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ABSTRACT

Machine learning (ML) has been shown to successfully accelerate solving NP-
hard combinatorial optimization (CO) problems under the branch and bound
framework. However, the high training and inference cost and limited inter-
pretability of ML approaches severely limit their wide application to modern exact
CO solvers. In contrast, human-designed policies—though widely integrated in
modern CO solvers due to their compactness and reliability—can not capture data-
driven patterns for higher performance. To combine the advantages of the two
paradigms, we propose the first symbolic discovery framework—namely, deep
symbolic discovery for exact combinatorial optimization solver (Symb4CO)—to
learn high-performance symbolic policies on the branching task. Specifically,
we show the potential existence of small symbolic policies empirically, employ
a large neural network to search in the high-dimensional discrete space, and com-
pile the learned symbolic policies directly for fast deployment. Experiments show
that the Symb4CO learned purely CPU-based policies consistently achieve com-
parable performance to previous GPU-based state-of-the-art approaches. Further-
more, the appealing features of Symb4CO include its high training (ten training
instances) and inference (one CPU core) efficiency and good interpretability (one-
line expressions), making it simple and reliable for deployment. The results show
encouraging potential for the wide deployment of ML to modern solvers. Codes
are available at https://github.com/MIRALab-USTC/L2O-Symb4CO.

1 INTRODUCTION

Combinatorial optimization (CO) problem is one of the most fundamental and challenging opti-
mization problems in the field of mathematical optimization (MO), widely used to formulate a rich
set of important real-world problems, e.g., routing (Liu et al., 2008), scheduling (Chen, 2010), and
chip design (Ma et al., 2019). Generally, the solving efficiency and solution quality of CO prob-
lems are related to enormous economic value (Chen et al., 2011), while solving CO problems is
usually computationally expensive due to their NP-hard nature. Thus, the acceleration on solving
CO problems plays a core role in the field of MO. Modern exact CO solvers like SCIP (Achterberg,
2007) and Gurobi (Gurobi, 2022) usually employ various human-designed heuristics, whose design
requires considerable manual tuning and complex working flows. Recently, researchers apply ma-
chine learning (ML) to different solver components (Paulus & Krause, 2023; Li et al., 2024; He
et al., 2014; Wang et al., 2023; Geng et al., 2023; Liu et al., 2023) to accelerate the solving process,
and the results show encouraging improvements on problems with chosen implicit distributions.

However, the general limitations of ML approaches on training, inference, and interpretation (Lan-
dajuela et al., 2021) makes their wide deployment to modern CO solvers a relatively slow process for
a long time. First, (L1) ML approaches usually require considerable training data to achieve superior
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performance, while we may only have limited data due to reasons like privacy issues in real-world
applications. Second, (L2) ML approaches in CO can encounter the dilemma between training ac-
curacy (complex model) and inference efficiency (deployment device), as currently most CO solver
servers for industrial purpose are purely CPU-based. Lastly, (L3) the ‘black-box’ nature of many
ML approaches prevents further understanding on the learned policies, which engenders a sense of
skepticism among many researchers in MO. Note that these limitations are usually regarded intrinsic
for machine learning, but they starkly misalign with the requirements in industrial-level applications.
Gupta et al. (2020) employ hybrid graph neural network (GNN) and multilayer perceptron (MLP)
models to tackle (L2) on purely CPU-based devices, while the neural networks still lead to low
training efficiency (L1) and interpretability (L3) for deployment.

In contrast, human-designed policies are widely incorporated in modern CO solvers (Achterberg,
2007). Generally, these policies consists of hard-coded mathematical expressions and working
flows, whose design are coincident to human intuitions and thus regarded to be reliable. Note that the
use of mathematical operators can be regarded as strong regularizations (Petersen, 2019; Landajuela
et al., 2021). Thus, these policies are usually more compact compared to the ML learned policies.
However, designing and developing these policies is extremely challenging as it requires extensive
expert knowledge. Moreover, these policies are designed for generic purpose, missing data-driven
patterns from specific data distribution for higher performance (Bengio et al., 2021).

In light of this, a natural idea is to combine the application reliability and superior performance
of these two paradigms. Then, based on the idea of genetic programming (Poli et al., 2008), we
propose the first symbolic discovery framework—namely, deep symbolic optimization for exact
combinatorial optimization solvers (Symb4CO)—to search for high-performance symbolic policies
on the branching task. First, we conduct preliminary experiments to show the potential existence
of small symbolic branching policies. Then, we employ a deep symbolic discovery framework,
which employ a large sequential model to search in the high-dimensional discrete space of symbolic
expressions and use the behavioral cloning accuracy as the fitness measure. Finally, we compile the
learned expressions directly for fast deployment to modern exact CO solvers.

The empirical results demonstrate the following advantages of Symb4CO: (1) Superior performance
on pure CPU devices. Symb4CO learned purely CPU-based policies achieve comparable perfor-
mance to GPU-based state-of-the-art (SOTA) approaches and outperform all the CPU-based branch-
ing policies. (2) High training and inference efficiency. We use only ten training instances to train
Symb4CO to SOTA performance and observe it can achieve high performance even with one train-
ing instance, and the learned policies only require one CPU core for stable inference. (3) High
interpretability. All the learned policies are one-line compact mathematical expressions, which are
easy to deploy to the distributions of CO solver packages and can help researchers further understand
and optimize the human-designed branching policies.

2 PRELIMINARIES

2.1 BRANCHING VARIABLE SELECTION IN THE BRANCH-AND-BOUND ALGORITHM

Many CO problems can be formulated as the mixed integer linear programmings (MILPs):

argmin
x

cTx s.t. Ax ≤ b, x ∈ Zp × Rn−p,

where c is the cost, A is the constraint matrix, b is the constraint right hand side vector, and p is
the number of integer variables. Popular exact solvers such as SCIP (Achterberg, 2007) commonly
employ the branch-and-bound (B&B) algorithm to solve MILPs. B&B algorithm operates by re-
cursively solving a series of subproblems and organizing them as nodes within a search tree. When
exploring each node of the subproblem, the solver performs the branching policy, where it selects an
integer variable xi (branching variable) with fractional value x∗

i in the LP solution. The solver then
partitions the feasible region to generate two new subproblems of child nodes by adding constraints
xi ≤ ⌊x∗

i ⌋ and xi ≥ ⌈x∗
i ⌉. After that, the solver determines a new subproblem to explore next.

Empirically, the policies for branching variable selection significantly influence the size of the search
tree then the overall solving efficiency. The commonly used branching policies include the strong
branching and pseudocost branching policies. The strong branching policy is known to produce the
smallest search trees among all the heuristics but requires a huge amount of computation, while the
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Figure 1: Motivations for symbolic discovery on the branching task. All the experiments are con-
ducted on the combinatorial auction benchmark. Figure 1(a) shows deep learning models require
extensive training data to achieve satisfactory performance, while lighter tree models struggle to
achieve high learning accuracy. Figure 1(b) shows deep learning models, especially GNN, severely
depend on GPU for efficient inference. Figure 1(c) shows the potential existence of compact but
high-performance branching policies, which motivates us to employ symbolic operators in this work.

pseudocost branching employs a simpler and faster branching score function which depends on con-
siderable human intuition and considerable manual tuning. Thus, these human-designed branching
policies are still not satisfactory enough in real-world applications (Jünger et al., 2009), leaving vast
possibilities to improve solving efficiency with ML-discovered, powerful and fast policies.

2.2 GENETIC PROGRAMMING FOR SYMBOLIC DISCOVERY

Genetic programming (GP) is an evolutionary computation technique that automatically solves prob-
lems without requiring the form or structure of the solution in advance. Specifically, GP approxi-
mates a mapping from the dataset by generating mathematical expressions in the form of expression
trees. The internal nodes of the trees are unary or binary, representing unary (e.g. pow, log, exp
and so on) and binary (e.g. +,−,×,÷) mathematical operators, respectively. The leaf nodes of the
trees stand for input variables and constants (e.g. variables {x, y, z} and constants {c1, c2, c3}). GP
repeatedly improves the performance of the generated expressions using selection, crossover and
mutation operations. Finally, a fitness metric is used for evaluating the generated expressions.

3 RETHINKING MACHINE LEARNING FOR BRANCHING

One of the fundamental problems in modern solvers is how to rank a set of candidates, which widely
exists in modules like basis selection, cut selection, and variable selection (branching) (Jünger et al.,
2009). Many policies rank candidates via human-designed scoring functions (e.g., pseudocost in
branching), while designing these functions usually requires considerable expert knowledge. In this
paper, we mainly focus on the branching task, in which many previous ML approaches attempt to
learn better ranking functions with complex ML models like ExtraTrees (Alvarez et al., 2017), graph
neural network (GNN) (Gasse et al., 2019), and hybrid models (Gupta et al., 2020).

3.1 LIMITATIONS FOR MACHINE LEARNING BASED BRANCHING POLICIES

Though ML based branching policies show promising results in previous research, in practice, we
observe three main limitations that significantly hinder their wide deployment to modern CO solvers:

(L1) The extensive requirement on training instances. We compare the test accuracy of different
ML models trained with different number of instances in Figure 1(a). Results show that
limited training data severely hurts the performance of ML approaches. However, in many
real-world situations we only have limited training data due to reasons like privacy issues.

(L2) The requirement for GPU devices for high performance. We compare the performance of
previous SOTA approaches on CPU and GPU devices in Figure 1(b) to show that. Similar
results and conclusions are reported in previous work (Gupta et al., 2020) as well. However,
many servers where CO solver are deployed for industrial purpose are purely CPU-based.

(L3) The ‘black-box’ nature of learned models. ML models like neural networks are usually
regarded uninterpretable, which engenders a sense of skepticism among MO researchers as
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Figure 2: Illustration of the deep symbolic discovery framework for branching. Part 1 illustrate
the FSB rule and the collected data with a simple MILP example; Part 2 shows how the sequential
model generate symbolic policies; Part 3 shows the RL-based training process and the deployment.

it prevents further understanding on the learned policies. Furthermore, integrating a series
of complex ML models into a CO solver package distribution is typically intractable.

In conclusion, the high training and inference cost and the limited interpretability of existing ML
approaches severely limit their wide deployment to modern CO solvers.

3.2 MOTIVATION FOR SYMBOLIC DISCOVERY

Gupta et al. (2020) employ a hybrid approach that replaces time-consuming GNN inference with
faster MLP to tackle (L2). However, the employed neural network still makes its training efficiency
(L1) and interpretability (L3) unsatisfactory for practical applications. An one-step further idea is to
employ lighter models to alleviate (L1) and (L3). However, previous research based on lighter SVM
(Khalil et al., 2016) or tree models (Alvarez et al., 2017) falls into suboptimal learning accuracy,
making it a dilemma between model size and learning capacity for these lighter models.

Thus, is there some compact model that alleviates (L1)-(L3) while maintaining a commendable level
of performance? Based on the MLP model and the 91 features employed in Gupta et al. (2020), we
conduct experiments and get the following results (in Figure 1(c)) to empirically answer it:

1. Sparse active features. We randomly mask 80% input features and train the MLP model
with remained ones. We then report the highest test accuracy among five random repeats.
We find this achieves comparable accuracy to MLP trained with full features.

2. Simple but nonlinear mapping. We employ (16) and (8, 8) hidden layers to replace the
original (256, 256, 256) one used in Gupta et al. (2020). We find these compact MLP
models still achieve high accuracy. However, directly removing hidden layers (i.e., using a
linear model) results in clear decrease on the behavioral cloning accuracy.

We use fixed-length features rather than graph-based states in Gasse et al. (2019) as the branching
policy requires to be lightweight enough for fast inference on CPU, and we use the raw features in
Gupta et al. (2020) rather than the GNN embedded ones for better interpretability.

The results indicate the potential existence of compact branching policies that involve only a small
set of active features and a simple (but nonlinear) mapping between inputs and decisions. Previous
light ML models struggle to achieve high performance (Alvarez et al., 2017; Khalil et al., 2016;
Gupta et al., 2020), which motivates us to employ more complex symbolic operators in the policies.
Generally, these operators leverage the “unreasonable effectiveness of mathematics” to significantly
enforce the expressive capacity of ML models (Landajuela et al., 2021).

4 DEEP SYMBOLIC DISCOVERY FRAMEWORK FOR BRANCHING

Intuitively, the introduction of symbolic operators will make the optimization non-differentiable.
That is, rather than the continuous optimization task in other ML approaches, now we need to search
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for symbolic expressions in a discrete and high-dimensional space of symbolic expressions. In this
section, we introduce the first symbolic discovery framework for exact combinatorial optimization
solve (Symb4CO) to learn high-performance symbolic branching policies (see Figure 2).

4.1 THE SYMBOLIC BRANCHING FUNCTION

In genetic programming (Poli et al., 2008), functions are typically expressed as symbolic trees, in
which leaf nodes are features or constants and other nodes are mathematical operators. In this task,
we generate functions to score all branching candidates and select the one with the highest score.

Input Features. We choose the features of candidate branching variables that: a) contain as much
as possible information about the branching task; b) simple enough to handle on purely CPU-based
devices. Thus, we use the feature vector s employed in Gupta et al. (2020), which consists of 91
features in total (see Table B8 in Appendix). These features can be roughly divided into two classes
(Gasse et al., 2019; Khalil et al., 2016), i.e., the static features describing the input MILP problem
and the dynamic features representing the status of the solver at current node. See Appendix E for
more discussions on tackling bipartite graph Gasse et al. (2019) inputs via symbolic graph models.

Mathematical Operators and Constants. In the Symb4CO, we use mathematical operators from
{+,−,×,÷, log, exp, pow}. Though there are more complex operators like {sin, cos}, we find their
contribution to higher performance is limited in practice. We use constants from {0.2, 0.5, 2.0, 5.0},
and other constants are generated by combining them in the symbolic tree (Landajuela et al., 2021).
Another approach to generate constants is to employ placeholders and optimize them in inner opti-
mization loops at each iteration (Petersen, 2019). However, we find this approach achieves similar
asymptotic performance to the above one in this task, while introducing an inner optimization loop
generally requires higher training cost. See comparisons in Table 6 for comparisons.

4.2 THE GENERATOR OF SYMBOLIC TREES

There are multiple ways to generate the symbolic trees. Traditional approaches in genetic program-
ming employ evolutionary algorithms (Chen et al., 2023; Cranmer et al., 2020b). In this paper, we
employ deep learning models as a generator based on recent development of deep symbolic opti-
mization algorithms (Petersen, 2019; Landajuela et al., 2021). We observe this achieves significantly
higher asymptotic imitation accuracy in our task (see Table 3).

The Sequential Model. Once given the traversal, an expression tree is one-to-one to a expression
sequence τ (Petersen, 2019). Thus, we can employ a sequential model to generate the expression
sequence. Specifically, we use a recurrent neural network (RNN) to output the tree nodes step by
step. At each step, we input the parent and the sibling nodes to capture the hierarchical information
of the expression tree (or empty token if no parent or sibling exists) as that in Petersen (2019), and
we output a categorical distribution over all possible tokens to sample the current token. Then,

pθ(τ) = Π
|τ |
i=1pθ(τi | τ1:(i−1)) (1)

is the likelihood to generate the expression sequence τ , where pθ is approximated by an RNN.

Constraints as Prior. We can further apply constraints on the the search space to accelerate the
training process (Petersen, 2019; Landajuela et al., 2021). In Symb4CO, we employ: a) length
constraints, which restrict the complexity of the expression tree to specific ranges; b) inverse operator
constraints, which restrict the child of a unary operator not to be the inverse of its parent; c) non-
trivial constraints, which ensures the symbolic tree to contain at least one input feature.

4.3 THE FITNESS MEASURE

Due to the NP-hard nature of CO problems, training from scratch (i.e., randomly generated branch-
ing policies) with end-to-end solving time as fitness measure could be extremely intractable. Thus,
similar to previous research (Khalil et al., 2016; Gasse et al., 2019; Gupta et al., 2020), we use the
full strong branching (FSB) (Achterberg, 2007) to collect expert demonstrations and use the behav-
ioral cloning accuracy as the fitness measure. The collected data D =

{
(s1:kt

, v1:kt
)
T
t=1

}
includes

the features si and the FSB scores vi of all branching candidates i = 1, 2, · · · , kt at each node
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t = 1, 2, · · · , T . Then, the fitness measure can be written as

r(τ) = E(s1:k,v1:k)∼D

[
δ

(
argmax

1:k
τ(si) ∈ {i | vi ≥ vj , 1 ≤ j ≤ k}

)]
, (2)

where (s1:k, v1:k) is an expert demonstration sampled from D, δ(F) is a Dirac delta function that
returns 1 if and only if the event F is true (Williams, 1991), and otherwise returns 0. Then, the
fitness measure is that how many branching variables does the symbolic policy τ select in average
over the given expert dataset D that have the highest FSB scores.

4.4 THE TRAINING ALGORITHM

Based on the generator pθ and the fitness measure r(τ), the searching task in the high-dimensional
discrete space is converted to an continuous optimization on parameters θ to maximize the probabil-
ity of generating τ with high fitness. Observe that the objective is non-differentiable with respect to
θ. Thus, a natural way to optimize it is to introduce reinforcement learning (RL) (Petersen, 2019).

Problem Formulation. Specifically, we can formulate the training task as a continuous bandit
problem. The RNN generator pθ(τ) is the parameterized policy, the expression sequence τ output
by the generator is the selected action, and the fitness r(τ) with given dataset D is the reward.

Policy Gradient Objective. The general RL objective is to maximize the expected rewards of the
stochastic policy p(τ), i.e., Eτ∼pθ(τ)[r(τ)]. Note that we only care about the best τ generated by the
model. Thus, instead of optimizing the average performance, we employ the risk-seeking objective
(Petersen, 2019; Tamar et al., 2014) to optimize the best-case performance, i.e.,

J(θ; ϵ) = Eτ∼pθ(τ)[r(τ) | r(τ) ≥ rϵ(τ)], (3)

where ϵ is used to select rewards larger than the (1−ϵ) quantile of all the rewards in the current batch.
We employ the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) to maximize
this objective. We further employ the hierarchical entropy regularizer and soft length regularizer as
that proposed in Landajuela et al. (2021) in Symb4CO.

4.5 THE DEPLOYMENT TO EXACT COMBINATORIAL OPTIMIZATION SOLVER

After the training process, we obtain a symbolic policy τ that scores all the candidate variables
and then selects the best one to branch. Intuitively, this policy can be regarded as a data-driven
version of the human-designed pseudocost branching rule (PB) integrated in modern CO solvers.
As expected in Section 3.2, the learned policy is highly compact, which involves only a small set of
active features and a simple mapping between inputs and outputs (see Table 5). Thus, similar to PB,
we directly compile the learned policy to a lightweight shared object using a simple script and then
integrate it into the CO solver package. See Appendix C for more details about the deployment.

5 RESULTS

We conduct extensive experiments to evaluate Symb4Co, which mainly have three goals: a) to
illustrate that Symb4CO learned branching functions significantly outperforms existing approaches
in terms of the efficiency of solving MILPs; b) to show the appealing features of Symb4CO on
training, inference, and interpretability; c) to conduct ablation studies on Symb4CO.

Benchmarks We evaluate Symb4CO on four standard benchmarks used in previous research (Gasse
et al., 2019; Gupta et al., 2020). That is, the set covering (setcover) (Balas & Ho, 1980) , the combi-
natorial auction (cauctions) (Leyton-Brown et al., 2000), the capacitated facility location (facilities)
(Cornuéjols et al., 1991), and the maximum independent set (indset) (Bergman et al., 2015). These
four benchmarks can be generated from open-source codes. We generate small instances (Easy) for
training and testing, and larger instances (Medium and Hard) for generalization. We report the size
of different benchmarks and the hyperparameters we used in Table D14 in Appendix.

Baselines There are five different baselines to compare in this section to illustrate the superior perfor-
mance of GS4CO. We compare Symb4CO to seven baselines to illustrate the superior performance.
Specifically, the reliability pseudocost branching (RPB), the pseudocost branching (PB), and the full
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Table 1: Performance of different branching policies with the time limit of 3000s. Both the time
and the nodes are 1-shifted geometric mean over 80 test instances. All models are trained on easy
instances only. (On hard benchmarks, the solver fails to obtain optimal solutions on many instances
within the time limit. Thus, the node comparison may not fully reflect the actual performance.)

Setcover: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 96.96 0/80 55.2 242.92 0/80 107.0 2852.33 0/6 799.1

RPB 11.40 1/80 212.5 100.32 4/80 6116.0 1911.32 13/47 117450.0
PB 42.49 6/80 3686.6 112.39 3/80 9874.2 2158.00 0/20 149628.9

Trees 15.95 0/80 367.0 176.04 0/80 4350.2 2567.31 0/23 56962.9
MLP 9.63 0/80 290.7 102.63 0/80 5023.7 2142.81 0/40 75772.8
GNN 14.19 0/80 239.5 104.22 0/80 3381.5 2661.75 0/17 28517.8

Hybrid 8.97 6/80 279.4 90.20 8/80 4103.5 1900.96 6/47 72712.7
Symb4CO 7.10 67/80 304.7 86.92 65/80 5623.2 1894.38 30/48 129231.6

GNN-GPU 7.74 -/80 239.5 74.91 -/80 3381.5 1810.93 -/50 92996.7

Cauctions: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 14.05 0/80 17.7 156.20 0/80 116.6 1903.37 0/51 533.8

RPB 3.00 0/80 26.2 23.05 1/80 1434.4 209.57 40/80 14532.4
PB 4.02 0/80 731.8 29.05 0/80 4855.2 397.38 2/80 41536.9

Trees 3.50 0/80 116.0 64.43 0/80 2251.6 1270.82 0/73 31945.8
MLP 1.98 0/80 107.8 21.14 0/80 1298.5 273.85 0/80 17295.3
GNN 2.20 1/80 93.6 26.93 0/80 1201.8 266.80 0/80 12898.0

Hybrid 1.87 0/80 96.5 19.04 4/80 1149.1 225.70 10/80 16638.3
Symb4CO 1.57 79/80 99.1 15.14 75/80 1328.5 211.08 28/80 17429.1

GNN-GPU 1.74 -/80 93.6 16.29 -/80 1298.5 193.14 -/80 12898.0

Facilities: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 92.45 0/80 110.00 428.35 0/80 185.3 1089.16 0/69 76.0

RPB 54.05 3/80 211.10 250.88 1/80 369.3 766.29 0/78 270.3
PB 53.30 8/80 468.70 195.22 22/80 651.5 687.64 4/75 461.5

Trees 59.68 0/80 460.70 283.73 3/80 790.3 828.91 0/75 532.8
MLP 40.39 6/80 395.40 215.02 6/80 593.2 636.26 12/75 463.4
GNN 52.28 1/80 376.90 311.58 0/80 597.1 790.21 0/75 402.5

Hybrid 39.24 19/80 383.70 207.89 18/80 597.4 625.23 28/78 428.5
Symb4CO 37.76 43/80 401.20 194.01 30/80 533.6 618.77 34/78 377.4

GNN-GPU 34.95 -/80 376.90 204.16 -/80 597.1 593.39 -/78 476.5

Indset: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 620.48 0/80 28.7 2110.75 0/41 133.9 3000.00 0/0 57.4

RPB 42.69 0/80 1500.5 178.43 10/80 6891.2 2140.77 5/37 53112.4
PB 153.59 1/80 14221.9 1226.90 0/60 86695.5 2975.40 0/4 73390.6

Trees 87.91 0/80 1317.5 371.75 0/66 25544.9 2833.05 0/6 60291.7
MLP 39.23 10/80 2490.9 236.63 10/80 12938.9 2202.30 2/27 39195.5
GNN 29.77 23/80 826.2 707.70 3/78 8375.2 2735.31 0/15 40107.2

Hybrid 36.27 14/80 2016.1 166.38 18/80 8337.4 1918.32 7/31 33558.9
Symb4CO 29.21 32/80 954.6 138.80 39/80 5724.2 1578.58 27/41 43582.6

GNN-GPU 25.13 -/80 826.2 145.72 -/80 8375.2 2026.70 -/36 57640.6

strong branching (FSB) are three human-designed branching policies integrated in modern solvers
like SCIP by default (Achterberg, 2007); We compare Symb4CO to seven baselines to illustrate
the superior performance. Specifically, the reliability pseudocost branching (RPB), the pseudocost
branching (PB), and the full strong branching (FSB) are three human-designed SOTA branching
policies integrated in SCIP by default (Achterberg, 2007); the Trees model (Alvarez et al., 2017)
based on the ExtraTrees (Geurts et al., 2006), the GNN (Hamilton, 2020) based model proposed in
Gasse et al. (2019), and the MLP and Hybrid models proposed in Gupta et al. (2020) are four ML
approaches. We compare to: a) tree models as they are widely used ML models for their reliability
and interpretability; b) MLP models as Symb4CO learned policies use the same input features as
that in MLP models, and thus the symbolic policies can be regarded as an extremely lightweight
version of MLP; c) GNN and Hybrid models as they are SOTA ML approaches on GPU and CPU.
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Table 2: The performance of ML approaches when only one training instance is available. Results
show that Symb4CO is the only approach maintaining high performance in such condition. We note
this evaluation setup is practical as we have to learn from scratch in many real-world CO tasks.

Cauctions: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

RPB 3.00 1/80 26.2 23.05 10/80 1434.4 209.57 65/80 14532.4
Trees-1 3.13 0/80 205.6 67.54 0/80 2767.1 1692.58 0/51 56263.2
MLP-1 3.75 0/80 541.5 1293.25 0/80 160516.7 2911.52 0/7 203175.6
GNN-1 2.76 1/80 183.7 92.73 0/80 5408.4 1762.33 0/58 96201.0

Hybrid-1 2.25 3/80 183.5 30.90 0/80 2349.2 691.18 1/49 38745.2
Symb4CO-1 1.72 75/80 116.1 18.48 70/80 1987.7 255.06 14/80 20139.2

Training and Evaluation Settings For Symb4CO, we use only ten and four instances to generate
1, 000 and 400 samples for training and validation on all benchmarks. We normalize the input fea-
tures of all candidates inside each B&B node to [0, 1] as that in previous work (Gupta et al., 2020).
We observe that the end-to-end performance is not entirely positively correlated to its imitation ac-
curacy. Thus, we select the symbolic policies with top ten imitation learning accuracy on validation
sets and then execute them on the validation instances to select the best-performed one. For all the
other ML-based baselines, we use their official implementations and the default settings used in pre-
vious work (Gasse et al., 2019; Gupta et al., 2020). Specifically, we use 10, 000 and 2, 000 instances
to generate 100, 000 and 20, 000 samples for training and evaluation for these baselines, respec-
tively. For Hybrid models, we use the FiLM features (Perez et al., 2018) with euclidean distance
as the auxiliary task and knowledge distillation techniques, which we find effectively improves the
training efficiency. We use 80 instances to evaluate the performance and the generalization ability.
We report the standard metrics used in previous research: a) Time: the 1-shifted geometric mean
(Achterberg, 2007) of running time in seconds; b) Nodes: the 1-shifted geometric mean of B&B
nodes generated by the branching policies, which are hardware-independent; c)Wins: number of
times that a branching policy wins all the others. We tune all hyperparameters on the cauctions
benchmark and then directly apply to all the other benchmarks. See Appendix C for more details.

5.1 COMPARATIVE EVALUATION

Solving Efficiency We compare Symb4CO to all baselines and report the results in Table 1. Results
show that Symb4CO learned purely CPU-based policies achieve comparable performance to GPU-
based GNN policy and clearly outperform all the other CPU-based policies. Moreover, Symb4CO
learned policies generalized well to Medium and Hard datasets. Note that Symb4CO achieves such
performance with only ten training instances and one CPU core.

Table 3: Imitation learning accuracy on test sets. Here
GPLearn is a genetic programming library for symbolic dis-
covery. Symb4CO achieves comparable accuracy to MLP,
while it is training efficient, lightweight, and interpretable.

Model Cauctions Facilities Indset Setcover

PB 12.10 7.49 27.82 19.60

Tree 38.40 61.50 19.20 40.30
MLP 43.14 66.78 48.34 47.30

Hybrid 44.30 67.60 51.10 49.20
GNN 47.29 69.60 56.86 53.88

GPLearn 38.56 63.00 38.00 42.30
Symb4CO 43.20 66.30 46.50 47.70

Imitation Learning Accuracy We
report the imitation learning accuracy
on the test sets in Table 3. The results
show that Symb4CO learned policies
achieve comparable accuracy to com-
plex MLP models and significantly
higher than the interpretable Trees.
Note that Symb4CO learned policies
are lightweight, interpretable, and re-
quire much fewer training instances.
Symb4CO achieves higher accuracy
than GPLearn (Stephens & contribu-
tors, Year of access), which is one of
the SOTA open-source GP libraries.

5.2 STRENGTHS FOR APPLICATION

Training Efficiency Besides the results in Figure 1(a), we further compare the performance of
Symb4CO to the other ML baselines with only one training instance. Results in Table 2 show
that Symb4CO is significantly more training efficient than other ML approaches, as it can achieve
high performance with only one training instance. This is mainly because that the use of symbolic
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operators can be regarded as enforcing strong regularizations (Landajuela et al., 2021). We note this
setting is practical as we have to learn from scratch in many real-world CO tasks.

Table 4: The average decision making time (in mil-
lisecond) of all ML-based branching policies on dif-
ferent problem sizes. Results show that Symb4CO
learned policies are extremely efficient for inference
compared to the other ML-based approaches.

Cauctions: Trees MLP GNN Hybrid Symb4CO GNN-GPU

Easy 14.70 3.00 5.26 3.73 0.04 1.74
Medium 17.20 6.47 11.57 7.34 0.07 2.84

Hard 28.50 9.56 10.50 9.91 0.08 3.19

Inference Efficiency We compare the de-
cision making time (the time of feature ex-
traction plus model inference) for differ-
ent ML approaches. Results in Table 4
show that Symb4CO learned policies are
extremely efficient on purely CPU-based
devices. The efficiency comes from both
the small set of extracted features and the
compact symbolic policies. We also empir-
ically observe that their inference efficiency
is more stable than other ML policies on
workstations where CPU usage exhibits significant fluctuations due to other parallel tasks.

Table 5: Symb4CO learned branching policies are
significantly more compact than other ML models
(see Table B8 for feature descriptions). They are
easy to be integrated into the distributions of CO
solver packages due to their lightness. We believe
these policies can help MO researchers to further
optimize hard-coded branching policies like RPB.

Setcover s89(4s10 + 7s35 + 5s37 + 3s38

+s55 + 2s65 + s57 + 2s71)

Cauctions s35s57s84s85s
3
89s90(s85 + s89)

Facilities s89(4s23 + 3s25 + 2s26 + 2s34

+s47 + 3s53 + 2s54 + 6s70 + 4s85)

Indset −s23 + 7s36 − s52 + 5s56 + s71

Interpretability We report the learned poli-
cies in Table 5. We observe that expressions
containing log and exp can achieve high learn-
ing accuracy but fail to achieve the best end-
to-end time efficiency during validation. As
expected in Section 3.2, the symbolic policies
are significantly more compact than other ML
models. We note that the complied symbolic
policies are only 1/80 the size of Hybrid mod-
els in average, which highly facilitates their
deployment to CO solvers. Furthermore, we
found policies trained on one benchmark tend
to generalize well to another benchmark (Ta-
ble B). We observe RPB integrated in SCIP
(Gleixner et al., 2018) uses a scoring function
with human-designed features and expressions rather than vanilla pseudocosts. The intuition behind
the design of this scoring function is highly similar to the learned symbolic policies in Table 5. Thus,
we believe Symb4CO can help researchers further understand and optimize these hard-coded rules.

5.3 ABLATION STUDY

Table 6: Ablation study on more mathemat-
ical operators and constant choices. Results
show neither of the them contributes to higher
performance. Note that both introducing more
operators and optimizing constant placehold-
ers can lead to additional training costs.

Method Cauctions Facilities

Default 43.3 67.3
More Math Operators 43.3 67.3
Constant Placeholder 42.8 67.3

We conduct ablation study to compare different
mathematical operators and constant choices (as
mentioned in Section 4.1) in Table 6. First, we
compare the mathematical operators we used with
a larger one containing {sin, cos, tan}. Then, we
compare the constant placeholder approach (Pe-
tersen, 2019) with the constants used in Symb4CO.
Results show that neither of them contributes to
higher performance, which aligns with our expecta-
tions. Intuitively, this is because there is no period-
icity in CO solvers and scoring functions in ranking
tasks are usually stable against perturbations.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose the first deep symbolic discovery framework Symb4CO for exact CO
solver. Experiments show that Symb4CO achieves high performance and is remarkably efficient and
interpretable for deployment. Exciting avenues for future work include discovering more complex
working flows (e.g., the complex working flow in the RPB policy), handling more general input data
structures (e.g., sequences and graphs), and deploying Symb4CO to more components in modern
solvers (e.g., the simplex pricing strategies and the primal heuristics). We firmly believe the immense
potential of symbolic models in a wide range of critical real-world applications like CO solvers.
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REPRODUCIBILITY

We conduct all experiments on the open-source solver SCIP Optimization Suite 6.0 (Gleixner et al.,
2018). All benchmarks in this paper are widely used ones in previous research (Gasse et al., 2019;
Gupta et al., 2020), which can be generated directly with open-sourced codes and hyperparameters
listed in Table D14. All baselines are evaluated directly using the GitHub repository (pg2455, 2023)
provided by Gupta et al. (2020) and the default settings described in Section 5. The learned policies
are all reported in Table 5 and the implementation details are provided in C. Then, the imitation
learning accuracy can be evaluated directly using the features implemented in Gupta et al. (2020).
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A RELATED WORK

A.1 MACHINE LEARNING FOR COMBINATORIAL OPTIMIZATION

Existing research on machine learning for combinatorial optimization (ML4CO) in an exact solver
mainly concentrates on leveraging deep models to (1) approximate some expert heuristics that suffer
from heavy computational costs (Gasse et al., 2019; Gupta et al., 2020; Zarpellon et al., 2021; Gupta
et al., 2022) or (2) improve some weak heuristics with unsatisfactory performance (Chmiela et al.,
2021; Wang et al., 2023). For the former category, He et al. (2014) learn a node selection policy
by imitating the optimal policy given the optimal solutions; Gasse et al. (2019) and Gupta et al.
(2022) use graph neural networks as fast approximations for the time-consuming strong branching
heuristics with imitation learning. For the latter, Chmiela et al. (2021) construct a schedule for
a collection of primal heuristics to obtain good primal solutions and learn a good schedule via
reinforcement learning; Wang et al. (2023) leverage a sequential model to learn a cut selection
policy by reinforcement learning. These approaches have achieved promising improvements in
solving efficiency.

A.2 LEARNING TO BRANCH IN A BRANCH-AND-BOUND SOLVER

During the solving process, branching policy is a key factor that influences the efficiency of the
B&B solver. Traditional basic branching heuristics mainly include strong branching and pseudocost
branching policies. The strong branching policy can produce the smallest B&B search trees but
suffers from high computational costs. The pseducost branching policy uses a much simpler pse-
ducost score to evaluate the progress of each branching candidate but requires extensive engineering
experience and significant manual tuning.

Recent works have leveraged machine learning to approximate the time-consuming traditional
branching policy and speed up the branching module in a B&B solver. (Khalil et al., 2016) for-
mulate the branching variable selection problem as a ranking problem and train a variant of support
vector machine (SVM) on the data collected from a strong branching expert for ranking. (Alvarez
et al., 2017) uses ExtraTrees model to predict the branching scores. To capture the rich feature in-
formation in the input data, researchers use deep models with GPU inference to further enhance the
solving performance. Based on the imitation-learning-based approach, (Gasse et al., 2019) repre-
sent each subproblem in the solving process as a bipartite graph and propose a graph convolutional
neural network (GCNN) model to mimic the strong branching policy; (Zarpellon et al., 2021) imi-
tates the default branching policy (reliability pseudocost branching) with deep neural network and
incorporates an explicit parameterization of the state of the search tree with extra gating layers. For
the reinforcement-learning-based methods, (Etheve et al., 2020) first leverage reinforcement learn-
ing for branching with deep Q-learning. Other works utilize the GCNN to parameterize the value
function or policy function ((Sun et al., 2020), (Scavuzzo et al., 2022) and (Parsonson et al., 2023)).
Though the existing works we mentioned above achieve high solving efficiency, they employ deep
models and rely heavily on GPUs for fast inference.

However, modern exact CO solvers are usually deployed on CPU clusters. While existing CPU-
friendly machine learning models such as Trees (Alvarez et al., 2017) suffer from unsatisfactory
variable selection accuracy, the inference time of the deep models may become much longer on
the CPU machines. Thus, the lightweight deployment of the deep models on CPUs becomes a
significant topic (Gupta et al., 2020). To run the deep branching policy on the CPU machines more
efficiently, Gupta et al. (2020) propose a hybrid branching policy that uses an expressive graph
neural network to branch at the root node of the branch-and-bound tree and a computational-friendly
multi-layer perceptron at the other nodes. To step further, Symb4CO avoids running deep models on
CPU machines in the inference time and leverages the expressive deep models to search the simple
symbolic mathematical expressions, in which we can achieve high inference efficiency.

A.3 MACHINE LEARNING FOR ALGORITHM DISCOVERY

Machine learning has the potential to discover implicit rules that are beyond human intuition from
training data and construct algorithms that outperform handcraft programs. ML for algorithm dis-
covery includes symbolic discovery, program search, etc. Specifically, Program search focuses on
optimizing the computing stream of the algorithm, such as Mankowitz et al. (2023) for discovering
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Table B7: The cross-benchmark evaluation for learned policies in Table 5 (Time: s). We surprisingly
found that symbolic policies trained on one benchmark can usually generalize well to another. A
potential reason is that the learned symbolic policies are very compact and their parameters are very
sparse, which effectively improves the generalization ability of these policies.

Benchmark\Policy From SetCover Cauctions Facilities Indset RPB (Default)

Setcover 7.10 21.90 9.13 12.10 11.40
Cauctions 1.81 1.57 1.82 2.36 3.00
Facilities 46.44 65.07 37.76 38.40 54.05

Indset 22.28 22.16 66.08 29.21 42.69

faster sorting algorithms and Chen et al. (2023) for searching for an efficient optimization algo-
rithm. Compared to program search, the symbolic discovery framework aims at searching the space
of small mathematical expressions instead of computing streams (Petersen et al., 2021; Landajuela
et al., 2021). The symbolic discovery framework is analogous to an extreme model distillation tech-
nique, extracting knowledge from a black-box neural network to hard-code expressions. Evolution-
ary algorithms, including genetic programming, are traditional approaches for symbolic discovery
(Poli et al., 2008). Recently, deep learning has demonstrated its powerful representational capacity,
offering a new approach to solving symbolic discovery problems.

B INPUT FEATURES

We use the 91-dimension features in Gupta et al. (2020), which are used as the input of MLP in
Gupta et al. (2020). These features can be roughly divided into two classes, i.e., the static ones that
describe the MILP problem and the dynamic ones that describe the solving status. We list all the
features in Table B8.

C IMPLEMENTATION DETALS

Algorithm 1 Deep Symbolic Discovery for Exact Combinatorial Optimization Solver
Input: the sequential model pθ, the library of tokens L, and the distribution of MILP instances I.
// Collect expert demonstration with strong branching:
Initial expert demonstration buffer: D ← ∅.
while | D |< S do

Sample MILP instance I ∼ I, solve I with strong branching.
Collect variable features and SB scores: D ← D ∪

{
(s1:kt

, v1:kt
)
T
t=1

}
.

// Here kt is the number of branching candidates at B&B node t.
end while
// Train the sequential model pθ:
for iteration= 1, 2, · · · , N do

Sample J symbolic functions using tokens in L: τ1:J ∼ pθ.
// Calculate the fitness measure of each symbolic function for evaluation:
for j = 1, 2, · · · , J do

r(τj) = E(s1:kt ,v1:kt )∼D
[
δ
(
argmax1:kt

τj(si) = argmax1:kt
vi
)]

.
end for
Train model: update pθ via PPO by optimizing J(θ; ϵ).

end for
Output: Symbolic function τbest with highest r(·) on validation set.

Model Architecture and Hyperparameters Symb4CO uses LSTM to generate symbolic branching
functions. The hyperparameters of Symb4CO are listed in Table C9, which roughly follows the
setting in Petersen et al. (2021); Landajuela et al. (2021). All experiments are executed on Intel
Xeon Platinum 2.50GHz CPUs and NVIDIA Tesla V100 GPUs. All the other baselines are executed
using the implementation in previous research Gupta et al. (2020) as mentioned in Section 5.
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Figure C3: The curve of FSB score v.s. different depths on the Medium dataset of the Setcover
benchmark.

Constraints as Prior There are several types of constraints employed in Symb4CO, which serves
as priors to reduce the search space and accelerate the training procedure. These constraints include:

• The hard length prior, which limits the output expressions to a specific range by zeroing
out the probabilities of tokens that would violate the constraint. Specifically, it sets the
probabilities of leaf nodes (i.e., tokens of variables and constants whose degree of children
is zero) to zero if the output expression is shorter than the minimal length and sets the
probabilities of non-leaf nodes (i.e., tokens of mathematical operators) to zero if the output
expression is longer than expected. We set the minimal and the maximal length to 4 and
64, respectively.

• Inverse operator constraints, which restrict the child of a unary operator not to be the inverse
of its parent by zeroing out its probability. These inverse operators are the (exp, log) pair.

• Non-trivial constraints, which ensures the symbolic tree to contain at least one input feature
by zeroing out the probabilities of constants when there is only one empty leaf node left
and all the other leaf nodes are constants.

• The soft length prior, which limits the lengths of the initial outputs of RNN not to concen-
trate at extreme points by adding a priori distribution to the outputs. Specifically, the values
in the priori distribution depend on the current length of the expression, which encourages
the probabilities of non-leaf nodes when the expression is shorter than the given soft length
prior (λ = 20) and encourages the probabilities of leaf nodes when longer than the soft
length prior. Intuitively, the motivation of the soft prior is similar to the entropy regularizer
widely used in reinforcement learning.

The lengths of the learned symbolic policies are 45, 19, 55, and 49 on benchmarks Setcover, Cauc-
tions, Facilities, and Indset, respectively. We further conduct ablation studies on the maximal hard
length constraint and the soft length prior in Table C. Results show that Symb4CO is relatively
insensitive to the soft length prior, while too short hard length constraint could cause decreased
performance.

Symbolic Policy Deployment Observe that there is only a small subset of active features in the
symbolic policies. Thus, we reimplement a purely C-based feature extraction code with various
macros to control whether each feature should be extracted. We also switch the branching policy to
RPB when depth is larger than 16 on all benchmarks to gain further acceleration, as we observe that
RPB for deep nodes is both precise and efficient (see Table C, Table C, and Figure C for analysis).

D DATA GENERATION

We generate the dataset following the process in Gasse et al. (2019); Gupta et al. (2020), using four
benchmarks of NP-hard combinatorial problem families, i.e., set covering, combinatorial auction,
capacitated facility location and maximum independent set. For each benchmark, we set three levels
of difficulty for instances by increasing problem scales, i.e., easy, medium and hard. For Symb4CO,
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we generate only ten easy instances for training and four easy instances for validation. In order to
obtain our datasets of state-action pairs for training and validation, we solve the training instances
with SCIP and record new states and strong branching decisions during the branch-and-bound pro-
cess. We collect 1, 000 samples for training, and 400 for validation in total. For other ML-based
approaches, we generate 10, 000 training instances and 2, 000 validation instances to attain 100, 000
and 20, 000 state-action pairs for training and validation on all benchmarks. All the methods are
evaluated on 240 instances with the time limit of 3, 000s (80 easy instances, 80 medium instances,
and 80 hard instances). The instance generation algorithms and hyperparameters for each bench-
mark are listed in Table D14.

E MORE DISCUSSIONS

Feature Selection Human-designed features are widely used in learning-based approaches in tasks
like branching Khalil et al. (2016), node selection He et al. (2014), and cut selection Huang et al.
(2022). Even the bipartite graph states employed in the branching task contain 25 human-designed
features in the constraints, variables, and edges Gasse et al. (2019). In fact, during our approach
design, we did consider generating features automatically from bipartite graphs based on symbolic
models for graph neural networks (GNNs) Cranmer et al. (2020a); Shi et al. (2022a). However, we
found three challenges that make the task non-trivial:

1. First, processing bipartite graphs via symbolic models requires complex computation by
traversing the entire graph, and the complexity grows linearly with the number of layers we
consider. This might be extremely expensive for inference on purely CPU-based devices
compared with human-designed features.

2. Second, existing approaches learn such symbolic models by symbolize the components in
GNN one by one, which results in very high training overhead compared to the lightweight
Symb4CO.

3. Finally, most experiments conducted in previous research [5,6] implicitly assume the mes-
sage flow passed by GNN carries a specific physical mechanism, which ensures that the
message-passing function is sparse enough for symbolizing. However, the message flow in
the branching task might not satisfy this assumption.

Cross Benchmark Generalization It is widely recognized that learning-based approaches tend to
fail on out of distribution data. However, we surprisingly found that symbolic policies trained on
one benchmark can usually generalize well to another benchmark (see the bold values in Table B).
A potential reason is that the learned symbolic policies are very compact and their parameters are
very sparse, which effectively improves the generalization ability of these policies.

Discussions on Limitations and Future Work We conclude three exciting challenges and their
corresponding exciting future work based on the previous analysis:

1. Automated feature generation. Though the features used in this paper are simple to obtain
and effective in practice, the automated feature generation is still promising future work to
further help us reduce the domain knowledge for feature design, understand the underlying
characteristics of this task, and deploy Symb4CO to more tasks in this field.

2. Cross-benchmark symbolic policy for general CO problems. Based on the results in Ta-
ble B, we highly believe that training a cross-benchmark symbolic policy—though might
not achieve the best learning accuracy on specific data distributions—to replace the SOTA
human-designed scoring function in the RPB policy, is a promising avenue for future work.

3. Graph inputs and GPU-based symbolic policies. Bipartite graph is widely used to formulate
a series of combinatorial optimization (CO) problems, handling these inputs is a further step
towards general algorithm discovery system on CO solvers. Deploying symbolic policies
on high-end GPUs (when available) can further accelerate the inference speed.

4. Deployment to satisiability (SAT) problems (Holden et al., 2021). Generally, both CO
and SAT problems can be tackled via generic branch-and-bound solvers like SCIP. Thus,
applying Symb4CO to SAT problems is quite an exciting and natural idea since they share
many similarities in problem structures.
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Why Considering Purely CPU-Based Setting? There are two reasons that make symbolic policies
necessary:

1. Ease for real-world applications. There are two ways to distribute the learning-based CO
solvers, while neither of them are GPU-friendly:
(a) For deployment to personal users, we can not assume their accessibility to high-end

GPU devices, especially for users from the field of traditional mathematical optimiza-
tion.

(b) For deployment to cloud services, we note that the inference in branching is taken
at significantly high frequency. Thus, when multiple MILPs are solved in parallel,
instead of packing the inputs into a batch, we have to initialize independent neural
networks for each separate job to avoid the severe blocking (see results reported in
Gupta et al. (2020) in Appendix 1), which results in high cost for cloud services.

2. The goal of automatic algorithm/principle discovery. Though the idea of incorporating ML
to modern CO solvers is widely accepted in recent years, research that simply replaces
the hard-coded components in CO solvers to ”black-box” neural networks struggles to
help us understand these tasks from the perspective of combinatorial optimization research.
However, symbolic policies help us further understand what matters in these tasks, and thus,
help researchers to further discover new algorithms/principles for these problems.

Other reasons why symbolic policies without GPU are necessary are reported in our main paper. In
conclusion, compared to previous research, our work provides an entirely new perspective of the
research in machine learning for combinatorial optimization (ML4CO). We believe our work will
strongly contribute to the wide application of learning-based approaches to modern CO solvers.

Tackling Bipartite Graph Inputs Bipartite graph is a general way to represent MILP problems.
Thus, a natural idea for more general purpose is to design symbolic policies that directly tackle
the MILP problems with their bipartite graph representations. Specifically, following the GNN
distillation approaches proposed by Cranmer et al. (2020b); Shi et al. (2022b). Then, the deployment
process is just similar to that in our proposed Symb4CO.
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Table B8: The 91 features used for branching candidates, following those proposed in previous
research (Gupta et al., 2020; Gasse et al., 2019; Khalil et al., 2016).

Index Name Short Description

0-3 Variable type Binary, Integer, Continuous, Implied Integer
4 Normalized coefficient Objective coefficient of the variable normalized by the norm of its

coefficients in the constraints
5 Specified bounds Whether the variable has a lower bound
6 Specified bounds Whether the variable has a upper bound
7 Lower bound Whether the variable reaches its lower bound in the current LP so-

lution
8 Upper bound Whether the variable reaches its upper bound in the current LP so-

lution
9 Solution fractionality Fractional part of the variable in the current LP solution

10-13 Categorical Variable is at the lower bound, upper bound, between the bound or
zero

14 Reduced cost Amount by which objective coefficient of the variable should de-
crease so that the variable assumes a positive value in the LP solu-
tion

15 Age Number of LP iterations since the last time the variable was basic
normalized by total number of LP iterations

16 Solution value Value of the variable in the current LP solution
17 Incumbent value Value of the variable in the current best primal solution
18 Average incumbent

value
Average value of the variable in all of the previously observed fea-
sible primal solutions

19-42 Statistics for active con-
straint coefficients

An active constraint at a node LP is one which is binding with equal-
ity at the optimum. We consider 4 weighting schemes for an active
constraint: unit weight, inverse of the sum of the coefficients of all
variables in constraint, inverse of the sum of the coefficients of only
candidate variables in constraint, dual cost of the constraint. Given
the absolute value of the coefficients of the variable in the active
constraints, we compute the sum, mean, stdev., max. and min. of
those values, for each of the weighting schemes. We also compute
the weighted number of active constraints that the variable is in,
with the same 4 weightings

43-49 Statistics for constraint
degrees

A dynamic variant of statistics for constraint degrees. Here, the
constraint degrees are on the current node’s LP. The ratios of the
static mean, maximum and minimum to their dynamic counterparts
are also features

50-52 Objective function co-
efficients

Value of the coefficient (raw, positive only, negative only)

53-56 Infeasibility statistics Number and fraction of nodes for which applying SB to the variable
led to one (two) infeasible children (during data collection)

57 Number of constraints Number of constraints that the variable participates in (with a non-
zero coefficient)

58-59 Min/max for ratios of
constraint coefficients
to RHS

Minimum and maximum ratios across negative right-hand-sides
(RHS)

60-67 Min/max for one-to-all
coefficient ratios

The statistics are over the ratios of a variable’s coefficient, to the
sum over all other variables’ coefficients, for a given constraint.
Four versions of these ratios are considered: positive coefficient to
sum of positive coefficients

68-69 Min/max for ratios of
constraint coefficients
to RHS

Minimum and maximum ratios across positive right-hand-sides
(RHS)

70-74 Pseudocosts Upwards and downwards values, and their corresponding ratio, sum
and product, weighted by the fractionality

75-78 Statistics for constraint
degrees

The degree of a constraint is the number of variables that participate
in it. A variable may participate in multiple constraints, and statis-
tics over those constraints’ degrees are used. The constraint degree
is computed on the root LP (mean, stdev., min, max)

79-88 Statistics for constraint
coefficients

A static version of variable’s positive (negative) coefficients in the
constraints it participates in (count, mean, stdev., min, max)

89-90 Slack and ceil distances The distance to the nearest integer of the current value, the distance
to the nearest integer that lager thab the current value
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Table C9: The hyperparameters for Symb4CO.

Parameter Value

LSTM layers 2
LSTM hidden size 128
Batch size 500
Risk factor 0.2
Expression minimal length 4
Expression maximum length 64
Soft length prior λ 20
Soft length prior σ2 8
Hierarchical entropy regularizer γ 0.9
PPO learning rate 5e-5
PPO entropy coefficient 5e-2
PPO epochs at each iteration 8
Optimizer Adam (Kingma & Ba, 2015)
Number of training iterations for early stop 300

Table C10: Ablation studies on the maximal hard length constraint and the soft length prior. Results
show that Symb4CO is relatively insensitive to the soft length prior, while too short hard length
constraint could cause decreased performance.

Hyperparameters (on Setcover) Imitation Learning Accuracy

Default 47.7
Maximal Length = 16 43.3
Maximal Length = 32 45.1

Maximal Length = 128 47.4
Soft Length = 10 47.4
Soft Length = 40 47.7

Table C11: The training cost of Symb4CO on each benchmark.
Benchmark Time (h) Iterations

Setcover 1.08 1087
Cauctions 1.62 1432
Facilities 1.87 1665

Indset 2.80 2312

Table C12: The decision time and the normalized FSB score of different policies, which accounts
for our deployment of Symb4CO policies to first 17 layers.

Model: Symb4CO RPB

Depth Normalized FSB score Decision Time (ms) Normalized FSB score of the PB function Decision Time (ms)

0 0.728 56.8000 0.144 1300.5199
4 0.766 26.3000 0.154 571.3723
8 0.853 14.1000 0.262 52.0601
12 0.888 12.8486 0.309 27.8487
16 0.667 9.9025 0.667 8.5889
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Table C13: The end-to-end performance of Symb4CO when employed in all layers (Symb4CO-
AllLayers).

Setcover: Easy Medium Hard

Model Time Nodes Time Nodes Time Nodes

RPB 11.40 212.5 100.32 6116.0 1911.32 117450.0
Symb4CO 7.10 304.7 86.92 5623.2 1894.38 129231.6

Symb4CO-AllLayers 6.96 297.4 93.40 5587.6 1943.41 113149.5

Table D14: Details of instance generation algorithms.
Benchmarks Difficulty level Generation algorithm Hyperparameters

Set covering
Easy

Medium
Hard

Balas & Ho (1980)
500 rows 1000 columns

1000 rows 1000 columns
2000 rows 1000 columns

Combinatorial auction
Easy

Medium
Hard

Leyton-Brown et al. (2000)
100 items for 500 bids
200 items for 1000 bids
300 items for 1500 bids

Capacitated facility location
Easy

Medium
Hard

Cornuéjols et al. (1991)
100 facilities with 100 customers
100 facilities with 200 customers
100 facilities with 400 customers

Maximum independent set
Easy

Medium
Hard

Bergman et al. (2015)
750 nodes with affinity 4
1000 nodes with affinity 4
1500 nodes with affinity 4
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