisale 0.0042 0.0155 0.0211 0.0136 -
w/o explicit interface 0.0061 0.0212 0.0251 0.0175 28.68%

Explicit interface component In our design, recognizing the importance of the coupling interface,
we explicitly model it as a separate component on par with the solid and fluid. Here, we explore
the necessity of this operation. Specifically, since the interface inherently shares properties (solid
stress, fluid pressure, and velocity) from both the fluid and solid domains, we cannot directly merge it
into one of them. Hence, we duplicate the interface coordinates: one copy is concatenated with the
physical attributes of the solid and included as part of the solid input, while the other is concatenated
with the attributes of the fluid and treated as part of the fluid input. For the output, we average the
coordinates from the two branches as the final position of the interface and calculate the loss on
each attribute. The network architecture remains unchanged except for removing the projection
and deprojection of the interface component. The result is shown in Table 14. We can observe that
removing the interface component leads to notable degraded performance. Since the behavior of the
fluid-solid interface differs from both the solid and the fluid, merging it with either domain not only
reduces the accuracy of the interface itself, but also adversely affects the evolution of the fluid and
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solid domains. This confirms that modeling the interface as an independent component contributes
positively to the predictions.

Ordering of the PCM In fact, the Partitioned Coupling Algorithm is a flexible framework, and the
specific ordering used in the our design is one representative choice rather than a fixed requirement.
As we descriped in Section 2, a common and intuitive coupling loop (Placzek et al., 2009) proceeds
as: the fluid exerts pressure on the solid, causing deformation; this alters the geometry and updates
the grid positions; the updated grid affects the fluid state, which is then updated; finally, the updated
fluid and solid states jointly determine the interface dynamics. Given this cycle, it is reasonable to
begin with either the solid or the fluid, as both influence the evolution of the system. Different update
sequences can be also physically justified. To further explore the order influence, we systematically
test alternative update orders by permuting the four components. As shown in Table 15, we observe
that: regardless of the specific update order, the model achieves comparable performance across all
permutations. This indicates that the PCM is inherently a flexible and robust framework. Since Fisale
adopts a stacked architecture, the update order of components does not need to remain fixed within
each layer. Instead, the interactions among fluid, solid, grid, and interface can be iteratively adjusted
through vertical information flow across layers. This iterative propagation helps compensate for local
order choices, allowing the model to refine cross-domain interactions over multiple stages. Therefore,
while we adopt a physically reasonable ordering in our implementation, the model’s performance
remains stable under other plausible orderings, further validating the flexibility of PCM.

Table 15: Ablation study of the update ordering within PCM.

Ordering Solid Fluid Interface Mean Relative L2 (↓)
fluid-grid-solid-interface 0.0043 0.0155 0.0206 0.0135
grid-solid-fluid-interface 0.0042 0.0155 0.0206 0.0134
grid-solid-interface-fluid 0.0041 0.0157 0.0216 0.0138
grid-interface-solid-fluid 0.0041 0.0155 0.0212 0.0136
solid-fluid-interface-grid 0.0044 0.0161 0.0213 0.0139
solid-grid-fluid-interface 0.0042 0.0155 0.0211 0.0136

Replace PCM with a simpler attention module We conduct an ablation experiment in which we
replace the entire multi-stage attention cascade with a simpler module including an attention layer
followed by an FFN. We concatenate four components (solid, fluid, interface, grid) as input like the
representation format in learning-based fluid field and keep comparable model parameters by modify
the latent dimension. As shown in the Table 16, the replacement leads to a drop in performance. This
degradation is observed consistently across all regions. This indicates that cross-domain attentions in
our design play a crucial role in modeling the intricate interactions among components. Although
the simplified variant is more compact in structure, it lacks the ability to disentangle and coordinate
domain-specific interactions, which are essential in FSI systems.

Table 16: Ablation study of replacing PCM with a simpler attention module.

Params (M) Solid Fluid Interface Mean Relative L2 (↓) Decrease

Fisale 4.88 0.0042 0.0155 0.0211 0.0136 -
Simpler Module 4.96 0.0045 0.0178 0.0223 0.0149 9.56%

Multiscale Latent ALE Grids To evaluate the effectiveness of multiscale design within Fisale, we
perform two scaling experiments. First, we explore the effect of mesh resolution M . To isolate this
factor, we use a single pathway and gradually increase M to investigate how it influences model
performance. Except for the M and channel number, other settings are kept. The channel is set as 128
for each experiment. As shown in Table 17, increasing the resolution level M in the single-pathway
setting leads to slight improvements in performance. However, overall, the performance remains
largely consistent across different values of M . This trend suggests that, in a single-resolution
configuration, increasing resolution alone offers limited benefit. Each fixed-resolution mesh captures
only a specific scale of geometric and physical patterns, and lacks the flexibility to simultaneously
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represent both coarse global structures and fine local details. Moreover, even when the parameter
count increases to match that of our main model, the accuracy still lags behind the multi-resolution
two-pathway design. This indicates that the exact value of M is not a dominant critical factor in
determining the model’s learning capability.

Table 17: Scaling results of mesh resolution M with a single pathway.

M1/3 Params (M) Solid Fluid Interface Mean Relative L2 (↓)
3 2.48 0.0047 0.0171 0.0226 0.0148
5 2.63 0.0047 0.0169 0.0224 0.0147
7 3.66 0.0044 0.0171 0.0221 0.0145
8 5.11 0.0045 0.0172 0.0223 0.0147
9 7.81 0.0046 0.0167 0.0219 0.0144
10 12.50 0.0049 0.0172 0.0227 0.0149

Second, to further examine whether multi-resolution pathways can indeed capture richer and more
complementary information, we conduct an additional ablation study on the high-resolution pathway
H . The setting and results are shown in Table 18 and Figure 7, respectively.

Table 18: Scaling settings of pathways H .

H M1/3 Channels Params (M)

1 [5] [128] 2.63
2 [4, 5] [128, 96] 4.88
3 [4, 5, 6] [128, 96, 64] 6.99
4 [3, 4, 5, 6] [128, 128, 96, 64] 11.99
5 [3, 4, 5, 6, 7] [128, 128, 96, 64, 64] 15.69

(a) Error trends of Solid, Fluid, and Interface. (b) Mean error and relative improvement.

Figure 7: Scaling results of pathways H .

Through the results we find that increasing the number of resolutions H in the high-resolution
pathway leads to clear performance gains. Notably, moving from H = 1 to H = 2 results in a
significant improvement in overall accuracy demonstrating that the incorporation of multi-resolution
features is highly beneficial for FSI tasks. This supports the idea that coupling information across
multiple spatial scales is critical to capture complex cross-domain dynamics. As H continues to
increase, we observe gradual but diminishing improvements. This trend suggests two important
insights:

• Multi-resolution aggregation is indeed effective, especially when moving from single-scale
to dual- or tri-scale setups.
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• Beyond a certain point (H = 4 for example), the model reaches a saturation limit, where
adding more resolutions and parameters yields only marginal gains or even degradation.
This is due to the limited data capacity or the task-specific resolution requirements already
being fulfilled.

These findings highlight both the value and the limitations of increasing resolution diversity within the
architecture. Our final selection of hyperparameters strikes a practical balance between performance
and efficiency.

H OUT-OF-DISTRIBUTION TEST

Table 19: Performance of OOD experi-
ment. We choose models that perform
well before.

Relative L2 (↓)
Geo-FNO 0.0730
LNO 0.0715
GNOT 0.0889
Transolver 0.0722
MGN 0.0742
AMG 0.0696

Fisale 0.0637

Follow the convention in CoDA-NO (Rahman et al., 2024),
we explore the out-of-distribution (OOD) performance on
structure ocsillation task. We use the model trained in the
main experiment whose data contains Reynolds number
Re ∈ {200, 400, 2000}. We test the trained model on
data with Re ∈ {4000}. As presented in Table 19, Fisale
consistently performs best over strong baselines on OOD
samples. This better generalization can be attributed to its
latent ALE representation, which captures flow patterns
across multiple spatial scales, and the partitioned coupling
design, which provides a modular and robust way to update
interdependent physical states. Furthermore, the explicit
modeling of the coupling interface enhances the model’s
ability to extrapolate dynamic interface interactions under
stronger nonlinear coupling, which is prevalent in high-
Reynolds-number regimes.

I SHOWCASES

I.1 STRUCTURE OSCILLATION

Figure 8: Showcase comparison of structure oscillation task. The solid deformation and fluid velocity
are shown.

Figures 8 and 9 present qualitative comparisons and corresponding error maps on the Structure
Oscillation benchmark regarding the solid displacement, fluid x-velocity, and fluid pressure. This
two-way FSI problem is characterized by strong mutual influence between the fluid and the solid:
pressure from the fluid deforms the solid, while the resulting structural motion feeds back to alter the
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Figure 9: Showcase comparison of structure oscillation task. The solid deformation and fluid pressure
are shown.

surrounding flow. Accurate prediction in such scenarios requires simultaneous fidelity in both the
fluid and solid domains. As shown in Figures 8 and 9, several baseline models suffer from severe
artifacts, including discontinuities in flow velocity and distorted solid shapes, which break the physical
coupling and lead to unstable predictions. In contrast, Fisale maintains global coherence across the
entire domain: the solid structure remains intact and physically plausible, and the surrounding flow
field is smooth and consistent.

This consistency stems from Fisale’s architectural design: the explicit modeling of the coupling
interface ensures localized continuity across domains; the multiscale latent ALE representation
provides a flexible and unified embedding for cross-domain geometries; and the stacked partitioned
coupling modules enable progressive and iterative updates across the fluid–solid system. Together,
these components allow Fisale to preserve the integrity of the coupling dynamics, leading to more
reliable predictions in highly nonlinear, strongly coupled FSI regimes.

Table 20: Performance comparison on Venous Valve. Supplemetary results of Table 2. We record
RMSE-all, the average RMSE of the whole rollout trajectory and all samples. A smaller value
indicates better performance.

Fluid Interface

Geometry Velocity (y) Velocity (x) Velocity (y)

Geo-FNO 0.2850 0.0225 0.0780 0.0174
LSM 0.4022 0.0323 0.0825 0.0196
CoDANO 0.6203 0.0378 0.1042 0.0265

Galerkin 0.2811 0.0195 0.0658 0.0130
GNOT 0.2971 0.0182 0.0891 0.0157
Transolver 0.2867 0.0183 0.0641 0.0132

MGN 0.3851 0.0211 0.1018 0.0193
HOOD 0.3216 0.0204 0.0706 0.0152
AMG 0.3159 0.0193 0.0846 0.0161

Fisale 0.2337 0.0129 0.0542 0.0119
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I.2 VENOUS VALVE

The Table 20 contains the results of physical quantities that not included in main experimental table.
Figure 10 and Figure 11 present qualitative comparisons and corresponding error maps for the venous
valve task, focusing on valve deformation, stress, blood flow velocity, and pressure. In the early
to mid stages of the rollout (before time step 55), Transolver is able to maintain the overall valve
shape. However, the fluid field exhibits more significant error accumulation, with uneven distribution
and particularly large errors near the valve opening. As the rollout progresses (after time step 65),
the stability of Transolver degrades further, and noticeable geometric distortions appear in the valve
structure. This can be attributed to its homogeneous modeling across the entire domain, which limits
its ability to distinguish between fluid and solid regions and to capture their dynamic interactions at
the interface. In contrast, Fisale explicitly models fluid, solid, and the coupling interface as separate
components, assigning equal attention to each. This enables the model to better track interface
dynamics and structural changes. As shown in Figure 10 and Figure 11, Fisale maintains valve shape
stability even over long rollout trajectories and produces more accurate predictions for both fluid and
solid fields, especially around the opening during peak states.

I.3 FLEXIBLE WING

Figure 12 presents qualitative comparisons and corresponding error maps on the Flexible Wing
dataset, focusing on wing deformation, stress, and surface pressure. The figure reveals clear spatial
patterns across these physical quantities: deformation is concentrated at the tip of the wing, where
the structural flexibility is highest; stress peaks at the root of the wing, where the wing connects
to the fuselage; and pressure is distributed primarily along the wind-facing side of the wing. Such
region-specific distribution behaviors introduce challenges for accurate prediction.

The figure also highlights the difficulty faced by models that apply a homogeneous modeling strategy
across the entire domain. These models struggle to effectively capture the region-specific dynamics
of each physical quantity. Moreover, in this dataset, the number of mesh points in the fluid domain
significantly exceeds that in the solid domain, making it easy for solid-related information to be
overwhelmed. Some baselines exhibit severe degradation, while others fail to distinguish fluid,
solid, and surface regions, which hinders their ability to extract useful signals from dense mesh
representations. This further demonstrates the effectiveness of Fisale’s domain-aware design in
capturing cross-domain dynamics and maintaining robustness under such challenging conditions.

J LLM USAGE CLARIFICATION

We declare that the Large Language Models (LLMs) are only used for language polishing and
grammar correction during the writing of this manuscript. All research content, conclusions, and data
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Figure 10: Showcase comparison of venous valve task. The solid deformation and fluid pressure are
shown.

Figure 11: Showcase comparison of venous valve task. The solid stress and fluid velocity are shown.
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Error Map

Error Map

Error Map

Wing Deformation

Wing Stress

Surface Pressure

Ground Truth Fisale Transolver LNO

Figure 12: Showcase comparison of venous valve task. The wing deformation, wing stress and
surface pressure are shown.
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Figure 13: Attention pattern in last layer PCM modules of Fisale. The top row corresponds to the
low-resolution latent ALE grid, and the bottom row corresponds to the high-resolution latent ALE
grid. Regions with higher activation intensity are highlighted with red boxes. (a.1) and (a.2) represent
the updating of the solid component; (b.1) and (b.2) represent the updating of the fluid component;
(c.1) and (c.2) represent the interaction on the interface component.

K ATTENTION PATTERN

We visualize and analyze the attention patterns in each update step of the PCM module to provide
intuitive insight into how attention contributes to modeling the two FSI problem and updating the
various physical components. It is worth noting that we use linear attention(Cao, 2021), where the
softmax operation is removed and the computation prioritizes KTV. Although we cannot directly
visualize the attention weights as in standard attention (Vaswani et al., 2017), analyzing QKT

remains meaningful. On the one hand, from the perspective of matrix multiplication, Q(KTV) and
(QKT )V produce the same result. On the other hand, QKT explicitly characterizes the correlation
between the Query and Key vectors. Even without softmax, the magnitude of its entries reflects the
strength with which each Query token aggregates information from the Keys. This form of analysis
is also widely used in existing works (Han et al., 2023b; Wu et al., 2024).

Figure 13 illustrates the attention patterns in the last PCM layer of each pathway. The top row
corresponds to the low-resolution latent ALE grid, and the bottom row corresponds to the high-
resolution latent ALE grid. Regions with higher activation intensity are highlighted with red boxes,
indicating where attention tends to aggregate information for the Query.

From the vertical comparison, we observe two key phenomena:

1. Complementary patterns across resolutions. The attention learned on the low- and
high-resolution latent ALE grids exhibits clearly complementary behaviors. From the
vertical comparison of the highlighted red boxes, we observe that the two resolutions assign
different activation strengths to different components. For example, on the low-resolution
grid, attention mainly captures the solid-to-solid relationships (Figure 13(a.1)), whereas
on the high-resolution grid, it shifts toward capturing interactions between the solid and
other components (Figure 13(a.2)). Similar complementary patterns appear across the other
attention layers as well. This indicates that the two pathways capture different aspects of the
underlying dynamics, further demonstrating the importance of the multi-scale design for
modeling two-way FSI.
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2. Different learning tendencies for cross-attention and self-attention across resolutions.
For example, in the cross-attention used for updating the solid and fluid components, the
low-resolution grid tends to focus on self-relations (solid-to-solid in Figure 13(a.1) and fluid-
to-fluid in Figure 13(b.1)), aggregating information primarily from the same component.
In contrast, the high-resolution grid shows the opposite trend, where the solid aggregates
information from the fluid and interface (Figure 13(a.2)), and the fluid aggregates information
from the solid and interface (Figure 13(b.2)). However, for the interface self-attention,
we observe a reversed pattern compared to cross attention (Figure 13(c.1) and Figure
13(c.2)): although still complementary across resolutions, both resolutions tend to assign
higher activation to inter-region aggregation (e.g., interface-to-solid or interface-to-fluid).
Meanwhile, for self-aggregation, the fluid component shows stronger activation (primarily
because the fluid region occupies the majority of the computational domain), whereas the
solid and interface components exhibit relatively weaker self-focused aggregation. This
observation further highlights the importance of the multi-scale PCM. Different components
require different aggregation priorities when being updated, and the attention patterns
learned on different resolution grids emphasize different regions of influence. By combining
these complementary behaviors, the multi-scale PCM ensures comprehensive coverage
during updates: capturing both self-related information and cross-component interactions.
Therefore, it enables a more complete and physically meaningful representation of two-way
FSI dynamics.

L SUPPLEMENTARY DISCUSSION

As discussed in the related work, current deep learning approaches for solving PDEs and FSI
problems mainly follow two paradigms. The first is the hybrid paradigm, which combines traditional
numerical algorithms with deep learning models. In this setting, neural networks are used to replace
computationally expensive steps (Fan & Wang, 2024; Zhang et al., 2022; Li et al., 2023a) or to solve
specific subproblems within established pipelines (Xiao et al., 2024a; Zhu et al., 2019; Xu et al.,
2024; Liu et al., 2024). The second is the purely data-driven approach (Gupta, 2022; Wang et al.,
2021; Li et al., 2023d; Pfaff et al., 2020), which relies entirely on deep learning models. These
methods introduce domain-specific inductive biases through architectural design and loss function,
guiding the model to learn underlying physical principles directly from data. The first paradigm
typically relies on simplified assumptions, such as rigid solids (Takahashi et al., 2021) or potential
flow assumptions for fluids (Mazhar et al., 2023), such that explicit governing PDEs or ODEs exist,
thereby facilitating the simulation of relevant physical quantities. Deep learning models are then
used to approximate certain components of the numerical solver under these assumptions. As the
core solver structure remains intact, such methods tend to be less data-dependent and exhibit better
generalization. However, their applicability is limited by the assumptions imposed, which constrain
the types of physical systems they can handle (Li et al., 2022).

Within the purely data-driven paradigm, existing methods can be further categorized based on how
inductive biases are introduced. One line of research incorporates physical priors through architectural
design, embedding domain knowledge directly into the model structure (Boullé & Townsend, 2023;
Sanchez-Gonzalez et al., 2020). The other one imposes physical constraints via the loss function,
typically by minimizing PDE residuals—a strategy commonly known as Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2019). Fisale follows the former approach, leveraging architecture-
level bias to capture the dynamics of multi-domain interactions without requiring explicit PDE
supervision. Although PINNs are grounded in PDE formulations, which help enforce physical
consistency, they also rely on strong assumptions to ensure the existence of explicit governing
equations—e.g, mass-spring-damper assumption for cylinder flow (Cheng et al., 2021). However,
in complex, real-world FSI tasks, it is difficult to define a single global and well-studied PDE (like
N-S equation in Computational Fluid Dynamics (Morrison, 2013)) to describe the entire system
accurately. Instead, its behavior is governed by multiple different relations, such as interaction at the
interface, load applications and deformations, fluid evolution. Directly embedding them into the loss
leads to complex, multi-term objectives that are hard to optimize and often limited in applicability.
This remains an open challenge in the field (Cai et al., 2021).

Therefore, we take a purely data-driven approach and propose to model the physics through the model
architecture. These models aim to learn the underlying physical mechanisms directly from data,
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without relying on oversimplified assumptions or explicit PDE formulations. Instead, domain-specific
inductive biases are embedded into the architecture to help guide the learning process. While this
approach typically requires more data, it allows for greater flexibility and broader applicability
across complex and realistic scenarios. Since our model differs fundamentally in design philosophy
and execution logic from hybrid models and PINNs, a direct comparison would be inappropriate.
Therefore, we do not include them as baselines in this work. However, we believe that these paradigms
are complementary in nature, and integrating their strengths may offer a promising direction for
future research. Combining data-driven flexibility with physics-based rigor could lead to more robust
and generalizable solutions for complex physical systems.
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