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ABSTRACT

Existing video recognition algorithms always conduct different training pipelines
for inputs with different frame numbers, which requires repetitive training oper-
ations and multiplying storage costs. If we evaluate the model using other frame
numbers which are not used in training, our observation, named Temporal De-
viation, shows the performance will drop significantly (see Fig. 1). Thus, the
common training protocol for video related tasks is relatively rigid for flexible
inference using various testing frames, especially for some edge devices with lim-
ited available frames or computational resources. In this study, we propose Frame
Adaptive Network (FAN) to conduct a one-shot training but enable the model can
be evaluated on different frame numbers. Concretely, FAN integrates several sets
of training sequences, involves Specialized Normalization and Weight Alteration
to efficiently expand the original network, and leverages Mutual Distillation for
optimization. Comprehensive empirical validations using various architectures
and popular benchmarks solidly demonstrate the effectiveness and generalization
of FAN (e.g., 3.50/5.76/2.38% performance gain at frame 4/8/16 on Something-
Something V1 dataset over competing method Uniformer), which also promises
the practical potential of model usage.

1 INTRODUCTION

The growing number of online videos boosts the research on video recognition, laying a solid foun-
dation for deep learning which requires massive data. Compared with image classification, video
recognition methods need a series of frames to represent the video which scales the computation.
Thus, the efficiency of video recognition methods has always been an essential factor to evalu-
ate these approaches. Specifically, the parameters and computations are two essential aspects to
measure the efficacy of models which are related to storage size and inference speed, respectively.
One existing direction to explore efficiency is designing lightweight networks Howard et al. (2017);
Zhang et al. (2018) which are hardware friendly. Even if they increase the efficiency with an ac-
ceptable performance trade-off, these methods cannot make further customized adjustment to meet
the dynamic-changing resource constraint in real scenarios. In community, there are two lines of
research being proposed to resolve this issue. The first one is to design networks which can execute
at various depths Huang et al. (2017) or widths Yu et al. (2018) to adjust the computations from the
model perspective. The other line of research considers modifying the resolutions of input data Li
et al. (2020a); Yang et al. (2020) to accommodate the cost from the data aspect. However, these
methods are designed for image-based tasks, and building video recognition networks which can
adjust the costs on-the-fly has been seldom touched.

Different from image related tasks, we need to pre-process the video data to avoid unaffordable costs
which is a basic setting for both training and testing. A common practice for the pre-processing step
is to: 1) sample a certain number of frames to represent the video; 2) feed them into various mod-
els, no matter whether the architecture is 2D Lin et al. (2019), 3D Feichtenhofer et al. (2019) or
Transformer Li et al. (2022) model. Following this line, the computational costs will grow propor-
tionally to the number of sampled frames. Concretely, standard protocol trains the same network
with different frames separately to obtain multiple models with different performance and computa-
tions. This brings challenges to applying these networks on edge devices as the parameters will be
multiplied if we store all models, and downloading and offloading models to switch them will cost
non-negligible time. Moreover, the same video may be sampled at various frame rates on different
platforms because of the difference in Internet speed, employing a single network which is trained
at certain frame number for inference cannot meet the requirement in real scenarios.
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(a) Temporal Deviation phenomenon exists in var-
ious video recognition architectures.
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(b) Temporal Deviation phenomenon exists in dif-
ferent depths of deep networks.

Figure 1: Temporal Deviation phenomenon widely exists in video recognition. All methods are
trained with high frame number and evaluated at other frames to compare with Separated Training
(ST) which individually train the model at different frames on Something-Something V1 dataset.

Training the model with high frame number and directly evaluating it at fewer frames to adjust the
cost is a naive and straightforward solution. To test its effectiveness, we compare it with training the
model at different frames individually and testing with the corresponding frame numbers, named
Separated Training (ST). We find there are significant performance gaps between the inference re-
sults and ST in all these architectures from Fig. 1 which means that these approaches should be
evaluated at the same frame number used in training and will exhibit significantly inferior perfor-
mance otherwise. Further, we conduct the same experiments on different depths of deep networks
and the similar phenomenon proves that it is not related to the representation abilities of deep net-
works. We denote this generally existing phenomenon in video recognition as Temporal Deviation.

The potential reason for Temporal Deviation has been explored in Sec. 3 and briefly summarized
as the shift in normalization statistics. To address this issue, we propose Frame Adaptive Network
(FAN) which only needs to be trained for one-time, and can be adaptively evaluated at multiple frame
numbers. We import several input sequences with different sampled frames to FAN during training
and propose Specialized Normalization which gives different input sequences with private normal-
ization operation. This is efficiency-friendly as normalization will introduce negligible parameters
and computations. Besides, we introduce Weight Alteration to transform the shared weights of each
sub-network to increase the representation capability and enable the network to exhibit strong perfor-
mance at multiple frames. Further, we present Mutual Distillation which integrates Cross-Entropy
and KL Divergence Loss to update the parameters of the whole network.

Compared with Separated Training (ST), FAN achieves higher accuracy at any frame with slightly
extra parameters and computations. We validate FAN on various architectures and datasets, and
FAN consistently outperforms ST which proves its effectiveness and generalization ability. With the
proposed framework, we can resolve Temporal Deviation problem in video recognition and enable
these methods to adjust their computations based on current resource budget by sampling different
frames. Moreover, we provide a naive solution which enables FAN to be evaluated at any frame and
increases its flexibility during inference. The validation results prove that FAN outperforms ST even
at frames which are not used in training. We summarize the contributions as follows:

• We discover Temporal Deviation phenomenon: common training protocol for video recog-
nition suffers from significant performance drop when testing frame number does not match
with that of training. It is detailedly analyzed and practically inspires our study.

• We propose a general framework Frame Adaptive Network (FAN) to fix the problem
brought by Temporal Deviation. It integrates several training sequences, involves Spe-
cialized Normalization and Weight Alteration to efficiently expand the original network,
and leverages Mutual Distillation for optimization.

• Comprehensive empirical validations show that FAN, which only needs one-shot training,
can adjust its computations by sampling different frames and outperform Separated Train-
ing (ST) at any frame on various architectures and datasets with negligible extra parameters
and computations, which promises the potential application on edge devices.
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2 RELATED WORK

Video recognition has been extensively explored in recent years and we can summarize the methods
into three categories based on their architectures: 1) 2D-based models: TSN Wang et al. (2016) uti-
lizes 2D networks as the backbone and averages the logits of sampled frames to represent the video
prediction. Based on this framework, TSM Lin et al. (2019) is designed to shift part of the channels
among adjacent frames to allow the exchange of temporal information. Recently, there are meth-
ods Li et al. (2020b); Wang et al. (2021) being proposed to take the global temporal information into
account to achieve multi-scale temporal modeling. 2) 3D-based models: A straightforward solution
for video recognition is to utilize 3D convolutions Tran et al. (2015); Carreira & Zisserman (2017);
Feichtenhofer et al. (2019) which naturally consider the temporal information in frame sequences.
Though effective, 3D convolutions bring the problem of huge computations. 3) Transformer-based
models: Vision Transformers Dosovitskiy et al. (2020); Liu et al. (2021) have brought a research
trend in computer vision due to its competitive performance. Based on ViT, many approaches Fan
et al. (2021); Liu et al. (2022); Li et al. (2022) have been proposed recently for spatiotemporal learn-
ing and shown powerful performance which verifies the effectiveness of this structure to capture
long-term dependencies.

Training-testing discrepancy widely exists in many scenarios of deep learning. FixRes Touvron
et al. (2019) discovers the deviation of image resolutions between training and testing and found
calibrating Batch Normalization (BN) Ioffe & Szegedy (2015) statistics plays an essential role at
mitigating this phenomenon. Based on this observation, there are methods Li et al. (2020a); Yang
et al. (2020) being designed to train a universal network to fit the images at different resolutions.
Slimmable Neural Networks Yu et al. (2018); Yu & Huang (2019) train a shared network which can
adjust its width to meet the resource constraints during inference. They design privatized BN for
different switches because of the shift in BN statistics and introduce inplace distillation to further
improve the performance of existing method. Different from these prior works, our work is moti-
vated by Temporal Deviation phenomenon in video recognition. This finding is essential as frame
sampling is a necessary step for all methods and former procedures train the network with different
frames individually which is parameter-inefficient and memory-consuming.

Parameter-efficient transfer learning has aroused researchers’ attention in NLP due to the arising
of large-scale pre-trained language models. An important research line is to design task-specific
adapters Pfeiffer et al. (2020a;b) which are inserted into the pre-trained model. In the fine-tuning
stage, only the newly added adapter modules will be updated to achieve parameter-efficient. Re-
cently, the idea of adapters has been extended to vision tasks as well and shown favorable per-
formance Sung et al. (2022); Pan et al. (2022). In this work, instead of focusing on tuning from
large-scale pre-trained models, we present Weight Alteration to transform the shared weights which
increases the representation abilities of sub-networks.

3 TEMPORAL DEVIATION
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Figure 2: Nearby Alleviation phenomenon. TSM model is trained at different frame numbers in
each figure on Something-Something V1 dataset and will be evaluated at all frames.

Nearby Alleviation. We can observe Temporal Deviation for various methods when they are trained
with high frame numbers but evaluated at fewer frames from Fig. 1. To step further, we train
TSM Lin et al. (2019) at other frame numbers and evaluate them at all frames. It can be seen
from Fig. 2 that there are performance gaps for all models if it is not evaluated with the same frame
number which is used in training. Particularly, the discrepancies vary in terms of the value and the
performance gap is smaller if the inference frame is close to the training frame number. We denote
this phenomenon as Nearby Alleviation because Temporal Deviation is less severe at nearby frames.
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Figure 3: Batch Normalization statistics of different models at various layers. Specifically, TSM
models are trained at 4 frame and 16 frame separately, and the statistics are calculated from the
fourth stage of ResNet-50.

Normalization Shifting. Batch Normalization (BN) Ioffe & Szegedy (2015) is proposed to reduce
the internal covariance shift in deep networks and has been widely employed in convolutional neural
networks due to its effectiveness. Specifically, it calculates the mean µ and variance σ2 in a mini-
batch for normalization and restores the representation power by scaling and shifting:

µ =
1

m

m∑
i=1

xi, σ2 =
1

m

m∑
i=1

(xi − µ)
2
, yi = γ

xi − µ√
σ2 + ϵ

+ β, (1)

where γ and β are two learnable parameters and ϵ is a constant introduced to avoid zero value on
denominator. In the standard training protocol, the model will be trained at a certain frame number
and evaluated at the same temporal frequency. Temporal Deviation phenomenon will appear if the
model is evaluated at other frame numbers. For example, if we train the model with vH which has
high frame number and evaluate it with low frame number vL, the input of BN will be feature xL

and the corresponding output is:

yL
′
= γH xL − µH√

σH2
+ ϵ

+ βH , (2)

where µH , σH2 are calculated at the data distribution of vH , and γH , βH are learnt at the training
process with vH . But the problem is whether the BN statistics of the models trained with different
frames are the same? We calculate the statistics of the models trained with vL and vH separately
and show it in Fig. 3. We can observe a discrepancy of BN statistics at different frame numbers.
Note that µ and σ2 are data-dependent which means that the divergence lies in data intrinsically.
Thus, we conjecture that the discrepancy of BN statistics at different frames is an essential factor
which leads to Temporal Deviation problem. Layer Normalization (LN) Ba et al. (2016) has been
extensively used in Transformer-based models and its statistics are calculated in a similar way with
BN which are related to the data distribution. Therefore, we believe the discrepancy of LN statistics
is also one of the reasons for Temporal Deviation on Transformer-based models.

4 FRAME ADAPTIVE NETWORK

In this section, we first present the training and inference paradigms of Frame Adaptive Network
(FAN). Then, we propose Specialized Normalization to resolve the issue of Normalization Shifting.
Further, we introduce Weight Alteration which is inserted into each sub-network to increase the
representation ability. In the end, we elaborate Mutual Distillation for the optimization of FAN. Note
that FAN is a general framework which can be built on different architectures (shown in Sec. 5.2)
and we just take CNN based method as an example in this part for easier description.

4.1 FRAMEWORK

The goal of our work is to present a method which can be evaluated at multiple frames and exhibit
similar or even better performance compared to Separated Training (ST), which individually trains
the model at different frames and evaluates them with the corresponding frames. Based on the
analysis in Sec. 3, Temporal Deviation will appear if the model is evaluated at the frame which
is not included during training. Therefore, we decide to import several sequences with different
sampled frames to FAN shown in Fig. 4. Consider video v which is sampled at increasing frame
numbers L, M and H , we can obtain vL, vM and vH with temporal frequency of Low, Medium and
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Figure 4: Illustration of Frame Adaptive Network (FAN). During training, given inputs with different
frames vL, vM and vH , we specialize normalization and add private weight alteration to construct
three sub-networks FL (·), FM (·) and FH (·) accordingly. We calculate CE loss on pH and KL
loss on pL, pM to update the parameters. During inference, we activate the sub-network which has
the corresponding frame number with the input. We take CNN based model as an example.

High, respectively. These three sequences will be utilized at training phase to construct three sub-
networks FL (·), FM (·) and FH (·) accordingly. As for the inference paradigm, we will activate
the sub-network which has the corresponding frame number with the input. In this manner, we can
evaluate FAN with multiple frames during inference and adjust the computational costs accordingly.

4.2 SPECIALIZED NORMALIZATION

Based on our analysis in Sec. 3, Normalization Shifting is one of the reasons which leads to Temporal
Deviation as the statistics µ, σ2, γ and β are different for inputs with different sampled frames.
Evaluating at other frames will use the statistics which are calculated at other distributions and lead
to shifting in the feature space. Formally, we denote the intermediate features for vL, vM and vH as
xL, xM and xH , respectively. We propose Specialized Normalization which provides vL, vM and
vH with private normalization:

y∗ = γ∗ x∗ − µ∗
√
σ∗2 + ϵ

+ β∗, (3)

where ∗ ∈ {L,M,H}, and specialized normalization will learn its own γ and β and calculate the
corresponding µ, σ2 during training. In this way, the BN and LN can independently normalize
the features of different frames during training and inference without interfering each other. Note
that Specialized Normalization introduces negligible computations and parameters as normalization
operation is a simple transformation and its parameters are often less than 1% of the model size.

In this manner, we construct three sub-networks with specialized normalization and the rest param-
eters are shared. But whether we can find a set of parameters for convolutions which is shared and
display strong representation ability at different frames during inference remains a problem.

4.3 WEIGHT ALTERATION

Ideally, specializing convolutions for different input sequences will enable the network to exhibit
good performance as each sub-network learns the specialized parameters for the corresponding
frame number which is similar with Separated Training (ST). Nevertheless, it will triple the pa-
rameters of the single network which makes it difficult for storage on edge devices. Sharing the
weights of convolutions across FL (·), FM (·) and FH (·) will make it parameter-efficient, but at
the risk of limiting the representation capability of FAN.

Considering a shared convolution with weights W , the outputs of different sequences are:

y∗ = W ⊗ x∗, (4)

where ∗ ∈ {L,M,H} and ⊗ stands for convolution which applies the same transformation for
different input sequences. We propose Weight Alteration to transform the shared weight of each
sub-network to diversify the weights and strengthen their representation abilities by:

y∗ = θ∗ ⊗W ⊗ x∗, (5)
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Figure 5: Specific designs of Weight Alteration, Convolution Block and Transformer Block. Weight
Alteration is a Depth-wise convolution layer with a residual structure and we insert it into each
Convolution Block and Transformer Block in Frame Adaptive Network (FAN).

which can also be written as:

y∗ = W ∗ ⊗ x∗, W ∗ = θ∗ ⊗W, (6)

where θ is a Depth-Wise convolution layer Chollet (2017) at each Convolution Block which can
covert the shared weights W into specialized weights W ∗. In this way, we can privatize the weights
of convolutions for different sequences by a simple and efficient transformation. Given that video
recognition methods often use pre-trained models, we include the residual structure He et al. (2016)
to avoid the added module breaking the original computational graph of pre-trained models and
restore their behaviors. Similarly, we also include the Weight Alteration in Transformer Block and
we choose the inserted location following Zhang et al. (2022) shown in Fig. 5. Note that Depth-Wise
convolution is lightweight and will introduce negligible parameters, the computation and parameters
of FAN at inference stage will be similar with the original method.

4.4 MUTUAL DISTILLATION

Given three input sequences vL, vM and vH , we can obtain the predictions pL, pM and pH ac-
cordingly. In most cases, video recognition models trained with vH have better performance as the
network will have access to more information of the original video. Therefore, we consider pH

is the most ‘accurate’ prediction among the three as vH has the most sampled frames. Applying
Cross-Entropy loss on pH , we can update FH (·) by:

LCE = −
K∑

k=1

ŷk log
(
pHk

)
, (7)

where ŷk is the one-hot label of class k and there are K classes in total. Considering this loss
independently, optimizing it will update the parameters of shared convolutions and specialized nor-
malization, alteration in FH (·). Directly calculating CE loss on pL and pM is a straightforward
solution to update the parameters in FL (·) and FM (·), but it will lead to some problems. Firstly,
the weights of convolutions are shared across three sub-networks and the optimal parameters for vL
after optimization may not fit well to vM and vH . Moreover, optimizing CE loss of pL and pM will
lead to less favorable parameters of convolutions compared to only calculating Eq. 7 as their inputs
contain less information compared to vH which may lead to inferior performance.

Consequently, we utilize KL divergence Kullback (1997) loss to involve pL and pM in the compu-
tational graph and update the parameters of FL (·) and FM (·) using:

LKL = −
K∑

k=1

pHk log

(
pMk
pHk

)
−

K∑
k=1

pHk log

(
pLk
pHk

)
. (8)

As the weights of convolutions are shared across the three sub-networks, optimizing Eq. 8 will
enforce the predictions of student (pL and pM ) and teacher (pH ) networks to be as similar as possible
and transfer the good knowledge from FH (·) to FL (·) and FM (·). This can be achieved by only
adjusting the parameters of specialized normalization and alteration as the weights of convolutions
are shared. Considering the two losses in a uniform manner, we update the parameters of FAN by:

L = LCE + λ · LKL, (9)

where λ is an introduced hyperparameter to balance the two terms and we simply let λ = 1 in our
implementations without fine-tuning the hyperparameter. With it as our optimization goal, we aim to
find the parameters of convolutions which can be adapted into different input frames, and specialized
parameters of normalization and alteration which are associated with corresponding input.
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5 EMPIRICAL VALIDATION

In this part, we validate Frame Adaptive Network (FAN) extensively on various architectures and
benchmarks. First, we provide several baseline solutions for Temporal Deviation and compare them
with FAN. Further, we apply our method on different methods and datasets to prove its generalization
ability. Moreover, we provide a naive inference paradigm to enable FAN to be evaluated at any frame
which promises its application on edge devices. Finally, we analyze the results of different numbers
of input sequences and conduct ablations to analyze the effectiveness of our designs.

5.1 EXPERIMENTAL PREPARATION

Datasets. We conduct experiments on four datasets, including: (1) Something-Something
V1&V2 Goyal et al. (2017) are two human action recognition datasets which includes 98k and
194k videos, respectively. They contain strong temporal dependency and show the most signifi-
cant Temporal Deviation phenomenon among all datasets. (2) Kinetics400 Kay et al. (2017) is a
large scale action recognition dataset with 400 action classes. (3) HMDB51 Kuehne et al. (2011)
is composed of 6,766 videos which can be categorized into 51 classes. We adopt the original three
training/testing splits for training and evaluation on this dataset.

Implementation details. We uniformly sample 4/8/16 frames for vLi , vMi and vHi for all methods
except for SlowFast Feichtenhofer et al. (2019) which samples 16/32/64 frames for fast pathway. For
the baseline results, we train all methods with vHi and evaluate them at vLi , vMi and vHi . Separated
Training (ST) denotes training the network at vLi , vMi and vHi individually and evaluating them at
the corresponding frame used in training. Other implementation details are included in appendix.

Baseline methods. As this topic has never been touched previously, it is difficult to compare FAN
with other methods. In addition to Separated Training (ST) introduced before, we provide three
more baseline methods for this problem: (1) Mixed Sampling: We sample 4 and 16 frames for
vLi and vHi , respectively. Then we randomly choose 4 consecutive frames vH

′

i from vHi and apply
Mixup Zhang et al. (2017) between vH

′

i and vLi to form the new data. The hyperparameter ρ decides
the probability of whether to apply mixed sampling at each iteration. (2) Proportional Sampling:
We let the network to randomly sample 4 frames or 16 frames at each iteration as this pair has the
most significant Temporal Deviation phenomenon. The hyperparameter ρ denotes the probability to
sample 16 frames for every iteration. (3) Ensemble: We take use of the models that are individually
trained at 4,8 and 16 frames and averagely ensemble them to form a new model.

5.2 MAIN RESULTS

Table 1: Comparison with baseline methods on Something-Something V1 dataset. GFLOPs refers
to the average computational cost to process a single video. The best results are bold-faced.

Method Parameters 4 Frame 8 Frame 16 Frame

Acc.(%) GFLOPs Acc.(%) GFLOPs Acc.(%) GFLOPs

TSM Lin et al. (2019) 25.6M 20.60 16.4 37.36 32.7 48.55 65.4
TSM-ST 25.6×3M 39.71 16.4 45.63 32.7 48.55 65.4
TSM-Mixed(ρ = 0.50) 25.6M 27.89 16.4 41.07 32.7 48.44 65.4
TSM-Mixed(ρ = 0.75) 25.6M 30.43 16.4 42.56 32.7 47.81 65.4
TSM-Proportional(ρ = 0.50) 25.6M 37.56 16.4 44.82 32.7 45.37 65.4
TSM-Proportional(ρ = 0.75) 25.6M 32.06 16.4 43.15 32.7 47.14 65.4
TSM-Ensemble 25.6×3M 35.88 16.4×3 46.25 32.7×3 46.82 65.4×3

TSM-FAN 25.7M 42.85 16.4 48.20 32.8 50.79 65.5

Comparison with baseline methods. Tab. 1 shows that the first two methods help to alleviate
Temporal Deviation as the performance at frame 4/8 are better than the inference results of model
trained with standard protocol. Nevertheless, the increase is obtained at the cost of a accuracy drop
at high frame numbers. Then, we adjust the hyperparameter ρ and the results show that both methods
seem to provide a trade-off solution for this problem: if the performance at low frames is better, the
results at high frame numbers will be worse. Obviously, these two baseline methods do not provide
satisfying answers for this problem as their performance is still worse than ST.
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(a) Results on TSM.
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(b) Results on TEA.
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(c) Results on SlowFast.
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(d) Results on Uniformer.
Figure 6: Validation results across different video recognition architectures on Something-
Something V1 dataset, including 2D-network, 3D-network and Transformer-network.
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(a) Results on Sth-Sth V2 dataset.
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(b) Results on Kinetics400 dataset.
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(c) Results on HMDB51 dataset.
Figure 7: Validation results across various video recognition datasets.

Ensemble outperforms ST at frame 8 at the cost of greater computational costs. Though, its perfor-
mance at 4/16 frame is worse than ST which means that it still cannot effectively resolve Temporal
Deviation problem. While our method FAN shows stronger results compared to ST and Ensemble
at all frames with negligible added computations. Moreover, compared to ST and Ensemble which
need to train the model separately for multiple times and storage the parameters for different models
individually, our method is trained for only one time and introduces slightly extra parameters which
makes it favorable for application on edge devices.

Performance analysis across architectures. We further validate our method on different architec-
tures in Fig. 6. We first build our method on TSM Lin et al. (2019) which does not contain any
parameters in the temporal modeling module. FAN exhibits advantages in performance at all frames
compared to baseline TSM and ST. Then, we implement our method on TEA Li et al. (2020b) which
involves convolutions and normalization in the temporal modeling module. Similarly, we specialize
all normalization and share weight for all convolutions in TEA, and our results also surpass ST at
all frames. Moreover, we extend FAN to other structures: SlowFast Feichtenhofer et al. (2019) and
Uniformer Li et al. (2022). The results exhibit similar improvements at all frame numbers compared
to ST. Particularly, our method enable competing method Uniformer to increase its accuracy at frame
4/8/16 by 3.50/5.76/2.38% which validates the effectiveness and generalization of our method.

Performance analysis across datasets. In this part, we empirically evaluate our method on various
datasets in Fig. 7, including Something-Something V2, Kinetics400 and HMDB51. The first ob-
servation is that Temporal Deviation phenomenon is less obvious on Kinetics400 and HMDB51 as
these two datasets contain less temporal information and the calculated normalization statistics of
different input frames are similar. Nevertheless, FAN continuously improves the accuracy of ST on
these datasets as well. For example, there are 2.71/1.95/1.19% performance gains at frame 4/8/16
on Kinetics400 which further demonstrate the validity of our design.

5.3 INFERENCE AT ANY FRAME

We have proved that FAN can outperform ST at the frame numbers used in training, but the evalu-
ation at other frames which are not included in training remains untouched. Motivated by Nearby
Alleviation in Sec. 3, we provide a naive inference paradigm to enable FAN to be evaluated at any
frame. Given frame number n at inference phase, we will calculate the frame difference with L, M
and H , and activate the sub-network with the minimal difference for validation. If the frame dif-
ference is the same for two sub-networks, we will choose the one which corresponds higher frame
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Figure 8: Validation results of FAN which im-
ports different input sequences on Sth-Sth V1.
We evaluate FAN at various frame numbers and
compare with Separated Training (ST).
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Figure 9: Ablation of design choices of FAN on
Sth-Sth V1. SN denotes Specialized Normaliza-
tion, WA stands for Weight Alteration and MD
represents Mutual Distillation.

number by default. In this manner, we can evaluate other frame numbers which are not used in
training and the results are included in Sec. 5.4.

5.4 ABLATION

Input sequences combinations. As we input three frame sequences in our method, we can easily
modify FAN by importing other numbers of input sequences. Shown in Fig. 8, we import two, three
and four sequences to FAN respectively and evaluate their performance at various frames with the
inference strategy in Sec. 5.3. To be specific, we import 4/16 frames to FAN(2), 4/8/16 frames to
FAN(3) and 4/8/12/16 frames to FAN(4) in the training phase. First, we can observe that FAN(2)
outperforms ST at 4/16 frames which are used in training, but its performance at 6/8/10 frames is
worse than ST because of the missing middle sequence in training. In contrast, both FAN(3) and
FAN(4) obtain higher accuracy at all frames compared to ST which can be attributed to the import
of middle sequence in training so that the evaluation results at nearby frames can be guaranteed by
Nearby Alleviation. FAN(4) achieves higher accuracy at frame 12 as it imports 12 frames during
training. However, it will cost more time and resources during training with similar performance at
other frames compared to FAN(3). Therefore, we adopt FAN(3) in all the experiments by default.

Design choices. In this section, we conduct ablation to verify the effectiveness of our designs in
Fig. 9. First, we build FAN without specialized normalization so that the batch normalization are
shared across the three sub-networks. We can observe obvious performance drop at 4/16 frames due
to the shift in normalization statistics which proves the necessity of private normalization for differ-
ent sub-networks. Further, we optimize FAN by calculating Cross-Entropy loss on the predictions of
all sub-networks respectively and do not utilize KL divergence loss for optimization. The obtained
curve is similar with ST and the worse results indicate that Mutual Distillation is a better solution
as the combined CE loss will result in less favorable wights of the shared convolutions. Finally, we
compare FAN with its variants which does not include Weight Alteration in the convolution block
and FAN exhibits better performance at all frames. The reason is Weight Alteration transforms the
shared weights of convolutions into private parameters for each sub-network and increases their
representation ability at corresponding frame numbers.

6 CONCLUSION

In this paper, we discover Temporal Deviation phenomenon which widely exists in video recognition
and propose Frame Adaptive Network (FAN) to address this issue. Specifically, we import several
sequences with different frames into the network and design Specialized Normalization for every in-
put. Further, we propose Weight Alteration to transform the weights and increase the representation
ability of each sub-network. Finally, we present Mutual Distillation which combines CE and KL
loss to update the parameters of the sub-networks. Extensive experiments demonstrate that FAN,
which only requires one-shot training, can be evaluated at multiple frame numbers and outperforms
Separated Training with negligible costs, making it favorable for applications on edge devices.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The training data is random cropped to 224 × 224 and we perform random flipping except for
Something-Something datasets. At inference stage, all frames will be center-cropped to 224 × 224
except SlowFast Feichtenhofer et al. (2019) which adopts the resolution of 256 × 256 for evaluation.
We use one clip per video for efficiency. We train all models on NVIDIA Tesla V100 GPUs and
adopt the same training hyperparameters with the official implementations.

A.2 MORE SAMPLED FRAMES

Table 2: Experiments with more sampled frames on Something-Something V1.

Method Top-1 Acc.(%)

4 Frame 8 Frame 16 Frame 24 Frame

TSM Lin et al. (2019) 13.91 27.91 43.59 47.90
TSM-ST 39.71 45.63 48.55 47.90
TSM-FAN 41.28 46.72 49.79 49.95

In previous experiments, we sample 16 frames at most to represent vH . Therefore, we include more
frames in this section and import 4 sequences with 4/8/16/24 sampled frames, respectively. The
first observation from Table 2 is that the performance of TSM(24F) is even a little bit lower than
TSM(16F) which can be attributed to simple temporal modeling module of TSM. However, FAN
still obtains better performance compared with Separated Training (ST) at all frames and achieves
the highest accuracy at 24 Frame, owing to the design of Mutual Distillation.

A.3 DIFFERENT MIDDLE SEQUENCES

Table 3: Experiments with different middle sequences on Something-Something V1.

Method vM
Top-1 Acc.(%)

4 Frame 6 Frame 8 Frame 10 Frame 12 Frame 14 Frame 16 Frame

TSM Lin et al. (2019) - 20.60 30.23 37.36 42.72 45.97 47.49 48.55
TSM-ST - 39.71 43.73 45.63 47.31 47.71 48.01 48.55
TSM-FAN 8F 42.85 46.57 48.20 48.81 48.90 50.47 50.79
TSM-FAN 10F 43.10 44.77 47.81 49.26 49.63 50.67 51.12
TSM-FAN 12F 42.92 43.57 46.82 48.85 49.73 50.40 50.79

Another design choice in our method is the selection of middle sequence vM , as vL and vH are
usually set at first based on the range of the computations. Thus, we sample 8/10/12 frames for
vM respectively and evaluate them at various frame numbers in Table 3. When we sample 8 frames
for vM , FAN obtains the best performance at 8 frames compared to the other two choices and the
phenomenon is the same when sampling 10 or 12 frames for vM . This meets our expectation as
the specialized normalization for vM learns its corresponding transformation. Overall, all the three
choices leads to consistent improvement over Separated Training (ST) at all frames.

A.4 DIFFERENT DEPTHS

As we have shown in Figure 1, Temporal Deviation exists in different depths of the network which
means it has no relation to the representation ability. But can FAN address this issue at other
depths? As previous experiments are built on ResNet-50 He et al. (2016), we conduct experiments
on ResNet-18, ResNet-101 and include their results in Table 4. The results prove that FAN can
resolve Temporal Deviation regardless of the depths of the deep network.

A.5 OUT-OF-BOUNDS RESULTS

In previous sections, we only evaluate our method within the range of vL(4 Frame) and vH (16
Frame). Though FAN can handle most of the cases if we set the range to be as large as possible, we
are still curious about the performance of FAN when it is validated at frames which are out of the
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Table 4: Experiments with different depths on Something-Something V1.

Method Top-1 Acc.(%)

4 Frame 8 Frame 16 Frame

TSM(R18) Lin et al. (2019) 16.82 33.12 42.95
TSM(R18)-ST 32.33 38.21 42.95
TSM(R18)-FAN 36.83 41.61 43.57
TSM(R101) Lin et al. (2019) 22.15 39.30 49.57
TSM(R101)-ST 40.76 46.96 49.57
TSM(R101)-FAN 45.15 50.24 51.79

Table 5: Evaluation at out-of-bounds frames on Something-Something V1.

Method Top-1 Acc.(%)

2 Frame 4 Frame 8 Frame 16 Frame 20 Frame

TSM-ST 26.79 39.71 45.63 48.55 47.69
TSM-FAN 26.91 42.85 48.20 50.79 50.42

range. Therefore, we evaluate FAN at frame 2/20 and compare it with Separated Training in Table 5.
FAN exhibits similar performance at 2 Frame compared to ST and show obvious advantage at 20
Frame. The reason is that TSM with 20 frames has lower performance compared with sampling 16
frames which we have explained in Section A.1. While the accuracy of FAN with 20 Frame only
drops slightly compared to 16 Frame which demonstrates the robustness of our design.

A.6 QUANTITATIVE RESULTS

In the Empirical Validation Section, we show our results in the figure and we also provide the
quantitative results in the following tables for references:

Table 6: Experiments with different architectures on Something-Something V1.

Method Top-1 Acc.(%)

vL vM vH

TSM Lin et al. (2019) 20.60 37.36 48.55
TSM-ST 39.71 45.63 48.55
TSM-FAN 42.85(3.14↑) 48.20(2.57↑) 50.79(2.24↑)
TEA Li et al. (2020b) 21.78 41.49 51.23
TEA-ST 41.36 48.37 51.23
TEA-FAN 44.97(3.61↑) 51.61(3.24↑) 54.04(2.81↑)
SlowFast Feichtenhofer et al. (2019) 15.08 35.08 45.88
SlowFast-ST 39.91 44.12 45.88
SlowFast-FAN 43.90(3.99↑) 47.11(2.99↑) 47.27(1.39↑)
Uniformer Li et al. (2022) 19.02 41.64 51.61
Uniformer-ST 41.46 45.26 51.61
Uniformer-FAN 44.96(3.50↑) 51.02(5.76↑) 53.99(2.38↑)

Table 7: Experiments with different datasets on TSM.

Method Dataset Top-1 Acc.(%)

vL vM vH

TSM Lin et al. (2019)
Sth-Sth V2

31.52 51.55 61.02
TSM-ST 53.38 59.29 61.02
TSM-FAN 56.07(2.69↑) 61.86(2.57↑) 63.61(2.59↑)
TSM Lin et al. (2019)

Kinetics400
64.10 69.77 73.16

TSM-ST 66.25 70.38 73.16
TSM-FAN 68.96(2.71↑) 72.33(1.95↑) 74.35(1.19↑)
TSM Lin et al. (2019)

HMDB51
42.16 46.38 48.30

TSM-ST 44.74 46.77 48.30
TSM-FAN 45.67(0.93↑) 47.67(0.90↑) 48.80(0.50↑)
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